”Ÿ”•û’öŽ®˜_•ª‰È‰ï“Á•Êu‰‰ˆê——
i1977 ”N”N‰ïE‘n—§ 100 ”N‹L”O”N‰ïˆÈ~j
2023 | H‹G‘‡•ª‰È‰ï | “Œ–k‘åŠw | 9.20-9.23 |
‹{¼‹g‹viMB‘åE—j | Layer potential type operator ‚̃XƒyƒNƒgƒ‹—˜_‚Æ‚»‚̉ž—p‚ÉŒü‚¯‚Ä | ||
ûüâ—ÇŽji_ŒË‘åEŠCŽ–j | Willmore —¬‚ɑ΂·‚é臒lŒ^‹ßŽ—ƒAƒ‹ƒSƒŠƒYƒ€‚ɂ‚¢‚Ä | ||
Ô–xŒöŽjiɪ‘åEHj | Global dynamics above the ground state threshold for nonlinear Schrödinger equations | ||
âV“¡•½˜ai“d’Ê‘åEî•ñ—Hj | Asymptotic stability of the trivial steady state for the two-phase Navier-Stokes equations | ||
2023 | ”N‰ï | ’†‰›‘åŠw | 3.15-3.18 |
’r”©—DiL“‡‘åEHj | ŽžŠÔ—̈æ‚É‚¨‚¯‚éˆÍ‚¢ž‚Ý–@‚Ì“WŠJ i2022 ”N“xi‘æ 21 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
’·àVšá”Vié‹Ê‘åE—Hj | Möbius ƒGƒlƒ‹ƒM[‚Ì•ª‰ð‚Æ”g“®ŽÊ‘œ | ||
–k’¼‘×iŒF–{‘åEHj | •¡‘fŒW”‚ð‚à‚”ñüŒ`ƒVƒ…ƒŒ[ƒfƒBƒ“ƒK[•û’öŽ®‚̉ð‚Ì‹““® | ||
“›ˆä—e•½i‹ž‘åE—j | Convergence to the initial data and weighted estimates for the incompressible Navier-Stokes equations | ||
2022 | H‹G‘‡•ª‰È‰ï | –kŠC“¹‘åŠw | 9.13-9.16 |
ŽRì‘å—ºi“Œ‹ž—‘åE—j | ƒ‚ƒmƒhƒƒ~[•Û‘¶•ÏŒ`‚ÌŠô‰½Šw‚Æ‘ÎÌ« | ||
ŽÄ“c«Œhi–¼é‘åE—Hj | $H^1$ —ÕŠE€‚ðŽ‚Â€üŒ`‘ȉ~Œ^•û’öŽ®‚̳’l‰ð‚Ì‘Q‹ß‹““® | ||
‹e’rO–¾i’Ócm‘åEŠwŒ|j | ‹óŠÔ 3 ŽŸŒ³‚É‚¨‚¯‚é“ñd‚ׂ«”ñüŒ`ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ® ‚ÌŠî’êó‘Ô | ||
Ž›àV—S‚i–¼‘åE‘½Œ³”—j | “ñ‘w—¬‚Ì”ñ‹ÇŠŠgŽUŠE–ʃ‚ƒfƒ‹‚ÌŽã‰ð‚¨‚æ‚Ñ‚»‚̋NJ‘Q‹ß | ||
2022 | ”N‰ï | é‹Ê‘åŠwiƒIƒ“ƒ‰ƒCƒ“j | 3.28-3.31 |
‚‹´‘¾iãŽs‘åE—j | Hardy •s“™Ž®‚ÉŠÖ˜A‚·‚锊w‰ðÍ i2021 ”N“xi‘æ 20 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
¼àVаi_“Þì‘åE—j | ‚ŽŸŒ³‹óŠÔ‚É‚¨‚¯‚鑽ˆÀ’èŒ^”ñüŒ`€‚ð‚à‚”½‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è‚ɂ‚¢‚Ä | ||
‘¤“‡ŠîGi“Œ‹ž—‘åE—Hj | Weighted energy estimates for wave equations with space-dependent damping | ||
ã“cDаi_ŒË‘åEŠCŽ–j | ŠÉ˜a€‚ðŽ‚Â‘ÎÌ‘o‹ÈŒ^•û’öŽ®Œn‚É‚¨‚¯‚éÁŽU\‘¢‚Ì”Šw‰ðÍ | ||
2021 | H‹G‘‡•ª‰È‰ï | ç—t‘åŠwiƒIƒ“ƒ‰ƒCƒ“j | 9.14-9.17 |
Šâ–Øk•½i“Œ‘åE”—j | Š®‘S WKB ‰ð͂Ƃ»‚ÌŽü•Ó | ||
‰ºžŠ¹•Fi“s—§‘åE—j | ’PˆÀ’è‚È”½‰ž€‚ð‚à‚‘ΔŠgŽU•û’öŽ®‚̉ð‚Ì‹““®‚ɂ‚¢‚Ä | ||
‰ª–{ˆ¨iã‘åE—j | ‹óŠÔ 3 ŽŸŒ³‚É‚¨‚¯‚é”ñüŒ` Klein-Gordon •û’öŽ®‚̂قƂñ‚ÇŠmŽÀ‚È‘åˆæ“I“KØ« | ||
—é–Øqi–¼H‘åj | ƒvƒ‰ƒYƒ}‹«ŠE‘w‚Ì”Šw‰ðÍ | ||
2021 | ”N‰ï | Œcœä‹`m‘åŠwiƒIƒ“ƒ‰ƒCƒ“j | 3.15-3.18 |
•gŽq²miç—tH‘åj | ’´Šô‰½ŠÖ”‚Æ·•ª•û’öŽ® | ||
’–‰œ—϶i“Œ–k‘åE—j | Sobolev Œ^•s“™Ž®‚Ìŗǒ蔂ƒB¬‰Â”\« | ||
“ñ‹{L˜ai–¾‘åE‘‡”—j | ”½‰žŠgŽUŒn‚Ì¢ŠE i2020 ”N“xi‘æ 19 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
‰ª•”lGiã‘åEŠî‘bHj | ŠO—͂ɂæ‚éƒiƒrƒGEƒXƒg[ƒNƒX•û’öŽ®‚̉ð‚Ì‘Q‹ß‰ðÍ | ||
2020 | H‹G‘‡•ª‰È‰ï | ŒF–{‘åŠwiƒIƒ“ƒ‰ƒCƒ“j | 9.22-9.25 |
âˆäG—²i“Œ‘åE”—j | Painlevé •û’öŽ®‚Ì¢ŠE i2019 ”N“xi‘æ 18 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
åb“c‘•½iŠwK‰@‘åE—j | “dŽq‚̃nƒ~ƒ‹ƒgƒjƒAƒ“‚̌ŗL’l‚̳Šm‚ȉºŠE•]‰¿ | ||
‹v“¡t‰îi‘‘åE—Hj | Cross-diffusion limit in the stationary SKT model | ||
£•ЃŽsi‹ã‘åE”—j | ƒfƒ‹ƒ^ƒ|ƒeƒ“ƒVƒƒƒ‹‚ð‚à‚”ñüŒ`ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚̉ð‚Ì’·ŽžŠÔ‹““® | ||
2020 | ”N‰ïi’†Ž~j | “ú–{‘åŠw | 3.16-3.19 |
âˆäG—²i“Œ‘åE”—j | Painlevé •û’öŽ®‚Ì¢ŠE i2019 ”N“xi‘æ 18 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
åb“c‘•½iŠwK‰@‘åE—j | “dŽq‚̃nƒ~ƒ‹ƒgƒjƒAƒ“‚̌ŗL’l‚̳Šm‚ȉºŠE•]‰¿ | ||
‹v“¡t‰îi‘‘åE—Hj | Cross-diffusion limit in the stationary SKT model | ||
£•ЃŽsi‹ã‘åE”—j | ƒfƒ‹ƒ^ƒ|ƒeƒ“ƒVƒƒƒ‹‚ð‚à‚”ñüŒ`ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚̉ð‚Ì’·ŽžŠÔ‹““® | ||
2019 | H‹G‘‡•ª‰È‰ï | ‹à‘ò‘åŠw | 9.17-9.20 |
‹S’ˈêi‰ªŽR—‘åE—j | ƒ_ƒCƒ„ƒ‚ƒ“ƒhƒAƒ‹ƒtƒ@·•ª•û’öŽ®‚̃Eƒ‰ƒ€ˆÀ’è« | ||
“n•”‘ñ–çi—§–½ŠÙ‘åE—Hj | ƒGƒlƒ‹ƒM[Œð·‚ÌãˆÊ€ˆÊ‚É‚¨‚¯‚郌ƒ]ƒiƒ“ƒX‚Ì€ŒÃ“T•ª•z | ||
¬–쎛—LÐi“ŒH‘åE—j | Hyperbolic solutions to Bernoulli's free boundary problem | ||
Žá™—E‘¾iˆ¤•Q‘åE—Hj | ÁŽUŒ^”g“®•û’öŽ®‚ɑ΂·‚é$L^p$-$L^q$•]‰¿‚Æ”ñüŒ`–â‘è‚ւ̉ž—p | ||
2019 | ”N‰ï | “Œ‹žH‹Æ‘åŠw | 3.17-3.20 |
_–{WŒáiL“‡‘åE—j | ƒŠƒT[ƒWƒFƒ“ƒg”Ÿ”‚Ƈ¬Ï | ||
N. FuscoiUniv. di Napolij | Asymptotic stability of the gradient flow of some nonlocal energies | ||
“¡“ˆ—z•½iɪ‘åEHj | Ž©ŒÈ‘ŠŽ—«‚ðŽ‚½‚È‚¢”¼üŒ`”M•û’öŽ®‚̉‰ð« | ||
쓇Gˆêi‘‘åE—Hj | ‘ÎÌ‘o‹ÈŒn‚ÌÁŽU\‘¢‚ƈÀ’諉ðÍ i2018 ”N“xi‘æ 17 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
2018 | H‹G‘‡•ª‰È‰ï | ‰ªŽR‘åŠw | 9.24-9.27 |
ŽO’¬Ÿ‹viã‘åEî•ñj | ŒÃ“T’´Šô‰½”Ÿ”‚Æ‚»‚ÌŽü•Ó | ||
ìã—³Ž÷i—´’J‘åE—Hj | “®“I‹«ŠEðŒ•t‚«”¼üŒ`‘ȉ~Œ^•û’öŽ® | ||
ƒxƒY ƒj[ƒ‹ié‹Ê‘åE—Hj | Geometric estimates arising in the analysis of Zakharov systems | ||
•Ÿò—í‰Ài“Œ–k‘åEî•ñj | Bose-Einstein ‹Ãkƒ‚ƒfƒ‹‚É‚¨‚¯‚鉷“xŒø‰Ê | ||
2018 | ”N‰ï | “Œ‹ž‘åŠw | 3.18-3.21 |
’|ˆä‹`ŽŸi“¯ŽuŽÐ‘åE—Hj | ‘ȉ~”Ÿ”‚âƒpƒ“ƒ‹ƒ”ƒF“ÁŽê”Ÿ”‚̃Cƒ“ƒXƒ^ƒ“ƒgƒ““WŠJ‚ð‚ß‚®‚Á‚Ä\ƒpƒ“ƒ‹ƒ”ƒF•û’öŽ®‚ÌŠ®‘SWKB‰ðÍÅIÍ i2017 ”N“xi‘æ 16 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
ŽÄ“c“O‘¾˜YiL“‡‘åEHj | ”ñüŒ`‘ȉ~Œ^•û’öŽ®‚̌ŗL’l–â‘è‚Ì‘Q‹ß‰ð͂Ƌt•ªŠò–â‘è‚̉ðÍ i2017 ”N“xi‘æ 16 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
“ñ‹{L˜ai–¾‘åE‘‡”—j | ”½‰žŠgŽU•û’öŽ®‚Ìis”g‰ð‚Æ‘Sˆæ‰ð | ||
ŠâŸºŽii“Œ–k‘åE—j | ˆ³k«Navier-Stokes•û’öŽ®‚ɑ΂·‚é•s“KØ«‚ɂ‚¢‚Ä | ||
2017 | H‹G‘‡•ª‰È‰ï | ŽRŒ`‘åŠw | 9.11-9.14 |
O. LisovyiiUniv. de Toursj | Painlevé functions, Fredholm determinants and combinatorics | ||
‘«’BT“ñiɪ‘åEHj | ”¼üŒ`‘ȉ~Œ^•û’öŽ®‚̳’l‰ð‚̈êˆÓ«E”ñ‘Þ‰»«‚Æ‚»‚̉ž—p | ||
ˆÉ“¡O“¹i“Œ‹ž—‘åE—j | ‚«—ô‚ðŠÜ‚ޗ̈æ‚É‚¨‚¯‚é•Δ÷•ª•û’öŽ®‚̉ðÍ | ||
ûü“c—¹i‹ã‘å”E—j | Dispersive estimates for rotating fluids and stably stratified fluids | ||
2017 | ”N‰ï | Žñ“s‘åŠw“Œ‹ž | 3.24-3.27 |
œAœ¨ˆêŠói鼑åE—j | üŒ^í”÷•ª•û’öŽ®‚̃AƒNƒZƒTƒŠ[ƒpƒ‰ƒ[ƒ^[‚ð„‚Á‚Ä | ||
¬’r–κi“Œ–k‘åE—j | Š®‘S”ñüŒ`•û’öŽ®‚Ì$L^p$”S«‰ð‚ÌABPÅ‘å’lŒ´—‚Æ‚»‚̉ž—p i2016 ”N“xi‘æ 15 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
¼ŽR®Žui˜a‰ÌŽR‘åE‹³ˆçj | –€ŽC€‚ðŽ‚Â”g“®•û’öŽ®‚ÌŠgŽUŒ»Û‚ɂ‚¢‚Ä | ||
•ÐŽR‘ˆê˜Yiã‘åE—j | ”ñüŒ`”g“®•û’öŽ®Œn‚Ì‘åˆæ‰ð‚Ì‘¶Ý‚Æ‘Q‹ß‹““® i2016 ”N“xi‘æ 15 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
2016 | H‹G‘‡•ª‰È‰ï | ŠÖ¼‘åŠw | 9.15-9.18 |
’Jì’qKiŒF–{‘åE‹³ˆçj | ³‘¥•Ï“®ŠÖ”˜_‚Æ”÷•ª•û’öŽ®‚̉ð‚Ì‘Q‹ß‹““® | ||
Žá‹·“Oi‹ãH‘åEHj | 1ŽŸŒ³ƒtƒƒ“ƒg‚¨‚æ‚уpƒ‹ƒX’èí‰ð‚É‚¨‚¯‚éüŒ`‰»ŒÅ—L’l–â‘è | ||
Γc“Ö‰pi“Œ‹ž—‘åEHj | ŽžŠÔ•Ï“®“dê‚É”º‚¤—ÊŽqŽU—‚̇–â‘è‚Æ‹t–â‘è‚ɂ‚¢‚Ä | ||
‘O“c¹–çiç—t‘åE—j | On orbital instability of excited states of nonlinear Schrödinger equations | ||
2016 | ”N‰ï | ’}”g‘åŠw | 3.16-3.19 |
ŽÄŽRˆò—Úi‹ž‘åEî•ñj | $n$ ‘Ì–â‘è‚ÌŽüŠú‹O“¹‚̕ϕª‰ðÍ | ||
“c’†˜a‰ii‘‘åE—Hj | ”ñüŒ`‘ȉ~Œ^•û’öŽ®‚ɑ΂·‚é“ÁˆÙÛ“®–â‘è \“Á‚ɑމ»‚·‚éꇂð„‚Á‚Ä\ i2015 ”N“xi‘æ 14 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
•–Øê³éiŽº—–H‘åj | ‚ŽŸŒ³ˆÚ—¬ŠgŽU•û’öŽ®Œn‚̉ð‚Ì—LŒÀŽžŠÔ”š”‚ɂ‚¢‚Ä | ||
™–{[i–¼‘åE‘½Œ³”—j | ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚ÌŠp•ûŒü‚Ö‚Ì•½ŠŠ‰»ì—p‚ɂ‚¢‚Ä i2015 ”N“xi‘æ 14 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
2015 | H‹G‘‡•ª‰È‰ï | ‹ž“sŽY‹Æ‘åŠw | 9.13-9.16 |
áÁ–ì’qsi—®‹…‘åE—j | ‘å‹v•ÛŒ^”÷•ª•û’öŽ®‚Ì‘½•Ï”‰»‚Æ•½’R\‘¢ | ||
œAàVŽj•FiŽRŒû‘åE—j | ŽžŠÔ‚Ɉˑ¶‚·‚éŒW”‚ðŽ‚Â”g“®•û’öŽ®‚̉ð͂Ƃ»‚̉ž—p | ||
‘ê–{˜aLiL“‡‘åE—j | Entire solutions to some types of parabolic Hessian equations | ||
ŠÝ–{“Wi‹ž‘åE”—Œ¤j | ”ñüŒ`•ªŽUŒ^•û’öŽ®‚̉ð‚Ì–³ðŒˆêˆÓ«‚ɂ‚¢‚Ä | ||
2015 | ”N‰ï | –¾Ž¡‘åŠw | 3.21-3.24 |
–èˆêKi‹ž‘åEî•ñj | ‘ȉ~Œ^•û’öŽ®‚̳’l‹…‘Î̉ð‚Ì‘¶Ý‚Æ•ªŠò | ||
ŽO’|‘åŽõiL“‡‘åEISSDj | ‘Þ‰»”S«ƒnƒ~ƒ‹ƒgƒ“Eƒ„ƒRƒr•û’öŽ®‚Ì‘Q‹ß‰ðÍF’·ŽžŠÔ‹““®‚Æ‘I‘ð–â‘è | ||
ΖјaOi“Œ–k‘åE—j | •ú•¨Œ^•û’öŽ®‚̉ð‚̓ʫ‚ɂ‚¢‚Ä i‘æ 13 ‰ñi2014 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
áÁú±‘iL“‡‘åEHj | Ž¿—Ê—ò—ÕŠE”ñüŒ`ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚̉ðÍ | ||
2014 | H‹G‘‡•ª‰È‰ï | L“‡‘åŠw | 9.25-9.28 |
‰–˜H’¼Ž÷i‰¡•l‘‘åEHj | ˆê”ʉ» Pohozaev ŠÖ”‚Ƒȉ~Œ^•û’öŽ®‚̳’l‹…‘Î̉ð‚̈êˆÓ«‚ɂ‚¢‚Ä | ||
’†àVG•vi“ú–{ˆã‘åj | –€ŽC€‚𔺂¤”g“®•û’öŽ®‚ÌŽU—–â‘è‚Æ‚»‚ÌŽü•Ó | ||
’ÃìŒõ‘¾˜Yi–¼‘åE‘½Œ³”—j | 5ŠK‚Ì”ñüŒ`•ªŽUŒ^•û’öŽ®‚̋NJ“KØ« | ||
‰ª•”^–çi“Œ–k‘åE—j | ŽlŠK•ú•¨Œ^•û’öŽ®‚ɑ΂·‚éáŠQ•¨–â‘è | ||
2014 | ”N‰ï | ŠwK‰@‘åŠw | 3.15-3.18 |
…’JŽ¡ÆiŠwK‰@‘åE—j | •Ï”ŒW”ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚ɑ΂·‚éƒXƒgƒŠƒbƒJ[ƒc•]‰¿‚ɂ‚¢‚Ä | ||
—˜ªì‹gœAi–k‘åE—j | •½‹Ï‹È—¦—¬‚̳‘¥«—˜_‚ɂ‚¢‚Ä i‘æ 12 ‰ñi2013 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
—§ì“Äi“Œ‹ž—‘åE—Hj | p(x)-’²˜aŽÊ‘œ‚̳‘¥«‚ɂ‚¢‚Ä | ||
˜a“cŒ’ŽuiŒF–{‘åEHj | •½ŠŠ‰»Œø‰Ê‚Æ Maxwell-Schrödinger •û’öŽ®‚Ì‘åˆæ“I“KØ« | ||
2013 | H‹G‘‡•ª‰È‰ï | ˆ¤•Q‘åŠw | 9.24-9.27 |
ç—tˆíli‹ã‘åEIMIj | d‚Ý•t‚«ŽË‰e‹óŠÔ‚É‚¨‚¯‚éƒpƒ“ƒ‹ƒ”ƒF•û’öŽ® | ||
•y“c’¼liã‘åE—j | ‘oüŒ`ƒt[ƒŠƒGƒ}ƒ‹ƒ`ƒvƒ‰ƒCƒ„[ì—p‘f‚Ì—LŠE«‚ɂ‚¢‚Ä | ||
’¬Œ´G“ñié‹Ê‘åE‹³ˆçj | ‹óŠÔ 1 ŽŸŒ³ 2 ŽŸ‚Ì”ñüŒ`€‚ð‚à‚ Dirac •û’öŽ®Œn‚̉Šú’l–â‘è‚ɂ‚¢‚Ä | ||
Ô–Ø„˜Ni_ŒË‘åEƒVƒXƒeƒ€î•ñj | ”ñüŒ`ŠgŽU•û’öŽ®‚̉ð‚Ì‘Q‹ß‹““® | ||
2013 | ”N‰ï | ‹ž“s‘åŠw | 3.20-3.23 |
ŽR‰ª’¼liã•{‘åEHj | ”¼•ªüŒ`”÷•ª•û’öŽ®‚ÌU“®’蔂Ƃ»‚̉ž—p | ||
âŒû–Îi“Œ–k‘åEî•ñj | •s•Ï“™‰·–ʂƗ̈æ‚ÌŠô‰½ i‘æ 11 ‰ñi2012 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
‰B‹—Çsi‹ã‘åE”—j | ˆ³k« Navier-Stokes •û’öŽ®‚Ì‘Q‹ß‰ðÍ i‘æ 11 ‰ñi2012 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
‚‘º”Ž”ViŒö—§‚Í‚±‚¾‚Ä–¢—ˆ‘åj | ’P“Æ”ñüŒ`”g“®•û’öŽ®‚̉Šú’l–â‘è‚ɑ΂·‚éˆê”ʘ_‚Æ‚»‚ÌÅ“K« | ||
2012 | H‹G‘‡•ª‰È‰ï | ‹ãB‘åŠw | 9.18-9.21 |
“c’†•qi‰ªŽR—‘åE—j | —DüŒ` 2 “_‹«ŠE’l–â‘è‚̳’l‰ð‚Ì”ñˆêˆÓ«\³’l‹ôŠÖ”‰ð‚Ì‘ÎÌ«‚Ì”j‚ê\ | ||
ŒFƒm‹½’¼liHŠw‰@‘åEHj | ‘Š‹óŠÔ‚ÌŒo˜HÏ•ª\Œo˜H‹óŠÔã‚̉ð͂Ƃµ‚Ä\ | ||
ΈäŽKi_ŒË‘åEŠCŽ–j | •½‹Ï‹È—¦—¬‚ɑ΂·‚é‹ßŽ—ƒAƒ‹ƒSƒŠƒYƒ€‚Ì”Šw‰ðÍ | ||
ŽO‰Y‰p”Viã‘åE—j | —A‘—€•t‚«•ª”ŠKŠgŽU•û’öŽ®‚ÌŠî–{‰ð‚ɂ‚¢‚Ä | ||
2012 | ”N‰ï | “Œ‹ž—‰È‘åŠw | 3.26-3.29 |
’ÓcÆ‹viˆê‹´‘åEŒoÏj | UC ŠK‘w‚ƃ‚ƒmƒhƒƒ~[•Û‘¶•ÏŒ`C’´Šô‰½”Ÿ” | ||
X–{–F‘¥i‹ž‘åElŠÔŠÂ‹«j | Ø’f‹ßŽ—‚ð‚µ‚È‚¢ƒ{ƒ‹ƒcƒ}ƒ“•û’öŽ®\Õ“ËÏ•ªì—p‘f‚Ì‘ÎÌ« i‘æ 10 ‰ñi2011 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
쉺”ü’ªiL“‡‘åE—j | ”M•û’öŽ®‚ɑ΂·‚éˆÍ‚¢ž‚Ý–@‚ƃŒƒ]ƒ‹ƒxƒ“ƒg‚Ì‘Q‹ß‹““® | ||
‘Oì‘ב¥i_ŒË‘åE—j | 2 ŽŸŒ³”¼‹óŠÔ‚É‚¨‚¯‚é‰Q“x•û’öŽ®‚Ì”Šw‰ðÍ | ||
2011 | H‹G‘‡•ª‰È‰ï | MB‘åŠw | 9.28-10.1 |
•Ç’JŠìŒpiã•{‘åEHj | ‘ȉ~Œ^•Δ÷•ª•û’öŽ®‚ɑ΂·‚é‹…‘Î̉ð‚Ì\‘¢ | ||
’†‘ºŽüi“Œ‘åE”—j | ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚Ì’´‹ÇŠ“ÁˆÙ«‚̉ð͂ƎU——˜_ i‘æ 9 ‰ñi2010 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
’r”©—ÇiL“‡‘åE‹³ˆçj | ‹óŠÔ‰“•û‚Å—ÕŠEŒ¸Š‚·‚é–€ŽC€‚ðŽ‚Â”g“®•û’öŽ®‚̃Gƒlƒ‹ƒM[Œ¸Š‚ɂ‚¢‚Ä‚ÌV“WŠJ | ||
‰iˆä•q—²iL“‡‘åE—j | ŠÖ”‚ÌÄ”z—ñ‚Ì‘–‰»«•û’öŽ®‚ւ̉ž—p i‘æ 9 ‰ñi2010 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
2010 | H‹G‘‡•ª‰È‰ï | –¼ŒÃ‰®‘åŠw | 9.22-9.25 |
–{‘½®•¶i–k‘åE—j | ‰¼‘z•Ï‚í‚è“_‚ÌŠô‰½‚ƃXƒg[ƒNƒXŒW” | ||
’r”©—DiŒQ”n‘åEHj | —LŒÀŠÏ‘ªŽžŠÔ‚É‚¨‚¯‚éƒf[ƒ^‚ð—p‚¢‚½”M‚¨‚æ‚Ñ”g“®•û’öŽ®‚ɑ΂·‚é‹t–â‘è‚ÆˆÍ‚¢ž‚Ý–@ | ||
¬ì‘ìŽi“Œ–k‘åE—j | ˆê”ʉ»‚³‚ꂽő峑¥«Œ´—‚Æ‚»‚Ì”“W•û’öŽ®‚ւ̉ž—p i‘æ 8 ‰ñi2009 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
’†‘º“Oi‹ã‘åE”—j | ”¼‹óŠÔ‚É‚¨‚¯‚鈳k«”S«—¬‘̂̑Q‹ß‹““®‚ɂ‚¢‚Ä | ||
2010 | ”N‰ï | Œcœä‹`m‘åŠw | 3.24-3.27 |
¼’J’B—Yiã‘åE—j | ”ñŒø‰Ê“I‘o‹ÈŒ^•û’öŽ®‚̉Šú’l–â‘è‚Æ Gevrey ‹óŠÔ i‘æ 8 ‰ñi2009 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
‘å’Ë_Žji‹{è‘åEHj | “_‰QŒn‚Æ‚»‚Ì•½‹Ïê‚ɂ‚¢‚Ä | ||
–ö‘ò‘ìi“Þ—Ç—‘åE—j | Helmholtz-Weyl •ª‰ð‚Æ‚»‚̉ž—p | ||
£•ЃŽsi•Ÿ‰ª‹³ˆç‘åj | ‚ŠK”ñüŒ`•ªŽUŒ^•û’öŽ®‚̉ð‚Ì’·ŽžŠÔ‹““® | ||
2009 | H‹G‘‡•ª‰È‰ï | ‘åã‘åŠw | 9.24-9.27 |
’|“àTŒáiHŠw‰@‘åj | $p$-Laplacian ‚ÌŽ©—R‹«ŠE–â‘è | ||
‘«—§‹§‹`i_ŒË‘åE—j | ŽžŠÔŽüŠú“I‚ɕϓ®‚·‚é“dê’†‚Ì—ÊŽq—ÍŠwŒn‚ɑ΂·‚éŽU——˜_ | ||
”Ñ“c‰ëli‹{è‘åEHj | ”½‰žŠgŽUŒn‚Ì‹}‘¬”½‰ž‹ÉŒÀ‚É‚æ‚Á‚ÄŒ©‚¦‚é‚à‚Ì | ||
’ÑA’¼Ž÷iL“‡H‘åEî•ñj | ˆ³k«ƒIƒCƒ‰[•û’öŽ®‚ÌŽžŠÔ‘åˆæ‰ð‚Æ‘Q‹ß‹““® | ||
2009 | ”N‰ï | “Œ‹ž‘åŠw | 3.26-3.29 |
Γn’Ê“¿iŽº—–H‘åEHj | —ÕŠEƒ\ƒ{ƒŒƒtŽw”‚ð‚à‚”¼üŒ^”M•û’öŽ®F•Ï•ª–@“I—§ê‚©‚ç | ||
™–{[i–¼‘命Œ³”—j | •ªŽUŒ^•û’öŽ®‚ÌŽž‹óŠÔ•]‰¿Ž®‚Æ”äŠrŒ´— | ||
—Ñ’‡•viã‘åE—j | ”ñüŒ` Klein-Gordon •û’öŽ®‚ÌŽU—–â‘è i‘æ 7 ‰ñi2008 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
2008 | H‹G‘‡•ª‰È‰ï | “Œ‹žH‹Æ‘åŠw | 9.24-9.27 |
¬’r’B–çi_ŒË‘åE—j | Painlevé hierarchies, degenerate Garnier systems and WKB analysis [abstract] | ||
ˆÉ“¡Œ’ˆêi’}”g‘åE”—•¨Ž¿j | Schrödinger equations on scattering manifolds and microlocal singularities [abstract] | ||
‚‹´‘¾iãŽs‘åE—j | —ÕŠE Sobolev Œ^•û’öŽ®‚Ì”š”‰ð͂ƑQ‹ß“I”ñ‘Þ‰»« [abstract] | ||
•ÐŽR‘ˆê˜Yi˜a‰ÌŽR‘åE‹³ˆçj | ”ñüŒ`”g“®•û’öŽ®Œn‚Ì‘åˆæ‰ð‚Ì‘¶Ý‚Æ null ðŒ‚ɂ‚¢‚Ä [abstract] | ||
2008 | ”N‰ï | ‹ß‹E‘åŠw | 3.23-3.26 |
¼’J’B—Yiã‘åE—j | 2 ŽŸ“Á«“_‚ð‚à‚‘o‹ÈŒ^ì—p‘f‚Æ Gevrey ƒNƒ‰ƒX [abstract] | ||
‹{–{ˆÀli“ŒH‘åj | ‰~”՗̈æ‚É‚¨‚¯‚銈«ˆöŽqE—}§ˆöŽqŒn‚̈À’è’èí‰ð‚ÌŒ`ó‚ɂ‚¢‚Ä [abstract] | ||
•H“cr–¾iVŠƒ‘åEŽ©‘Rj | ‰ñ“]‚·‚éáŠQ•¨‚ÌŽü‚è‚ł̔ñˆ³k«”S«—¬‘̂̕û’öŽ®‚Ì”Šw‰ðÍ [abstract] i‘æ 6 ‰ñi2007 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
2007 | H‹G‘‡•ª‰È‰ï | “Œ–k‘åŠw | 9.21-9.24 |
¼‰iGÍiã•{‘åEHj | ŽžŠÔ’x‚ê‚ð‚à‚•û’öŽ®‚̉ð‚Ì‘Q‹ß“I«Ž¿‚ɂ‚¢‚Ä [abstract] | ||
ˆÉ“Œ—T–çi“d’Ê‘åj | s—ñŒW” 2 ŠKí”÷•ªì—p‘f‚̉ð͂ƒe«ƒKƒCƒh”g‚ւ̉ž—p [abstract] | ||
’†‘º½i“Œ–k‘åE—j | ”ñüŒ`”g“®•û’öŽ®‚ÌŠO•”–â‘è‚ɂ‚¢‚Ä [abstract] | ||
™ŽR—RŒbi’Ócm‘åEŠwŒ|j | ‘Þ‰»Œ^ Keller-Segel Œn‚̉ð‚Ì«Ž¿‚ɂ‚¢‚Ä [abstract] | ||
2007 | ”N‰ï | é‹Ê‘åŠw | 3.27-3.30 |
‹{è—ÏŽqiɪ‘åEHj | í”÷•ª•û’öŽ®‚̉ð‚Ì‘Q‹ß‹““®‚ɑ΂·‚鎞ŠÔ’x‚ê‚̉e‹¿‚Æ‚»‚̉ðÍ [abstract] | ||
ŽR葽ŒbŽqi“Œ‹ž—‘åE—Hj | Kirchhoff Œ^€üŒ`‘o‹ÈŒ^•û’öŽ®‚Ì‘åˆæ‰ð‚ɂ‚¢‚Ä [abstract] | ||
–k’¼‘×i‹{è‘åE‹³ˆçj | ƒfƒ‹ƒ^ŠÖ”Œ^‚̉Šúƒf[ƒ^‚ðŽ‚Â”ñüŒ`ƒVƒ…ƒŒ[ƒfƒBƒ“ƒK[•û’öŽ®‚ɂ‚¢‚Ä [abstract] | ||
2006 | H‹G‘‡•ª‰È‰ï | ‘åãŽs—§‘åŠw | 9.19-9.22 |
’|‘º„ˆêi‰¡•lŽs‘åE‘Û‘‡‰Èj | ƒzƒCƒ“‚Ì”÷•ª•û’öŽ® [abstract] | ||
¬ìŒöºi––勳ˆç‘åj | ”ñ“¯ŽŸŽå—v•”‚ð‚à‚€üŒ`‘ȉ~Œ^•û’öŽ®‚̳’l‰ð‚ɂ‚¢‚Ä [abstract] | ||
´…îäiɪ‘åEHj | $L_p-L_q$ ő峑¥«‚Æ”ñˆ³k«”S«—¬‘̂̎©—R‹«ŠE–â‘è‚ւ̉ž—p [abstract] | ||
»ìG–¾i’}”g‘åE”—•¨Ž¿j | Lifespan ‚Ì‘Q‹ß•]‰¿‚©‚猩‚½”ñüŒ^ Schrödinger •û’öŽ®‚Æ‚»‚ÌŽü•Ó [abstract] | ||
2006 | ”N‰ï | ’†‰›‘åŠw | 3.26-3.29 |
“à“¡—YŠîi_ŒË‘åEHj | ”ñüŒ`”M•û’öŽ®‚ÌŽ©ŒÈ‘ŠŽ—‰ð‚Æ‚»‚Ì–ðŠ„ [abstract] | ||
’†¼Œ«ŽŸi‹ž‘åE—j | ”ñüŒ`”g“®•û’öŽ®‚Ì“ÁˆÙ‹ÉŒÀ‚Æ•ªŽU«‚ɂ‚¢‚Ä [abstract] i‘æ 4 ‰ñi2005 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
‹e’nŒõŽkiɪ‘åEHj | Œù”z‚ÉŠÖ‚µˆêŽŸ‘‘å“x‚̃Gƒlƒ‹ƒM[‚ðŽ‚Â”Ä”Ÿ”‚ÆŠÖ˜A‚·‚锓W•û’öŽ® [abstract] | ||
2005 | H‹G‘‡•ª‰È‰ï | ‰ªŽR‘åŠw | 9.19-9.22 |
‘ºãŒöˆêi“¿“‡‘åE‘‡‰Èj | ’†S‘½—l‘Ì—˜_‚É‚æ‚éˆÀ’è«‚Æ•ªŠòŒ»Û‚̉ðÍ | ||
¼“cF–¾i‘‘åE—Hj | —¬‘Ì•û’öŽ®‚̉ðÍEŒvŽZ‹@‰‡—p‰ðÍ i‘æ 3 ‰ñi2004 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
–쑺—SŽii“ŒH‘åE—HjC •õ‘ñ–îi‹ž“sH‘@‘åE‘@ˆÛj |
ŽüŠú“I“ÁˆÙŽ¥ê‚ðŽ‚Â Schrödinger ì—p‘f‚̃XƒyƒNƒgƒ‹‚ɂ‚¢‚Ä | ||
¬—ÑFsi²‰ê‘åE—Hj | ”¼‹óŠÔ‚É‚¨‚¯‚鈳k« Navier-Stokes •û’öŽ®‚̉ð‚Ì‘Q‹ß‹““®‚ɂ‚¢‚Ä | ||
2005 | ”N‰ï | “ú–{‘åŠw | 3.27-3.30 |
Šâ莑¥i‹ã‘åE”—j | ƒpƒ“ƒ‹ƒ”ƒF•û’öŽ®‚̃_ƒCƒiƒ~ƒbƒNƒX i‘æ 3 ‰ñi2004 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
’J“à–õiMB‘åE—j | ”ñˆ³k«—¬‘̂̕û’öŽ®‚Ì‰Â‰ð«‚Æ”š””»’èðŒ‚ɂ‚¢‚Ä | ||
‘剺³–¯i“Œ‘åE”—j | ”½‰žŠgŽUŒn‚ÉŒ»‚ê‚é”÷ׂȃpƒ^[ƒ“‚Æ Young ‘ª“x | ||
2004 | H‹G‘‡•ª‰È‰ï | –kŠC“¹‘åŠw | 9.19-9.22 |
å—t—²i‹{è‘åEHj | Keller-Segel Œn‚Æ‚»‚ê‚ÉŠÖ˜A‚·‚éŒn‚ɑ΂·‚é‰ð‚Ì‹““®‚ɂ‚¢‚Ä | ||
‰º‘º–¾—miŠwK‰@‘åE—j | ”ñüŒ` Schrödinger •û’öŽ®‚Ì’·‹——£Œ^ŽU—‚ɂ‚¢‚Ä | ||
’†–ìŽj•Fi“Œ–k‘åE—j | ƒ‰ƒ“ƒ_ƒ€‚ÈŽ¥ê‚ðŽ‚ÂƒVƒ…ƒŒ[ƒfƒBƒ“ƒK[ì—p‘f‚ɂ‚¢‚Ä | ||
‘¾“c‰ëlié‹Ê‘åE—j | ”ñüŒ` Klein-Gordon •û’öŽ®‚Ì’èÝ”g‰ð‚Ì•sˆÀ’諂ɂ‚¢‚Ä | ||
2004 | ”N‰ï | ’}”g‘åŠw | 3.28-3.31 |
–؋MŽji‹ß‹E‘åE—Hj | ‘½dƒ[[ƒ^’l‚ÌŠÖŒWŽ®‚ÆüŒ^í”÷•ª•û’öŽ®‚ÌÚ‘±ŒöŽ® | ||
ΖјaOi–¼‘åE‘½Œ³”—j | Blow-up problems for semilinear heat equations with large diffusion | ||
¼”¨L–çi“ŒH‘åEî•ñ—Hj | ”ñ—LŠE—̈æã‚É‚¨‚¯‚鈳k« Navier-Stokes •û’öŽ®‚ÌŽžŠÔ‘åˆæ‰ð‚Ì‹““® | ||
2003 | H‹G‘‡•ª‰È‰ï | ç—t‘åŠw | 9.24-9.27 |
W. BasleriUniv. of Ulmj | Multisummability of formal power series, and application to ordinary and partial differential equations | ||
—˜ªì‹gœAi–k‘åE—j | “ÁˆÙ‹ÉŒÀ–â‘è‚ÉŒ»‚ê‚é‹É¬‹È–ʂɂ‚¢‚Ä | ||
‹v•Û‰p•viã‘åE—j | ”g“®•û’öŽ®‚̉ð‚ÌŽž‹ó•]‰¿‚Æ”ñüŒ^Û“®‚ւ̉ž—p | ||
¬’r–κié‹Ê‘åE—j | “ñŽŸ‚Ì”ñüŒ`€‚ðŽ‚Á‚½Š®‘S”ñüŒ`•Δ÷•ª•û’öŽ®‚Ì $L^p$ ”S«‰ð‚Ì‘¶Ý | ||
2003 | ”N‰ï | “Œ‹ž‘åŠw | 3.23-3.26 |
V‹rìi‹ã‘åE”—j | is”g‚Ì•ªŠò‚ƈÀ’è« | ||
–ö“c‰p“ñi“Œ–k‘åE—j | ’´—ÕŠEŽw”‚ðŽ‚Â”ñüŒ`”M•û’öŽ®‚̉ð‚Ì‹““® i‘æ 1 ‰ñi2002 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j | ||
•H“cr–¾iVŠƒ‘åEHj | Aperture domain ‚É‚¨‚¯‚é Navier-Stokes •û’öŽ® | ||
2002 | H‹G‘‡•ª‰È‰ï | “‡ª‘åŠw | 9.25-9.28 |
X‰ª’BŽji‘å㋳ˆç‘åj | ‰e‚̗̈æ‚ð“`‚í‚éŒõ‚Ì‹‚³‚ðŠÏ‘ª‚·‚é | ||
‚‰ªG•vi–k‘åE—j | ”ñüŒ`•ªŽUŒ^•û’öŽ®‚ɑ΂·‚éƒGƒlƒ‹ƒM[—A‘—•]‰¿Ž®‚Ɖð‚Ì‘åˆæ‘¶Ý | ||
猴_”Vi“Œ–k‘åE—j | •ªŽUŒ^•û’öŽ®‚̋NJ•½ŠŠŒø‰Ê | ||
2002 | ”N‰ï | –¾Ž¡‘åŠw | 3.28-3.31 |
âV“¡•Fi_ŒË‘åE—j | ‘Δ“IƒVƒ“ƒvƒŒƒNƒeƒbƒN‘½—l‘̂̕ό`‚ƃpƒ“ƒ‹ƒxŒ^•û’öŽ® | ||
ŽO‘ò³ŽjiŒF–{‘åE—j | $p$-’²˜aŽÊ‘œ—¬‚Ì‘¶Ý‚Ƴ‘¥«‚ɂ‚¢‚Ä | ||
ŽR“cCéi—§–½ŠÙ‘åE—Hj | ƒfƒBƒ‰ƒbƒNì—p‘f‚̃XƒyƒNƒgƒ‹‚ɂ‚¢‚Ä\ƒVƒ…ƒŒƒfƒBƒ“ƒK[ì—p‘f‚Ƃ̔äŠr‚àŒð‚¦‚Ä\ | ||
2001 | H‹G‘‡•ª‰È‰ï | ‹ãB‘åŠw | 10.3-10.6 |
“c“‡TˆêiVŠƒ‘åEHj | ”÷•ª•û’öŽ®‚Æ‘½•Ï”—¯”\’´”Ÿ”‚Æ‚µ‚Ä‚Ì Grothendieck —¯”‚Æ‚»‚̉ž—p\ | ||
A. Grigoryan iImperial College, UKj |
Heat kernel on Riemannian manifolds | ||
Š–Ø‰®—´Ž¡i’·è‘‡‰ÈŠw‘åEHj | Non-radial solutions with group invariance for semilinear elliptic equations | ||
2001 | ”N‰ï | Œc‰ž‹`m‘åŠw | 3.26-3.29 |
‰º‘ºriŒc‘åE—Hj | Painlevé •û’öŽ®‚Ì Painlevé property ‚ÌØ–¾C‚¨‚æ‚Ñ’l•ª•z˜_‚ւ̉ž—p | ||
–q–ì“NiŽRŒû‘åEHj | ‹C‘̯‚Ì•û’öŽ®‚Æ‚»‚ÌŽü•Ó\^‹ó‚ÆŽ©ŒÈd—Í‚Æ\ | ||
‰hLˆê˜Yi‰¡•lŽs‘åE‘‡—j | ”½‰žŠgŽU•û’öŽ®Œn‚ÉŒ»‚ê‚é‹Ç݉ð‚̉^“®‚ɂ‚¢‚Ä | ||
2000 | H‹G‘‡•ª‰È‰ï | ‹ž“s‘åŠw | 9.24-9.27 |
‘å’bŽ¡—²Žii‹ž‘åE—j | 1 ŠK•Δ÷•ª•û’öŽ®Œn‚ɑ΂·‚é‰ð‚̈êˆÓÚ‘±«‚Æ‚»‚̉ž—p | ||
¼Œ´Œ’“ñi‘‘åEŒoj | Porous media ’†‚̈ꎟŒ³ˆ³k«—¬‚Ì‘Q‹ß‹““®\Damped wave equation ‚ƑΉž‚·‚é Heat equation ‚̉ð‚Ì‹““®\ | ||
ˆäŒû’B—Yi‹ã‘åE”—j | …–Ê”g‚Ì•û’öŽ®‚ɑ΂·‚鉊ú’l–â‘è‚ɂ‚¢‚Ä | ||
2000 | ”N‰ï | ‘ˆî“c‘åŠw | 3.27-3.30 |
âˆäG—²i‹ž‘åE—j | —L—‹È–Ê‚Æ Painlevé •û’öŽ®‚ÌŠô‰½ | ||
–¼˜a”Íli–¼‘åE‘½Œ³”—j | ”ñüŒ^ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚Ì”š”‰ð‚Ì‘Q‹ß‚¨‚æ‚ыɌÀŒ`ó‚ɂ‚¢‚Ä | ||
aŒû‹IŽqiŠwŒ|‘åE‹³ˆçj | ”¼üŒ`•ú•¨Œ^•û’öŽ®‚Ì•„†•ω»‚𔺂¤‰ð‚Ì‹““®‚ɂ‚¢‚Ä | ||
1999 | H‹G‘‡•ª‰È‰ï | L“‡‘åŠw | 9.27-9.30 |
…’¬“Oi‰¡•lŽs‘åE—j | ˆê”ʉ» KdV •û’öŽ®‚̌Ǘ§”g‚̈À’è« | ||
Georg Weissi“ŒH‘åE—j | ”ñüŒ`•Δ÷•ª•û’öŽ®‚É‚¨‚¯‚éŠô‰½Šw“I‘ª“x˜_‚Ì•û–@iáŠQ•¨–â‘è‚ð—á‚Éj | ||
’†¼Œ«ŽŸi“Œ‘åE”—j | ”ñüŒ^”g“®•û’öŽ®‚̃Gƒlƒ‹ƒM[W–ñ•]‰¿‚ÆŽU——˜_ | ||
1999 | ”N‰ï | ŠwK‰@‘åŠw | 3.25-3.28 |
‹g–쳎ji’†‰›‘åEŒoÏj | Simultaneous normal forms of commuting maps and vector fields | ||
‰Á“¡Œ\ˆêi“Œ‹ž—‘åE—j | Conformal regularity and nonlinear wave equations | ||
“y‹Lˆêi‹ž‘åE—j | •ªŽUŒ^”“W•û’öŽ®‚Ì•½ŠŠŒø‰Ê‚Æ‚»‚ÌŽü•Ó | ||
1998 | H‹G‘‡•ª‰È‰ï | ‘åã‘åŠw | 9.30-10.3 |
–ìŠC³ri_ŒË‘åEŽ©‘RjC ŽR“c‘וFi_ŒË‘åEŽ©‘Rj |
Painlevé Œ^”÷•ª•û’öŽ®‚ƃAƒtƒBƒ“ Weyl ŒQ | ||
J. RauchiUniv. Michiganj | Recent results in nonlinear geometric optics | ||
‘«—§‹§‹`i_ŒË‘åE—j | ‘½‘Ì—ÊŽq—ÍŠwŒn‚ÌŽU——˜_‚ɂ‚¢‚Ä | ||
1998 | ”N‰ï | –¼é‘åŠw | 3.26-3.29 |
Šâ’Ë–¾i‹ž‘åE—j | Asymototic distribution of eigenvalues for Pauli operators with magnetic fields | ||
’Óc’JŒö—˜i–k‘åE—j | Well-posedness for nonlinear wave equations | ||
‰B‹—Çsi‹ã‘åE”—j | Oberbeck-Boussinesq •û’öŽ®‚̃[ƒ‹Œ^‘Η¬‰ð‚̈À’諂ɂ‚¢‚Ä | ||
1997 | H‹G‘‡•ª‰È‰ï | “Œ‹ž‘åŠw | 9.30-10.3 |
㑺–Li“Œ‹ž…ŽY‘åj | ”ñüŒ`€‚ðŒˆ’è‚·‚é‹t–â‘è‚ÆÏ•ª•û’öŽ® | ||
âŒû–Îiˆ¤•Q‘åE—j | ŠgŽU•û’öŽ®‚̉ð‚Ì‹óŠÔ—ÕŠE“_‚ɂ‚¢‚Ä | ||
–ö“c‰p“ñi“Œ‘åE”—j | ”½‰žŠgŽU•û’öŽ®‚É‚¨‚¯‚é”ñ’è”’èí‰ð‚̈À’è« | ||
1997 | ”N‰ï | MB‘åŠw | 4.1-4.4 |
ŽÄ“c“O‘¾˜YiL“‡‘åE‘‡j | Nonlinear elliptic eigenvalue problems with several parameters | ||
쉺”ü’ªiˆïé‘åE‹³ˆçj | ŠO•”—̈æ‚É‚¨‚¯‚郌[ƒŠ[”g | ||
‰iˆä•q—²i‹ãH‘åEHj | Keller-Segal •û’öŽ®‚̉ð‚Ì”š”‹y‚ÑŽžŠÔ‘åˆæ“I‘¶Ý | ||
1996 | H‹G‘‡•ª‰È‰ï | “Œ‹ž“s—§‘åŠw | 9.14-9.17 |
‰F²”üL‰îiL“‡‘åE‘‡j | ‘ȉ~Œ^•û’öŽ®‚̉ð‚ÌU“®–â‘è | ||
S. CheniFudan Univ.j | Solutions with flowery singularity structure to nonlinear hyperbolic equations | ||
¬ì‘ìŽi–¼‘åE‘½Œ³”—j | Well-posedness of dispersive equations of short and long interaction waves | ||
1996 | ”N‰ï | VŠƒ‘åŠw | 4.1-4.4 |
’|ˆä‹`ŽŸi‹ž‘åE”—Œ¤j | ”ñüŒ^ƒ‚ƒmƒhƒƒ~[ŒQ‚ƃXƒg[ƒNƒXŒW”‚ð‚ß‚®‚Á‚Ä\ƒpƒ“ƒ‹ƒ”ƒF•û’öŽ®‚Ì WKB ‰ðÍ\ | ||
“¡‰Æá˜Ni“Œ–k‘åE—j | ƒwƒeƒƒNƒŠƒjƒbƒN‹O“¹‚É•t‚µ‚½ƒŒƒ]ƒiƒ“ƒX | ||
ì’†Žq³iã‘åE—j | ‘ŠŽ—•ÏŠ·‚ÉŠÖ‚µ‚Ä•s•ςȔñüŒ`•ú•¨Œ^•û’öŽ® | ||
’ˆ®•FiL“‡‘åE‘‡j | •ú•¨Œ^•û’öŽ®‚Ì‹ÇŠŽ©ŒÈ‘ŠŽ—«‚ƈêˆÓÚ‘±’è— | ||
1995 | H‹G‘‡•ª‰È‰ï | “Œ–k‘åŠw | 9.27-9.30 |
Šâ莑¥i“Œ‘åE”—j | Gevrey ƒRƒzƒ‚ƒƒW[ŒQ‚ɑ΂·‚é—£ŽU“I”M•û’öŽ®‚Ì•û–@ | ||
_•ÛGˆêi–k‘åE—j | Ginzburg-Landau •û’öŽ®‚ƈÀ’è‰ð | ||
—Ñ’‡•vi“Œ‹ž—‘åE—j | On the Davey-Stewartson and the Ishimori systems | ||
ó‘qŽj‹»i‘åã“d’Ê‘åEHj | ˆêŽŸŒ³‘o‹ÈŒ^•Û‘¶‘¥Œn‚ÌŽã‰ð‚Ì‘Q‹ßˆÀ’è« | ||
1995 | ”N‰ï | —§–½ŠÙ‘åŠw | 3.27-3.30 |
‚ŽRM‹Bi_ŒË‘åE—j | ƒOƒŒƒuƒiŠî’ê‚ÆŠÖ”•û’öŽ® | ||
™–{[iã‘åE—j | Estimates for hyperbolic equations with non-convex characteristics | ||
Žá—ѽˆê˜Yi’}”g‘åE”Šwj | ’´‹ÇŠˆêˆÓ«’è—‚Æ“ÁˆÙ«‚Ì“`”d | ||
–]ŒŽ´i“s—§‘åE—j | Critical blow-up and asymptotic behavior of solutions to equations to quasilinear parabolic equations | ||
1994 | H‹G‘‡•ª‰È‰ï | “Œ‹žH‹Æ‘åŠw | 9.27-9.30 |
Œ´‰ªŠìdiŒF–{‘åE‹³—{j | ˆê”ʇ—¬’´Šô‰½ŠÖ”‚ɂ‚¢‚Ä | ||
‘q“c˜a_i“s—§‘åE—j | 2 ŠK‚̑ȉ~Œ^•Δ÷•ª•û’öŽ®‚̉ð‚̈êˆÓÚ‘±«‚Æ—ë“_W‡‚ɂ‚¢‚Ä | ||
ŽRè¹’jiˆê‹´‘åEŒoÏj | Morrey ‹óŠÔ‹y‚ÑŠÖ˜A‚·‚锟”‹óŠÔ‚É‚¨‚¯‚é Navier-Stokes •û’öŽ® | ||
¼‘ººFiã‘åE—j | 1 ŽŸŒ³”S«“I•Û‘¶‘¥‚Ìis”g‰ð‚Ì‘Q‹ßˆÀ’è« | ||
1994 | ”N‰ï | _ŒË‘åŠw | 3.31-4.3 |
‰¡ŽR—˜Íiç—tH‘åj | ƒAƒNƒZƒTƒŠ[ƒpƒ‰ƒ[ƒ^‚ðŠÜ‚܂Ȃ¢‘å‹v•Û•û’öŽ®Œn‚Ì•ª—Þ | ||
’†‘ºŽüi“Œ‘åE”—j | ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚Ì€ŒÃ“T‹ÉŒÀ‚Æ‘Š‹óŠÔ‚ł̃gƒ“ƒlƒ‹Œø‰Ê‚ɂ‚¢‚Ä | ||
ŽO‘i–¼‘åE—j | ‰ðÍ“Ií”÷•ª•û’öŽ®‚ƕΔ÷•ª•û’öŽ®‚É‚¨‚¯‚éŠô‚‚©‚Ì—ÞŽ—‚ɂ‚¢‚Ä\ƒWƒ…ƒuƒŒƒC‘°‹óŠÔ‚É‚¨‚¯‚éŽw”’藂ƃtƒŒƒbƒhƒzƒ‹ƒ€Œð‘ã«\ | ||
“c’†®li‘‘åE—Hj | On existence of viscous surface waves | ||
1993 | H‹G‘‡•ª‰È‰ï | ‘åã•{—§‘åŠw | 9.27-9.30 |
”~‘º_i–¼‘åE‹³—{j | Painlevé •û’öŽ®‚ƌÓTŠÖ” | ||
“àŽR~i‹ž“sH‘@‘åj | Schrödinger ì—p‘f‚̌ŗLŠÖ”‚Ì‘‘å“x | ||
¬àV“Oi–k‘åE—j | ”ñüŒ^ Schrödinger •û’öŽ®‚ÌŽU—–â‘è | ||
P. R. Popivanov iBulgarian Acad. Sci.j |
On the tangential oblique derivative problem for second order semilinear elliptic and parabolic equations | ||
1993 | ”N‰ï | ’†‰›‘åŠw | 3.26-3.29 |
¼–{Œ\Žii‹ã‘åE—j | ’´Šô‰½”÷•ª•û’öŽ® E(3,6;1/2) ‚Æ I_2,2 Œ^—̈æã‚Ì theta ŠÖ” | ||
ŒË£M”Vi–k‘åE—j | ’´‹ÇŠ‘o‹ÈŒ^¬‡–â‘è | ||
Šâèç—¢i•PH‘åE—j | The symbol calculus of pseudo-differential operators and the Gauss-Bonnet-Chern theorem | ||
1992 | H‹G‘‡•ª‰È‰ï | –¼ŒÃ‰®‘åŠw | 10.6-10.9 |
–k‘º‰Eˆêi’·è‘åE‹³ˆçj | ’†—§Œ^ŠÖ””÷•ª•û’öŽ®‚ÌU“®‚ɂ‚¢‚Ä | ||
•ÛéŽõ•Fi’}”g‘åE”Šwj | –³ŒÀŽŸ‘Þ‰»‘ȉ~ì—p‘f‚Ì€‘ȉ~«\’áŠK‚ɑ΂·‚éðŒ | ||
Žlƒb’J»“ñi—´’J‘åE—Hj | Existence and structure of positive radial solutions to $\Delta u + K(|x|)u^p = 0 in {\bf R}^n$ | ||
1992 | ”N‰ï | •Ÿ‰ª‘åŠw | 4.1-4.4 |
‹àŽq÷ˆêi‹ã‘åE‹³—{j | Selberg Ï•ª‚Æ’´Šô‰½”Ÿ” | ||
–kìŒjˆê˜Yiˆ¤•Q‘åEHj | ‰Šú’l–â‘è‚Æ Newton polygon | ||
¬‰’‰p—Yi‹ã‘åE‹³—{j | 2 ŽŸŒ³”ñ—LŠE—̈æ‚É‚¨‚¯‚é”S«—¬‘̂̕û’öŽ®‚ɂ‚¢‚Ä | ||
“c‘º‰p’jiˆïé‘åE—j | ‘½‘ÌŒn Schrödinger ì—p‘f‚Ì‘Q‹ßŠ®‘S« | ||
1991 | H‹G‘‡•ª‰È‰ï | –kŠC“¹‘åŠw | 10.10-10.13 |
‹g“cߎ¡i‘Š–Í—Žq‘åj | ”ñüŒ`í”÷•ª•û’öŽ®‚̈ê”ʉð\ƒ|ƒAƒ“ƒJƒŒðŒ‚ð–ž‚½‚³‚È‚¢“ñ˜A—§•û’öŽ®Œn‚̋NJ“Iˆê”ʉð | ||
‹V‰ä”üˆêi–k‘åE—j | ‹È–ʂ̔“W•û’öŽ® | ||
’·‘ò‘s”Vi“Œ–k‘åE‹³—{j | Ž©—R‹«ŠE–â‘è‚É•t‚·‚é”Ä”Ÿ”‚Ì discrete Morse semiflow ‚ɂ‚¢‚Ä | ||
1991 | ”N‰ï | Œc‰ž‘åŠw | 4.1-4.4 |
‘º“c‰ÃOi’·è‘åEŒoÏj | Painlevé ’´‰zŠÖ”‚ɂ‚¢‚Ä | ||
쓇Gˆêi‹ã‘åEHj | Nonlinear diffusion waves arising in classical mechanics | ||
¼’J’B—Yiã‘åE‹³—{j | ‹‘o‹ÈŒn‚ɂ‚¢‚Ä | ||
“c’†˜a‰ii–¼‘åE‹³—{j | ƒ~ƒjƒ}ƒbƒNƒX–@‚É‚æ‚éƒnƒ~ƒ‹ƒgƒ“Œn‚̉ð‚Ì‘¶Ý | ||
1990 | H‹G‘‡•ª‰È‰ï | é‹Ê‘åŠw | 9.26-9.29 |
‚ŽRM‹Bi_ŒË‘åE—j | í”÷•ª•û’öŽ®‚̃‚ƒmƒhƒƒ~[ŒQ‚Æ Euler-Darboux •û’öŽ®‚Ì“ÁˆÙ«“`”d | ||
‰Ÿ–Ú—Š¹i˜a‰ÌŽRŒoÏ’Z‘åj | ƒƒgƒJEƒ”ƒHƒ‹ƒeƒ‰í”÷•ª•û’öŽ®Œn‚ɂ‚¢‚Ä | ||
äݑ㕎jiŠò•Œ‘åE‹³—{j | “Á«“I‰Šú–ʂɊւ·‚é $C^{\infty}$ —ë‰ð‚ɂ‚¢‚Ä | ||
C. GérardiÉcole Polytech.j | Semi-classical asymptotics of Berryfs phase | ||
1990 | ”N‰ï | ‰ªŽR—‰È‘åŠw | 3.31-4.3 |
™]ŽÀ˜Yi‰ªŽR‘åE—j | Lienard •û’öŽ®‚̉ð‚Ì‘Q‹ß“I«Ž¿‚Æ‚»‚̉ž—p | ||
‹{•’å•vi“Þ—Ç—‘åE—j | ’´”Ÿ”‚Ì“ÁˆÙ«‚̈ʔ‚ƃt[ƒŠƒGÏ•ªì—p‘f‚ɂ‚¢‚Ä | ||
–x“à—˜˜Yiˆïé‘åE—j | d‚Ý•t‚« Sobolev •s“™Ž®‚Æ‚»‚Ì”ñüŒ^‘ȉ~Œ^•û’öŽ®‚ւ̉ž—p | ||
H. AmanniUniv. Zurichj | Semigroup and nonlinear parabolic systems | ||
1989 | H‹G‘‡•ª‰È‰ï | ã’q‘åŠw | 9.27-9.30 |
‘ºãŒåi”ªŒËH‚êj | –³ŒÀ’x‚ê‚ð‚à‚Š֔”÷•ª•û’öŽ®\‘Š‹óŠÔEˆÀ’è«E‹ÉŒÀ•û’öŽ® | ||
Šâ莑¥i“Œ‘åE—j | ƒŠ[ƒ}ƒ“–Êã‚̃tƒbƒNƒXŒ^ŽË‰eÚ‘±‚̃‚ƒWƒ…ƒ‰ƒC‹óŠÔ‚ƃ‚ƒmƒhƒƒ~[•Û‘¶•ÏŒ` | ||
’ç—_Žu—YiL‘åE‘‡j | On uniqueness of weak solution for the Cauchy problem of the generalized K-dV equation | ||
—é–Ø‹Mi“s—§‘åE—j | ”ñüŒ`‘ȉ~Œ^ŒÅ—L’l–â‘è‚Ì‘Q‹ß‹y‚Ñ‘åˆæ‰ðÍ | ||
1989 | ”N‰ï | “ú–{‘åŠw | 4.1-4.4 |
²Xˆä’—Yi“s—§‘åE—j | ‘å‹v•Û type ‚ÌüŒ^í”÷•ª•û’öŽ®Œn‚ɂ‚¢‚Ä | ||
‘º“c›‰i“s—§‘åE—j | 2 ŠK‘ȉ~Œ^•û’öŽ®‚̳’l‰ð‚Ì\‘¢ | ||
ΈämŽii’†‰›‘åE—Hj | ”ñüŒ` 2 ŠK‘ȉ~Œ^•Δ÷•ª•û’öŽ®‚Ì”S«‰ð‚ɂ‚¢‚Ä | ||
‹{ì“S˜NiL‘åE—j | Navier-Stokes equations in unbounded domains: energy inequality and $L^2$ decay | ||
1988 | H‹G‘‡•ª‰È‰ï | ‹à‘ò‘åŠw | 10.4-10.7 |
–Ø‘ºr–[i“Œ‘åE—j | 2 ŠKüŒ`í”÷•ª•û’öŽ®‚̃‚ƒmƒhƒƒ~[•Û‘¶•ÏŒ`‚ɂ‚¢‚Ä | ||
’†‹ËMˆêi_ŒË‘åEHj | Banach ‹óŠÔ‚É‚¨‚¯‚锟””÷•ª•û’öŽ®‚̉ð‚Ì\‘¢‚ƧŒä—˜_ | ||
’†‘ºŒºi鼑åE—j | ŒÅ‘Ì—ÍŠw‚É‚¨‚¯‚é Rayleigh ”g‚ɂ‚¢‚Ä | ||
–“–씎i“Œ‘åE—j | ‚ ‚é‘ȉ~Œ^•û’öŽ®‚Ì“ÁˆÙ‰ð‚Ì\‘¢‚Æ—ÍŠwŒn‚Ì—˜_ | ||
1988 | ”N‰ï | —§‹³‘åŠw | 3.31-4.3 |
–Ø‘ºOMi“Œ‘åE‹³—{j | Garnier Œn‚Ì‘åˆæ‰ð‚ðƒpƒ‰ƒƒgƒ‰ƒCƒY‚·‚é‹óŠÔ‚ɂ‚¢‚Ä | ||
ˆÉ“¡Gˆêi“ŒH‘åE—j | Ï•ª‰Â”\«‚Æì—p-Šp•Ï” | ||
—Ñ“c˜a–çi‹à‘ò‘åE—j | €üŒ^‘ȉ~Œ^•û’öŽ®‚Ì Dirichlet –â‘è‚ɂ‚¢‚Ä | ||
ŽÄ“c—ÇOi’}”g‘åE”Šwj | ”ñüŒ`‘o‹ÈŒn‚ɑ΂·‚é Neumann –â‘è‚ɂ‚¢‚Ä | ||
1987 | H‹G‘‡•ª‰È‰ï | ‹ž“s‘åŠw | 10.2-10.5 |
•ÄŽRrºi‘åã•{‘åEHj | 1 ŽŸŒ³ŠÖ””÷•ª•û’öŽ®‚̈À’è—̈æ | ||
ŠÛ”öŒ’“ñiã‘åEHj | —ò”÷•ª€‚ðŽ‚Â‘o‹ÈŒ^•û’öŽ®‚̉ð‚Ì‘¶Ý‚ɂ‚¢‚Ä | ||
‹g–쳎ji“s—§‘åE—j | Œ`Ž®‰ð‚ÌŽû‘©E”ŽU‚ɂ‚¢‚Ä | ||
1987 | ”N‰ï | “Œ‹ž‘åŠw | 4.1-4.4 |
‹g“c³Íi‹ã‘åE—j | ŋ߂̃KƒEƒXEƒVƒ…ƒƒ‹ƒc—˜_ | ||
’J“‡Œ«“ñi“Œ‘åE‹³—{Šî‘b‰Èj | Schrödinger ì—p‘f‚É”º‚¤ƒXƒyƒNƒgƒ‹ŽË‰eì—p‘f‚Ì‚ƒGƒlƒ‹ƒM[‚É‚¨‚¯‚é‹ÇŠŒ¸Š“x | ||
‘å’b–è—²Žii‹ž‘åE—j | •Δ÷•ªì—p‘f‚Ì€‘ȉ~«‚ƋNJ‰Â‰ð | ||
1986 | H‹G‘‡•ª‰È‰ï | ç—t‘åŠw | 9.27-9.30 |
“ú–ì‹`”Viç—t‘åE‹³—{j | –³ŒÀ’x‚ê‚ð‚à‚Š֔”÷•ª•û’öŽ® | ||
ˆêƒm£–íi“‡ª‘åE—j | Schrödinger Œ^•û’öŽ®‚ɑ΂·‚鉊ú’l–â‘è | ||
‚–Øòi“Œ–k‘åE—j | ‹ÃW‚ð‹Lq‚·‚éŠgŽU-”½‰ž•û’öŽ®Œn‚Ì’èí‰ð | ||
1986 | ”N‰ï | ‹ž“s‘åŠw | 4.2-4.5 |
”ª–ØŒúŽuiã‘åE—j | ì—p‘f‚Ì•ª”™p‚̉ž—p | ||
“cŒ´G•qiã’q‘åE—Hj | “ÁˆÙ“_‚ð‚à‚•Δ÷•ª•û’öŽ® | ||
“‡‘q‹I•vi‹ž‘åE—jC ¬‘qK—Yi²‰ê‘åE—Hj |
W’cˆâ“`Šw‚É‚¨‚¯‚é–Ø‘ºƒ‚ƒfƒ‹‚Ì’èí‰ð‚Æ‚»‚̈À’è« | ||
“à“¡Šwi“¿“‡‘åE‹³ˆçj | Emden-Fowler Œ^”÷•ª•û’öŽ®‚ɑ΂·‚éU“®˜_ | ||
1985 | H‹G‘‡•ª‰È‰ï | •xŽR‘åŠw | 9.30-10.3 |
¼–{˜aˆê˜Yi‹ž‘åE—j | ˆê”ʂ̒´‰Â”÷•ª‘°‚É‚¨‚¯‚é•Δ÷•ª•û’öŽ®˜_ | ||
Šâèç—¢iã‘åE—j | ‹[”÷•ªì—p‘f‚É‚æ‚é•ú•¨Œ^•û’öŽ®‚ÌŠî–{‰ð‚Ì\¬‚Æ $\Box_b$ | ||
傌´K‹`i•Ÿ‰ª‘åE—j | ”ñüŒ`”“W•û’öŽ®‚ɑ΂·‚éƒyƒiƒ‹ƒeƒB[–@ | ||
ˆê£Fi‹à‘ò‘åE—j | Dirac •û’öŽ®‚Ì Feynman Œo˜HÏ•ª‚ɂ‚¢‚Ä | ||
1985 | ”N‰ï | “Œ‹ž“s—§‘åŠw | 4.2-4.5 |
ˆÉ“¡Gˆêi“ŒH‘åE—j | Hamilton Œn‚Ì•½t“_‚̋ߖT‚É‚¨‚¯‚éŽüŠú‰ð | ||
—ÑŠì‘ãŽiiŒc‘åE—Hj | Hamilton Œn‚ÌŽüŠú‰ð | ||
ˆäì–žiã‘åE—j | •¨‘̂ɂæ‚éŽU—‚ÌŽU—s—ñ‚ɂ‚¢‚Ä | ||
”’“c•½i–k‘åE—j | ‹«ŠE‘w‚Ì”Šw“IŽæˆµ‚¢‚ɂ‚¢‚Ä | ||
1984 | H‹G‘‡•ª‰È‰ï | “Œ‹ž‘åŠw | 10.16-10.19 |
¼–{•q•Fi“ŒH‘åE—j | Confluent WKB approximation and its application to the molecular collision theory | ||
a”¨–Îi‹ž‘åE—j | •Δ÷•ª•û’öŽ®‚̉Šú’l–â‘èi‹ÇŠƒt[ƒŠƒG‰ð͂̎‹“_‚©‚çj | ||
X–{–F‘¥i–¼‘åEHj | ™p—ë‚È“Á«‚ðŽ‚Â‘o‹ÈŒn‚ɑ΂·‚é‰ð‚Ì”g–ÊW‡‚Ì“`”d | ||
¬‘ò^iã‘åE—j | Laplacian ‚̌ŗL’l‚Ɨ̈æÛ“® | ||
1984 | ”N‰ï | ‘åã‘åŠw | 4.3-4.6 |
ã”V‹½‚Žui“Œ–k‘åE—j | í”÷•ª•û’öŽ®‚Ì‹«ŠE’l–â‘è | ||
’J’´‹(Gu Chaohao)i•œ’U‘åj | On mixed partial differential equations of higher order | ||
‰Z¶“™i‘‘åE—Hj | “Á«“I•Δ÷•ªì—p‘f‚ɑ΂·‚éƒR[ƒV[–â‘è‚̃Wƒ…ƒuƒŒƒC‹‰”Ÿ”‘°‚É‚¨‚¯‚é“KØ« | ||
¼àV’‰li–¼‘åE—j | Partially hyperbolic pseudodifferential operators | ||
1983 | H‹G‘‡•ª‰È‰ï | ‘ˆî“c‘åŠw | 9.12-9.15 |
‰º‘ºri_ŒË‘åEŽ©‘Rj | “®‚©‚È‚¢“ÁˆÙ“_‚̂܂í‚è‚Å‚Ì Painlevé •û’öŽ®‚̉ð‚ɂ‚¢‚Ä | ||
Žlƒc’J»“ñi‹{è‘åEHj | ƒXƒeƒtƒ@ƒ“–â‘è‚̉ð‚Ì‹““® | ||
¬¼Œºiã‘åE—j | Bergman Šj”Ÿ”‚Ɨ̈æ‚̕ϓ® | ||
Šâè•~‹vi‹ž‘åE”—Œ¤j | Effectively hyperbolic equations ‚Ì Cauchy –â‘è | ||
1983 | ”N‰ï | L“‡‘åŠw | 4.4-4.7 |
’†“ˆ•¶—YiŠâŽè‘åE‹³ˆçj | Duffing •û’öŽ®‚ÌŽüŠú‰ð‚ɂ‚¢‚Ä | ||
ˆéè—mi‹ž‘åE—j | Micro local resolvent estimate ‚ÆŽO‘Ì–â‘è | ||
¼’J’B—Yi‹ž‘åE—j | Žã‘o‹ÈŒ^•û’öŽ®‚ɑ΂·‚é Cauchy –â‘è | ||
J. Heywood iUniv. of British Columbiaj |
‘è–¢’èi‰ž—p”Šw‚Ƈ“¯j | ||
Tai-Ping LiuiUniv. of Marylandj | Mathematical theory of shock wavesi‰ž—p”Šw‚Ƈ“¯j | ||
1982 | H‹G‘‡•ª‰È‰ï | ŽOd‘åŠw | 9.28-10.1 |
^“‡Gsi“Œ‘åE—j | Pfaff Œn‚Ì“ÁˆÙ“_‚Ì‘½•Ï”‘Q‹ß‰ðÍ\$\nabla$-Poincaré ‚Ì•â‘èCRiemann-Hilbert-Birkhoff –â‘è\ | ||
–k“c‹Ïi“Œ‘åE‹³—{j | ŽU—s—ñ‚Ìì—p‘fƒmƒ‹ƒ€‹ßŽ— | ||
’·£“¹Oiã‘åE‹³—{j | ‹[”÷•ªì—p‘f‚Ì $L^p$-—LŠE«‚ɂ‚¢‚Ä | ||
‘å“à’‰iã’q‘åE—Hj | ’´‹È–Ê‚ÆüŒ^•Δ÷•ªì—p‘f‚ÌŠÖŒW‚Ì“Á’¥‚¯‚Æ•¡‘f—̈æ‚É‚¨‚¯‚é•Δ÷•ª•û’öŽ®‚ւ̉ž—p | ||
1982 | ”N‰ï | “Œ–k‘åŠw | 3.30-4.2 |
’ÒŠ²—Yi‹ž“sŽY‘åE—j | ’蔌W”‘o‹ÈŒ^•û’öŽ®‚ÌŠî–{‰ð‚Ì“ÁˆÙ«‚ɂ‚¢‚Ä | ||
“c‘º‰p’ji–¼‘åEHj | Schrödinger ì—p‘f‚̌ŗL’l‘Q‹ßŒöŽ® | ||
1981 | H‹G‘‡•ª‰È‰ï | ŽRŒû‘åŠw | 10.5-10.8 |
‰Í–웉•FiL‘åE—j | Connection problems | ||
¼‰Y—õi‹ž“sŽY‘åE—j | ”½‰žŠgŽUŒn‚É‚¨‚¯‚镪Šò‰ð‚Ì‘åˆæ“I\‘¢ | ||
1981 | ”N‰ï | ‹ž“s‘åŠw | 4.3-4.7 |
G. SeifertiIowa State Univ.j | Almost periodic solutions for delay-differential equations | ||
D. SchaefferiDuke Univ.j | Bifurcation with spherical symmetricity, including applications to Bénard problem | ||
1980 | H‹G‘‡•ª‰È‰ï | ˆ¤•Q‘åŠw | 10.1-10.4 |
J-P. RamisiUniv. Strasbourgj | ‘è–¢’èi”Ÿ”‰ðÍŠw‚Ƈ“¯j | ||
ŒÃ—p“N•viŠâŽè‘åE‹³ˆçj | ŠÖ””÷•ª•û’öŽ®‚ÌŽüŠú‰ð‚Ì‘¶Ý‚ɂ‚¢‚Ä | ||
H. FlaschkaiUniv. Arizonaj | ‘è–¢’è | ||
1980 | ”N‰ï | MB‘åŠw | 4.1-4.4 |
‰ª–{˜a•vi“Œ‘åE—j | üŒ^í”÷•ª•û’öŽ®‚̕ό`—˜_ | ||
‹gì“Öi–k‘åE—j | ì—p‘f $D_t^2-(t^2+x^2)D_x^2+aD_t+bD_x+c$ ‚Æ‚»‚Ì’‡ŠÔ‚̃pƒ‰ƒƒgƒŠƒNƒX | ||
1979 | H‹G‘‡•ª‰È‰ï | ‹ž“s‘åŠw | 10.1-10.4 |
‘]‰ä“úo•viˆïé‘åE‹³ˆçj | ŽÎŒð”÷•ª‹«ŠEðŒ‚ð‚à‚”g“®•û’öŽ®‚̬‡–â‘è | ||
‘º“c›‰i“s—§‘åE—j | Schrödinger Œ^•û’öŽ®‚̉ð‚ÌŽžŠÔŒ¸Š | ||
1979 | ”N‰ï | –¼ŒÃ‰®H‹Æ‘åŠw | 4.3-4.6 |
Έäˆê•½iŒc‘åEHj | Minimal flow ‚ɂ‚¢‚Ä | ||
’†”öTGi‹ã‘åE‹³—{j | ”ñüŒ^”g“®•û’öŽ®‚ÌŽüŠú‰ð | ||
1978 | H‹G‘‡•ª‰È‰ï | “Œ‹ž“d‹@‘åŠw | 10.4-10.7 |
R. GérardiUniv. de Strasourgj | Convergence of formal solutions of a certain kind of singular non-linear Pfaffian systems | ||
C. GoulaouiciÉcole polytech.j | Problemes de Cauchy pseudodifferentiels analytiquesi”Ÿ”‰ðÍŠw‚Ƈ“¯j | ||
“¡Œ´‘å•ãi“Œ‘åE—j | Schrödinger •û’öŽ®‚ÌŠî–{‰ð‚̈ê‚‚Ì\¬–@‚ɂ‚¢‚Ä | ||
1978 | ”N‰ï | –¼ŒÃ‰®‘åŠw | 4.4-4.7 |
‰ª–{˜a•vi“Œ‘åE—j | Painlevé ‚Ì•û’öŽ® | ||
“‡‘q‹I•vi‹ž‘åE—j | W’cˆâ“`Žq‚É‚ ‚ç‚í‚ê‚é•Δ÷•ª•û’öŽ® | ||
1977 | ”N‰ïE‘n—§ 100 ”N‹L”O”N‰ï | “Œ‹ž—‰È‘åŠw | 10.9-10.12 |
‹g“c³Íi_ŒË‘åE—j | ‚ ‚éŽí‚Ì—£ŽU“I‚ÈŒQ‚ðƒ‚ƒmƒhƒƒ~[ŒQ‚É‚à‚ƒtƒbƒNƒXŒ^”÷•ª•û’öŽ®‚̋NJ—˜_ | ||
“n•Ó‹àŽ¡i“Œ–k‘åE—j | Cauchy –â‘è‚̉ð‚̈êˆÓ« | ||
S. AgmoniHebrew Univ.j | Asymptotic and spectral properties of Schrödinger type operatorsi”Ÿ”‰ðÍŠw‚Ƈ“¯j |