”Ÿ”•û’öŽ®˜_•ª‰È‰ï“Á•Êu‰‰ˆê——
i1977 ”N”N‰ïE‘n—§ 100 ”N‹L”O”N‰ïˆÈ~j

2023H‹G‘‡•ª‰È‰ï“Œ–k‘åŠw9.20-9.23
‹{¼‹g‹viMB‘åE—j Layer potential type operator ‚̃XƒyƒNƒgƒ‹—˜_‚Æ‚»‚̉ž—p‚ÉŒü‚¯‚Ä
ûüâ—ÇŽji_ŒË‘åEŠCŽ–j Willmore —¬‚ɑ΂·‚é臒lŒ^‹ßŽ—ƒAƒ‹ƒSƒŠƒYƒ€‚ɂ‚¢‚Ä
Ô–xŒöŽjiÃ‰ª‘åEHj Global dynamics above the ground state threshold for nonlinear Schrödinger equations
âV“¡•½˜ai“d’Ê‘åEî•ñ—Hj Asymptotic stability of the trivial steady state for the two-phase Navier-Stokes equations
2023”N‰ï’†‰›‘åŠw3.15-3.18
’r”©—DiL“‡‘åEHj ŽžŠÔ—̈æ‚É‚¨‚¯‚éˆÍ‚¢ž‚Ý–@‚Ì“WŠJ
i2022 ”N“xi‘æ 21 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
’·àVšá”Vié‹Ê‘åE—Hj Möbius ƒGƒlƒ‹ƒM[‚Ì•ª‰ð‚Æ”g“®ŽÊ‘œ
–k’¼‘ׁiŒF–{‘åEHj •¡‘fŒW”‚ð‚à‚”ñüŒ`ƒVƒ…ƒŒ[ƒfƒBƒ“ƒK[•û’öŽ®‚̉ð‚Ì‹““®
“›ˆä—e•½i‹ž‘åE—j Convergence to the initial data and weighted estimates for the incompressible Navier-Stokes equations
2022H‹G‘‡•ª‰È‰ï–kŠC“¹‘åŠw9.13-9.16
ŽRì‘å—ºi“Œ‹ž—‘åE—j ƒ‚ƒmƒhƒƒ~[•Û‘¶•ÏŒ`‚ÌŠô‰½Šw‚ƑΏ̐«
ŽÄ“c«Œhi–¼é‘åE—Hj $H^1$ —ÕŠE€‚ðŽ‚Â€üŒ`‘ȉ~Œ^•û’öŽ®‚̐³’l‰ð‚Ì‘Q‹ß‹““®
‹e’rO–¾i’Ócm‘åEŠwŒ|j ‹óŠÔ 3 ŽŸŒ³‚É‚¨‚¯‚é“ñd‚ׂ«”ñüŒ`ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ® ‚ÌŠî’êó‘Ô
Ž›àV—S‚i–¼‘åE‘½Œ³”—j “ñ‘w—¬‚Ì”ñ‹ÇŠŠgŽUŠE–ʃ‚ƒfƒ‹‚ÌŽã‰ð‚¨‚æ‚Ñ‚»‚̋ǏŠ‘Q‹ß
2022”N‰ïé‹Ê‘åŠwiƒIƒ“ƒ‰ƒCƒ“j3.28-3.31
‚‹´‘¾iãŽs‘åE—j Hardy •s“™Ž®‚ÉŠÖ˜A‚·‚鐔Šw‰ðÍ
i2021 ”N“xi‘æ 20 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
¼àVŠ°i_“ސì‘åE—j ‚ŽŸŒ³‹óŠÔ‚É‚¨‚¯‚鑽ˆÀ’èŒ^”ñüŒ`€‚ð‚à‚”½‰žŠgŽU•û’öŽ®‚ÌŽ©—R‹«ŠE–â‘è‚ɂ‚¢‚Ä
‘¤“‡ŠîGi“Œ‹ž—‘åE—Hj Weighted energy estimates for wave equations with space-dependent damping
ã“cDŠ°i_ŒË‘åEŠCŽ–j ŠÉ˜a€‚ðŽ‚Â‘ÎÌ‘o‹ÈŒ^•û’öŽ®Œn‚É‚¨‚¯‚éÁŽU\‘¢‚̐”Šw‰ðÍ
2021H‹G‘‡•ª‰È‰ïç—t‘åŠwiƒIƒ“ƒ‰ƒCƒ“j9.14-9.17
Šâ–؍k•½i“Œ‘åE”—j Š®‘S WKB ‰ðÍ‚Æ‚»‚ÌŽü•Ó
‰ºžŠ¹•Fi“s—§‘åE—j ’PˆÀ’è‚È”½‰ž€‚ð‚à‚‘ΐ”ŠgŽU•û’öŽ®‚̉ð‚Ì‹““®‚ɂ‚¢‚Ä
‰ª–{ˆ¨iã‘åE—j ‹óŠÔ 3 ŽŸŒ³‚É‚¨‚¯‚é”ñüŒ` Klein-Gordon •û’öŽ®‚Ì‚Ù‚Æ‚ñ‚ÇŠmŽÀ‚È‘åˆæ“I“KØ«
—é–ؐ­qi–¼H‘åj ƒvƒ‰ƒYƒ}‹«ŠE‘w‚̐”Šw‰ðÍ
2021”N‰ïŒcœä‹`m‘åŠwiƒIƒ“ƒ‰ƒCƒ“j3.15-3.18
•gŽq²miç—tH‘åj ’´Šô‰½ŠÖ”‚ƍ·•ª•û’öŽ®
’–‰œ—ύ¶i“Œ–k‘åE—j Sobolev Œ^•s“™Ž®‚̍ŗǒ萔‚Æ’B¬‰Â”\«
“ñ‹{L˜ai–¾‘åE‘‡”—j ”½‰žŠgŽUŒn‚̐¢ŠE
i2020 ”N“xi‘æ 19 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
‰ª•”lGiã‘åEŠî‘bHj ŠO—Í‚É‚æ‚éƒiƒrƒGEƒXƒg[ƒNƒX•û’öŽ®‚̉ð‚Ì‘Q‹ß‰ðÍ
2020H‹G‘‡•ª‰È‰ïŒF–{‘åŠwiƒIƒ“ƒ‰ƒCƒ“j9.22-9.25
âˆäG—²i“Œ‘åE”—j Painlevé •û’öŽ®‚̐¢ŠE
i2019 ”N“xi‘æ 18 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
åb“c‘•½iŠwK‰@‘åE—j “dŽq‚̃nƒ~ƒ‹ƒgƒjƒAƒ“‚̌ŗL’l‚̐³Šm‚ȉºŠE•]‰¿
‹v“¡t‰îi‘‘åE—Hj Cross-diffusion limit in the stationary SKT model
£•ÐƒŽsi‹ã‘åE”—j ƒfƒ‹ƒ^ƒ|ƒeƒ“ƒVƒƒƒ‹‚ð‚à‚”ñüŒ`ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚̉ð‚Ì’·ŽžŠÔ‹““®
2020”N‰ïi’†Ž~j“ú–{‘åŠw3.16-3.19
âˆäG—²i“Œ‘åE”—j Painlevé •û’öŽ®‚̐¢ŠE
i2019 ”N“xi‘æ 18 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
åb“c‘•½iŠwK‰@‘åE—j “dŽq‚̃nƒ~ƒ‹ƒgƒjƒAƒ“‚̌ŗL’l‚̐³Šm‚ȉºŠE•]‰¿
‹v“¡t‰îi‘‘åE—Hj Cross-diffusion limit in the stationary SKT model
£•ÐƒŽsi‹ã‘åE”—j ƒfƒ‹ƒ^ƒ|ƒeƒ“ƒVƒƒƒ‹‚ð‚à‚”ñüŒ`ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚̉ð‚Ì’·ŽžŠÔ‹““®
2019H‹G‘‡•ª‰È‰ï‹à‘ò‘åŠw9.17-9.20
‹S’ː­ˆêi‰ªŽR—‘åE—j ƒ_ƒCƒ„ƒ‚ƒ“ƒhƒAƒ‹ƒtƒ@·•ª•û’öŽ®‚̃Eƒ‰ƒ€ˆÀ’萫
“n•”‘ñ–çi—§–½ŠÙ‘åE—Hj ƒGƒlƒ‹ƒM[Œð·‚̏ãˆÊ€ˆÊ‚É‚¨‚¯‚郌ƒ]ƒiƒ“ƒX‚̏€ŒÃ“T•ª•z
¬–쎛—LÐi“ŒH‘åE—j Hyperbolic solutions to Bernoulli's free boundary problem
Žá™—E‘¾iˆ¤•Q‘åE—Hj ÁŽUŒ^”g“®•û’öŽ®‚ɑ΂·‚é$L^p$-$L^q$•]‰¿‚Æ”ñüŒ`–â‘è‚ւ̉ž—p
2019”N‰ï“Œ‹žH‹Æ‘åŠw3.17-3.20
_–{WŒáiL“‡‘åE—j ƒŠƒT[ƒWƒFƒ“ƒg”Ÿ”‚ƍ‡¬Ï
N. FuscoiUniv. di Napolij Asymptotic stability of the gradient flow of some nonlocal energies
“¡“ˆ—z•½iÃ‰ª‘åEHj Ž©ŒÈ‘ŠŽ—«‚ðŽ‚½‚È‚¢”¼üŒ`”M•û’öŽ®‚̉‰ð«
ì“‡Gˆêi‘‘åE—Hj ‘Ώ̑o‹ÈŒn‚̏ÁŽU\‘¢‚ƈÀ’萫‰ðÍ
i2018 ”N“xi‘æ 17 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
2018H‹G‘‡•ª‰È‰ï‰ªŽR‘åŠw9.24-9.27
ŽO’¬Ÿ‹viã‘åEî•ñj ŒÃ“T’´Šô‰½”Ÿ”‚Æ‚»‚ÌŽü•Ó
ìã—³Ž÷i—´’J‘åE—Hj “®“I‹«ŠEðŒ•t‚«”¼üŒ`‘ȉ~Œ^•û’öŽ®
ƒxƒY ƒj[ƒ‹ié‹Ê‘åE—Hj Geometric estimates arising in the analysis of Zakharov systems
•Ÿò—í‰Ài“Œ–k‘åEî•ñj Bose-Einstein ‹Ãkƒ‚ƒfƒ‹‚É‚¨‚¯‚鉷“xŒø‰Ê
2018”N‰ï“Œ‹ž‘åŠw3.18-3.21
’|ˆä‹`ŽŸi“¯ŽuŽÐ‘åE—Hj ‘ȉ~”Ÿ”‚âƒpƒ“ƒ‹ƒ”ƒF“ÁŽê”Ÿ”‚̃Cƒ“ƒXƒ^ƒ“ƒgƒ““WŠJ‚ð‚ß‚®‚Á‚ā\ƒpƒ“ƒ‹ƒ”ƒF•û’öŽ®‚ÌŠ®‘SWKB‰ðÍÅIÍ
i2017 ”N“xi‘æ 16 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
ŽÄ“c“O‘¾˜YiL“‡‘åEHj ”ñüŒ`‘ȉ~Œ^•û’öŽ®‚̌ŗL’l–â‘è‚Ì‘Q‹ß‰ðÍ‚Æ‹t•ªŠò–â‘è‚̉ðÍ
i2017 ”N“xi‘æ 16 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
“ñ‹{L˜ai–¾‘åE‘‡”—j ”½‰žŠgŽU•û’öŽ®‚̐is”g‰ð‚Æ‘Sˆæ‰ð
ŠâŸºŽii“Œ–k‘åE—j ˆ³k«Navier-Stokes•û’öŽ®‚ɑ΂·‚é•s“KØ«‚ɂ‚¢‚Ä
2017H‹G‘‡•ª‰È‰ïŽRŒ`‘åŠw9.11-9.14
O. LisovyiiUniv. de Toursj Painlevé functions, Fredholm determinants and combinatorics
‘«’BT“ñiÃ‰ª‘åEHj ”¼üŒ`‘ȉ~Œ^•û’öŽ®‚̐³’l‰ð‚̈êˆÓ«E”ñ‘Þ‰»«‚Æ‚»‚̉ž—p
ˆÉ“¡O“¹i“Œ‹ž—‘åE—j ‚«—ô‚ðŠÜ‚ޗ̈æ‚É‚¨‚¯‚é•Î”÷•ª•û’öŽ®‚̉ðÍ
ûü“c—¹i‹ã‘吔E—j Dispersive estimates for rotating fluids and stably stratified fluids
2017”N‰ïŽñ“s‘åŠw“Œ‹ž3.24-3.27
œAœ¨ˆêŠóié¼‘åE—j üŒ^í”÷•ª•û’öŽ®‚̃AƒNƒZƒTƒŠ[ƒpƒ‰ƒ[ƒ^[‚ð„‚Á‚Ä
¬’r–Ώºi“Œ–k‘åE—j Š®‘S”ñüŒ`•û’öŽ®‚Ì$L^p$”S«‰ð‚ÌABPÅ‘å’lŒ´—‚Æ‚»‚̉ž—p
i2016 ”N“xi‘æ 15 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
¼ŽR®Žui˜a‰ÌŽR‘åE‹³ˆçj –€ŽC€‚ðŽ‚Â”g“®•û’öŽ®‚ÌŠgŽUŒ»Û‚ɂ‚¢‚Ä
•ÐŽR‘ˆê˜Yiã‘åE—j ”ñüŒ`”g“®•û’öŽ®Œn‚Ì‘åˆæ‰ð‚Ì‘¶Ý‚Æ‘Q‹ß‹““®
i2016 ”N“xi‘æ 15 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
2016H‹G‘‡•ª‰È‰ïŠÖ¼‘åŠw9.15-9.18
’Jì’qKiŒF–{‘åE‹³ˆçj ³‘¥•Ï“®ŠÖ”˜_‚Æ”÷•ª•û’öŽ®‚̉ð‚Ì‘Q‹ß‹““®
Žá‹·“Oi‹ãH‘åEHj 1ŽŸŒ³ƒtƒƒ“ƒg‚¨‚æ‚уpƒ‹ƒX’èí‰ð‚É‚¨‚¯‚éüŒ`‰»ŒÅ—L’l–â‘è
Î“c“Ö‰pi“Œ‹ž—‘åEHj ŽžŠÔ•Ï“®“dê‚É”º‚¤—ÊŽqŽU—‚̏‡–â‘è‚Æ‹t–â‘è‚ɂ‚¢‚Ä
‘O“c¹–çiç—t‘åE—j On orbital instability of excited states of nonlinear Schrödinger equations
2016”N‰ï’}”g‘åŠw3.16-3.19
ŽÄŽRˆò—ځi‹ž‘åEî•ñj $n$ ‘Ì–â‘è‚ÌŽüŠú‹O“¹‚Ì•Ï•ª‰ðÍ
“c’†˜a‰ii‘‘åE—Hj ”ñüŒ`‘ȉ~Œ^•û’öŽ®‚ɑ΂·‚é“ÁˆÙÛ“®–â‘è \“Á‚É‘Þ‰»‚·‚éê‡‚ð„‚Á‚ā\
i2015 ”N“xi‘æ 14 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
•–؏ꐳéiŽº—–H‘åj ‚ŽŸŒ³ˆÚ—¬ŠgŽU•û’öŽ®Œn‚̉ð‚Ì—LŒÀŽžŠÔ”š”­‚ɂ‚¢‚Ä
™–{[i–¼‘åE‘½Œ³”—j ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚ÌŠp•ûŒü‚Ö‚Ì•½ŠŠ‰»ì—p‚ɂ‚¢‚Ä
i2015 ”N“xi‘æ 14 ‰ñj“ú–{”Šw‰ï‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
2015H‹G‘‡•ª‰È‰ï‹ž“sŽY‹Æ‘åŠw9.13-9.16
áÁ–ì’qsi—®‹…‘åE—j ‘å‹v•ÛŒ^”÷•ª•û’öŽ®‚Ì‘½•Ï”‰»‚Æ•½’R\‘¢
œAàVŽj•FiŽRŒû‘åE—j ŽžŠÔ‚Ɉˑ¶‚·‚éŒW”‚ðŽ‚Â”g“®•û’öŽ®‚̉ðÍ‚Æ‚»‚̉ž—p
‘ê–{˜aLiL“‡‘åE—j Entire solutions to some types of parabolic Hessian equations
ŠÝ–{“Wi‹ž‘åE”—Œ¤j ”ñüŒ`•ªŽUŒ^•û’öŽ®‚̉ð‚Ì–³ðŒˆêˆÓ«‚ɂ‚¢‚Ä
2015”N‰ï–¾Ž¡‘åŠw3.21-3.24
–èˆêKi‹ž‘åEî•ñj ‘ȉ~Œ^•û’öŽ®‚̐³’l‹…‘Ώ̉ð‚Ì‘¶Ý‚Æ•ªŠò
ŽO’|‘åŽõiL“‡‘åEISSDj ‘Þ‰»”S«ƒnƒ~ƒ‹ƒgƒ“Eƒ„ƒRƒr•û’öŽ®‚Ì‘Q‹ß‰ðÍF’·ŽžŠÔ‹““®‚Æ‘I‘ð–â‘è
Î–јaOi“Œ–k‘åE—j •ú•¨Œ^•û’öŽ®‚̉ð‚̓ʐ«‚ɂ‚¢‚Ä
i‘æ 13 ‰ñi2014 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
áÁú±‘iL“‡‘åEHj Ž¿—Ê—ò—ÕŠE”ñüŒ`ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚̉ðÍ
2014H‹G‘‡•ª‰È‰ïL“‡‘åŠw9.25-9.28
‰–˜H’¼Ž÷i‰¡•l‘‘åEHj ˆê”ʉ» Pohozaev ŠÖ”‚Ƒȉ~Œ^•û’öŽ®‚̐³’l‹…‘Ώ̉ð‚̈êˆÓ«‚ɂ‚¢‚Ä
’†àVG•vi“ú–{ˆã‘åj –€ŽC€‚𔺂¤”g“®•û’öŽ®‚ÌŽU—–â‘è‚Æ‚»‚ÌŽü•Ó
’ÐìŒõ‘¾˜Yi–¼‘åE‘½Œ³”—j 5ŠK‚Ì”ñüŒ`•ªŽUŒ^•û’öŽ®‚̋ǏŠ“KØ«
‰ª•”^–çi“Œ–k‘åE—j ŽlŠK•ú•¨Œ^•û’öŽ®‚ɑ΂·‚éáŠQ•¨–â‘è
2014”N‰ïŠwK‰@‘åŠw3.15-3.18
…’JŽ¡ÆiŠwK‰@‘åE—j •Ï”ŒW”ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚ɑ΂·‚éƒXƒgƒŠƒbƒJ[ƒc•]‰¿‚ɂ‚¢‚Ä
—˜ªì‹gœAi–k‘åE—j •½‹Ï‹È—¦—¬‚̐³‘¥«—˜_‚ɂ‚¢‚Ä
i‘æ 12 ‰ñi2013 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
—§ì“āi“Œ‹ž—‘åE—Hj p(x)-’²˜aŽÊ‘œ‚̐³‘¥«‚ɂ‚¢‚Ä
˜a“cŒ’ŽuiŒF–{‘åEHj •½ŠŠ‰»Œø‰Ê‚Æ Maxwell-Schrödinger •û’öŽ®‚Ì‘åˆæ“I“KØ«
2013H‹G‘‡•ª‰È‰ïˆ¤•Q‘åŠw9.24-9.27
ç—tˆíli‹ã‘åEIMIj d‚Ý•t‚«ŽË‰e‹óŠÔ‚É‚¨‚¯‚éƒpƒ“ƒ‹ƒ”ƒF•û’öŽ®
•y“c’¼liã‘åE—j ‘oüŒ`ƒt[ƒŠƒGƒ}ƒ‹ƒ`ƒvƒ‰ƒCƒ„[ì—p‘f‚Ì—LŠE«‚ɂ‚¢‚Ä
’¬Œ´G“ñié‹Ê‘åE‹³ˆçj ‹óŠÔ 1 ŽŸŒ³ 2 ŽŸ‚Ì”ñüŒ`€‚ð‚à‚ Dirac •û’öŽ®Œn‚̏‰Šú’l–â‘è‚ɂ‚¢‚Ä
Ô–؍„˜Ni_ŒË‘åEƒVƒXƒeƒ€î•ñj ”ñüŒ`ŠgŽU•û’öŽ®‚̉ð‚Ì‘Q‹ß‹““®
2013”N‰ï‹ž“s‘åŠw3.20-3.23
ŽR‰ª’¼liã•{‘åEHj ”¼•ªüŒ`”÷•ª•û’öŽ®‚̐U“®’萔‚Æ‚»‚̉ž—p
âŒû–΁i“Œ–k‘åEî•ñj •s•Ï“™‰·–ʂƗ̈æ‚ÌŠô‰½
i‘æ 11 ‰ñi2012 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
‰B‹—Ǎsi‹ã‘åE”—j ˆ³k« Navier-Stokes •û’öŽ®‚Ì‘Q‹ß‰ðÍ
i‘æ 11 ‰ñi2012 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
‚‘º”Ž”ViŒö—§‚Í‚±‚¾‚Ä–¢—ˆ‘åj ’P“Æ”ñüŒ`”g“®•û’öŽ®‚̏‰Šú’l–â‘è‚ɑ΂·‚éˆê”ʘ_‚Æ‚»‚̍œK«
2012H‹G‘‡•ª‰È‰ï‹ãB‘åŠw9.18-9.21
“c’†•qi‰ªŽR—‘åE—j —DüŒ` 2 “_‹«ŠE’l–â‘è‚̐³’l‰ð‚Ì”ñˆêˆÓ«\³’l‹ôŠÖ”‰ð‚̑Ώ̐«‚Ì”j‚ê\
ŒFƒm‹½’¼liHŠw‰@‘åEHj ‘Š‹óŠÔ‚ÌŒo˜HÏ•ª\Œo˜H‹óŠÔã‚̉ðÍ‚Æ‚µ‚ā\
ÎˆäŽKi_ŒË‘åEŠCŽ–j •½‹Ï‹È—¦—¬‚ɑ΂·‚é‹ßŽ—ƒAƒ‹ƒSƒŠƒYƒ€‚̐”Šw‰ðÍ
ŽO‰Y‰p”Viã‘åE—j —A‘—€•t‚«•ª”ŠKŠgŽU•û’öŽ®‚ÌŠî–{‰ð‚ɂ‚¢‚Ä
2012”N‰ï“Œ‹ž—‰È‘åŠw3.26-3.29
’ÓcÆ‹viˆê‹´‘åEŒoÏj UC ŠK‘w‚ƃ‚ƒmƒhƒƒ~[•Û‘¶•ÏŒ`C’´Šô‰½”Ÿ”
X–{–F‘¥i‹ž‘åElŠÔŠÂ‹«j Ø’f‹ßŽ—‚ð‚µ‚È‚¢ƒ{ƒ‹ƒcƒ}ƒ“•û’öŽ®\Õ“ːϕªì—p‘f‚̑Ώ̐«
i‘æ 10 ‰ñi2011 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
ì‰º”ü’ªiL“‡‘åE—j ”M•û’öŽ®‚ɑ΂·‚éˆÍ‚¢ž‚Ý–@‚ƃŒƒ]ƒ‹ƒxƒ“ƒg‚Ì‘Q‹ß‹““®
‘Oì‘ב¥i_ŒË‘åE—j 2 ŽŸŒ³”¼‹óŠÔ‚É‚¨‚¯‚é‰Q“x•û’öŽ®‚̐”Šw‰ðÍ
2011H‹G‘‡•ª‰È‰ïMB‘åŠw9.28-10.1
•Ç’JŠìŒpiã•{‘åEHj ‘ȉ~Œ^•Î”÷•ª•û’öŽ®‚ɑ΂·‚é‹…‘Ώ̉ð‚̍\‘¢
’†‘ºŽüi“Œ‘åE”—j ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚Ì’´‹ÇŠ“ÁˆÙ«‚̉ðÍ‚ÆŽU——˜_
i‘æ 9 ‰ñi2010 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
’r”©—ǁiL“‡‘åE‹³ˆçj ‹óŠÔ‰“•û‚Å—ÕŠEŒ¸Š‚·‚é–€ŽC€‚ðŽ‚Â”g“®•û’öŽ®‚̃Gƒlƒ‹ƒM[Œ¸Š‚ɂ‚¢‚Ă̐V“WŠJ
‰iˆä•q—²iL“‡‘åE—j ŠÖ”‚̍Ĕz—ñ‚Ì‘–‰»«•û’öŽ®‚ւ̉ž—p
i‘æ 9 ‰ñi2010 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
2010H‹G‘‡•ª‰È‰ï–¼ŒÃ‰®‘åŠw9.22-9.25
–{‘½®•¶i–k‘åE—j ‰¼‘z•Ï‚í‚è“_‚ÌŠô‰½‚ƃXƒg[ƒNƒXŒW”
’r”©—DiŒQ”n‘åEHj —LŒÀŠÏ‘ªŽžŠÔ‚É‚¨‚¯‚éƒf[ƒ^‚ð—p‚¢‚½”M‚¨‚æ‚Ñ”g“®•û’öŽ®‚ɑ΂·‚é‹t–â‘è‚ƈ͂¢ž‚Ý–@
¬ì‘썎i“Œ–k‘åE—j ˆê”ʉ»‚³‚ꂽÅ‘吳‘¥«Œ´—‚Æ‚»‚Ì”­“W•û’öŽ®‚ւ̉ž—p
i‘æ 8 ‰ñi2009 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
’†‘º“Oi‹ã‘åE”—j ”¼‹óŠÔ‚É‚¨‚¯‚鈳k«”S«—¬‘Ì‚Ì‘Q‹ß‹““®‚ɂ‚¢‚Ä
2010”N‰ïŒcœä‹`m‘åŠw3.24-3.27
¼’J’B—Yiã‘åE—j ”ñŒø‰Ê“I‘o‹ÈŒ^•û’öŽ®‚̏‰Šú’l–â‘è‚Æ Gevrey ‹óŠÔ
i‘æ 8 ‰ñi2009 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
‘å’ˍ_Žji‹{è‘åEHj “_‰QŒn‚Æ‚»‚Ì•½‹Ïê‚ɂ‚¢‚Ä
–ö‘ò‘ìi“ޗǏ—‘åE—j Helmholtz-Weyl •ª‰ð‚Æ‚»‚̉ž—p
£•ÐƒŽsi•Ÿ‰ª‹³ˆç‘åj ‚ŠK”ñüŒ`•ªŽUŒ^•û’öŽ®‚̉ð‚Ì’·ŽžŠÔ‹““®
2009H‹G‘‡•ª‰È‰ï‘åã‘åŠw9.24-9.27
’|“àTŒáiHŠw‰@‘åj $p$-Laplacian ‚ÌŽ©—R‹«ŠE–â‘è
‘«—§‹§‹`i_ŒË‘åE—j ŽžŠÔŽüŠú“I‚É•Ï“®‚·‚é“dê’†‚Ì—ÊŽq—ÍŠwŒn‚ɑ΂·‚éŽU——˜_
”Ñ“c‰ëli‹{è‘åEHj ”½‰žŠgŽUŒn‚Ì‹}‘¬”½‰ž‹ÉŒÀ‚É‚æ‚Á‚ÄŒ©‚¦‚é‚à‚Ì
’ѐA’¼Ž÷iL“‡H‘åEî•ñj ˆ³k«ƒIƒCƒ‰[•û’öŽ®‚ÌŽžŠÔ‘åˆæ‰ð‚Æ‘Q‹ß‹““®
2009”N‰ï“Œ‹ž‘åŠw3.26-3.29
Î“n’Ê“¿iŽº—–H‘åEHj —ÕŠEƒ\ƒ{ƒŒƒtŽw”‚ð‚à‚”¼üŒ^”M•û’öŽ®F•Ï•ª–@“I—§ê‚©‚ç
™–{[i–¼‘命Œ³”—j •ªŽUŒ^•û’öŽ®‚ÌŽž‹óŠÔ•]‰¿Ž®‚Æ”äŠrŒ´—
—Ñ’‡•viã‘åE—j ”ñüŒ` Klein-Gordon •û’öŽ®‚ÌŽU—–â‘è
i‘æ 7 ‰ñi2008 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
2008H‹G‘‡•ª‰È‰ï“Œ‹žH‹Æ‘åŠw9.24-9.27
¬’r’B–çi_ŒË‘åE—j Painlevé hierarchies, degenerate Garnier systems and WKB analysis [abstract]
ˆÉ“¡Œ’ˆêi’}”g‘åE”—•¨Ž¿j Schrödinger equations on scattering manifolds and microlocal singularities [abstract]
‚‹´‘¾iãŽs‘åE—j —ÕŠE Sobolev Œ^•û’öŽ®‚Ì”š”­‰ðÍ‚Æ‘Q‹ß“I”ñ‘Þ‰»« [abstract]
•ÐŽR‘ˆê˜Yi˜a‰ÌŽR‘åE‹³ˆçj ”ñüŒ`”g“®•û’öŽ®Œn‚Ì‘åˆæ‰ð‚Ì‘¶Ý‚Æ null ðŒ‚ɂ‚¢‚Ä [abstract]
2008”N‰ï‹ß‹E‘åŠw3.23-3.26
¼’J’B—Yiã‘åE—j 2 ŽŸ“Á«“_‚ð‚à‚‘o‹ÈŒ^ì—p‘f‚Æ Gevrey ƒNƒ‰ƒX [abstract]
‹{–{ˆÀli“ŒH‘åj ‰~”՗̈æ‚É‚¨‚¯‚銈«ˆöŽqE—}§ˆöŽqŒn‚̈À’è’èí‰ð‚ÌŒ`ó‚ɂ‚¢‚Ä [abstract]
•H“cr–¾iVŠƒ‘åEŽ©‘Rj ‰ñ“]‚·‚éáŠQ•¨‚ÌŽü‚è‚Å‚Ì”ñˆ³k«”S«—¬‘Ì‚Ì•û’öŽ®‚̐”Šw‰ðÍ [abstract]
i‘æ 6 ‰ñi2007 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
2007H‹G‘‡•ª‰È‰ï“Œ–k‘åŠw9.21-9.24
¼‰iGÍiã•{‘åEHj ŽžŠÔ’x‚ê‚ð‚à‚•û’öŽ®‚̉ð‚Ì‘Q‹ß“I«Ž¿‚ɂ‚¢‚Ä [abstract]
ˆÉ“Œ—T–çi“d’Ê‘åj s—ñŒW” 2 ŠKí”÷•ªì—p‘f‚̉ðÍ‚Æ’e«ƒKƒCƒh”g‚ւ̉ž—p [abstract]
’†‘º½i“Œ–k‘åE—j ”ñüŒ`”g“®•û’öŽ®‚ÌŠO•”–â‘è‚ɂ‚¢‚Ä [abstract]
™ŽR—RŒbi’Ócm‘åEŠwŒ|j ‘Þ‰»Œ^ Keller-Segel Œn‚̉ð‚̐«Ž¿‚ɂ‚¢‚Ä [abstract]
2007”N‰ïé‹Ê‘åŠw3.27-3.30
‹{è—ÏŽqiÃ‰ª‘åEHj í”÷•ª•û’öŽ®‚̉ð‚Ì‘Q‹ß‹““®‚ɑ΂·‚鎞ŠÔ’x‚ê‚̉e‹¿‚Æ‚»‚̉ðÍ [abstract]
ŽRè‘½ŒbŽqi“Œ‹ž—‘åE—Hj Kirchhoff Œ^€üŒ`‘o‹ÈŒ^•û’öŽ®‚Ì‘åˆæ‰ð‚ɂ‚¢‚Ä [abstract]
–k’¼‘ׁi‹{è‘åE‹³ˆçj ƒfƒ‹ƒ^ŠÖ”Œ^‚̏‰Šúƒf[ƒ^‚ðŽ‚Â”ñüŒ`ƒVƒ…ƒŒ[ƒfƒBƒ“ƒK[•û’öŽ®‚ɂ‚¢‚Ä [abstract]
2006H‹G‘‡•ª‰È‰ï‘åãŽs—§‘åŠw9.19-9.22
’|‘º„ˆêi‰¡•lŽs‘åE‘Û‘‡‰Èj ƒzƒCƒ“‚Ì”÷•ª•û’öŽ® [abstract]
¬ìŒöºi––勳ˆç‘åj ”ñ“¯ŽŸŽå—v•”‚ð‚à‚€üŒ`‘ȉ~Œ^•û’öŽ®‚̐³’l‰ð‚ɂ‚¢‚Ä [abstract]
´…îäiÃ‰ª‘åEHj $L_p-L_q$ Å‘吳‘¥«‚Æ”ñˆ³k«”S«—¬‘Ì‚ÌŽ©—R‹«ŠE–â‘è‚ւ̉ž—p [abstract]
»ìG–¾i’}”g‘åE”—•¨Ž¿j Lifespan ‚Ì‘Q‹ß•]‰¿‚©‚猩‚½”ñüŒ^ Schrödinger •û’öŽ®‚Æ‚»‚ÌŽü•Ó [abstract]
2006”N‰ï’†‰›‘åŠw3.26-3.29
“à“¡—YŠîi_ŒË‘åEHj ”ñüŒ`”M•û’öŽ®‚ÌŽ©ŒÈ‘ŠŽ—‰ð‚Æ‚»‚Ì–ðŠ„ [abstract]
’†¼Œ«ŽŸi‹ž‘åE—j ”ñüŒ`”g“®•û’öŽ®‚Ì“ÁˆÙ‹ÉŒÀ‚Æ•ªŽU«‚ɂ‚¢‚Ä [abstract]
i‘æ 4 ‰ñi2005 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
‹e’nŒõŽkiÃ‰ª‘åEHj Œù”z‚ÉŠÖ‚µˆêŽŸ‘‘å“x‚̃Gƒlƒ‹ƒM[‚ðŽ‚Â”Ä”Ÿ”‚ÆŠÖ˜A‚·‚é”­“W•û’öŽ® [abstract]
2005H‹G‘‡•ª‰È‰ï‰ªŽR‘åŠw9.19-9.22
‘ºãŒöˆêi“¿“‡‘åE‘‡‰Èj ’†S‘½—l‘Ì—˜_‚É‚æ‚éˆÀ’萫‚Æ•ªŠòŒ»Û‚̉ðÍ
¼“cF–¾i‘‘åE—Hj —¬‘Ì•û’öŽ®‚̉ðÍEŒvŽZ‹@‰‡—p‰ðÍ
i‘æ 3 ‰ñi2004 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
–쑺—SŽii“ŒH‘åE—HjC
•õ‘ñ–îi‹ž“sH‘@‘åE‘@ˆÛj
ŽüŠú“I“ÁˆÙŽ¥ê‚ðŽ‚Â Schrödinger ì—p‘f‚̃XƒyƒNƒgƒ‹‚ɂ‚¢‚Ä
¬—эFsi²‰ê‘åE—Hj ”¼‹óŠÔ‚É‚¨‚¯‚鈳k« Navier-Stokes •û’öŽ®‚̉ð‚Ì‘Q‹ß‹““®‚ɂ‚¢‚Ä
2005”N‰ï“ú–{‘åŠw3.27-3.30
ŠâèŽ‘¥i‹ã‘åE”—j ƒpƒ“ƒ‹ƒ”ƒF•û’öŽ®‚̃_ƒCƒiƒ~ƒbƒNƒX
i‘æ 3 ‰ñi2004 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
’J“à–õiMB‘åE—j ”ñˆ³k«—¬‘Ì‚Ì•û’öŽ®‚̉‰𐫂Ɣš”­”»’èðŒ‚ɂ‚¢‚Ä
‘剺³–¯i“Œ‘åE”—j ”½‰žŠgŽUŒn‚ÉŒ»‚ê‚é”÷×‚ȃpƒ^[ƒ“‚Æ Young ‘ª“x
2004H‹G‘‡•ª‰È‰ï–kŠC“¹‘åŠw9.19-9.22
å—t—²i‹{è‘åEHj Keller-Segel Œn‚Æ‚»‚ê‚ÉŠÖ˜A‚·‚éŒn‚ɑ΂·‚é‰ð‚Ì‹““®‚ɂ‚¢‚Ä
‰º‘º–¾—miŠwK‰@‘åE—j ”ñüŒ` Schrödinger •û’öŽ®‚Ì’·‹——£Œ^ŽU—‚ɂ‚¢‚Ä
’†–ìŽj•Fi“Œ–k‘åE—j ƒ‰ƒ“ƒ_ƒ€‚ÈŽ¥ê‚ðŽ‚ÂƒVƒ…ƒŒ[ƒfƒBƒ“ƒK[ì—p‘f‚ɂ‚¢‚Ä
‘¾“c‰ëlié‹Ê‘åE—j ”ñüŒ` Klein-Gordon •û’öŽ®‚Ì’èÝ”g‰ð‚Ì•sˆÀ’萫‚ɂ‚¢‚Ä
2004”N‰ï’}”g‘åŠw3.28-3.31
Â–Ø‹MŽji‹ß‹E‘åE—Hj ‘½dƒ[[ƒ^’l‚ÌŠÖŒWŽ®‚ƐüŒ^í”÷•ª•û’öŽ®‚̐ڑ±ŒöŽ®
Î–јaOi–¼‘åE‘½Œ³”—j Blow-up problems for semilinear heat equations with large diffusion
¼”¨L–çi“ŒH‘åEî•ñ—Hj ”ñ—LŠE—̈æã‚É‚¨‚¯‚鈳k« Navier-Stokes •û’öŽ®‚ÌŽžŠÔ‘åˆæ‰ð‚Ì‹““®
2003H‹G‘‡•ª‰È‰ïç—t‘åŠw9.24-9.27
W. BasleriUniv. of Ulmj Multisummability of formal power series, and application to ordinary and partial differential equations
—˜ªì‹gœAi–k‘åE—j “ÁˆÙ‹ÉŒÀ–â‘è‚ÉŒ»‚ê‚é‹É¬‹È–ʂɂ‚¢‚Ä
‹v•Û‰p•viã‘åE—j ”g“®•û’öŽ®‚̉ð‚ÌŽž‹ó•]‰¿‚Æ”ñüŒ^Û“®‚ւ̉ž—p
¬’r–Ώºié‹Ê‘åE—j “ñŽŸ‚Ì”ñüŒ`€‚ðŽ‚Á‚½Š®‘S”ñüŒ`•Î”÷•ª•û’öŽ®‚Ì $L^p$ ”S«‰ð‚Ì‘¶Ý
2003”N‰ï“Œ‹ž‘åŠw3.23-3.26
V‹rìi‹ã‘åE”—j is”g‚Ì•ªŠò‚ƈÀ’萫
–ö“c‰p“ñi“Œ–k‘åE—j ’´—ÕŠEŽw”‚ðŽ‚Â”ñüŒ`”M•û’öŽ®‚̉ð‚Ì‹““®
i‘æ 1 ‰ñi2002 ”N“xj‰ðÍŠwÜŽóÜ“Á•Êu‰‰j
•H“cr–¾iVŠƒ‘åEHj Aperture domain ‚É‚¨‚¯‚é Navier-Stokes •û’öŽ®
2002H‹G‘‡•ª‰È‰ï“‡ª‘åŠw9.25-9.28
X‰ª’BŽji‘åã‹³ˆç‘åj ‰e‚̗̈æ‚ð“`‚í‚éŒõ‚Ì‹­‚³‚ðŠÏ‘ª‚·‚é
‚‰ªG•vi–k‘åE—j ”ñüŒ`•ªŽUŒ^•û’öŽ®‚ɑ΂·‚éƒGƒlƒ‹ƒM[—A‘—•]‰¿Ž®‚Ɖð‚Ì‘åˆæ‘¶Ý
çŒ´_”Vi“Œ–k‘åE—j •ªŽUŒ^•û’öŽ®‚̋ǏŠ•½ŠŠŒø‰Ê
2002”N‰ï–¾Ž¡‘åŠw3.28-3.31
âV“¡­•Fi_ŒË‘åE—j ‘ΐ”“IƒVƒ“ƒvƒŒƒNƒeƒbƒN‘½—l‘Ì‚Ì•ÏŒ`‚ƃpƒ“ƒ‹ƒxŒ^•û’öŽ®
ŽO‘ò³ŽjiŒF–{‘åE—j $p$-’²˜aŽÊ‘œ—¬‚Ì‘¶Ý‚Ɛ³‘¥«‚ɂ‚¢‚Ä
ŽR“cCéi—§–½ŠÙ‘åE—Hj ƒfƒBƒ‰ƒbƒNì—p‘f‚̃XƒyƒNƒgƒ‹‚ɂ‚¢‚ā\ƒVƒ…ƒŒƒfƒBƒ“ƒK[ì—p‘f‚Æ‚Ì”äŠr‚àŒð‚¦‚ā\
2001H‹G‘‡•ª‰È‰ï‹ãB‘åŠw10.3-10.6
“c“‡TˆêiVŠƒ‘åEHj ”÷•ª•û’öŽ®‚Æ‘½•Ï”—¯”\’´”Ÿ”‚Æ‚µ‚Ä‚Ì Grothendieck —¯”‚Æ‚»‚̉ž—p\
A. Grigoryan
iImperial College, UKj
Heat kernel on Riemannian manifolds
Š–؉®—´Ž¡i’·è‘‡‰ÈŠw‘åEHj Non-radial solutions with group invariance for semilinear elliptic equations
2001”N‰ïŒc‰ž‹`m‘åŠw3.26-3.29
‰º‘ºriŒc‘åE—Hj Painlevé •û’öŽ®‚Ì Painlevé property ‚̏ؖ¾C‚¨‚æ‚Ñ’l•ª•z˜_‚ւ̉ž—p
–q–ì“NiŽRŒû‘åEHj ‹C‘̐¯‚Ì•û’öŽ®‚Æ‚»‚ÌŽü•Ó\^‹ó‚ÆŽ©ŒÈd—͂Ɓ\
‰hLˆê˜Yi‰¡•lŽs‘åE‘‡—j ”½‰žŠgŽU•û’öŽ®Œn‚ÉŒ»‚ê‚é‹ÇÝ‰ð‚̉^“®‚ɂ‚¢‚Ä
2000H‹G‘‡•ª‰È‰ï‹ž“s‘åŠw9.24-9.27
‘å’bŽ¡—²Žii‹ž‘åE—j 1 ŠK•Î”÷•ª•û’öŽ®Œn‚ɑ΂·‚é‰ð‚̈êˆÓÚ‘±«‚Æ‚»‚̉ž—p
¼Œ´Œ’“ñi‘‘åE­Œoj Porous media ’†‚̈ꎟŒ³ˆ³k«—¬‚Ì‘Q‹ß‹““®\Damped wave equation ‚ƑΉž‚·‚é Heat equation ‚̉ð‚Ì‹““®\
ˆäŒû’B—Yi‹ã‘åE”—j …–Ê”g‚Ì•û’öŽ®‚ɑ΂·‚鏉Šú’l–â‘è‚ɂ‚¢‚Ä
2000”N‰ï‘ˆî“c‘åŠw3.27-3.30
âˆäG—²i‹ž‘åE—j —L—‹È–Ê‚Æ Painlevé •û’öŽ®‚ÌŠô‰½
–¼˜a”͐li–¼‘åE‘½Œ³”—j ”ñüŒ^ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚Ì”š”­‰ð‚Ì‘Q‹ß‚¨‚æ‚Ñ‹ÉŒÀŒ`ó‚ɂ‚¢‚Ä
aŒû‹IŽqiŠwŒ|‘åE‹³ˆçj ”¼üŒ`•ú•¨Œ^•û’öŽ®‚Ì•„†•Ï‰»‚𔺂¤‰ð‚Ì‹““®‚ɂ‚¢‚Ä
1999H‹G‘‡•ª‰È‰ïL“‡‘åŠw9.27-9.30
…’¬“Oi‰¡•lŽs‘åE—j ˆê”ʉ» KdV •û’öŽ®‚̌Ǘ§”g‚̈À’萫
Georg Weissi“ŒH‘åE—j ”ñüŒ`•Î”÷•ª•û’öŽ®‚É‚¨‚¯‚éŠô‰½Šw“I‘ª“x˜_‚Ì•û–@iáŠQ•¨–â‘è‚ð—á‚Ɂj
’†¼Œ«ŽŸi“Œ‘åE”—j ”ñüŒ^”g“®•û’öŽ®‚̃Gƒlƒ‹ƒM[W–ñ•]‰¿‚ÆŽU——˜_
1999”N‰ïŠwK‰@‘åŠw3.25-3.28
‹g–쐳Žji’†‰›‘åEŒoÏj Simultaneous normal forms of commuting maps and vector fields
‰Á“¡Œ\ˆêi“Œ‹ž—‘åE—j Conformal regularity and nonlinear wave equations
“y‹Lˆêi‹ž‘åE—j •ªŽUŒ^”­“W•û’öŽ®‚Ì•½ŠŠŒø‰Ê‚Æ‚»‚ÌŽü•Ó
1998H‹G‘‡•ª‰È‰ï‘åã‘åŠw9.30-10.3
–ìŠC³ri_ŒË‘åEŽ©‘RjC
ŽR“c‘וFi_ŒË‘åEŽ©‘Rj
Painlevé Œ^”÷•ª•û’öŽ®‚ƃAƒtƒBƒ“ Weyl ŒQ
J. RauchiUniv. Michiganj Recent results in nonlinear geometric optics
‘«—§‹§‹`i_ŒË‘åE—j ‘½‘Ì—ÊŽq—ÍŠwŒn‚ÌŽU——˜_‚ɂ‚¢‚Ä
1998”N‰ï–¼é‘åŠw3.26-3.29
Šâ’Ë–¾i‹ž‘åE—j Asymototic distribution of eigenvalues for Pauli operators with magnetic fields
’Óc’JŒö—˜i–k‘åE—j Well-posedness for nonlinear wave equations
‰B‹—Ǎsi‹ã‘åE”—j Oberbeck-Boussinesq •û’öŽ®‚̃[ƒ‹Œ^‘Η¬‰ð‚̈À’萫‚ɂ‚¢‚Ä
1997H‹G‘‡•ª‰È‰ï“Œ‹ž‘åŠw9.30-10.3
ã‘º–Li“Œ‹ž…ŽY‘åj ”ñüŒ`€‚ðŒˆ’è‚·‚é‹t–â‘è‚Ɛϕª•û’öŽ®
âŒû–΁iˆ¤•Q‘åE—j ŠgŽU•û’öŽ®‚̉ð‚Ì‹óŠÔ—ÕŠE“_‚ɂ‚¢‚Ä
–ö“c‰p“ñi“Œ‘åE”—j ”½‰žŠgŽU•û’öŽ®‚É‚¨‚¯‚é”ñ’萔’èí‰ð‚̈À’萫
1997”N‰ïMB‘åŠw4.1-4.4
ŽÄ“c“O‘¾˜YiL“‡‘åE‘‡j Nonlinear elliptic eigenvalue problems with several parameters
ì‰º”ü’ªiˆïé‘åE‹³ˆçj ŠO•”—̈æ‚É‚¨‚¯‚郌[ƒŠ[”g
‰iˆä•q—²i‹ãH‘åEHj Keller-Segal •û’öŽ®‚̉ð‚Ì”š”­‹y‚ÑŽžŠÔ‘åˆæ“I‘¶Ý
1996H‹G‘‡•ª‰È‰ï“Œ‹ž“s—§‘åŠw9.14-9.17
‰F²”üL‰îiL“‡‘åE‘‡j ‘ȉ~Œ^•û’öŽ®‚̉ð‚̐U“®–â‘è
S. CheniFudan Univ.j Solutions with flowery singularity structure to nonlinear hyperbolic equations
¬ì‘썎i–¼‘åE‘½Œ³”—j Well-posedness of dispersive equations of short and long interaction waves
1996”N‰ïVŠƒ‘åŠw4.1-4.4
’|ˆä‹`ŽŸi‹ž‘åE”—Œ¤j ”ñüŒ^ƒ‚ƒmƒhƒƒ~[ŒQ‚ƃXƒg[ƒNƒXŒW”‚ð‚ß‚®‚Á‚ā\ƒpƒ“ƒ‹ƒ”ƒF•û’öŽ®‚Ì WKB ‰ðÍ\
“¡‰Æá˜Ni“Œ–k‘åE—j ƒwƒeƒƒNƒŠƒjƒbƒN‹O“¹‚É•t‚µ‚½ƒŒƒ]ƒiƒ“ƒX
ì’†Žq³iã‘åE—j ‘ŠŽ—•ÏŠ·‚ÉŠÖ‚µ‚Ä•s•Ï‚È”ñüŒ`•ú•¨Œ^•û’öŽ®
’ˆ®•FiL“‡‘åE‘‡j •ú•¨Œ^•û’öŽ®‚̋ǏŠŽ©ŒÈ‘ŠŽ—«‚ƈêˆÓÚ‘±’藝
1995H‹G‘‡•ª‰È‰ï“Œ–k‘åŠw9.27-9.30
ŠâèŽ‘¥i“Œ‘åE”—j Gevrey ƒRƒzƒ‚ƒƒW[ŒQ‚ɑ΂·‚é—£ŽU“I”M•û’öŽ®‚Ì•û–@
_•ÛGˆêi–k‘åE—j Ginzburg-Landau •û’öŽ®‚ƈÀ’è‰ð
—Ñ’‡•vi“Œ‹ž—‘åE—j On the Davey-Stewartson and the Ishimori systems
ó‘qŽj‹»i‘åã“d’Ê‘åEHj ˆêŽŸŒ³‘o‹ÈŒ^•Û‘¶‘¥Œn‚ÌŽã‰ð‚Ì‘Q‹ßˆÀ’萫
1995”N‰ï—§–½ŠÙ‘åŠw3.27-3.30
‚ŽRM‹Bi_ŒË‘åE—j ƒOƒŒƒuƒiŠî’ê‚Ɗ֐”•û’öŽ®
™–{[iã‘åE—j Estimates for hyperbolic equations with non-convex characteristics
Žá—ѐ½ˆê˜Yi’}”g‘åE”Šwj ’´‹ÇŠˆêˆÓ«’藝‚Æ“ÁˆÙ«‚Ì“`”d
–]ŒŽ´i“s—§‘åE—j Critical blow-up and asymptotic behavior of solutions to equations to quasilinear parabolic equations
1994H‹G‘‡•ª‰È‰ï“Œ‹žH‹Æ‘åŠw9.27-9.30
Œ´‰ªŠìdiŒF–{‘åE‹³—{j ˆê”ʍ‡—¬’´Šô‰½ŠÖ”‚ɂ‚¢‚Ä
‘q“c˜a_i“s—§‘åE—j 2 ŠK‚̑ȉ~Œ^•Î”÷•ª•û’öŽ®‚̉ð‚̈êˆÓÚ‘±«‚Æ—ë“_W‡‚ɂ‚¢‚Ä
ŽRè¹’jiˆê‹´‘åEŒoÏj Morrey ‹óŠÔ‹y‚ÑŠÖ˜A‚·‚锟”‹óŠÔ‚É‚¨‚¯‚é Navier-Stokes •û’öŽ®
¼‘ººFiã‘åE—j 1 ŽŸŒ³”S«“I•Û‘¶‘¥‚̐is”g‰ð‚Ì‘Q‹ßˆÀ’萫
1994”N‰ï_ŒË‘åŠw3.31-4.3
‰¡ŽR—˜Íiç—tH‘åj ƒAƒNƒZƒTƒŠ[ƒpƒ‰ƒ[ƒ^‚ðŠÜ‚Ü‚È‚¢‘å‹v•Û•û’öŽ®Œn‚Ì•ª—Þ
’†‘ºŽüi“Œ‘åE”—j ƒVƒ…ƒŒƒfƒBƒ“ƒK[•û’öŽ®‚̏€ŒÃ“T‹ÉŒÀ‚Æ‘Š‹óŠÔ‚ł̃gƒ“ƒlƒ‹Œø‰Ê‚ɂ‚¢‚Ä
ŽO‘•i–¼‘åE—j ‰ðÍ“Ií”÷•ª•û’öŽ®‚ƕΔ÷•ª•û’öŽ®‚É‚¨‚¯‚éŠô‚‚©‚Ì—ÞŽ—‚ɂ‚¢‚ā\ƒWƒ…ƒuƒŒƒC‘°‹óŠÔ‚É‚¨‚¯‚éŽw”’藝‚ƃtƒŒƒbƒhƒzƒ‹ƒ€Œð‘㐫\
“c’†®li‘‘åE—Hj On existence of viscous surface waves
1993H‹G‘‡•ª‰È‰ï‘åã•{—§‘åŠw9.27-9.30
”~‘º_i–¼‘åE‹³—{j Painlevé •û’öŽ®‚ƌÓTŠÖ”
“àŽR~i‹ž“sH‘@‘åj Schrödinger ì—p‘f‚̌ŗLŠÖ”‚Ì‘‘å“x
¬àV“Oi–k‘åE—j ”ñüŒ^ Schrödinger •û’öŽ®‚ÌŽU—–â‘è
P. R. Popivanov
iBulgarian Acad. Sci.j
On the tangential oblique derivative problem for second order semilinear elliptic and parabolic equations
1993”N‰ï’†‰›‘åŠw3.26-3.29
¼–{Œ\Žii‹ã‘åE—j ’´Šô‰½”÷•ª•û’öŽ® E(3,6;1/2) ‚Æ I_2,2 Œ^—̈æã‚Ì theta ŠÖ”
ŒË£M”Vi–k‘åE—j ’´‹ÇŠ‘o‹ÈŒ^¬‡–â‘è
Šâèç—¢i•PH‘åE—j The symbol calculus of pseudo-differential operators and the Gauss-Bonnet-Chern theorem
1992H‹G‘‡•ª‰È‰ï–¼ŒÃ‰®‘åŠw10.6-10.9
–k‘º‰Eˆêi’·è‘åE‹³ˆçj ’†—§Œ^ŠÖ””÷•ª•û’öŽ®‚̐U“®‚ɂ‚¢‚Ä
•ÛéŽõ•Fi’}”g‘åE”Šwj –³ŒÀŽŸ‘Þ‰»‘ȉ~ì—p‘f‚̏€‘ȉ~«\’áŠK‚ɑ΂·‚éðŒ
Žlƒb’J»“ñi—´’J‘åE—Hj Existence and structure of positive radial solutions to $\Delta u + K(|x|)u^p = 0 in {\bf R}^n$
1992”N‰ï•Ÿ‰ª‘åŠw4.1-4.4
‹àŽq÷ˆêi‹ã‘åE‹³—{j Selberg Ï•ª‚Æ’´Šô‰½”Ÿ”
–kìŒjˆê˜Yiˆ¤•Q‘åEHj ‰Šú’l–â‘è‚Æ Newton polygon
¬‰’‰p—Yi‹ã‘åE‹³—{j 2 ŽŸŒ³”ñ—LŠE—̈æ‚É‚¨‚¯‚é”S«—¬‘Ì‚Ì•û’öŽ®‚ɂ‚¢‚Ä
“c‘º‰p’jiˆïé‘åE—j ‘½‘ÌŒn Schrödinger ì—p‘f‚Ì‘Q‹ßŠ®‘S«
1991H‹G‘‡•ª‰È‰ï–kŠC“¹‘åŠw10.10-10.13
‹g“cßŽ¡i‘Š–͏—Žq‘åj ”ñüŒ`í”÷•ª•û’öŽ®‚̈ê”ʉð\ƒ|ƒAƒ“ƒJƒŒðŒ‚ð–ž‚½‚³‚È‚¢“ñ˜A—§•û’öŽ®Œn‚̋ǏŠ“Iˆê”ʉð
‹V‰ä”üˆêi–k‘åE—j ‹È–Ê‚Ì”­“W•û’öŽ®
’·‘ò‘s”Vi“Œ–k‘åE‹³—{j Ž©—R‹«ŠE–â‘è‚É•t‚·‚é”Ä”Ÿ”‚Ì discrete Morse semiflow ‚ɂ‚¢‚Ä
1991”N‰ïŒc‰ž‘åŠw4.1-4.4
‘º“c‰ÃOi’·è‘åEŒoÏj Painlevé ’´‰zŠÖ”‚ɂ‚¢‚Ä
ì“‡Gˆêi‹ã‘åEHj Nonlinear diffusion waves arising in classical mechanics
¼’J’B—Yiã‘åE‹³—{j ‹­‘o‹ÈŒn‚ɂ‚¢‚Ä
“c’†˜a‰ii–¼‘åE‹³—{j ƒ~ƒjƒ}ƒbƒNƒX–@‚É‚æ‚éƒnƒ~ƒ‹ƒgƒ“Œn‚̉ð‚Ì‘¶Ý
1990H‹G‘‡•ª‰È‰ïé‹Ê‘åŠw9.26-9.29
‚ŽRM‹Bi_ŒË‘åE—j í”÷•ª•û’öŽ®‚̃‚ƒmƒhƒƒ~[ŒQ‚Æ Euler-Darboux •û’öŽ®‚Ì“ÁˆÙ«“`”d
‰Ÿ–Ú—Š¹i˜a‰ÌŽRŒoÏ’Z‘åj ƒƒgƒJEƒ”ƒHƒ‹ƒeƒ‰í”÷•ª•û’öŽ®Œn‚ɂ‚¢‚Ä
äݑ㕐ŽjiŠò•Œ‘åE‹³—{j “Á«“I‰Šú–Ê‚ÉŠÖ‚·‚é $C^{\infty}$ —ë‰ð‚ɂ‚¢‚Ä
C. GérardiÉcole Polytech.j Semi-classical asymptotics of Berryfs phase
1990”N‰ï‰ªŽR—‰È‘åŠw3.31-4.3
™]ŽÀ˜Yi‰ªŽR‘åE—j Lienard •û’öŽ®‚̉ð‚Ì‘Q‹ß“I«Ž¿‚Æ‚»‚̉ž—p
‹{•’å•vi“ޗǏ—‘åE—j ’´”Ÿ”‚Ì“ÁˆÙ«‚̈ʐ”‚ƃt[ƒŠƒGÏ•ªì—p‘f‚ɂ‚¢‚Ä
–x“à—˜˜Yiˆïé‘åE—j d‚Ý•t‚« Sobolev •s“™Ž®‚Æ‚»‚Ì”ñüŒ^‘ȉ~Œ^•û’öŽ®‚ւ̉ž—p
H. AmanniUniv. Zurichj Semigroup and nonlinear parabolic systems
1989H‹G‘‡•ª‰È‰ïã’q‘åŠw9.27-9.30
‘ºãŒåi”ªŒËH‚êj –³ŒÀ’x‚ê‚ð‚à‚Š֐””÷•ª•û’öŽ®\‘Š‹óŠÔEˆÀ’萫E‹ÉŒÀ•û’öŽ®
ŠâèŽ‘¥i“Œ‘åE—j ƒŠ[ƒ}ƒ“–ʏã‚̃tƒbƒNƒXŒ^ŽË‰eÚ‘±‚̃‚ƒWƒ…ƒ‰ƒC‹óŠÔ‚ƃ‚ƒmƒhƒƒ~[•Û‘¶•ÏŒ`
’ç—_Žu—YiL‘åE‘‡j On uniqueness of weak solution for the Cauchy problem of the generalized K-dV equation
—é–Ø‹Mi“s—§‘åE—j ”ñüŒ`‘ȉ~Œ^ŒÅ—L’l–â‘è‚Ì‘Q‹ß‹y‚Ñ‘åˆæ‰ðÍ
1989”N‰ï“ú–{‘åŠw4.1-4.4
²Xˆä’—Yi“s—§‘åE—j ‘å‹v•Û type ‚̐üŒ^í”÷•ª•û’öŽ®Œn‚ɂ‚¢‚Ä
‘º“c›‰i“s—§‘åE—j 2 ŠK‘ȉ~Œ^•û’öŽ®‚̐³’l‰ð‚̍\‘¢
ÎˆämŽii’†‰›‘åE—Hj ”ñüŒ` 2 ŠK‘ȉ~Œ^•Î”÷•ª•û’öŽ®‚Ì”S«‰ð‚ɂ‚¢‚Ä
‹{ì“S˜NiL‘åE—j Navier-Stokes equations in unbounded domains: energy inequality and $L^2$ decay
1988H‹G‘‡•ª‰È‰ï‹à‘ò‘åŠw10.4-10.7
–Ø‘ºr–[i“Œ‘åE—j 2 ŠKüŒ`í”÷•ª•û’öŽ®‚̃‚ƒmƒhƒƒ~[•Û‘¶•ÏŒ`‚ɂ‚¢‚Ä
’†‹ËMˆêi_ŒË‘åEHj Banach ‹óŠÔ‚É‚¨‚¯‚锟””÷•ª•û’öŽ®‚̉ð‚̍\‘¢‚Ɛ§Œä—˜_
’†‘ºŒºié¼‘åE—j ŒÅ‘Ì—ÍŠw‚É‚¨‚¯‚é Rayleigh ”g‚ɂ‚¢‚Ä
–“–씎i“Œ‘åE—j ‚ ‚é‘ȉ~Œ^•û’öŽ®‚Ì“ÁˆÙ‰ð‚̍\‘¢‚Æ—ÍŠwŒn‚Ì—˜_
1988”N‰ï—§‹³‘åŠw3.31-4.3
–Ø‘ºOMi“Œ‘åE‹³—{j Garnier Œn‚Ì‘åˆæ‰ð‚ðƒpƒ‰ƒƒgƒ‰ƒCƒY‚·‚é‹óŠÔ‚ɂ‚¢‚Ä
ˆÉ“¡Gˆêi“ŒH‘åE—j Ï•ª‰Â”\«‚ƍì—p-Šp•Ï”
—Ñ“c˜a–çi‹à‘ò‘åE—j €üŒ^‘ȉ~Œ^•û’öŽ®‚Ì Dirichlet –â‘è‚ɂ‚¢‚Ä
ŽÄ“c—ǍOi’}”g‘åE”Šwj ”ñüŒ`‘o‹ÈŒn‚ɑ΂·‚é Neumann –â‘è‚ɂ‚¢‚Ä
1987H‹G‘‡•ª‰È‰ï‹ž“s‘åŠw10.2-10.5
•ÄŽRrºi‘åã•{‘åEHj 1 ŽŸŒ³ŠÖ””÷•ª•û’öŽ®‚̈À’è—̈æ
ŠÛ”öŒ’“ñiã‘åEHj —ò”÷•ª€‚ðŽ‚Â‘o‹ÈŒ^•û’öŽ®‚̉ð‚Ì‘¶Ý‚ɂ‚¢‚Ä
‹g–쐳Žji“s—§‘åE—j Œ`Ž®‰ð‚ÌŽû‘©E”­ŽU‚ɂ‚¢‚Ä
1987”N‰ï“Œ‹ž‘åŠw4.1-4.4
‹g“c³Íi‹ã‘åE—j Å‹ß‚̃KƒEƒXEƒVƒ…ƒƒ‹ƒc—˜_
’J“‡Œ«“ñi“Œ‘åE‹³—{Šî‘b‰Èj Schrödinger ì—p‘f‚É”º‚¤ƒXƒyƒNƒgƒ‹ŽË‰eì—p‘f‚̍‚ƒGƒlƒ‹ƒM[‚É‚¨‚¯‚é‹ÇŠŒ¸Š“x
‘å’b–è—²Žii‹ž‘åE—j •Î”÷•ªì—p‘f‚̏€‘ȉ~«‚ƋǏŠ‰Â‰ð
1986H‹G‘‡•ª‰È‰ïç—t‘åŠw9.27-9.30
“ú–ì‹`”Viç—t‘åE‹³—{j –³ŒÀ’x‚ê‚ð‚à‚Š֐””÷•ª•û’öŽ®
ˆêƒm£–íi“‡ª‘åE—j Schrödinger Œ^•û’öŽ®‚ɑ΂·‚鏉Šú’l–â‘è
‚–ؐòi“Œ–k‘åE—j ‹ÃW‚ð‹Lq‚·‚éŠgŽU-”½‰ž•û’öŽ®Œn‚Ì’èí‰ð
1986”N‰ï‹ž“s‘åŠw4.2-4.5
”ª–ØŒúŽuiã‘åE—j ì—p‘f‚Ì•ª”™p‚̉ž—p
“cŒ´G•qiã’q‘åE—Hj “ÁˆÙ“_‚ð‚à‚•Δ÷•ª•û’öŽ®
“‡‘q‹I•vi‹ž‘åE—jC
¬‘qK—Yi²‰ê‘åE—Hj
W’cˆâ“`Šw‚É‚¨‚¯‚é–Ø‘ºƒ‚ƒfƒ‹‚Ì’èí‰ð‚Æ‚»‚̈À’萫
“à“¡Šwi“¿“‡‘åE‹³ˆçj Emden-Fowler Œ^”÷•ª•û’öŽ®‚ɑ΂·‚éU“®˜_
1985H‹G‘‡•ª‰È‰ï•xŽR‘åŠw9.30-10.3
¼–{˜aˆê˜Yi‹ž‘åE—j ˆê”Ê‚Ì’´‰Â”÷•ª‘°‚É‚¨‚¯‚é•Î”÷•ª•û’öŽ®˜_
Šâèç—¢iã‘åE—j ‹[”÷•ªì—p‘f‚É‚æ‚é•ú•¨Œ^•û’öŽ®‚ÌŠî–{‰ð‚̍\¬‚Æ $\Box_b$
傌´K‹`i•Ÿ‰ª‘åE—j ”ñüŒ`”­“W•û’öŽ®‚ɑ΂·‚éƒyƒiƒ‹ƒeƒB[–@
ˆê£Fi‹à‘ò‘åE—j Dirac •û’öŽ®‚Ì Feynman Œo˜HÏ•ª‚ɂ‚¢‚Ä
1985”N‰ï“Œ‹ž“s—§‘åŠw4.2-4.5
ˆÉ“¡Gˆêi“ŒH‘åE—j Hamilton Œn‚Ì•½t“_‚Ì‹ß–T‚É‚¨‚¯‚éŽüŠú‰ð
—ÑŠì‘ãŽiiŒc‘åE—Hj Hamilton Œn‚ÌŽüŠú‰ð
ˆäì–žiã‘åE—j •¨‘Ì‚É‚æ‚éŽU—‚ÌŽU—s—ñ‚ɂ‚¢‚Ä
”’“c•½i–k‘åE—j ‹«ŠE‘w‚̐”Šw“IŽæˆµ‚¢‚ɂ‚¢‚Ä
1984H‹G‘‡•ª‰È‰ï“Œ‹ž‘åŠw10.16-10.19
¼–{•q•Fi“ŒH‘åE—j Confluent WKB approximation and its application to the molecular collision theory
a”¨–΁i‹ž‘åE—j •Î”÷•ª•û’öŽ®‚̏‰Šú’l–â‘èi‹ÇŠƒt[ƒŠƒG‰ðÍ‚ÌŽ‹“_‚©‚çj
X–{–F‘¥i–¼‘åEHj ™p—ë‚È“Á«‚ðŽ‚Â‘o‹ÈŒn‚ɑ΂·‚é‰ð‚Ì”g–ʏW‡‚Ì“`”d
¬‘ò^iã‘åE—j Laplacian ‚̌ŗL’l‚Ɨ̈æÛ“®
1984”N‰ï‘åã‘åŠw4.3-4.6
ã”V‹½‚Žui“Œ–k‘åE—j í”÷•ª•û’öŽ®‚Ì‹«ŠE’l–â‘è
’J’´‹(Gu Chaohao)i•œ’U‘åj On mixed partial differential equations of higher order
‰Z¶“™i‘‘åE—Hj “Á«“I•Î”÷•ªì—p‘f‚ɑ΂·‚éƒR[ƒV[–â‘è‚̃Wƒ…ƒuƒŒƒC‹‰”Ÿ”‘°‚É‚¨‚¯‚é“KØ«
¼àV’‰li–¼‘åE—j Partially hyperbolic pseudodifferential operators
1983H‹G‘‡•ª‰È‰ï‘ˆî“c‘åŠw9.12-9.15
‰º‘ºri_ŒË‘åEŽ©‘Rj “®‚©‚È‚¢“ÁˆÙ“_‚Ì‚Ü‚í‚è‚Å‚Ì Painlevé •û’öŽ®‚̉ð‚ɂ‚¢‚Ä
Žlƒc’J»“ñi‹{è‘åEHj ƒXƒeƒtƒ@ƒ“–â‘è‚̉ð‚Ì‹““®
¬¼Œºiã‘åE—j Bergman Šj”Ÿ”‚Ɨ̈æ‚Ì•Ï“®
Šâè•~‹vi‹ž‘åE”—Œ¤j Effectively hyperbolic equations ‚Ì Cauchy –â‘è
1983”N‰ïL“‡‘åŠw4.4-4.7
’†“ˆ•¶—YiŠâŽè‘åE‹³ˆçj Duffing •û’öŽ®‚ÌŽüŠú‰ð‚ɂ‚¢‚Ä
ˆéè—mi‹ž‘åE—j Micro local resolvent estimate ‚ÆŽO‘Ì–â‘è
¼’J’B—Yi‹ž‘åE—j Žã‘o‹ÈŒ^•û’öŽ®‚ɑ΂·‚é Cauchy –â‘è
J. Heywood
iUniv. of British Columbiaj
‘è–¢’èi‰ž—p”Šw‚ƍ‡“¯j
Tai-Ping LiuiUniv. of Marylandj Mathematical theory of shock wavesi‰ž—p”Šw‚ƍ‡“¯j
1982H‹G‘‡•ª‰È‰ïŽOd‘åŠw9.28-10.1
^“‡Gsi“Œ‘åE—j Pfaff Œn‚Ì“ÁˆÙ“_‚Ì‘½•Ï”‘Q‹ß‰ðÍ\$\nabla$-Poincaré ‚Ì•â‘èCRiemann-Hilbert-Birkhoff –â‘è\
–k“c‹Ïi“Œ‘åE‹³—{j ŽU—s—ñ‚̍ì—p‘fƒmƒ‹ƒ€‹ßŽ—
’·£“¹Oiã‘åE‹³—{j ‹[”÷•ªì—p‘f‚Ì $L^p$-—LŠE«‚ɂ‚¢‚Ä
‘å“à’‰iã’q‘åE—Hj ’´‹È–ʂƐüŒ^•Î”÷•ªì—p‘f‚ÌŠÖŒW‚Ì“Á’¥‚¯‚Æ•¡‘f—̈æ‚É‚¨‚¯‚é•Î”÷•ª•û’öŽ®‚ւ̉ž—p
1982”N‰ï“Œ–k‘åŠw3.30-4.2
’ÒŠ²—Yi‹ž“sŽY‘åE—j ’萔ŒW”‘o‹ÈŒ^•û’öŽ®‚ÌŠî–{‰ð‚Ì“ÁˆÙ«‚ɂ‚¢‚Ä
“c‘º‰p’ji–¼‘åEHj Schrödinger ì—p‘f‚̌ŗL’l‘Q‹ßŒöŽ®
1981H‹G‘‡•ª‰È‰ïŽRŒû‘åŠw10.5-10.8
‰Í–웉•FiL‘åE—j Connection problems
¼‰Y—õ­i‹ž“sŽY‘åE—j ”½‰žŠgŽUŒn‚É‚¨‚¯‚镪Šò‰ð‚Ì‘åˆæ“I\‘¢
1981”N‰ï‹ž“s‘åŠw4.3-4.7
G. SeifertiIowa State Univ.j Almost periodic solutions for delay-differential equations
D. SchaefferiDuke Univ.j Bifurcation with spherical symmetricity, including applications to Bénard problem
1980H‹G‘‡•ª‰È‰ïˆ¤•Q‘åŠw10.1-10.4
J-P. RamisiUniv. Strasbourgj ‘è–¢’èi”Ÿ”‰ðÍŠw‚ƍ‡“¯j
ŒÃ—p“N•viŠâŽè‘åE‹³ˆçj ŠÖ””÷•ª•û’öŽ®‚ÌŽüŠú‰ð‚Ì‘¶Ý‚ɂ‚¢‚Ä
H. FlaschkaiUniv. Arizonaj ‘è–¢’è
1980”N‰ïMB‘åŠw4.1-4.4
‰ª–{˜a•vi“Œ‘åE—j üŒ^í”÷•ª•û’öŽ®‚Ì•ÏŒ`—˜_
‹gì“ցi–k‘åE—j ì—p‘f $D_t^2-(t^2+x^2)D_x^2+aD_t+bD_x+c$ ‚Æ‚»‚Ì’‡ŠÔ‚̃pƒ‰ƒƒgƒŠƒNƒX
1979H‹G‘‡•ª‰È‰ï‹ž“s‘åŠw10.1-10.4
‘]‰ä“úo•viˆïé‘åE‹³ˆçj ŽÎŒð”÷•ª‹«ŠEðŒ‚ð‚à‚”g“®•û’öŽ®‚̍¬‡–â‘è
‘º“c›‰i“s—§‘åE—j Schrödinger Œ^•û’öŽ®‚̉ð‚ÌŽžŠÔŒ¸Š
1979”N‰ï–¼ŒÃ‰®H‹Æ‘åŠw4.3-4.6
Îˆäˆê•½iŒc‘åEHj Minimal flow ‚ɂ‚¢‚Ä
’†”öTGi‹ã‘åE‹³—{j ”ñüŒ^”g“®•û’öŽ®‚ÌŽüŠú‰ð
1978H‹G‘‡•ª‰È‰ï“Œ‹ž“d‹@‘åŠw10.4-10.7
R. GérardiUniv. de Strasourgj Convergence of formal solutions of a certain kind of singular non-linear Pfaffian systems
C. GoulaouiciÉcole polytech.j Problemes de Cauchy pseudodifferentiels analytiquesi”Ÿ”‰ðÍŠw‚ƍ‡“¯j
“¡Œ´‘å•ãi“Œ‘åE—j Schrödinger •û’öŽ®‚ÌŠî–{‰ð‚̈ê‚‚̍\¬–@‚ɂ‚¢‚Ä
1978”N‰ï–¼ŒÃ‰®‘åŠw4.4-4.7
‰ª–{˜a•vi“Œ‘åE—j Painlevé ‚Ì•û’öŽ®
“‡‘q‹I•vi‹ž‘åE—j W’cˆâ“`Žq‚É‚ ‚ç‚í‚ê‚é•Î”÷•ª•û’öŽ®
1977”N‰ïE‘n—§ 100 ”N‹L”O”N‰ï“Œ‹ž—‰È‘åŠw10.9-10.12
‹g“c³Íi_ŒË‘åE—j ‚ ‚éŽí‚Ì—£ŽU“I‚ÈŒQ‚ðƒ‚ƒmƒhƒƒ~[ŒQ‚É‚à‚ƒtƒbƒNƒXŒ^”÷•ª•û’öŽ®‚̋ǏŠ—˜_
“n•Ó‹àŽ¡i“Œ–k‘åE—j Cauchy –â‘è‚̉ð‚̈êˆÓ«
S. AgmoniHebrew Univ.j Asymptotic and spectral properties of Schrödinger type operatorsi”Ÿ”‰ðÍŠw‚ƍ‡“¯j