日本数学会の出版物

書評

日本語(中国語を含む)

  • 1951年に出版された統計関係書概観(林知己夫)04-117
  • 戦後に出版された偏微分方程式に関する書物(吉田耕作)10-263
  • 赤池弘次・中川東一郎:ダイナミックシステムの統計的解析と制御(藤井光昭)29-186
  • 秋月康夫・鈴木通夫:高等代数学Ⅰ(玉河恒夫)05-255
  • 秋月康夫:調和積分論(一松 信)08-060
  • 秋月康夫:輓近代数学の展望(飯高 茂)26-288
  • 浅野啓三:環論及イデアル論(中山 正)02-375
  • 浅野啓三・永尾 汎:群論(飯塚健三)17-178
  • 東屋五郎:単純環の代数的理論(浅野啓三)04-053
  • 足立正久:微分位相幾何学(小宮克弘)29-177
  • 石井吾郎:実験計画法/配置の理論(景山三平)26-276
  • 石原 繁:幾何学概論(田代嘉宏)29-184
  • 泉 信一:一般級数論(河田竜夫)01-351
  • 伊藤 昇:有限群論(永尾 汎)26-377
  • 伊藤清三:ルベーグ積分入門(一松 信)15-251
  • 伊藤清三:偏微分方程式(村松寿延)26-084
  • 稲垣 武:点集合論(長田潤一)03-120
  • 稲葉栄次:代数函数の代数的理論(玉河恒夫)02-377
  • 井上正雄:ポテンシャル論(小松勇作)05-189
  • 井上正雄:応用函数論(遠木幸成) 10-053
  • 今吉洋一・谷口雅彦:タイヒミュラー空間論(志賀啓成)42-282
  • 彌永昌吉:幾何学序説(岩村 聯)25-094
  • 彌永昌吉:数論(河田敬義)22-237
  • 彌永昌吉・小平邦彦:現代数学概説Ⅰ(杉浦光夫)20-185
  • 彌永昌吉・平野鉄太郎:射影幾何学(岩堀長慶)11-253
  • 岩澤健吉:代数函数論(稲葉栄次)04-116
  • 岩波講座‘基礎数学’(小谷眞一)35-278
  • 彌永昌吉・彌永健一:集合と位相(森 毅)35-278
  • 小平邦彦:解析入門Ⅰ~Ⅳ(笠原皓司)35-279
  • 藤田 宏:解析入門Ⅴ(笠原皓司)35-279
  • 吉田耕作:測度と積分(山崎泰郎)35-280
  • 小平邦彦:複素解析(藤家龍雄)35-280
  • 伊藤 清:確率論(宮本宗実)35-281
  • 齋藤利彌:常微分方程式Ⅰ(宮武貞夫)35-282
  • 木村俊房:常微分方程式Ⅱ(宮武貞夫)35-282
  • 大島利雄・小松彦三郎:1階偏微分方程式(伊達悦朗)35-284
  • 藤田 宏・犬井鉄郎・池部晃生・高見穎郎:数理物理に現われる偏微分方程式(浅野 潔)35-284
  • 増田久弥:非線型楕円型方程式(島倉紀夫)35-285
  • 岩堀長慶:ベクトル解析(田代嘉宏)15-249
  • 岩村 聯:束論(彌永昌吉)01-349
  • 上野健爾:代数幾何入門(清水勇二)48-209
  • 上野健爾・志賀浩二・砂田利一編集:数学のたのしみ(真島秀行) 通2巻4号-099
  • 上田哲生・谷口雅彦・諸澤俊介:複素力学系序説—–フラクタルと複素解析—–(木坂正史)50-332
  • 宇野利雄:計算機のための数値計算(高田 勝)16-184
  • 宇野利雄編:数理統計学演習(丸山儀四郎)09-059
  • 浦川 肇:変分法と調和写像(大仁田義裕)45-184
  • 江沢洋,新井朝雄:場の最子論と統計力学(伊東恵一)41-276
  • 大島 勝:群論(永尾 汎)07-055
  • 大森英樹:力学的な微分幾何(高橋恒郎)34-279
  • 岡潔先生遺稿集1~7(木村郁雄)36-377
  • 岡田良知:級数概論(河田竜夫)04-192
  • 岡村 博:微分方程式序説(福原満洲雄)03-192
  • 岡本清郷:等質空間上の解析学(峰村勝弘)41-185
  • 小澤 満:近代函数論Ⅰ(戸田暢茂)29-181
  • 小田忠雄:凸体と代数幾何学(浪川幸彦)39-183
  • 落合卓四郎・野口潤次郎:幾何学的関数論(藤本坦孝)37-376
  • 柏原正樹・河合隆裕・木村達雄:代数解析学の基礎(片岡清臣,大阿久俊則)36-282
  • 加藤敏夫:函数空間論(伊藤清三)10-192
  • 加藤平左エ門:和算ノ研究(細井 淙)07-054
  • 加藤平左エ門:和算の研究, 雑論Ⅱ(細井 淙)09-258
  • 加藤平左衛門:和算の研究,補遺1(一松 信)21-072
  • 加藤平左衛門:江戸末期の大数学者,和田寧の業績(一松 信)21-072
  • 加藤平左衛門:安島直円の業績(一松 信)24-252
  • 金子 晃:超函数入門 (上),(下)(片岡清臣,大阿久俊則)36-282
  • 亀谷俊司:初等解析学Ⅰ(田村二郎)05-191
  • 刈屋武昭:回帰分析の理論(藤越康祝)33-374
  • 川久保勝夫:変換群論(神島芳宣)40-092
  • 河田龍夫:フーリエ解析と確率論(伊藤 清)01-143
  • 河田敬義:確率論(伊藤 清)02-271
  • 河田敬義:積分論(亀谷俊司)03-063
  • 河田敬義:微分式論(吉田耕作)04-053
  • 河田敬義・三村征雄:現代数学概説Ⅱ(編集部)17-123
  • 河田敬義・竹内外史:位相幾何学(中岡 稔)05-120
  • 河内明夫編:結び目理論(村杉邦男)44-091
  • 北川敏男・三留三千男:実験計画要因配置表(森口繁一)06-182
  • 草場公邦:行列特論(谷崎俊之)36-087
  • 楠 幸男:函数論(黒田 正)28-185
  • 国沢清典:近代確率論(伊藤 清)05-121
  • 国田 寛:確率過程の推定(西尾真喜子)32-189
  • 功力金二郎:解析要論(亀谷俊司)05-054
  • 熊ノ郷準:擬微分作用素(井川 満)35-274
  • 黒田成勝・久保田富雄:整数論(稲葉栄次)15-246
  • 河野伊三郎:位相空間論(森田紀一)07-056
  • 小島定吉:多角形の現代幾何学(和田昌昭)48-093
  • 小林孝次郎・高橋正子:オートマトンの理論(小野寛晰)37-375
  • 小林昭七:曲線と曲面の微分幾何(森本明彦)36-083
  • 小林昭七:曲線と曲面の微分幾何(改訂版)(山田光太郎)50-214
  • 小林昭七:接続の微分幾何とゲージ理論(中島 啓)42-183
  • 小松・中岡・菅原:位相幾何学Ⅰ(鈴木治夫)24-343
  • 小松醇郎:位相空間論(稲垣 武)01-230
  • 小松勇作:一般函数論(井上正雄)06-183
  • 近藤次郎:積分方程式(金沢 隆)07-183
  • 近藤基吉:実函数論(村田 全)22-077
  • 近藤基吉:実函数論演習(村田 全)22-078
  • 近藤洋逸:ゲーデル‘数学基礎論’(伊藤 清)01-047
  • 近藤洋逸:幾何学思想史(近藤基吉)01-142
  • 齋藤利彌:位相力学(浦 太郎)26-180
  • 佐々木重夫:共形接続幾何学(本部 均)02-084
  • 佐々木重夫:微分幾何学―大域的考察を中心として―(一松 信)13-121
  • 佐武一郎:行列と行列式(森 毅)15-248
  • 佐藤健一:加法過程(神田 護)46-075
  • 志賀浩二:現代数学への招待(大森英樹)34-091
  • 渋谷泰隆:複素領域における線型常微分方程式(高野恭一)33-085
  • 島内剛一:数学の基礎(岩村 聯)28-381
  • 清水良一:中心極限定理(竹内 啓)30-090
  • 正田建次郎:代数学通論(中山 正)01-229
  • 正田建次郎・浅野啓三:代数学Ⅰ(秋月康夫)05-254
  • 白岩謙一:力学系の理論(池上宜弘)28-179
  • 神保道夫:量子群とヤン・バクスター方程式(中神祥臣)46-362
  • 吹田信之:近代函数論Ⅱ(酒井 良)30-287
  • 末綱恕一:数理と論理(黒田成勝)01-144
  • 末綱恕一:数学の基礎(黒田成勝)04-255
  • 杉原正顯・室田一雄:数値計算法の数理(篠原能材)48-211
  • 鈴木通夫:群論(上),(下)(伊藤 昇)37-185
  • 赤 摂也・藤川洋一郎:電子計算機入門(野崎昭弘)19-185
  • 竹内外史:数学基礎論(前原昭二)09-195
  • 竹内外史:数理論理学(広瀬 健)27-282
  • 竹内外史:層・圏・トポス(林 晋)31-273
  • 竹内外史:直観主義的集合論(倉田令二朗)36-184
  • 竹内外史:証明と計算量(菊池 誠)50-327
  • 竹内 啓:統計的推定の漸近理論(阪市大数理統計ゼミナール)28-281
  • 竹内 勝:現代の球関数(砂田利一)38-189
  • 竹崎正道:作用素環の構造(御園生善尚)36-378
  • 田崎 中:江戸時代の数学(杉浦光夫)39-373
  • 田島一郎:数学解析入門(亀谷俊司)01-048
  • 立花俊一:リーマン幾何学;リーマン幾何学演習(石原 繁)21-233
  • 辰馬伸彦:位相群の双対定理(櫻本篤司)48-100
  • 田中俊一・伊達悦朗:KdV方程式(神保道夫)36-088
  • 谷口雅彦・松崎克彦:双曲的多様体とクライン群(小島定吉)48-095
  • 谷崎俊之・堀田良之:加群と代数群(竹内 潔)50-095
  • 田村一郎:トポロジー(松本幸夫)26-279
  • 田村一郎:葉層のトポロジー(今西英器)29-190
  • 田村二郎:解析函数(伊藤清三)15-250
  • 田村孝行:半群論(井関清志)26-186
  • 淡中忠郎:位相群論(後藤守邦)02-378
  • 丹野修吉:多様体の微分幾何学(畠山洋二)30-167
  • 都筑俊郎:有限群と有限幾何(木村 浩)36-179
  • 寺阪英孝:射影幾何学の基礎(彌永昌吉)01-350
  • 土井公二・三宅敏恒:保型形式と整数論(浅井哲也)31-181
  • 遠山 啓:無限と連続(矢野健太郎)05-056
  • 遠山 啓:行列論(稲葉栄次)06-054
  • 戸川隼人:共役勾配法(藤井 宏)30-170
  • 戸田盛和:非線形格子力学(上野喜三雄)36-280
  • 戸田盛和:非線形波動とソリトン(上野喜三雄)36-280
  • 十時東生:エルゴード理論入門(村田 博)26-178
  • 中井三留:リーマン面の理論(楠 幸男)34-089
  • 永尾 汎:群とデザイン(岩崎史郎)28-287
  • 永尾 汎・津島行男:有限群の表現(渡辺アツミ)40-279
  • 中岡 稔:双曲幾何学入門(川﨑徹郎)48-078
  • 中川久雄:大域のRiemann幾何学(塩浜勝博)33-088
  • 永田雅宜:可換体論(西三重雄)21-070
  • 永田雅宜・宮西正宜・丸山正樹:抽象代数幾何学(松村英之)26-275
  • 中西シヅ:積分論(久保田陽人)27-383
  • 中野茂男:多変数函数論(鈴木 理)36-085
  • 中野秀五郎:ヒルベルト空間論(三村征雄)01-047
  • 長野 正:曲面の数学(小林昭七)21-232
  • 中山 正・東屋五郎:代数学Ⅱ(池田正験)06-248
  • 南雲道夫:微分方程式Ⅰ(渋谷泰隆)08-250
  • 鍋谷清治:数理統計学(工藤弘吉)31-275
  • 成田正雄:初等代数学(浅野啓三)21-065
  • 成田正雄:イデアル論入門(中井喜和)23-159
  • 成田正雄:代数学(石川武志)29-185
  • 難波完爾:集合論(高橋元男)29-086
  • 二階堂副包:経済のための線型数学(古屋 茂)15-180
  • 二階堂副包:現代経済学の数学的方法(古屋 茂)15-180
  • 西尾真喜子:確率論(河田龍夫)32-278
  • 日本科学史学会編:日本科学技術史大系(一松 信)23-079
  • 野木達夫・矢島信男:発展方程式の数値解法(山口昌哉)30-171
  • 野口 広・福田拓生:初等カタストロフィー(宇敷重広)29-173
  • 野崎安雄:ポテンシャル論(亀谷俊司)02-272
  • 能代 清:近代函数論(大津賀 信)08-126
  • 日合文雄・柳研二郎:ヒルベルト空間と線型作用素(安藤 毅)50-328
  • 樋口禎一・吉永悦男・渡辺公夫:多変数複素解析入門(卜部東介)35-276
  • 一松 信:多変数函数論(岩橋亮輔)09-197
  • 一松 信:多変数解析函数論(浅見健夫)13-190
  • 一松 信:解析学序説(田村二郎)15-247
  • 一松 信:数値計算(高田 勝)16-184
  • 一松 信:近似式(渋谷政昭)17-062
  • 一松信監訳:数論における未解決問題集(藤原正彦)36-183
  • 日野幹雄:スペクトル解析(伊理正夫) 31-276
  • 平山 諦:和算の誕生(上野健爾) 通1巻2号-062
  • 華 羅 庚:数論導引(江田義計)16-177
  • 福島正俊:ディリクレ形式とマルコフ過程(西岡国雄) 31-282
  • 福原満洲雄:常微分方程式(南雲道夫) 06-184
  • 藤井光昭:時系列解析(赤平昌文) 32-283
  • 藤野精一編:計算数学ハンドブック(大芝 猛) 32-280
  • 伏見康治:力学(山内恭彦) 07-182
  • 堀川穎二:複素代数幾何学入門(今野一宏) 43-282
  • 前田文友:連続幾何学(岩村 聯) 05-055
  • 前原昭二:数理論理学序説(小野勝次)19-055
  • 前原昭二:数理論理学(花沢正純) 29-376
  • 増山元三郎:少数例のまとめ方, 1, 2(渋谷政昭) 17-062
  • 松島与三:リー環論(杉浦光夫) 11-250
  • 松島与三:多様体入門(大森英樹) 17-250
  • 松田道彦:外微分形式の理論(垣江邦夫)29-175
  • 松村英之:集合論入門(大熊 正) 20-117
  • 水本久夫:多様体上の差分法(早原四朗)26-378
  • 溝畑 茂:偏微分方程式論(田辺広城) 18-253
  • 溝畑 茂:ルべーグ積分(矢野茂樹) 20-058
  • 三村征雄:Hilbert空間論(亀谷俊司) 02-085
  • 宮沢光一:近代数理統計学通論(森口繁一) 07-126
  • 村杉邦男:結び目理論とその応用(本間龍雄) 47-309
  • 閔 嗣 鶴:数論的方法(江田義計) 16-179
  • 茂木 勇・伊藤光弘:微分幾何学とゲージ理論(大森英樹) 39-374
  • 森本清吾:数論(森 繁雄) 06-126
  • 山内二郎・森口繁一・一松 信編:電子計算機のための数値計算法Ⅰ(宇野利雄) 17-185
  • 山内二郎編:統計数値表,新版(一松 信) 26-274
  • 山内恭彦:廻転群及びその表現論(小谷正雄) 01-231
  • 山内恭彦:物理数学(吉田耕作) 03-251
  • 山内恭彦:物理数学(吉田耕作) 15-189
  • 山内恭彦・杉浦光夫:連続群論入門(一松 信) 12-251
  • 山口昌哉:非線型現象の数学(増田久弥) 26-287
  • 山口昌哉・野木達夫:ステファン問題(四ツ谷晶二) 36-086
  • 山崎泰郎:無限次元空間の測度(上巻)(下村宏彰) 32-091
  • 山崎泰郎:無限次元空間の測度(下巻)(下村宏彰) 32-281
  • 山本 拓:経済の時系列分析(岡部靖憲) 41-186
  • 吉江琢児:初等第一階偏微分方程式論(中野秀五郎) 01-145
  • 吉田耕作:エルゴード諸定理(河田敬義) 01-350
  • 吉田耕作:物理数学概論(加藤敏夫) 03-062
  • 吉田耕作:積分方程式論(山内恭彦) 03-250
  • 吉田耕作:位相解析Ⅰ(伊藤 清) 04-191
  • 吉田耕作:ヒルベルト空間論(三村征雄) 06-055
  • 吉田耕作:微分方程式の解法(南雲道夫) 06-125
  • 吉田耕作:超函数論(一松 信) 09-130
  • 吉田洋一:ルベグ積分入門(亀谷俊司) 18-184
  • 吉田洋一・赤 摂也:数学序説(岩村 聯) 06-249
  • 和田淳蔵:ノルム環(荷見守助) 22-316
  • 和達三樹:非線形波動(武部尚志) 46-080
  • 渡辺信三:確率微分方程式(中尾慎太郎) 29-182
  • アイゼルマン・ブラヴェルマン・ロゾノエル:パターン認識と学習制御(堀部安一) 32-372
  • B. H. Arnold(赤 摂也訳):トポロジー入門(水野克彦) 17-058
  • ウイークス(三村 護・入江晴栄訳):曲面と次元多様体を見る-空間の形-(作間 誠) 通2巻2号-087
  • エビングハウス他(成木勇夫訳):数(上・下)(H. D. Ebbinghaus:Numbers)(中島匠一) 46-077
  • S. G. ギンディキン(三浦伸夫訳):ガウスが切り開いた道(吉田朋好)通1巻3号-055
  • D. E. Knuth著, 島内剛一監訳:The Art of Computer Programming Vol. 1, 2(木田祐司) 44-282
  • D. B. ザギヤー(片山孝次訳):数論入門(荒川恒男) 46-083
  • L. Schwartz(吉田耕作, 渡辺二郎訳):物理数学の方法(藤原大輔) 20-187
  • I. M. シンガー,J. A. ソープ:トポロジーと幾何学入門(鈴木治夫) 30-087
  • スミルノフ:高等数学教程, 1~12(一松 信) 17-188
  • ニッカーソン・スペンサー・スティーンロッド(原田重春・佐藤正次訳):現代ベクトル解析(森  毅) 17-183
  • E. J. ハナン:時系列解析(藤井光昭) 28-177
  • A・ハラナイ:微分方程式(加藤順二) 20-188
  • J. フォン ノイマン:自己増殖オートマトンの理論(小林孝次郎) 29-087
  • ブルバキ:数学史(近藤基吉) 27-191
  • ボゴリューボフ・ミトロポリスキー:非線型振動論(占部 実) 16-123
  • ボホナー:科学史における数学史(中村幸四郎) 24-247
  • ミラー:Lie群と特殊関数(青本和彦) 28-380
  • O. A. ラジゼンスカヤ:非圧縮粘性流の数学的理論(儀我美一) 38-285
  • E. L. レーマン:ノンパラメトリックス;順位にもとづく統計的方法(白旗慎吾) 32-188

外国語

  • Robert D. M. Accola:Topics in the Theory of Riemann Surfaces (木村秀幸) 49-431
  • J. F. Adams:Lectures on Lie groups (荒木捷朗) 23-071
  • Colin C. Adams:The Knot Book, An Elementary Introduction to the Mathematical Theory of Knots (金信泰造) 49-326
  • L. V. Ahlfors:Complex analysis (亀谷俊司) 06-122
  • L. V. Ahlfors:Complex analysis (亀谷俊司) 21-231
  • Lars. Ahlfors:Lectures on quasiconformal mappings (及川広太郎) 19-187
  • A. C. Aitken:The case against decimalisation (編集部) 15-191
  • M. Akahira, K. Takeuchi:Asymptotic efficiency of statistical estimators. Concepts and higher order asymptotic efficiency (稲垣宣生) 35-093
  • Masafumi Akahira:The Structure of Asymptotic Deficiency of Estimators (江口真透) 42-186
  • M. Akahira, K. Takeuchi:Non–Regular Statistical Estimation (久保木久孝) 50-102
  • G. Alexits:Convergence problems of orthogonal series (一松 信) 14-253
  • S. Amari:Differential–geometrical methods in statistics (江口真透) 39-181
  • American Mathematical Society編:Experimental arithmetic high computing and mathematics (一松 信) 20-062
  • F. W. Anderson,K. R. Fuller:Rings and categories modules (政池寛三) 29-179
  • V. I. Arnold:Mathematical methods of classical mechanics (青本和彦) 30-172
  • V. I. Arnold:Geometrical methods in the theory of ordinary differential equations (宇敷重広) 37-287
  • V. I. Arnol'd:Ordinary Differential Equations (伊藤秀一) 46-082
  • E. Artin:Geometric algebra (彌永昌吉・玉河恒夫) 11-124
  • M. Aschbacher:Finite group theory (五味健作) 40-273
  • K. B. Athreya & P. E. Ney: Branching processes (田中健一) 27-184
  • M. Atiyah:–Theory (吉村善一) 21-306
  • L. Auslander:Differential geometry (茂木 勇) 21-154
  • Y. Bar–Hillel (editor):Mathematical logic and foundations of set theory (福山 克) 24-250
  • W. Barth, C. Peters, A. Van de Ven: Complex analytic surfaces (宮岡洋一) 37-285
  • T. Bartoszyński, H. Judah:Set Theory, On The structure of the real line (加茂静夫) 50-320
  • J. Barwise:Admissible sets and structures (篠田寿一) 31-183
  • J. Barwise, S. Feferman (Ed.):Model–theoretic logics (坪井明人) 40-089
  • N. K. Bary:A treatise of trigonometric series, 1, 2 (矢野茂樹) 18-186
  • H. Bass:Algebraic K–theory (大林忠夫) 23-072
  • D. Bättig, H. Knörrer:Singularitäten (卜部東介) 47-419
  • Alan F. Beardon:Iteration of Rational Functions (宇敷重広) 45-283
  • E. F. Beckenbach編:Applied combinatorial mathematics (一松 信) 17-252
  • E. F. Beckenbach-R. Bellman: Inequalities (一松 信) 14-251
  • J. L. Bell & A. B. Slomson:Models and ultra­products: An introduction (上江洲忠弘) 23-236
  • R. Bellman:Stability theory of differential equations (南雲道夫) 08-182
  • R. Bellman-K. L. Cooke:Differential–difference equations (杉山昌平) 15-241
  • R. Benedetti & J. J. Risler:Real algebraic and semi–algebraic sets (塩田昌弘) 43-281
  • A. Bensoussan, J. L. Lions and G.Papanicolaou:Asymptotic analysis for periodic structures   (渡辺二郎) 33-093
  • C. Berge:Topological spaces (洲之内治男) 17-056
  • J. O. Berger:Statistical decision theory (篠崎信雄) 34-185
  • S. Bergman:The kernel function and  conformal mapping (一松 信) 04-107
  • P. Bernays-A. A. Fraenkel: Axiomatic set theory (近藤基吉) 12-128
  • A. L. Besse:Manifolds all of whose geodesics are closed (中川久雄) 01-378
  • L. Besse:Einstein manifolds (二木昭人) 40-187
  • P. Billingsley:Ergodic theory and information (久保 泉) 24-249
  • G. Birkhoff:Lattice theory,revised edition (岩村 聯) 02-373
  • G. Birkhoff-S. MacLane:A survey of modern algebra (稲葉栄次) 06-181
  • B. L. Bishop-R. J. Crittenden:Geometry of manifolds (塚本陽太郎) 18-058
  • E. Bishop:Foundations of constructive analysis (近藤基吉) 28-275
  • B. Blackadar:–Theory for Operator Algebras (中神祥臣) 41-279
  • R. M. Blumenthal-R. K. Getoor:Markov processes and potential theory (神田 護) 22-236
  • R. P. Boas, Jr.:Entire functions (石川 修) 11-119
  • R. P. Boas and R. C. Buck:Polynomial expansions of analytic functions (樽本浩一) 17-058
  • Salomon Bochner:The role of mathematics in the rise of science (竹内 啓) 20-248
  • S. Bochner-K. Chandrasckharan:Fourier transforms (河田竜夫) 08-246
  • S. Bochner-W. T. Martin:Several complex variables (一松 信) 02-269
  • F. F. Bonsall,J. Duncan:Complete normed algebras (和田淳蔵) 28-277
  • A. Borel:Introduction aux groupes arithmetiques (田坂隆士) 23-314
  • A. Borel:Linear algebraic groups (阿部英一) 24-348
  • A. Borel et al.:Seminar on algebraic groups and related finite groups (岩堀長慶) 24-338
  • A. Borovik, A. Nesin:Groups of Finite Morley Rank (田中克己) 48-097
  • S. Bosch, W. Lütkebohmert, M. Raynaud:Néron Models (斎藤政彦) 48-071
  • N. Bourbaki:Théorie des ensembles, Chap. Ⅰ, Ⅱ (赤 摂也) 07-050
  • N. Bourbaki:Algèbre. Chap. Ⅵ,Ⅶ (岩堀長慶) 07-178
  • N. Bourbaki:Topologie générale (森 毅) 13-176
  • N. Bourbaki:Groupes et algèbres de Lie, Chapitre Algèbre de Lie (岩堀長慶) 13-180
  • N. Bourbaki:Variétés différentielles et analytiques, Ⅰ (一松 信) 21-316
  • N. Bourbaki:Variétés différentielles et analytiques,Ⅱ (一松 信) 26-086
  • O. Bratteli, D. W. Robinson:Operator algebras and quantum statistical mechanics Ⅰ (岸本晶孝) 33-285
  • David M. Bressoud:Factrization and Primality Testing (和田秀男) 45-181
  • H. Breuer:Dictionary for computer languages (一松 信) 20-115
  • H. Brézis:Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert (小西芳雄) 26-278
  • D. S. Bridges:Constructive functional analysis (近藤基吾) 32-374
  • F. E. Browder編:Mathematical developments arising from Hilbert problems (一松 信) 32-373
  • I. Bucur and A. Deleanu:Introduction to the theory of categories and functors (服部 昭) 22-231
  • A. Buium:Differential Algebraic Groups of Finite Dimension (梅村 浩) 46-085
  • R. B. Burckel:Characterizations of among its subalgebras (荷見守助) 26-285
  • G. Burde, H. Zieschang:Knots (村上 斉) 39-378
  • M. Burrow:Representation theory of finite groups (大島 勝) 19-056
  • H. Busemann編:Advances in mathematics,1 (一松 信) 18-127
  • P. Buser:Geometry and Specrta of Compact Riemann Surfaces (中西敏浩) 50-317
  • P. Caraman:Homeomorfism cvasiconfome –dimensionale (一松 信) 23-065
  • C. Carathéodory:Funktionentheorie (亀谷俊司) 03-244
  • C. Carathéodory:Calculus of variations and partial differential equations of the first order (小松勇作) 21-153
  • L. Carleson, T. W. Gamelin:COMPLEX DYNAMICS (木坂正史) 50-432
  • R. W. Carroll:Abstract methods in partial differential equations (田辺広城) 25-189
  • H. Cartan:Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes (一松 信) 14-063
  • Séminaire H. Cartan 1960/61:Familles d'espaces complexes et fondements de la géométrie analytique (岩橋亮輔) 16-251
  • H. Cartan-S. Eilenberg:Homological algebra (D. Zelinsky) 08-185
  • M. L. Cartwright:Integral functions (石川 修) 11-119
  • T. E. Cecil:Lie Sphere Geometry (宮岡礼子) 46-087
  • N. N. Čencov:Statistical decision rules and optimal inference (甘利俊一) 36-187
  • K. Chandrasekharan:Introduction to analytic number theory (竜沢周雄) 22-233
  • F. Chatelin:Spectral approximation of linear operators (石原和夫) 38-085
  • A. W. Chatters & C. R. Hajarnavis: Rings with chain conditions (岩永恭雄) 34-283
  • Isaac Chavel:Riemannian Geometry: A Modern Introduction (武藤秀夫) 49-437
  • G. Chavent, J. Jaffre:Mathematical models and finite elements for reservoir simulation (友枝謙二) 40-282
  • J. Cheeger,D. G. Ebin:Comparison theorems in Riemannian geometry (中川久雄) 29-180
  • B.–Y. Chen:Geometry of submanifolds (劔持勝衛) 28-283
  • S. S. Chern:Complex manifolds without potential theory (一松 信) 21-300
  • C. Chevalley:Theory of Lie groups I (後藤守邦) 02-079
  • C. Chevalley:Théorie des groupe de Lie II (岩堀長慶) 05-115
  • C. Chevalley:Algebraic theory of spinors (玉河恒夫) 06-048
  • C. Chevalley:Introduction to the theory of algebraic functions of one variable (中山 正) 06-050
  • C. Chevalley:The construction and study of certain important algebras (岩堀長慶) 09-255
  • Séminair Chevalley:Classification des groupes de Lie algébriques (阿部英一) 15-238
  • W. G. Chinn and N. E. Steenrod:First concepts of topology (一松 信) 20-062
  • G. Choquet:Topology (竹之内 脩) 21-305
  • K. L. Chung:Markov chains with stationary transition probabilities (渡辺寿夫) 14-052
  • R. F. Churchhouse-J. C. Herz編:Computers in mathematical research (一松 信) 21-301
  • P. G. Ciarlet:The finite element method for elliptic problems (菊地文雄) 35-186
  • P. G. Ciarlet and J. L. Lions:editors: Handbook of Numerical Analysis, Vol. Ⅱ Finite Element Methods (Part 1) (土屋卓也) 46-073
  • P. G. Ciarlet:Introduction to Numerical Linear Algebra and Optimisation (三井斌友) 48-076
  • A. H. Clifford-G. B. Preston:The algebraic theory of semigroups (田村孝行) 15-181
  • A. H. Clifford,G. B. Preston:The algebraic theory of semigroups (田村孝行) 21-314
  • P. J. Cohen:Sets theory and the continuum hypeothesis (難波完爾) 21-150
  • L. Collatz:Differentialgleichungen für Ingenieure (古屋 茂) 14-125
  • L. Collatz:Funktionalanalysis und numerische Mathematik (藤田 宏) 17-117
  • L. Collatz & W. Wetterling:Optimierungs­aufgaben (杉山昌平) 21-235
  • P. Conner and E. Floyd:Differentiable periodic maps (内田伏一) 24-339
  • A. Connes:Noncommutative Geometry (河東泰之) 49-217
  • C. Constantinescu-A. Cornea:Ideale Ränder Riemannscher Flächen (中井三留) 16-245
  • Constantinescu-Cornea:Potential theory of harmonic spaces (池上輝男) 29-084
  • J. H. Conway:On numbers and games (山崎洋平) 31-377
  • J. H. Conway, R. T. Curtis, S. T. Norton, R. A. Parker, R. A. Wilson:Atlas of finite groups   (吉田知行) 39-185
  • L. Corwin, F. P. Greenleaf:Representations of nilpotent Lie groups and their applications, Part Ⅰ (井上順子) 49-107
  • R. Courant:Dirichlet's principle, conformal mapping, and minimal surfaces (小松勇作) 04-109
  • H. Cramér:Mathematical methods of statistics (河田敬義) 03-060
  • H. Cramér-M. R. Leadbetter:Stationary and related stochastic processes (飛田武幸) 20-250
  • Richard H. Crowell-Ralph H. Fox: Introduction to knot theory (野口 広) 17-053
  • C. W. Curtis-I. Reiner:Representation theory of finite groups and associative algebras (大島 勝) 16-172
  • H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon:Schrödinger operators―With Applications to Quantum Mechanics and Global Geometry (中村 周) 43-375
  • I. Daubechies:Ten Lectures on Wavelets (守本 晃) 47-085
  • M. Davis:Computability and unsolvability (田中尚夫) 20-253
  • M. de Guzmán:Real variable methods and Fourier analysis (矢野茂樹) 36-186
  • G. de Rham:Variétés différentiables (一松 信) 07-171
  • C. Dellacherie et P. A. Meyer:Probabilités et potentiel, théorie des martingales (風巻紀彦) 33-378
  • P. Dembowski:Finite geometries (一松 信) 21-303
  • J. Dénes and A. D. Keedwell:Latin squares and their applications (山本幸一) 28-380
  • U. Dierkes, S. Hildebrandt, A. Küster and O. Wohlrab:Minimal Surfaces Ⅱ, Boundary Regularity (石村直之) 47-087
  • J. Dieudonné:Sur les groupes classiques (服部 昭) 04-112
  • J. Dieudonné:La géométrie des groupes classiques (小野 孝) 09-128
  • J. Dieudonné:Foundation of modern analysis (矢野茂樹) 17-122
  • V. A. Ditkin-A. P. Prudnikov:Operational calculus in two variables and its applications (一松 信) 14-254
  • J. Dixmier:Les algèbres d'opérateurs dans l'espace Hilbertien (竹之内 脩) 26-372
  • J. Dixmier:Les –algèbres et leurs représentations (竹之内 脩) 26-374
  • V. Dlab and P. Gabriel: Representation theory (太刀川弘幸他) 34-375
  • L. Dornhoff:Group representation theory (光 道隆) 27-278
  • F. R. Drake:Set theory (高橋元男) 29-378
  • B. A. Dubrovin, A. T. Fomenko, S. P. Novikov:Modern geometry Ⅰ, Ⅱ (森本明彦) 40-366
  • N. Dunford-J. T. Schwartz (with the assistance of W. Bade-R. G. Bartle): Linear operators, PartⅠ (吉田耕作) 12-065
  • N. Dunford-J. T. Schwartz: Linear operators, PartⅡ (SIRS) 18-123
  • P. L. Duren:Theory of –spaces (中村吉邑・柳原二郎) 28-184
  • G. Duvaut, J. L. Lions:Inequalities in mechanics and physics (小西芳雄) 38-378
  • R. E. Edwards & G. I. Gaudry:Littlewood-Paley and multiplier theory (宮地晶彦) 31-280
  • B. Efron:The Jackknife, the Bootstrap and Other Resampling Plans (田栗正章・汪金芳) 45-090
  • L. Ehrenpreis:Fourier analysis in several complex variables (河合隆裕) 24-152
  • M. Eichler:Quadratische Formen und orthogonale Gruppen (小野 孝) 09-249
  • S. Eilenberg-N. Steenrod:Foundations of algebraic topology (中岡 稔) 05-250
  • F. El Zein:Introduction à la théorie de Hodge mixte (臼井三平) 48-202
  • C. J. Elieser: Concise vector analysis (編集部) 15-191
  • R. Engelking:General Topology (Revised and completed edition) (大田春外) 46-369
  • G. Faltings:Lectures on the Arithmetic Riemann-Roch Theorem (小林亮一) 47-088
  • V. V. Fedorchuk, A. Ch. Chigogidze:Absolute Retracts and infinite dimensional manifolds (寺田敏司・津田光一) 48-432
  • R. P. Feinerman and D. J. Newman:Polynomial approximation (鈴木義也) 30-084
  • W. Feit: Character of finite groups (永尾 汎) 21-156
  • A. A. Fel'dbaum:Optimum control systems (杉山昌平) 19-121
  • J. M. G. Fell-R. S. Doran:Representations of –Algebras, Locally Compact Groups and Banach –Algebraic Bundles, Ⅰ,Ⅱ (山上 滋) 41-274
  • W. Feller:An introduction to probability theory and its applications (丸山儀四郎) 05-053
  • W. Feller:An introduction to probability theory and its applications, Ⅰ,Ⅱ (丸山儀四郎) 19-062
  • J. F. Fenstad,P. G. Hinman編:Generalized recursion theory (田中尚夫) 28-273
  • T. S. Ferguson:Mathematical statistics: A decision theoretic approach (工藤弘吉) 27-285
  • S. E. Fienberg and D. V. Hinkley編:R. A. Fisher: An appreciation (竹内 啓) 33-373
  • Herbert Fleischer:Eulerian Graphs and Related Topics, Part Ⅰ, Vol. 1 & 2 (土屋守正) 44-365
  • K. W. Folley編:Semigroups (田村孝行) 23-311
  • A. P. Fordy, J. C. Wood (Eds):Harmonic Maps and Integral Systems (浦川 肇) 48-204
  • O. Forster:Lecture on Riemann surfaces (栗林暲和) 38-091
  • Forsythe, G. E. -W. R. Wasow:Finite–difference methods for partial differential equations   (山口昌哉) 20-241
  • D. S. Freed & K. K. Uhlenbeck:Instantons and four–manifolds (伊藤光弘) 39-370
  • M. Freidlin:Functional integration and partial differential equations (成田清正) 40-365
  • Frekel-Lepowski-Mourman:Vertex operator algebras and the Monster (原田耕一郎) 43-177
  • Peter Freyd:Abelian catagories (服部 昭) 17-174
  • L. Fuchs:Abelian groups (本田欣哉) 12-245
  • L. Fuchs他編:Proceedings of the colloquium on Abelian groups (本田欣哉) 18-053
  • H. Fujimoto:Value Distribution Theory of the Gauss Map of Minimal Surfaces in    (野口潤次郎) 48-215
  • T. Fujita:Classification Theories of Polarized Varieties (杉江 徹) 44-088
  • M. Fukushima:Dirichlet forms and Markov processes (長井英生) 36-082
  • W. Fulton:Intersection theory (宮西正宜) 39-186
  • W. Fulton:Introduction to Toric Varieties (石田正典) 48-091
  • A. Futaki:Kaehler-Einstein Metrics and Integral Invariants (小磯憲史) 41-283
  • S. A. Gaal:Linear analysis and representation theory (和田淳蔵) 27-283
  • F. D. Gakhov (I. N. Sneddon英訳): Boundary value problems (熊ノ郷 準) 19-188
  • T. W. Gamelin: Uniform algebras (和田淳蔵) 26-189
  • H. h. Garabedian編: Approximation of functions (一松 信) 18-060
  • L. Garding:Encounter with mathematics (吉川 敦) 31-178
  • S. B. Garnett:Bounded analytic functions (林 実樹広) 35-089
  • A. Gelbart編:Some recent advances in the basic sciences (一松 信) 21-301
  • B. R. Gelbaum-J. M. H. Olmstead:Counter­examples in analysis (一松 信) 17-061
  • I. M. Gel'fand-M. I. Graev-N. Ya. Vilenkin:Generalized functions (編集部) 19-128
  • I. M. Gel'fand, M. I. Graev, I. I. Pyatetskii-Shapiro:表現論と保型函数 (折原明夫) 23-065
  • Ya. L. Geronimus:Polynomials orthogonal on a circle and interval (一松 信) 14-253
  • J. K. Ghosh(ed.):Statistical Information and Likelihood : A Collection of Critical Essays  by Dr. D. Basu (草間時武) 42-184
  • V. Gillemin and S. Sternberg: Deformation theory of pseudogroup structures (松田道彦) 23-235
  • A. Ginzburg:Algebraic theory of automata (寺田文行) 23-077
  • Jean-Yves Girard:Proofs and Types (八杉満利子) 43-181
  • J. Glimm and A. Jaffe:Quantum physics —–A functional integral point of view—– (荒木不二洋) 35-091
  • R. Glowinski, J. L. Lions, R. Trémolères: Analyse numérique des inéquations variationelles, Tome 1, Tome 2 (牛島照夫) 32-088
  • B. V. Gnedenko-A. N. Kolmogorov:Limit distributions for sums of independent random variables (国沢清典) 08-187
  • C. Godbillon:Feuilletages, Études géométriques (西森敏之) 46-071
  • R. Godement:Topologie algébrique et théorie des faisceaux (服部晶夫) 12-253
  • I. C. Gohberg and M. G. Krein:Theory and applications of Volterra operators in Hilbert space (小谷眞一) 30-164
  • S. I. Goldberg:Curvature and homology (小畠守生) 16-170
  • S. W. Golomb:Polyo!minoes (一松 信) 20-245
  • Golubisky-Gullemin:Stable mappings and their singularities (福田拓生) 30-089
  • R. L. Goodstein:Fundamental concepts of mathematics (赤 摂也) 15-128
  • D. Gorenstien:Finite groups (都筑俊郎) 22-317
  • M. Goresky, R. Macpherson: Stratified Morse Theory (藤木 明) 48-073
  • M. Goto & F. D. Grosshans:Semisimple Lie algebra (江口正晃) 37-183
  • W. H. Gottschalk-G. A. Hedlund:Topological dynamics (佐伯卓也) 10-054
  • S. H. Gould:A manual for translators of mathematical russian (一松 信) 19-191
  • S. H. Gould-P. E. Obreanu:Romanian– English dictionary and grammar for the mathematical sciences (一松 信) 20-124
  • I. S. Gradshteyn-I. M. Ryzhik: Table of Integrals, Series and Products (一松 信) 18-255
  • H. Grauert・R. Remmert:Analytishe Stellen­algebren (木村郁雄) 28-284
  • P. Griffiths & J. Morgan:Rational homotopy theory and differential forms (森田茂之) 35-091
  • G. W. Grimmett:Percolation (樋口保成) 46-079
  • M. Gromov:Structures métriques pour les variétés riemanniennes (酒井 隆) 37-088
  • V. Guillemin, S. Sternberg:Symplectic techniques in physics (三上健太郎) 37-284
  • P. C. Gunning:Lectures on Riemann surfaces (一松 信) 19-118
  • R. C. Gunning-H. Rossi:Analytic functions of several complex variables (一松 信) 17-120
  • R. K. Guy:Unsolved problems in number theory (藤原正彦) 36-183
  • Rudolf Haag:Local Quantum Physics (Fields, Particles, Algebras) (荒木不二洋) 45-285
  • S. J. Haberman:The analysis of frequency data (伊藤孝一) 29-189
  • H. Halberstam and H. E. Richert: Sieve methods (本橋洋一) 31-179
  • M. Hall, Jr.: The theory of groups (永尾 汎) 14-185
  • P. Hall-C. C. Heyde:Martingale limit theory and its applications (吉原健一) 34-379
  • Peter Hall:The Bootstrap and Edgeworth Expansion (汪金芳・田栗正章) 44-371
  • P. R. Halmos:Measure theory (亀谷俊司) 03-245
  • P. R. Halmos:Introduction to Hilbert space and the theory of spectral multiplicity (伊藤隆司) 07-050
  • P. R. Halmos:Lectures on ergodic theory (伊藤清三) 12-254
  • F. Harary:Graph theory (一松 信) 23-069
  • G. H. Hardy:Divergent series (松山 昇) 09-056
  • T. E. Harris:Theory of branching processes (本尾 実) 17-053
  • W. A. Harris,Jr. and Y. Sibuya編: Proceedings United States-Japan seminar on differential and functional equations (一松 信) 21-317
  • Z. Harris:Mathematical structures on language (野崎昭弘) 24-080
  • R. Hartshorne:Algebraic geometry (丸山正樹) 31-184
  • H. Hasse:Vorlesungen über Zahlentheorie (末綱恕一) 03-056
  • H. Hasse:Über die Klassenzahl abelscher Zahlkörper (黒田成勝) 04-250
  • H. Hasse:Mathematik als Wissenschaft Kunst und Macht (末綱恕一) 05-185
  • M. Hasumi:Hardy classes on infinitely connected Riemann surfaces (林 実樹広) 37-187
  • T. Hawkins:Lebesgue's theory of integration (村田 全) 26-085
  • W. K. Hayman:Subharmonic Functions, Vol. 2 (相川弘明) 43-283
  • G. Heckman, H. Schlichtkrull:Harmonic Analysis and Special Functions on Symmetric Spaces (示野信一) 49-332
  • G. Hecor, U. Hirsch:Introduction to the geometry of foliations (稲葉尚志) 39-376
  • M. Heins:Selected topics in the classical theory of functions of a complex variable (一松 信) 14-121
  • M. Heins:Complex function theory (亀谷俊司) 24-342
  • S. Helgason:Differential geometry and symmetric spaces (杉浦光夫) 15-252
  • S. Helgason:Groups and geometric analysis, integral geometry, invariant differential operators, and spherical functions (河添 健) 39-375
  • L. L. Helms:Introductions to potential theory (二宮信幸) 26-184
  • D. R. Henney編:Open questions in mathematics (一松 信) 33-090
  • Peter Henrici:Discrete variable methods in ordinary differential equations (一松 信) 17-114
  • Peter Henrici:Error propagation for difference methods (一松 信) 17-114
  • Peter Henrici:Elements of numerical analysis (一松 信) 17-114
  • P. Henrici:Applied and computational complex analysis (一松 信) 30-168
  • H. Hermes:Einführung in die mathematische Logik (前原昭二) 17-249
  • M. Hervé:Several complex variables, local theory (一松 信) 16-186
  • E. Hewitt-K. Stromberg:Real and abstract analysis (伊藤清三) 19-125
  • T. Hida:Brownian motion (竹中茂夫) 36-285
  • E. Hille:Functional analysis and semigroups (吉田耕作) 02-372
  • E. Hille:Analytic function theory Ⅰ, Ⅱ (一松 信) 14-123
  • P. J. Hilton:An introduction to homotopy theory (高橋典大) 08-056
  • P. J. Hilton-S. Wylie:Homology theory, an introduction to algebraic topology (中岡 稔) 14-121
  • F. Hirzebruch:Garben—–und Cohomologie—–theorie (一松 信) 09-194
  • F. Hirzebruch:Neue topologische Methoden in der algebraischen Geometrie (中野茂男) 10-193
  • G. Hochschild: The structure of Lie groups (須藤真樹) 18-249
  • G. Hochschild:Introductions to affine algebraic groups (土井幸雄) 26-187
  • G. P. Hochschild:Basic theory of algebraic groups and Lie algebras (阿部英一,土井幸雄,竹内光弘) 35-182
  • K. Hoffman:Banach spaces of analytic functions (和田淳蔵) 17-115
  • K. H. Hofmann,P. S. Mostert:Elements of compact semigroups (田村孝行) 21-313
  • R. Honsberger:Mathematical gems,Ⅰ,Ⅱ (一松 信) 30-166
  • Lars Hörmander:An introduction to complex analysis in several variables (梶原壤二) 19-060
  • L. Hörmander:The analysis of linear partial differential operators Ⅰ, Ⅱ (北田 均) 38-090
  • Wu Yi Hsiang:Cohomology theory of topological transformation groups (吉田朋好) 30-372
  • S. T. Hu:Homotopy theory (島田信夫) 13-184
  • S. T. Hu:Homology theory (白岩謙一) 20-122
  • L. K. Hua:Additive Primzahltheorie (竜沢周雄) 16-179
  • L. K. Hua:Abschätzungen von Exponential­summen und ihre Anwendung in den Zahlen­theorie (竜沢周雄) 16-179
  • Hua Loo Keng (華羅庚) & Wang Yuan (王元):Applications of number theory to numerical analysis (鹿野 健) 35-187
  • J. F. P. Hudson:Piecewise linear topology (福田征子) 23-075
  • M. Hukuhara-T. Kimura-Mme T. Matuda:Équations différentielles ordinaires du premier order dans le champ complexe (齋藤利彌) 13-186
  • J. E. Humphreys:Linear algebraic groups (阿部英一,土井幸雄,竹内光弘) 35-182
  • W. Hurewicz-H. Wallman:Dimension theory (森田紀一・入江昭二) 02-183
  • D. Husemoller:Fibre bundles (鈴木治夫) 21-067
  • D. Husemoller:Fibre bundles,2nd ed. (北田泰彦) 29-176
  • Roudolph C. Hwa-Vigdor L. Teplitz:Homology Feynman Integrals (荒木不二洋) 20-183
  • H. Komatsu (ed.):Hyperfunctions and pseudo­differential equations (三輪哲二) 26-281
  • I. A. Ibragimov-Y. A. Rozanov:Gaussian random processes (野本久夫) 33-377
  • S. Iitaka:Algebraic geometry (安藤哲哉) 40-272
  • N. Ikeda, S. Watanabe:Stochastic differential equations and diffusion processes(本尾 実) 35-381
  • M. Iri:Network,flow,transportation and scheduling (一松 信) 23-070
  • K. Itô:Foundations of stochastic differential equations in infinite dimensional spaces(渡辺信三) 39-182
  • K. Itô and H. P. McKean,Jr.:Diffusion processes and their sample paths(渡辺信三) 23-068
  • N. Jacobson:The theory of rings(浅野啓三) 03-058
  • N. Jacobson:Structure of rings (都筑俊郎) 09-253
  • N. Jacobson:PI–algebras (大堀正幸) 30-286
  • H. Jacquet,R. P. Langlands:Automorphic forms on (川中宣明) 23-316
  • James P. Jans:Rings and homology(太刀川弘幸) 17-179
  • M. Jarnicki, P. Pflug:Invariant Distances and Metrics in Complex Analysis (東川和夫) 48-436
  • B. Jawerth & M. Milman:Extrapolation theory with applications (曽布川拓也) 46-366
  • T. J. Jech:The axiom of choice (塚田信高) 28-285
  • T. Jech:Set theory (難波完爾) 33-188
  • T. Jech:Multiple forcing (加茂静夫) 40-277
  • A. Jeffrey and T. Kawahara:Asymptotic methods in nonlinear wave theory (西本敏彦) 36-374
  • C. U. Jensen & H. Lenzing:Model Theoretic Algebra (坪井明人) 43-186
  • K. K. Jensen, K. Thomsen:Elements of -Theory (夏目利一) 48-217
  • P. E. T. Jorgensen:Operators and representation theory (岸本晶孝) 41-278
  • R. V. Kadison-J. R. Ringrose:Fundamentals of the theory of operator algebras Vol. I   (竹崎正道) 37-180
  • J.–P. Kahane:Some random series of functions (猪狩 惺) 24-156
  • J. P. Kahne:Some random series of functions(佐藤 坦) 40-276
  • G. Kallianpur:Stochastic filtering theory(飛田武幸) 34-184
  • A. Kanamori:The Higher Infinite(渕野 昌) 48-085
  • S. Kaneyuki:Homogeneous bounded domains and Siegel domains (児玉秋雄) 36-370
  • L. V. Kantorovich-V. I. Krylov:Approximate methods of higher analysis (井上正雄) 16-176
  • I. Kaplansky:Infinite abelian groups(伊藤 昇) 08-124
  • I. Kaplansky:An introduction to differential algebra (小野 孝) 10-056
  • S. Karlin:A first course in stochastic processes(白尾恒吉) 21-157
  • T. Kato:Perturbation theory for linear operators (増田久弥) 21-148
  • T. Kato:A short introduction to perturbation theory for linear operators (望月 清) 36-375
  • N. Katz, B. Mazur:Arithmetic Moduli of Elliptic curves (百瀬文之) 44-370
  • Y. Katznelson:An introduction to harmonic analysis (猪狩 惺) 21-308
  • T. Kawata:Fourier analysis of stochastic processes (河野敬雄) 38-092
  • S. Kechris:Classical Descriptive Set Theory, With 34 Illustrations (田中尚夫) 50-108
  • H. J. Keisler:Model theory for infinitary logic(本橋信義) 26-191
  • J. L. Kelley:General topology (長田潤一) 08-183
  • J. G. Kemeny編:New directions in mathematics(山室定行) 16-171
  • J. G. Kemeny,J. L. Snell,A. W. Knapp:Denumerable Markov chains(渡辺寿夫) 21-076
  • G. R. Kempf:Complex Abelian Varieties and Theta Functions (露峰茂明) 46-373
  • C. E. Kenig:Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems (金子 誠) 48-105
  • B. Kerékjártó:Les fondaments de la géométrie(編集部) 19-056
  • A. N. Khovanskii (P. Wynn英訳):The application of continued fractions and their generalizations to problems in approximation theory (一松 信) 20-116
  • 紀 晃子,J. Myhill,R. Vesley編:Intuitionism and proof theory (白井古希男) 24-245
  • A. A. Kirillov:Elements of the theory of representations (梶原 毅) 38-283
  • W. Klingenberg:Eine Vorlesung über Differential­­geometrie (荻上紘一) 28-379
  • Klingenberg:Lectures on closed geodesics(田中 実) 32-089
  • Anthony W. Knapp:Representation theory of semisimple groups —–An overview based on examples—– (西山 享) 44-183
  • A. W. Knapp:Lie Groups, Lie Algebras, and Cohomology (内藤 聡) 44-280
  • D. E. Knuth:Surreal numbers (有沢 誠) 31-279
  • S. Kobayashi:Hyperbolic manifold and holomorphic mappings (樋口禎一) 24-347
  • S. Kobayashi:Transformation groups in differential geometry (落合卓四郎) 27-188
  • S. Kobayashi,K. Nomizu:Foundations of differential geometry (荻上紘一) 23-308
  • S. Kobayashi, H. Wu, C. Horst:Complex differential geometry (満渕俊樹) 38-187
  • N. Koblitz:–adic numbers, –adic analysis, and zeta–functions (森田康夫) 37-378
  • P. Koosis:The logarithmic integral Ⅰ・Ⅱ(中路貴彦) 48-207
  • C. Kosniowski:Actions of finite abelian groups(内田伏一) 30-375
  • J. L. Koszul:Exposés sur les espaces homogénes symétriques (松島与三) 14-124
  • Hans-Joachim Kowalsky:Topological Spaces(竹之内 脩) 17-182
  • I. Kra:Automorphic forms and Kleinian groups(山本博夫) 28-182
  • S. G. Krein:Linear differential equations in Banach space (大内 忠) 23-315
  • H. Kumano–go:Pseudo–differential operators(井川 満) 35-274
  • Kunen:Set theory―An introduction to independence proofs (花沢正純) 37-283
  • K. Kunen, J. E. Vaughan (eds. ):Handbook of set–theoretic topology (玉野研一) 40-185
  • H. Kunita:Stochastic flows and applications(藤原 司) 40-281
  • H. P. Künzi-A. Pfluger編:Festband zum 70. Geburtstag von Rolf Nevanlinna (一松 信) 20-189
  • C. Kuratowski:Topologie Ⅱ (近藤基吉) 05-196
  • K. Kuratowski:Topology, Ⅰ (近藤基吉) 20-123
  • S. Kuroda編:The collected papers of Teiji Takagi(竜沢周雄) 27-379
  • Yu. A. Kutoyants:Parameter estimation for stochastic processes (稲垣宣生) 43-183
  • J. P. LaSalle-S. Lefschetz:International symposium on nonlinear differential equations and nonlinear mechanics(占部 実) 15-240
  • I. Lakatos編:Problems in the philosophy of mathematics (村田 全) 21-229
  • C. Lanczos:Discourse on Fourier series(一松 信) 18-185
  • S. Lang:Introduction to algebraic geometry(森川 寿) 14-191
  • S. Lang:Introduction to differentiable manifolds(志賀浩二) 18-187
  • S. Lang:Algebra (服部 昭) 18-251
  • S. Lang:Rapport sur la cohomologie des groupes(服部 昭) 21-299
  • S. Lang:Cyclotomic fields (工藤愛知) 33-092
  • D. Laugwitz:Differentialgeometrie(長野 正) 14-125
  • D. Laugwitz:Differentialgeometrie(小畠守生) 17-249
  • M. A. Lavrent'ev:Variational methods for boundary value problems for systems of elliptic equations (及川広太郎) 16-254
  • L. Le Cam:Asymptotic Methods in Statistical Decision Theory (山田作太郎・鈴木 武) 43-184
  • J. Leech編:Computational problems in abstract algebra (田村孝行) 23-309
  • E. L. Lehmann:Theory of Point Estimation(三田晴義) 41-282
  • J. Lehner:Discontinuous group and automorphic functions (根本精司) 18-120
  • G. M. Leibowitz:Lectures on complex function algebras (富山 淳) 28-173
  • C. G. Lekkerkerker:Geometry of numbers(内山三郎) 23-313
  • P. Lévy:Processus stochastiques et mouvement Brownien (伊藤 清) 05-114
  • André Lichnerowicz:Théorie globale des connexions et des groupes d'holonomie(尾関英樹) 11-055
  • Séminaire Sophus Lie (1954/1955):Théorie des algèbres de Lie, Topologie des groupes de Lie   (杉浦光夫) 11-053
  • D. V. Lindley:Introduction to probability and statistics (竹内 啓) 17-254
  • Yu. V. Linnik (S. J. Taylor英訳):Decomposition of probability distributions (河田竜夫) 21-069
  • J. L. Lions:Equations différentielles opérationnels et problèmes aux limites(田辺広城) 15-243
  • J. L. Lions:Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles (�岡邦夫) 22-154
  • J. L. Lions and E. Magenes:Problèmes aux limites non homogènes et applications Ⅰ,Ⅱ (藤原大輔) 23-158
  • J. E. Littlewood:Lecture on the theory of function(Y. K. ) 02-368
  • C. L. Liu:Introduction to combinatorial mathematics (一松 信) 21-304
  • C. Livingston:Knot Theory, The Carus Mathematical Monographs Number 24(中西康剛) 50-219
  • G. G. Lorentz:Approximation of functions(鈴木義也) 23-157
  • Jan Lukasiewicz:Elements of mathematical logic(中村幸四郎) 17-248
  • Y. L. Luke:The special functions and their approximations (一松 信) 22-317
  • A. T. Lundell and S. Weingram:The topology of CW complexes (宮崎 宏) 24-343
  • G. Lusztig:Introduction to Quantum Groups(谷崎俊之) 47-199
  • W. Maak:Fastperiodische Funktionen(宇沢弘文) 04-252
  • N. Madras, G. Slade:The Self–Avoiding Walk(服部哲弥) 47-311
  • W. Magnus-F. Oberhettinger-R. P. Soni:Formulas and theorems for the special functions of mathematical physics(一松 信) 20-061
  • B. Malgrange:Ideals of differentiable functions(岩橋亮輔) 21-153
  • J. Malitz:Introduction to mathematical logic(本橋信義) 33-188
  • B. B. Mandelbrot:Fractals:forms chance,and dimension (一松 信) 30-169
  • Jerome H. Manheim:The genesis of point set topology (河野伊三郎) 17-181
  • H. B. Mann編:Error correcting codes(一松 信) 22-232
  • K. V. Mardia, J. T. Kent, J. M. Bibby:Multivariate analysis (早川 毅) 34-280
  • A. W. Marshall-I. Olkin:Inequalities:Theory of majorization and its applications(安藤 毅) 33-375
  • V. P. Maslov:The complex WKB Method for Nonlinear Equations Ⅰ. Linear Theory(内山康一) 50-100
  • M. Matsuda:First order algebraic differential equations (西岡啓二) 37-086
  • J.–L. Mauclaire:Intégration et théorie des nombres (釜江哲朗) 40-275
  • G. Maury et J. Raynaud:Ordres maximaux au sens de K. Asano (丸林英俊) 34-090
  • D. McDuff, D. Salamon:–holomorphic Curves and Quantum Cohomology (高倉 樹) 50-104
  • M. Métivier, J. Pellaumail:Stochastic integration(塩田安信) 37-188
  • P.–A. Meyer:Probabilités et potentiel;Probability and potentials (本尾 実) 21-156
  • Y. Meyer:Ondelettes et Opérateurs Ⅰ, Ⅱ, Ⅲ(内山明人) 45-183
  • S. G. Mikhlin:Variational methods in mathematical physics (一松 信) 17-253
  • S. G. Mikhlin:Multidimentional singular integrals and integral equations(熊ノ郷準) 19-123
  • J. Mikusiński:Operational calculus(吉田耕作) 12-190
  • J. Milnor:Morse theory (塚本陽太郎) 21-317
  • J. W. Milnor:Lectures on the –cobordism theorem (加藤十吉) 22-234
  • J. Milnor:Singular points of complex hypersurfaces (諏訪立雄) 22-314
  • C. Miranda:Partial differential equations of elliptic type (下田節郎) 24-253
  • Barry Mitchell:Theory of categories(遠藤静男) 20-249
  • C. J. Mode:Multitype branching processes(藤曲哲郎) 26-079
  • J. D. Monk with R. Bonnet (ed.):Handbook of Boolean Algebras (渕野 昌) 43-179
  • C. C. Moore, C. Schochet:Global Analysis On Foliated Spaces (夏目利一) 41-280
  • M. Mores:Topological methods in the theory of functions of a complex variable(松本敏三) 04-115
  • F. Morgan:Geometric Measure Theory. A Beginner's Guide (中内伸光)46-363
  • Dietrich Morgenstern:Einführung in die Wahr­schein­lichkeitsrechnung und mathematische Statistik (竹内 啓)················································· 17-126
  • C. B. Morrey:Multiple integrals in the calculus of variations (村松寿延) 24-159
  • Y. N. Moschovakis:Elementary induction on abstract structures (福山 克) 29-187
  • Y. N. Moschovakis:Descriptive set theory(安田 豊) 38-087
  • R. E. Mosher and M. C. Tangora:Cohomology operations and applications in homotopy theory (島田信夫) 24-154
  • P. S. Mostert:Proeedings of the conference on transformation groups (大森英樹) 21-315
  • A. Mostowski-M. Stark:Introduction to higher algebra (一松 信) 16-186
  • D. Mumford:Geometric invariant theory(山田 浩) 19-185
  • D. Mumford:Tata lectures on theta I(小泉正二) 36-369
  • D. Mumford:Tata lectures on theta II(塩田隆比呂) 40-090
  • S. B. Nadler, Jr.:Continuum Theory(小山 晃) 46-376
  • Jun–iti Nagata:Modern dimension theory(児玉之宏) 18-121
  • J. Nagata:Modern dimension theory(津田光一) 38-188
  • M. Nagata:Local rings (成田正雄) 16-181
  • B. Sz. Nagy:Spektraldarstellung linearer transformationen des Hilbertschen Raumes(吉田耕作) 03-247
  • Y. Nakagami-M. Takesaki:Duality for crossed products of von Neumann algebras(押川元重) 36-371
  • M. Namba:Geometry of projective algebraic curves (今吉洋一) 39-371
  • M. Namik Ogustöreli:Time–lag control systems(杉山昌平) 19-119
  • R. Narasimhan:Introduction to the theory of analytic spaces (一松 信) 20-190
  • I. P. Natanson:Theorie der Funktionen einer reellen Varänderlichen (丸山儀四郎) 07-176
  • E. Nelson:Tensor anaysis (矢野健太郎) 21-309
  • V. V. Nemytskii-V. V. Stepanov:Qualitative theory of differential equations(浦 太郎) 14-057
  • R. Nevanlinna:Uniformisierung (田村二郎) 06-246
  • R. Nevanlinna他:Analytic functions(一松 信) 12-247
  • M. H. A. Newman:Elements of the topology of plane sets of points (亀谷俊司) 05-188
  • J. C. C. Nitsche:Lectures on minimal surfaces, vol. 1 (小磯深幸) 44-092
  • K. Nomizu:Lie groups and differential geometry(岩堀長慶) 11-248
  • D. G. Northcott:An introduction to  homological algebra (都筑俊郎) 14-190
  • D. G. Northcott:Finite free resolutions(橘 貞雄) 30-092
  • D. G. Northcott:Affine sets and affine groups(阿部英一,土井幸雄,竹内光弘) 35-182
  • K. Noshiro:Cluster sets (黒田 正) 13-188
  • T. Oda:Periods of Hilbert modular surfaces(太田雅己) 38-088
  • T. Oda:Lectures on torus embeddings and applications (土橋宏康) 36-373
  • T. Oda:Convex Bodies and Algebraic Geometry(中村 郁) 41-184
  • J. Ogawa:Statistical theory of the analysis of experimental designe (石井吾郎) 29-377
  • K. Oka:Sur les fonctions analytiques de plusieurs variables (河合良一郎) 15-235
  • Okonnk-Schneider-Spindler:Vector bundles on complex projective spaces (丸山正樹) 37-090
  • T. Okubo:Differential geometry(矢野健太郎) 40-371
  • F. Oort:Commutative group schemes(本田 平・宮西正宜) 20-252
  • O. Ore:The Four–color problem (一松 信) 20-244
  • P. Orlik & H. Terao:Arrangements of Hyper­planes (日比孝之) 46-368
  • M. Otto編:Mathematiker über die Mathematik(一松 信) 28-378
  • PWN編:Recent developments in generalrelativity (池田峰夫) 15-189
  • R. S. Palais:Foundations of Global nonlinear analysis (大森英樹) 26-087
  • Carol Parikh:The Unreal Life of Oscar Zariski(松村英之) 44-368
  • K. R. Parthasarathy:Probability measures on metric spaces (岡部靖憲) 21-311
  • G. K. Pedersen:–algebras and their automorphism groups (高井博司) 33-284
  • R. Péter:Rekursive Funktionen (赤 摂也) 08-058
  • V. V. Petrov:Sums of independent random variables (清水良一) 30-088
  • A. Pietsch:Nuclear locally convex spaces(高村多賀子) 28-180
  • J. D. Pincus編:Summer institute on spectral theory and statistical mechanics(一松 信) 19-191
  • V. A. Pliss:Nonlocal problems of the theory of oscillations (齋藤利彌) 20-119
  • C. Pommerenke:Univalent functions(窪田佳尚) 29-178
  • L. S. Pontryagin-V. G. Boltyanskii-R. V. Gamkrelidze-E. F. Mishchenko:The mathematical theory of optimal processes(小林竜一) 16-125
  • M. M. Postnikov:Foundations of Galois theory(河田敬義) 14-254
  • K. Prachar:Primzahlverteilung (竜沢周雄) 16-179
  • Proceedings of the United States - Japan seminar in differential geometry (志賀浩二) 19-118
  • C. Procesi:Rings with polynomial identities(大堀正幸) 30-286
  • P. H. Rabinowitz:Minimax methods in critical point theory with applications to differential equtions (田中和永) 46-182
  • H. Rademacher:Topics in analytic number theory (三井孝美) 28-175
  • H. Radjavi,P. Rosenthal:Invariant subspaces(北野孝一) 28-278
  • A. Ralston-H. S. Wilf編:Mathematical methods for digital computers 2 (一松 信) 20-243
  • R. M. Range:Holomorphic Functions and Integral Representations in Several Complex Variables (安達謙三) 48-088
  • M. M. Rao, Z. D. Ren:Theory of Orlicz Spaces(北 広男) 46-090
  • H. Rasiowa:An algebraic approach to non–classical logic (小野寛晰) 29-375
  • H. E. Rauch and H. M. Farkas:Theta functions with applications to Riemann surfaces(加藤崇雄) 28-280
  • M. Reed-B. Simon:Methods of modern mathematical physics, Ⅰ-Ⅳ(黒田成俊) 37-181
  • R.–D. Reiss:Approximate Distributions of Order Statistics ― With Applications to Nonparametric Statistics(松縄 規) 50-216
  • A. Rényi:Wahrscheinlichkeitsrechnung mit einem Anhang über Informationstheorie(国沢清典) 15-127
  • G. Ringel:Map color theorem (一松 信) 28-174
  • J. Riordan:An introduction to combinatorial analysis (山本幸一) 12-186
  • B. D. Ripley:Statistical Inference for Spatial Processes (間瀬 茂) 47-306
  • J. F. Ritt:Differential algebra (奥川光太郎) 03-117
  • A. P. Robertson and W. J. Robertson:Topological vector spaces (関数解析研究会) 21-074
  • T. Robertson, F. T. Wright, R. L. Dykstra:Order Restricted Statistical Inference(笹渕祥一) 49-329
  • B. Rodin and L. Sario:Principal functions(吉田紀雄) 21-237
  • L. Rodino:Linear Partial Difrerential Operators in Gevrey Spaces (森本芳則) 48-102
  • H. Rogers,Jr. :Theory of recursive functions and effective computability (田中尚夫) 22-155
  • L. C. G. Rogers-D. Williams:Diffusions, Markov Processes, and Martingales, vol.2: Itô Calculus (山田俊雄) 41-375
  • C. P. Rourke and B. J. Sanderson:Introduction to piecewise–linear topology (福原真二) 26-286
  • G. G. Roussas:Contiguity of probability measures; Some application in statistics(柳川 堯) 26-280
  • H. L. Royden:Real analysis (一松 信) 15-251
  • H. Rubin & J. Rubin:Equivalents of axiom of choice, Ⅱ (難波完爾) 39-285
  • Walter Rudin:Fourier analysis on groups(矢野茂樹) 20-059
  • W. Rudin:Function theory in the unit ball of(梶原壤二) 34-186
  • D. Ruelle:Thermodynamic formalism(大野泰治郎) 32-376
  • T. L. Saaty編:Lectures on modern mathematics  Ⅰ, Ⅱ (一松 信) 17-052
  • T. L. Saaty編:Lectures on modern mathematics,Ⅲ (一松 信) 21-159
  • G. E. Sacks:Saturated model theory(本橋信義) 27-284
  • S. Sakai:–algebras and –algebras(御園生善尚) 26-370
  • S. Saks-A. Zygmund:Analytic functions(小掘 憲) 07-122
  • G. Samorodnitsky, M. S. Taqqu:Stable non–Gaussian Random Processes ― Stochastic Models with Infinite Variance(竹中茂夫) 48-108
  • P. Samuel:Algèbre locale (永田雅宜) 07-049
  • P. Samuel:Méthodes d'algèbre abstraite en géométrie algébrique (永田雅宜) 09-055
  • G. Sansone and R. Conti:Non–linear differential equations (吉沢太郎) 17-186
  • L. Sario and K. Oikawa:Capacity functions(酒井 良) 26-081
  • L. Sario-M. Nakai:Classification theory of Riemann surfaces (藤家龍雄) 26-181
  • Sarnak:Some Applications of Modular Forms(小山信也) 50-319
  • M. Schechter:Principles of functional analysis(牛島照夫) 26-182
  • L. I. Schiff:Quantum mechanics(小林 稔) 03-120
  • M. Schiffer-D. C. Spencer:Functionals of finite Riemann surfaces (一松 信) 07-172
  • O. F. G. Schilling:The theory of valuations(稲葉栄次) 05-119
  • W. Schmeidler:Lineare Operatoren im Hilbertschen Raum (三村征雄) 08-055
  • Th. Schneider:Einführung in die transzendenten Zahlen (大成節夫) 15-184
  • H. Scholz und G. Hasenjaeger:Grundzüge der mathematischen Logik (赤 摂也) 15-127
  • J. A. Schouten:Tensor analysis for physicists(岩田義一) 05-253
  • J. A. Schouten:Ricci–Calculus. An introduction to tensor analysis and its geometrical applications (矢野健太郎) 07-124
  • H. Schubert:Topologie, eine Einführung(小林貞一) 17-057
  • K. Schütte:Proof theory (高野道夫) 30-371
  • L. Schwartz:Théorie des distributions(竹之内 脩・林 一道) 03-113
  • L. Schwartz:Théorie der distributions Ⅱ(林 一道) 04-187
  • J. T. Schwartz編:Mathematical aspects of computer science (藤野精一) 21-302
  • Scientific American, 1964年9月号(赤 摂也) 17-173
  • W. R. Scott:Group theory (稲垣信夫) 17-177
  • B. Segre:Prodromi di Geometria Algebrica(水野弘文) 26-274
  • J.–P. Serre:Groupes algébriques et corps de classes (有馬 哲) 12-177
  • J.–P. Serre:Corps locaux (本田 平) 18-190
  • J.–P. Serre:Lie algebras and Lie groups(菅野恒雄) 19-116
  • J.–P. Serre:Algèbres de Lie semi–simples complexes (菅野恒雄) 20-118
  • J. P. Serre:Abelian –adic representation and elliptic curves (森田康夫) 22-239
  • J.–P. Serre:Represéntations linéares des groupes finis (吉田知行) 27-287
  • I. R. Shafarevich:Basic algebraic geometry(猪瀬博司) 31-277
  • C. E. Shannon-J. McCarthy:Automata studies(赤 摂也) 10-049
  • C. E. Shannon-W. Weaver:The mathematical theory of communication (国沢清典) 04-189
  • J. H. Shapiro:Composition Operators and Classical Function Theory (高木啓行) 50-330
  • O. Shisha編:Inequalities (一松 信) 21-159
  • G. R. Shorack, J. A. Wellner:Empirical Processes with Applications to Statistics(安芸重雄) 46-364
  • M. A. Shubin:Pseudo–differential operators and spectal theory (長瀬道弘) 40-278
  • C. L. Siegel:Transcendental numbers(黒田成勝) 03-189
  • C. L. Siegel:Verlesungen über Himmels­mechanik (青木信仰) 11-057
  • C. L. Siegel:Zur Reduktionstheorie quadratischer Formen (編集部) 15-191
  • C. L. Siegel:Lectures on advanced analytic number theory (本田 平) 16-174
  • C. L. Siegel:Symplectic geometry(伊原信一郎) 17-180
  • W. Sierpiński:Elementary theory of numbers(鹿野 健) 17-176
  • Joseph H. Silverman:Advanced Topics in the Arithmetic of Elliptic Curves (中村哲男) 49-434
  • I. Singer:Cea mai bună approximare în spaţii vectoriale normate prin elemente din spaţii vectoriale (一松 信) 21-073
  • Y.–T. Siu:Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics (満渕俊樹)· 40-370
  • L. A. Skornyakov:Complemented modular lattice and regular rings (雨宮一郎) 18-119
  • I. N. Sneddon:Mixed boundary value problems in potential theory (小松勇作) 21-152
  • C. D. Sogge:Fourier Integrals in Classical Analysis (杉本 充) 50-098
  • Edwin H. Spanier:Algebraic topology(野村泰敏) 20-246
  • T. A. Springer:Linear algebraic groups(阿部英一,土井幸雄,竹内光弘) 35-182
  • R. P. Stanley:Enumerative Combinatrics, Volume Ⅰ (日比孝之) 44-089
  • N. Steenrod:The topology of fibre bundles(静間良次) 03-248
  • N. E. Steenrod:Cohomology operations(横田一郎) 15-187
  • M. L. Stein-W. D. Munro:Computer programming (野崎昭弘) 17-059
  • E. M. Stein and G. Weiss:Introduction to Fourier analysis on Euclidean spaces(矢野茂樹) 28-183
  • E. M. Stein:Harmonic Analysis; Real–Variable Methods, Orthogonality, and Oscillatory Integrals (宮地晶彦) 47-421
  • S. Sternberg:Lectures on differential geometry(荻上紘一) 20-063
  • M. I. Stoka:Geometrie Integrală (栗田 稔) 21-155
  • E. L. Stout:The theory of uniform algebras(藪田公三) 28-178
  • H. Strasser:Mathematical Theory of Statistics(山田作太郎・鈴木 武) 43-184
  • S. Stratila and L. Zsido:Lectures on von Neumann algebras (英訳:S. Teleman)(荒木不二洋) 32-378
  • D. W. Stroock-S. R. S. Varadhan:Multi­dimensional diffusion processes(国田 寛) 34-282
  • M. Sugiura:Unitary representations and harmonic analysis (平井 武) 36-182
  • R. G. Swan:Algebraic –theory(大林忠夫) 23-072
  • M. E. Sweedler:Hopf algebras (服部 昭) 24-078
  • R. M. Switzer:Algebraic topology–homotopy and homology (小林貞一) 30-370
  • M. Takesaki:Tomita's theory of modular Hilbert algebras and its applications(竹之内 脩) 26-375
  • M. Takesaki:Theory of operator algebras Ⅰ(斉藤和之) 33-281
  • G. Takeuti and W. M. Zaring:Axiomatic set theory (篠田寿一) 26-283
  • G. Takeuti:Two applications of logic to mathematics (八杉満利子) 36-283
  • G. Takeuti:Proof theory, (second edition)(倉田令二朗) 40-368
  • K. Takeuchi, H. Yanai, B. N. Mukherjee:The foundations of multivariate analysis     (白倉暉弘) 37-091
  • A. Tarski:Undecidable theories (赤 摂也) 06-239
  • M. E. Taylor:Pseudodifferential Operators and Nonlinear PDE, Progress in Mathematics, vol. 100 (山崎昌男) 50-325
  • R. Temam:Navier-Stokes equations(森本浩子) 32-378
  • S. Thangavelu:Lectures on Hermite and Laguerre Expansions (勘甚裕一) 50-105
  • J. A. Thorpe:Elementary topics in differential geometry (尾関英樹) 33-087
  • A. F. Timan:Theory of approximation of functions of a real variable(洲之内源一郎) 17-051
  • E. C. Titchmarsh:The theory of the Riemann zeta–function (竜沢周雄) 04-253
  • E. C. Titchmarsh:Eigenfunction expansions associated with second–order differential  equations, Part Ⅱ (加藤敏夫) 12-188
  • E. Torgersen:Comparison of Statistical Experiments (草間時武) 44-363
  • L. F. Tóth:Regular figures (一松 信) 17-060
  • F. G. Tricomi:Vorlesungen über Orthogonalreihen (河田竜夫) 08-125
  • H. Triebel:Interpolation theory, function spaces, differential operators (村松寿延) 33-083
  • H. Triebel:Fourier analysis and function spaces(村松寿延) 36-180
  • H. Triebel:Spaces of Besov‐Hardy‐Sobolev type (村松寿延) 36-180
  • A. S. Troelstra:Lectures on linear logic(小野寛晰) 46-371
  • A. J. Tromba:Teichmüller Theory in Riemannian Geometry (宇田川誠一) 46-374
  • C. Truesdell:An essay toward a unified theory of special functions, based upon the functional equation(柴垣和三郎) 05-051
  • M. Tsuji:Potential theory in modern function theory (及川広太郎) 14-050
  • K. Ueno:Classification theory of algebraic varieties and compact complex spaces(藤木 明) 36-379
  • M. Urabe:Nonlinear autonomous oscillations,analytical theory (宇野利雄) 24-341
  • B. van der Pole-H. Bremmer:Operational calculus based on the two–sided Laplace integral (伊藤 清) 11-116
  • B. L. van der Waerden:Science awakening (S. I.) 07-182
  • Varchenko, V. I. Arnold, Gusein-Zade:Singularities of differentiable maps, vol. Ⅰ(福田拓生) 38-377
  • J. von Neumann-O. Morgenstern:Theory of games and economic behavior(関 恒義) 03-185
  • A. Wald:Statistical decision functions(宮沢光一) 04-049
  • C. T. C. Wall:Surgery on compact manifold(松元重則) 26-083
  • A. H. Wallace:An introduction to algebraic topology (小松醇郎) 15-187
  • C. Warner:Harmonic analysis on semi-simple Lie groups, Ⅰ,Ⅱ (岡本清郷) 27-189
  • Washington:Introduction to cyclotomic Fields(小松啓一) 41-092
  • S. Watanabe:Lectures on stochastic differential equations and Malliavin calculus   (重川一郎) 38-375
  • W. C. Waterhouse:Introduction to affine group schemes (阿部英一,土井幸雄,竹内光弘) 35-182
  • A. Weil:Foundations of algebraic geometry(小泉正二) 02-082
  • A. Weil:Sur les courbes algébriques et les variétés qui s'en déduisent (井草準一) 03-061
  • A. Weil:Variétés abéliennes et courbes algébriques (井草準一) 03-061
  • A. Weil:Theorie der Kählerschen Mannigfaltigkeiten (秋月康夫) 06-121
  • André Weil:Introduction à l'étude des variétés kählériennes (森川 寿) 13-122
  • Weil:Basic number theory (足立恒雄) 24-345
  • A. Weil:Number theory (足立恒雄) 38-374
  • André Weil:Souvenirs d'apprentissage(The apparenticeship of a Mathematician)(草場公邦) 44-367
  • H. Weyl:Die Idee der Riemannschen Fläche(佐々木秀穂・田村二郎・一松 信) 09-125
  • H. Weyl-F. J. Weyl:Meromorphic functions and analytic curves (松本敏三) 04-114
  • G. W. Whitehead:Elements of homotopy theory (笹尾靖也) 32-377
  • D. T. Whiteside:The mathematical works of Isaac Newton 1 (中村幸四郎) 18-116
  • G. T. Whyburn:Topological analysis(一松 信) 11-123
  • Wielandt:The theory of permutation groups(永井 治) 18-055
  • S. Wiggins:Normally Hyperbolic Invariant Manifolds in Dynamical Systems(國府寛司) 50-434
  • T. J. Willmore:An introduction to differential geometry (矢野健太郎) 12-249
  • A. Wintner:The analytical foundations of celestial mechanics (浦 太郎) 03-119
  • P. Wolf:Algebraische Theorie der Galoisschen Algebren (増田勝彦) 10-058
  • N. M. J. Woodhouse:Geometric Quantization (三上健太郎) 47-315
  • M. Woodroofe:Nonlinear renewal theory in sequential analysis (高橋 一) 37-084
  • K. Yano:Groups of transformations in generalized spaces (佐々木重夫) 02-188
  • K. Yano:The theory of Lie derivatives and its applications (高橋恒郎) 09-129
  • Kentaro Yano:Differential geometry on complex and almost complex spaces(佐々木重夫) 19-117
  • K. Yano-S. Bochner:Curvature and Betti numbers (一松 信) 06-052
  • M. Yoshida (吉田正章):Fuchsian Differential Equations with Special Emphasis on the Gauss-Schwarz theory (寺田俊明) 42-090
  • T. Yoshino:Introduction to Operator Theory(古田孝之) 48-081
  • T. Yoshizawa:Stability theory by Liapunov's second method (栗原光信) 24-340
  • K. Yosida:Functional analysis (山中 健) 21-234
  • A. C. Zaanen:Integration (伊藤清三) 22-233
  • O. Zariski:Introduction to the problem of minimal models in the theory of algebraic surfaces (永田雅宜) 12-127
  • O. Zariski-P. Samuel:Commutative algebra,Ⅰ, Ⅱ (永田雅宜) 13-182
  • O. Zariski:Algebraic surfaces (飯高 茂) 26-088
  • A. Zygmund:Trigonometric series(矢野茂樹) 14-187
  • Н. Я. Виленкин:Специальные функции и теория представлений групп(杉浦光夫) 19-255
  • И. М. Гельфанд-М. И. Граев-Н. Я. Виленкин:Интегральная гесметрия и связанные с ней вопросы теорий представлений(辰馬伸彦他) 16-247
  • И. М. Гельфанд-Г. Е. Шилов:Обобшенные функции (I. M. Gelfand-G. E. Šilov:超函数論) (山中 健・折原明夫・高村幸男・湯浅多賀子・鈴木一正・松原 稔) 12-179
  • И. М. Гельфанд-Н. Я. Виленкин:Некоторые применения гармонического анализа. Оснашённые Гильбертвы пространства(折原明夫) 14-246
  • Г. М. Голузин:Геометрическая теория функций комплексного переменного(久保忠雄) 06-243
  • Е. Б. Дынкин:Основания теорииМарковских процессов (佐藤健一) 14-055
  • Е. Б. Дынкин:Марковские процессы(佐藤健一) 19-126
  • А. Н. Колмогоров-С. В. Фомин:Элементры теории функций и функционал ь ного анализа (函数論と函数解析の基礎)   (伊藤清三) 15-124
  • А. Г. Курош:Лекции по обшей алгебре(服部 昭) 18-057
  • О. А. Ладьженская-Н. Н. Уральцева:Линейные и квазилинейные уравнения эллиптического типа (草野 尚) 18-061
  • Р. Ш. Липцер, А. Н. Ширяев:Теория мартингалов (櫃田倍之) 41-277
  • Е. С. Ляпин:Полугруппы (井関清志) 14-060
  • Г. И. Марчук:Методы вычислительной математики (野木達夫) 30-085
  • В. П. Маслзв:Теория возмушени й иасимптотические методы(吉川 敦) 27-186
  • М. А. Наймарк:Нормированные кольца(M. A. Neumark:ノルム環) (三村征雄) 11-060
  • М. А. Наймарк:Линейные представления группы Лоренца (杉浦光夫) 18-189
  • Л. С. Понтрягин:Обыкновенные дифференциальные уравнения(黒田成俊) 17-121
  • Б. А. Севастьянов:Ветвяшиеся процессы(河津 清) 27-280
  • А. В. Скороход:Случайные процессы с независимыми прирашениями(山里 真) 41-091
  • Б. А. Фукс:Теория аналических функций многих комплексных переменных(一松 信) 08-246
  • И. Р. Шафаревич他:Алгепраическепо верхности (飯高 茂) 19-057
  • ソ連百科辞典局編:Математическая энциклопедия, 1 (А-Г)(一松 信) 30-374