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CARS, INTERCHANGES, TRAFFIC COUNTERS, AND SOME PRETTY
DARNED GOOD KNOT INVARIANTS

DROR BAR-NATAN, UNIVERSITY OF TORONTO

ABSTRACT. A condensed summary of a talk I gave in Nara on August 13, 2023: Reporting
on joint work with Roland van der Veen, I'll tell you some stories about pi, an easy to
define, strong, fast to compute, homomorphic, and well-connected knot invariant. p; was
first studied by Rozansky and Overbay [Rol, Ro2, Ro3, Ov] and Ohtsuki [Oh2], it has far-
reaching generalizations, it is dominated by the coloured Jones polynomial, and I wish I
understood it.

Ovar Bar Noean: Talks: Nara 230 Thanks for inviting me o Nara! wep=ht

My talk7s tltle and abStraCt were the salne (l uv\ .ill;;Ll;;.hl Traffic C nunlu and some Pretty Damed Good Knot Invariants
: 3 stract. Reporting on joint wor
as the title and abstract of this summary. [\ Reerine ook 'E-l E I
iverbay Obesuki )/v

: . . 0u some stories about gy, an easy B 4 Formulas sta
The talk used slides, and in this SUMMATY, | s b e o 655 QR incopressions chasge wit
. homomorphic, and well-connected knot invar { was first Formulas. Draw an n-c ng kng as
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Those slides were all excerpts from a handout, which is attached e
at the end of this document. It is where the true content lies! It ° C §= 1
is also available on the web site of this talk, which is displayed on == | =
. x e
the next slide. i
As an aside, I really believe in this way of giving talks, with slides el
. . wa or
and a handout. Slides are to save time and to allow for more elabo- e

rate figures. But slide talks without a handout are awful! Content
disappears before it’s been digested. A handout with identical con-
tent to the slides solves the problem — you can always look back to
recall (and ahead, to decide how hard you want to fight sleep). But .
then the best way to make sure that the handout and the slides :
are fully synced is to have the slides simply be zoomed-in parts of the handout and that’s
precisely what I do.

But it’s a waste of so much paper, I hear you say. Yes, I say, but it’s completely trivial
relative to our travel to hear each other talk. Save where it matters. Where it’s useful,
spend.

Okay, it’s all online, at weB:=http://drorbn.net/na23. wep:=http://drorbn.net/na23 MM
There’s also a paper, at wef/APAL ants More at wep/APAI E‘ﬁ%
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We seek strong, fast, and homomorphic invariants.
Strong and fast are clear enough. Especially, we care
for fast because of the likes of the GST48 knot [GST]
and the Piccirillo knot [Pi]. Polynomial time is best!

We then explained “homomorphic”. Tt means, “ex-
tends to tangles and is well behaved under tangle glu-
ing and strand doubling”.

We care for “homomorphic” because using tangles
and tangle operations we can define interesting classes
of knots, and thus invariants that are homomorphic
with respect to these operations may be able to tell us
something about these classes. See we/AKT.

But enough with philosophy! Ilearned from Vaughan
Jones that theories change with time, yet formulas
stay. So let’s start with formulas!

To compute our knot invariant p;, we cut it to a long
knot and place it in the plane so that at all vertices, all
edges are “flowing up”. We then label each edge with
serial number and with its rotation number ¢y.

We make a (2n+1) X (2n+1) matrix A
by starting with the identity matrix and
adding a 2 x 2 block for each crossing,
as shown on the right. We let G = (gqp)
be the inverse of A.

Let G = (g.5) = A™". For the trefoil example, it is:
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We seek strong, fast, homomorphic knot and tangle invariants.
Strong. Having a small “kernel”.
Fast. Computable even for large knots (best: poly time).

AN
i mg) @}JD
St

:[Why care for “Homomorphic”? Theorem. A knot K is ribbon
iff there exists a 2n-component tangle 7 with skeleton as below
[cuch that 7(7') = K and where 6(7') = U is the untangle:

UUU \is U("ki"lu - WD @ WO

Gompf-Scharleman- gl gt g

Homomorphic. Extends to tan-
gles and behaves under tangle
operations; especially gluings
and doublings:

Formulas stay:
interpretations change with time.

5 Jones: | +

Formulas. Draw an n-crossing knot K as on the ri- 7

ght: all crossings face up, and the edges are marked
with a running index ke {1..... 2n + 1} and with
rotation numbers ¢;. Let A be the (2n+ 1)x(2n+1)
matrix constructed by starting with the identity ma-
trix /, and adding a 2 x 2 block for each crossing:

s=+1 s=-1

rotation numbers ;. Let A be the (2n+1)X (2n+1) Q 4

imatrix constructed by starting with the identity ma-

trix /, and adding a 2 X 2 block for each crossing: 5
s=+1

s=-1

A |coli+l col j+1
rowi | =T° T*=1
row j 0 -1

SR
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If we start from the trefoil knot diagram displayed
before, the resulting A is shown on the right.

And now the corresponding G, the “Green Func-
tion”, is shown.

We noted that det(A) is (up to a normalization) the
good old Alexander polynomial. If you are a classical
topologist, you should yawn and perhaps fall asleep
right now, for so far everything is very old material.

The 2 x 2 matrices are the Burau matrices. The matrix A is a presenta- Burau
tion matrix of the Alexander module, derived by applying Fox calculus to the
Wirtinger presentation. Even G is not a great surprise; it is related to the
“Blanchfield Pairing”. All of these people are old timers, so much so that their

pictures are in black and white.

e
SAR Jones:

4 Formulas stay;

o interpretations change with time.

Formulas. Draw an n-crossing knot K as on the ri- -
ght: all crossings face up, and the edges are marked
with a running index k € (I,.... 2n+ 1) and with .
rotation numbers ¢;. Let A be the (2n+ 1)x(2n+1)
matrix constructed by starting with the identity ma-
trix /, and adding a 2 x 2 block for each crossing:

s=+1 §=-1
,wrkm* i+ 'i*j . 3
A |coli+]l col j+1
3 / > rowi| -T* T°-1
i }\ j i ow j 0 -1

Burau

Let G = (g,5) = A™". For the trefoil example, it is:
12 0 0 ®=1 0 0 :
0 1 =] 0 0 0 0
i Alexand
0 0 1 -T (1] 0 T-1 exan crﬁ
, 3

A= 0 0O 0 I -1 0 0

0O 0 7-1 0 1 =T 0
0 0 0 0 0 1 -1 Fox [ ¢
00 0 0 0 0 1 C3
1 T 1 T 1 T 1
1 T T Y &
0 1 w=/7 7= 7o T—1+1 1
00 L i T 1
G= T TRpa TR Tga
7=10 0 POF Torgr TRTH TR 1
0 0 w55 -7 7o 7o |
0 0 0 0 0 1 1
E 00 0 0 0 0 1
“The Green Function™ E

Note. The Alexander polynomial A is given by
A = TE9"2 det(A), with ¢ = Zgak. w= Z s
3 ¢

Classical Topologists: This is boring. Yawn.

Alexander

‘Wirtinge
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All the news is in just one slide, the Formulas, continued. Finally, set
one on the rlght' We defined Rl(C) and Ri(¢) == s(gji(gj+l,j+gj.j+l —g,-j)—g;; (gj‘.j+| - ]) = 1/2)

p1, explained why p; is easy to compute
(as easy as the Alexander polynomial),

p1 = A2 (Z Ri(c) - Z ek (8rk — 1/2)]~
c X

and asserted that it is invariaqt (to be 14 our example py = —T? + 2T -2+ 2T-' -T2,
proven belOW)- If you are a classical topol- Theorem. p1 is a knot invariant. Proof: later.
ogist, these formulas should come as a Classical Topologists: Whiskey Tango Foxtrot?

complete surprise to you.

These days I take what I learned from Vaughan
Jones a step further. I care for programs even more

than I care for formulas.

Jones:
_ Formulas stay;
interpretations change with time.

We load some libraries that play a mild role: just Preliminaries
tables of knots, and some older invariants for com- Thisis Rho.nb of http://drorbn.net/oa22/ap.
parison, and a program to compute rotation numbers —oncef<< knotTheory™; << Rot.m];

(something we could have done by hand).

Next is the main part of the program. It is
almost one-to-one the same as the formulas for
p1, and if there’s ever a disagreement, the pro-
gram is to be trusted better because it’s been
tested extensively. Note that the program out-
puts the ordered pair Z = (A, p1), because A
is computed anyway within the computation of
p1, and we consider it as a part of p;.

Loading KnotTheory™ version
of February 2, 2020, 10:53:45.2097.
Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/1la22/ap
to compute rotation numbers.

The Program

Ri[s_, 1,71 :=

S (851 (Bj*,5 + 8j,5* = Bij) - Bit (87,54 -1) -1/2);

ZIK_] := Module[(Cs, @ Ny A, S, iy 35 Ky A, G, p1),

{Cs, ¢} =Rot[K]; n = Length[Cs];
A = IdentityMatrix[2n+1];
Cases[Cs, 5.1 57 Yo

(ISRES AR AE RE 15 R il ) ) F
A= T(-Total[w]-Total[Cs[All,l]]])/2 Det [A];
G = Inverse[A];
pl=" Ri@@CsIk] - )" oKD (B -1/2);
Factore
{A, Apl/.a*msa+l/. Ba,s Gla, /J']I}];

We run the program on all knots with up to 6 cross-  The First Few Knots

ings.

TableForm[Table [Join[ {K[1lgz}» ZIK1],
{K, AllKnots[{3, 6}]}], TableAlignments - Center]

1-1.12 (-1.m2 (1,72
3 {247
T =

4, 1 3:41 o
5, 8 8GR 112 (172] 2072027
12 )
Ba 2-371.272 (<112 (5-4 15 72)
T 2
6, 2.T) (-1:2T) 112 1 47,72
T =
6, _a sr‘n?z”’w‘ (-1:1)2 [1-4T1472-a73.a74 475,76
T )

2 3 44
1315123737
63 2 2
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The program is fast! Here is the GST48 knot once Fast!
again,. . .

and it takes only about 170 seconds to compute its Timinee - -
Z[GSTA8 = EPD [Xa,1, X2,205 X3,405 Xa3,a5 X25,55 Xe,055

pl . Xos,75 X13,85 79,1:: X10,415 Xa2,115 irl,u; X30,155
X16,615 X17,725 X1s,835 X19,345 Xs9,205 X21,925
X9,225 Xes,235 Xs7,205 Xas,565 Xe2,315 X73,325
Xgs,335 ise,;s: X36,81> X37,70 Xag,505 X39,505 Xaa,ss5
Xss,455 Xe9,46 Xgo,475> Xas, 015 Xoo,49, Xs1,82, Xs2,715
Xs3,605 X63,745 Xea,855 76,655 Xa7,665 Xe7,945

X75,865 Xss,77 in,s:] ]

{179.313,{f%{71,274171347‘—75&5)
(~1~T3-2T‘~T57T6~2T7¢TB:),;Té
(-1+T)% (5-18T+3372-327" 427"+ 427° - 627°
87 +166T% - 24277 +108T*® + 1327 - 226 T*2 +
148 TP - 117 - 36 T - 117+ 148 TV - 226 T® +
1327 4108 T2 - 242 T2 4 166 T2 - 8T - 62 T* 4

427% 4273277 4337 - 1871+ 57%) |}

Z = (A, py) is strong! Tt seems that it is stronger Strong!
{NumberOfKnots [{3, 12}],
than HOMFLY-PT and Khovanov homology taken to- [ e
gether. UnioneTable([Z([K], (K, ALlKnots[{3, 12}1}],
Lengthe
Union@Table [ {HOMFLYPT[K], Kh[K]},
{K, AllKnots[{3, 12}]}]}
(2977, 2882, 2785)
So the pair (A, py) attains 2,882 distinct values on the 2,977 prime
knots with up to 12 crossings (a deficit of 95), whereas the pair
(HOMFLYPT, Khovanov Homology) attains only 2,785 distinct
values on the same knots (a deficit of 192).

. -
ARG

h ) v } 9 Eag

toste. Ocneanu Millett Freyd Lckorish  Yeteer

Praytycki  Tracayk  Mbowanav

On to interpretations, we discussed the :3, wordscic [Cars, Interchanges, and Traffic
traffic rules for cars on a knot diagram. oo s [FoURters. Cars always drive forw-
All car crashes we discuss are gentle and """ iy i g

g ) the Joney Poly-

t goes through with (algebraic) pro-
no harm is ever caused to the occupants s 1752 (1996) bability 7 ~ 1, but falls off with probability 1 — 7% ~ 0*. At the
of our cars.

ery end, cars fall off and disappear. See also [Jo, LTW].
-
- !

.
4
image credits: image cln:lmr
* In algebra x ~ 0 if for every y in the ideal generated by x, | - y is invertible.

Jones Lin Tian  Wang

L

digmonderattic.com




A relevant scene with Lightning McQueen, enacted by

Roland’s kids.

We claim that the matrix G of before is the traf-
fic matrix for a knot diagram. Yet first we illustrate
the traffic matrix using a very simple knot diagram (a
single kink), and some simple-minded geometric sum-
mation.

We then used “g-rules” to prove the claim. These
are rules that tell us how to move the traffic injection
sites and the traffic counting sites, and they will also
be useful below, within the actual proof of invariance.

On to the invariance under the hardest of the Rei-
demeister moves, Reid3. We first establish that traffic
away from the Reid3 site is not affected by the move.
This is essentially the invariance of the Burau repre-
sentation.

It follows that we only need to understand the con-
tribution of the R;(c) terms from the crossings within
the Reid3 area.

We could have done it by hand, but we are lazy
and we have good computer skills. So we type in the
g-rules, the three R; contributions for the left hand
side of Reid3 and the three R; contributions for the
right hand side. We then apply the g-rules to move
the traffic injection sites and the traffic counting sites
to outside of the Reid3-move area, to where they are
unchanged by the move. Comparing 1hs with rhs, the
computer says True, which means that p; is invariant
under Reid3.

As a second example we verify invariance under Reid1.

Most of the work had already been done, because we
computed already the “traffic matrix” of a kink. What
remains is a little calculation (without forgetting the
rotation-number correction!). We do that calculation
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s p=1-7

I |
=|0 F=F 1

Theorem. The Green function g, is the
reading of a traffic counter at g, if car traffic
is injected at « (if @ = S, the counter is after
he injection point).

Example.

Zpmoll— T)‘ =71 T'

%Q; —p\,w —&\/\QQI ’

Proof. Near a crossing ¢ with sign s, incoming upper ?\
kedge / and incoming lower edge j. both sides satisfy the %
o-rules: il
=0+ T gnp+(1 =Tgi1p Eu=0i+8ip
fand always, g,2,+1 = 1: use common sense and AG = I (= GA).
Bonus. Near ¢, both sides satisfy the further g-rules:

8ai = T (8uist = Oaist)y  &uj =

0o 0 1

81 = (1 = T")gay = o j41.

Invariance of p;. We start with the hardest, Reidemeister 3:

1-T {T(! T) (I 7)+T(I'T1/}(I nr j,

e

/ﬁg//m

= Overall traffic patterns are unaffected by Reid3!

= Green's g,p is unchanged by Reid3, provided the cars injection
site @ and the traffic counters 8 are away.

= Only the contribution from the R, "L i

‘.',

terms within the Reid3 move matters, and
using g-rules the relevant g,z's can be pu-
ched outside of the Reid3 area:

. TEr2

< a4 ar.

= Only the contribution from the k, ke
terms within the Reid3 move matters, and
using g-rules the relevant g,5's can be pu-
shed outside of the Reid3 area:
B¢ ,; t=If[i===3,1,0];
gRules, , . :=
{g, g S+ T B, o+ (1 - T’) 8j*,4s Bis *
Bo i T (Baytt = 84,04) s
Ba g Ba,jt - (1 - T’) Bat - (5_,‘,'}
1hs = Ry[1, 3, k] +Ry[1, i, k'] +Ry[1, i%, 31 /7.
gRules, ;. U gRules, ; .+ JgRules, ;v 5;
rhs = Ry [1, 1, 3] +Ry[1, i*, k] +Ry 1, 3°, k'] 7/.
BRules, ; ;U gRules, ;. , UJgRules, . ,«;
Simplify[lhs = rhs]
True

Next comes Reidl, where we use results from an earlier example:

b B i E
Ri[1,2,1] -1 (822-1/2) /. Ba,p ™ [or‘ 1l|Ia. A1

001 3
1 ¥ =d» % =1
7T = 2
Invariance under the other moves is proven similarly. - '?

on the right, using a hybrid of computer and human power (very little of each). A few further

6
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moves need to be shown — they are discussed at we3/APAI This concludes the invariance

proof for p;.

This slide ought to be shown
bigger. Wearing my topology hat,
I genuinely, honestly, don’t know
what’s going on.

Unfortunately, at this point we had to rush towards
the end, and be brief. Wearing my quantum algebra
hat, the first thing to note is that there is a whiff of
a Heisenberg relation in car traffic — a difference of 1

Wearing my Topology hat the formula for R,
even the idea to look for Ry, remain a complete my-
stery to me.

and

H

Wearing my Quantum Algebra hat, I spy nHelsenherg
algebra H = A(p, 0)/([p,x] = 1):
cars «* p

Drinfel'd
Lawrenc

\

traffic counters < x WESENBERG

between the traffic counting before and after the place
where traffic is injected, and that may remind us of the Heisenberg commutation relation,

[p,z] = 1.

I have gone through the remaining few slides way too quickly. Here I will let them speak

for themselves.
cited in them, and the comments in red.

Where did it come from? Consider

gc = sl5, = L(y,b,a,x) with relations
[b,z] =ex, [by]=—ey, [b,a]=0
la,z] =z, |a,y] =—y, [z,y]=0+ea.

At invertible ¢, it is isomorphic to sly plus a
central factor, and it can be quantized a la
Drinfel’d [Dr] much like sy to get an algebra
QU = A{y,b,a, r) subject to (with ¢ = e):

[b,a] =0, [b,x] =cx, [by]=—cy,
[a,x] =T, [a7y] ==
1— (B—h(b—i-ea)
Ty — qyz = -

Now QU has an R-matrix solving Yang-
Baxter (meaning Reid3),

)" ()"

9

Z y"b™ ® (ha)

m![n],!
m,n>0

([n]q! is a “quantum factorial™)

and so it has an associated “universal quan-
tum invariant” a la Lawrence and Oht-
suki [La, Ohl], Z.(K) € QU.

Now QU = U(g.) (only as algebras!) and

U(g.) represents into H via
y— —tp—e-ap’, b—t+e-ap,

a—Tp, T —x,

7

The main things to learn from these reproduced slides are the references

(abstractly, g. acts on its Verma module

U(ge)/U(ge)(y, a,b — ea — 1)) = Qla]

by differential operators, namely via H), so R
can be pushed to R € H® H.

Everything still makes sense at e 0
and can be expanded near ¢ 0 resulting
with R = Ro(1 + ¢Ry + --+), with Ry
et@P21=23p) and R, a quartic polynomial in
p and x. So p’s and x’s get created along K
and need to be pushed around to a standard
location (“normal ordering”). This is done

using
(P DRo=Ro(T(pe 1)+ (1 -T)(1®p)),
(1%p)Ro=Ro(l®p),

and when the dust settles, we get our formu-
las for p;. But QU is a quasi-triangular Hopf
algebra, and hence p; is homomorphic.
Read more at [BV1, BV2]| and hear more at
0efB/SolvApp, weB/Dogma, weB/DoPeGDO,
0eB/FDA, weB/AQDW.

Also, we can (and know how to)
look at higher powers of ¢ and we
can (and more or less know how
to) replace sly by arbitrary semi-
simple Lie algebra (e.g., [Sch]). So
p1 is not alone!

Schaveling
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These constructions are very similar to [ hence to the “loop expansion” of the Kontse-
Rozansky-Overbay [Rol, Ro2, Ro3, Ov] and | vich integral and the coloured Jones polyno-
mial [Oh2].

We re-iterated that an invariant as simple as p; must
have a simple explanation, hopefully, within topology.
Our current understanding of p; within quantum alge-
bra is simply way too complicated.

We also remind that in some sense, p; is a “friend”
of the Alexander polynomial A, and that A is perhaps

If this all reads like insanity to you, it should (and you haven't
seen half of it). Simple things should have simple explanations.
Hence, Homework. Explain p; with no reference to quantum
voodoo and find it a topology home (large enough to house ge-
neralizations!). Make explicit the homomorphic properties of p;.
Use them to do topology!

P.S. As a friend of A, p gives a genus bound, sometimes better
than A’s. How much further does this friendship extend”?

the most topologically-meaningful knot invariant. Like A, p; gives a genus bound. Does it
also give a ribbon criteria like the Fox-Milnor condition for A?

At the end, we merely flashed our theorem regarding
pa, which generalizes p; when d > 1, and our imple-
mentation thereof. For d > 2, py is more complicated
than p;, yet it retains some things in common with
p1: Once more the key is the matrix G = (ga5). To
compute p; we carry out a 1-fold summation over the
features of the knot (crossings and rotations), of poly-
nomials of degree < 2 in the g,5’s. To compute pgy
we carry out a d-fold summation over the features of
the knot, of polynomials of degree < 2d in the gos’s.
Multiple summations are of course more costly than
single summations, yet the computation of p, remains
of polynomial time and for small d it is completely
practical.
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University of Toronto: Dror Bar-Natan: Talks: Nara-2308:

Thanks for inviting me to Nara!
Cars, Interchanges, Traffic Counters, and some Pretty Darned Good Knot Invariants More at wep/APAT [t

wef:=http://drorbn.net/na23 EMEI

Abstract. Reporting on joint work
with Roland van der Veen, I'll tell
lyou some stories about p;, an easy Rozanbky'-
to define, strong, fast to compute,

ATl
Overbay Ohtsuki van der
Veen

homomorphic, and well-connected knot invariant. p; was first
studied by Rozansky and Overbay [Rol, Ro2, Ro3, Ov] and Oh-
tsuki [Oh2], it has far-reaching generalizations, it is dominated
by the coloured Jones polynomial, and I wish I understood it.

Common misconception. “Dominated” =» “lesser”.

Formulas. Draw an n-crossing knot K as on the ri-

'We seek strong, fast, homomorphic knot and tangle invariants.
Strong. Having a small “kernel”.
Fast. Computable even for large knots (best: poly time).

|

"’V IE
Piccirillo

(@

i WO

ot

Gompf—Scharlemann—
Thompson

Homomorphic. Extends to tan-
eles and behaves under tangle
operations; especially gluings
and doublings:

'Why care for “Homomorphic”? Theorem. A knot K is ribbon
iff there exists a 2n-component tangle 7 with skeleton as below
such that 7(7') = K and where 6(T) = U is the untangle:

UUU U ‘U

3)

K
(n=
Hear more at we3/AKT.

ght: all crossings face up, and the edges are marked AT
with a running index k € {1,...,2n + 1} and with ./ 3 g
rotation numbers ;. Let A be the (2n+1)x (2n+1) Q v
matrix constructed by starting with the identity ma-
trix /, and adding a 2 X 2 block for each crossing: \)
s=+1 s=-1 0
A coli+1 col j+1
row i -T¢ TS — 1
oW j 0
Let G = (g45) = A™'. For the trefoil example, it is: Burau
1 =T 0 0O T-1 0 0
0 1 -1 0 0 0 0
0 0 1 -T 0 0 T =1 Alexander
A=]0 O 0 1 -1 0 0 ,
0O 0 T-1 0 1 =T 0
0 0 0 0 0 1 -1 Fox
0 O 0 0 0 0 1
1 T 1 T 1 T 1
1 T T T2
0 1 5y 7orn 7ora T7-T+1 1
0 0 12 1T+1 e ; 2 T 2T 1
3 1 I
G=[0 0 == 5 > 3 I | -Wirtin
2-T+1 T-—T+¥w T>-T+1 T?*-T+1 ger)
0 0 1-T ) 1 T 1 -
T2-T+1 2_T+1 2_T+1 2_T+1 ’ ¥ q
0 0 0 1 1
0 0 0 0 0 0 1
“The Green Function” Blanchfield

Note. The Alexander polynomial A is given by
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A=T2der(d),  withp= ) g w=) s
k c

Classical Topologists: This is boring. Yawn.
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Formulas, continued. Finally, set

Ri(c) = s(gji (gj+1,j + 8+~ gij) = 8ii (gj,j+1 -

1)-1/2)
pri= Y Ri©) = ). o (@i — 1/2)].
c k

In our example p; = =T% + 2T =2 + 2T~ = T2,
Theorem. p; is a knot invariant.
Classical Topologists: Whiskey Tango Foxtrot?

Proof: later.

Cars, Interchanges, and Traffic
Counters. Cars always drive forw-
ard. When a car crosses over a bridge
it goes through with (algebraic) pro-
bability 7% ~ 1, but falls off with probability 1 — 7* ~ 0*. At the
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very end, cars fall off and dlsappear See also [Jo, LTW]
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~ 0 if for every y in the ideal generated by x, 1 —yis invertible.
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Preliminaries
This is Rho.nb of http://drorbn.net/0a22/ap.

Once[<< KnotTheory™ ; << Rot.m];

Loading KnotTheory™ version
of February 2, 2020, 10:53:45.2097.
Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/la22/ap

to compute rotation numbers.

The Program
Ri[s_, 1,7 1] :=
S (8j5i (8j*,7 *+ 8,5+ — 8ij) - 8ii (8j,5+-1) -1/2);
Z[K ] := Module[{Cs, @, N, A, s, i, j, k, A, G, p1},
{Cs, 0} =Rot[K]; n =Length[Cs];
A = IdentityMatrix[2n +1];

Cases[Cs, {s_,1 ,3 }»

. o . . _TS TS _ 1
(Al[{l,v]]': {i+1, 7+1}] +=( ° 1 ))]3
A = T(-Total(e]-Total[CSIALL111) /2 pat [A] ;
G = Inverse[A];
2

pl = Z:=1 R; @@ Cs[[k] - Z‘k:l(p[[k]] (8 -1/2);
Factore

{88201/ at»asil. g5 »6la, A1}];

The First Few Knots
TableForm[Table [Join[{K[1lyy}, ZIK1],

{K, AllKnots[{3, 6}]}], TableAlignments - Center]

17472 (-1:T)2 (1+T2)
3, 1-T.T2 Rl Gty
T TZ
1-37:72
4, R %)

177213, 74 (-1+T)2 (1472] (2:72274)

5;

) -y
g 2.3 T+2 72 (-1:+T) 2 (5-4T+5 T2)
2 _— L F N —
T Tz
(=2+T) (-142T) (-1+T)2 (1-4T+T2)
6, -2 T AT
T 72
6 13737237374 (-1+T)2 (1-4T+4T2-4 134742 T5+T5)
2 T2 %
2 313,74
1-3T+5T2-3T3+T
63 —_ 0

Fast!
15
63
P
op
19 18 1 1 29 -
¥ ¥RY ¢ b
51 52 53 14 H
L 4o
o444
a8 c
ds 1 i 9
A 44 43
s g 0542

Timinge
Z[GST48 = EPD[X14,1, X2,205 X3,405 X43,45 X26,55 Xe,955
Xo6,75 X13,85 Xo,285> X10,415 Xa2,115 X27,125 Xz0,155
Xi6,615 X17,725 X18,83> X19,345 Xss,205 X21,925
X79,22> Xes,23> Xs57,24> X25,56> Xe2,315 X73,325
Xga,33, Xso,35, X36,81> X37,705 X38,50> X39,545 Xaa, 555
Xsg,455 Xe9,465 Xgo,475 Xas,01s Xoo,495 Xs1,825 X52,71,
Xs3,605 Xe3,745> Xea,85> X76,65> Xs7,665 Xe7,045
X75,865 Xss,775 i78,93]]
1 2 3 4 15 -8
{170.313, {-—8 (-1+2T-T2-T 27 -1+ 79

T

1
(F1+T 2T T T 2T TR,
T16

(-1+7)% (5-18T+337°-32T°+2T"+42T° - 62

T® -

8T +166T°-242T° + 108 T*% + 132 T - 226 T +
148 TS - 117" - 36T - 117 + 148 TV - 226 T*® +
1327 +108T%° - 242 7% + 166 T - 8T - 62T +

427 4 27% 3277 1337818724 5T39)}}

Strong!

{Numberofknots[{3, 12}],
Lengthe
UnioneTable[Z[K], {K, AllKnots[{3, 12}]}],
Lengthe
UnioneTable[ {HOMFLYPT[K], Kh[K]},
{K, AllKnots[{3, 12}1}1}

{2977, 2882, 2785}

So the pair (A, p1) attains 2,882 distinct values on the 2,977 prime
knots with up to 12 crossings (a deficit of 95), whereas the pair
(HOMFLYPT, Khovanov Homology) attains only 2,785 distinct

values on the same knots (a deficit of 192).
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Theorem. The Green function g.s is the
reading of a traffic counter at 8, if car traffic
is injected at a (if @ = B, the counter is after

the injection point).
1 17711
 G=|0 T 1

L

o €

T-1

—I\/Q'—I\/

Example.
Zp>o(1 Ty =T
0 0 1

Proof. Near a crossing ¢ with sign s, incoming upper k

edge i and incoming lower edge j, both sides satisfy the

g-rules: i )
8ip =0+ T'giip+ (1 =T")gjs1p  &jp=0js+&j+1p

and always, gy.04+1 = 1: use common sense and AG = I (= GA).
Bonus. Near ¢, both sides satisfy the further g-rules:

8i = T (Qwit1 = Owis1)s  8aj = 8ajrt —(1 = T")gui = 8ujs1-

Baxter

Heisenberg
Drinfel’d
Lawrence

o

e

)

Wearlng my Quantum Algebra hat, I spy a Heisenberg
algebra H = A(p, x)/([p, x] = 1):
cars & p

=Y

HEISENBER
L{y,b,a,x)

traffic counters < x
Where did it come from? Consider g, = sl5, =
with relations

[b,x] =ex, [b,y]l=—€y, [b,al=0

l[a,x]=x, [a,y]=-y, [x,y]=b+ea.

/At invertible e, it is isomorphic to s/, plus a central factor, and
it can be quantized a la Drinfel’d [Dr] much like s/, to get an
algebra QU = A(y, b, a, x) subject to (with g = e"):

[b,al =0, [b,x]=€x, [b.y]l=—ey,

Invariance of p;. We start with the hardest, Reidemeister 3:
T(l T)

| 1-T 172

M%T(l T)

g -
= e =

= Overall traffic patterns are unaffected by Reid3!

= Green’s g, is unchanged by Reid3, provided the cars injection
site @ and the traffic counters 3 are away.
= Only the contribution from the R; ¥
terms within the Reid3 move matters, and
using g-rules the relevant g,43’s can be pu-
shed outside of the Reid3 area:

6i ,j_ = If[i===7,1,0];

lgRules

s

C

N

++
o —

s i VY
{gi/,:_ »06ip+ T 8i*,z + (1 - TS) 8i*, 55 8jp > Oz + 8i*, 5»
8o ,in T (Ba,it -0
8y » Bayjt = (1-T°) Bai - 6a,50 }
lhs = Ry [1, j, k] +R;[1, i, k*] +R.[1, i*, "1 //.
gRules, ; , UgRules, ; ,+ UgRules, ;+ j+;
rhs =Ry [1, i, j] +R.[1, i*, k] +Ry[1, 5, k'] //.
gRules, ; ; UgRules, ;+ , UgRules; j+ +;
Simplify[lhs == rhs]

a,i+) E)

True
Next comes Reid1, where we use results from an earlier example:
11t
eT'1
0 01

Ri[1, 2, 1] -1 (822-1/2) /. 8a ,5 [ [a, A1

1
1 } —1+T

T =7

Invariance under the other moves is proven similarly.

{

1= —h(h+ea)
la,yl ==y, xy—qyx=
Now QU has an R-matrix solving Yang-Baxter (meaning Re1d3)
n ,m m n
R= Z Vb ®'(ha)‘(hx)
m,n>0 m: [n]q :
and so it has an associated “universal quantum invariant” a la
Lawrence and Ohtsuki [La, Ohl], Z.(K) € QU.
Now QU = U(g.) (only as algebras!) and U(g.) represents into
H via
y— —tp—e€-xp’,
abstractly, g, acts on its Verma module

U (U@y,a,b — ea— 1)) = Q[x]
by differential operators, namely via H), so R can be pushed to
R e He H.
Everything still makes sense at € = 0 and can be expanded near
€ = O resulting with R = Ro(1 +€R; +- - -), with Ry = e/P@I=x=p)
and R, a quartic polynomial in p and x. So p’s and x’s get crea-
ted along K and need to be pushed around to a standard location
“normal ordering”). This is done using
(P@ DRy =Ro(T(p® 1)+ (1 -T)(18® p)),
(1@ p)Ro = Ro(1® p),
and when the dust settles, we get our formulas for p;. But QU
is a quasi-triangular Hopf algebra, and hence p; is homomorph-
ic. Read more at [BV1, BV2] and hear more at wef3/SolvApp,
wep/Dogma, wef/DoPeGDO, wef/FDA, wefl/AQDW.
Also, we can (and know how to) look at higher po-
wers of € and we can (and more or less know how
to) replace sl, by arbitrary semi-simple Lie algebra
e.g., [Sch]). So p; is not alone!
These constructions are very similar to Rozansky-Overbay [Rol,
Ro02, Ro3, Ov] and hence to the “loop expansion” of the Kontse-
vich integral and the coloured Jones polynomial [Oh2].

la, x] = x,

., ([n],! s a “quantum factorial”)

b—t+e-xp, a—xp, x— X,

Schaveling

3
pr=1
2

If this all reads like insanity to you, it should (and you haven’t
seen half of it). Simple things should have simple explanations.

Hence, Homework. Explain p; with no reference to quantum
voodoo and find it a topology home (large enough to house ge-

'Wearing my Topology hat the formula for R;, and
even the idea to look for R, remain a complete my-
stery to me.

=

neralizations!). Make explicit the homomorphic properties of p;.
Use them to do topology!
IP.S. As a friend of A, p; gives a genus bound, sometimes better

than A’s. How much further does this friendship extend?




A Small-Print Page on p,;, d > 1.

Definition. (f(z;), i(())z) = F(Oz)h| (o» S0 (PP, ) = 2¢°.
Baby Theorem. There exist (non unique) pow-
er series r(p1,pax1, %) =  Ya€ri(pLprxixv) €
QIT*!, p1, p2, x1, x2 ][ €]l with deg r:;' < 2d + 2 (“docile”) such
that the power series Z” = 3 pZed =

exp Z r*(pi, pjs Xis X)) | , eXp Z 8apTadp
c a,f {Pars)
is a bnot invariant. Beyond the once-and-for-all computation of
8ap (a matrix inversion), 7" is computable in O(n“) operations in
the ring Q[T*'].
(Bnots are knot diagrams modulo the braid-like Reidemeister mo-
ves, but not the cyclic ones).

Theorem. There also exist docile power series y¥(p,X) =
>d edyg € Q[T*', p, %l[€] such that the power series Z =

Y pae’ =

exp er(Pi, Dj» Xis X)) + Z)’%(ﬁk,ik) ,
%

c

exp Z gaﬁ(”a + &a)(fﬁ + é?,b’) + Z ﬂ'ag:a
B

@ {p(v»[_)(vnx/}’fﬁ}

is a knot invariant, as easily computable as Z”.
Implementation. Data, then program (with output using the
Conway variable z = VT —1/ VT), and then a demo. See Rho.nb
of wef/ap.
Veys,, [k.1=0(1/2-B,X); Vexs,, [k ]=-0"BXc/2;
Veys,, [k_]:=-¢>P,%:/6
V@l‘l’s?[i_, J_1:=
s (-1+2pix;-2p;x;+ (-1+T°) prpyxt+ (1-T°) pixd - 2pi pjxi x; +2p2 x; x;) /2
ver; i [i , J_ 1 :=
(-6Pix: +6pjx; =3 (=1+3T) pip;X;+3 (-14+3T) pixd +4 (-1+T) p? p;x} -
2(-1+T) (5+T) pepixi+2 (-1+T) (3+T) pix}+18p;:pjx;X; -
18p3X; X; - 6pi p;X;X;+6 (2+T) pi p3 x5 x; - 6 (1+T) p3xi x; -
6pi p? xi X5 +6p3 x; x3) /12
very,4[i, J_1 :=
(-6Tpix; +6T p;jx; +3 (-3+T) Tp;p;xi -3 (-3+T) Tpixd -
4(-1+T) Tpip;x}+2(-1+T) (1+5T) p;pix3-2(-1+T) (1+3T) pixi+
18 T2 p; pjX; X; - 18 T pix; X; -6 T2 p2 p;j X2 X; + 6T (1+2T) p; p5 x; x; =
6T (1+T) p3xlx;-6T p;pix; x3 + 6T pix; x5) / (12 T7)

Z,[GST48] (+ takes a few minutes =«
{1-422-612*-2072°-2967° - 2107'° - 77 2% - 14 7" - 7*°,

vers [i_, j_1:=

(4pixi-4p;x; +2(5+7T) pip;x;-2(5+7T) p;x2 -4 (-5+6T) pip;xi+
4(-16+17T+2T) pipix3-4(-11+12T+27T) p2x3+3 (-1+T) pip;x?-
3(-1+T) (4+3T)pipixt+ (-1+T) (13+22T+T) p; pdxt -
(-1+T) (4+13T+7?) pix?-28p; pjx; x;+28p5 x; X; + 36 p2 p;j X2 X; -
12 (9+2T) pipixix; +24 (3+T) p2xix; -4plp;x3x; +28TpZ p2xix; -
4 (-6+17T+T?) pip3xix;+4 (-5+10T+T) pxdx; + 24 p; p2 x; x5 -

3.2 2 4 2 2
X5;-6 (6+T) p;Xix;-

24px; x5 -24pI pixi x5 +6 (10 +T) p; p3 X}
4p;pix;x3+4apix;x3) /24

vers, i[i_,J_] :=

(-4 T pix;+4Tpix; =272 (7+5T) pip; X2 +2T2 (7+5T) pi & -
472 (-6+5T) pip; X} +4T (-2-17T+16T?) p; p5 x? -
4T (-2-22T+117%) p3xd +3 (-1+T) TPpip;xi-3 (-1+T) T (3+4T) pZpixt +
(-1+T) (1+22T+137) p;pixt- (-1+T) (1+13T+47%) pixt+
28T pipjx; X; - 28 T2 2 x; X; - 36 T2 p2 p; X} x; +12T% (2+97T) p; p; X2 x5 -
24T (1+37T) pixix; + 4T pd p;x3 x; - 28 T2 p p? X3 x; -
4T (-1-27T+6T°) pipixix; +4T (-1-10T+5T%) pixix; -
24T p pix; X% + 24 T2 p2x; X% + 24 T2 p? p2 X x5 - 6 T% (1+ 10 T) p; p3
6T (1+6T) pixix;+aT3p; pixi x3-4Tplx;x3) / (24 T)

2.2
XI-XJ-+

P XS P Xy = {m & 7 &) (2 )" = (245
Zip,[&6.] := &3
Zipy, .. 4[&1 :=
(Collect[s // Zip ,.ys 2] /. f_. 2% » (DIf, {z*, d}])) /. 2" > @
gPair[fs , w_ ] :=
gPair([fs, w] =
Collect [ZiPJoinmrabu[{pmsa,xa,?a},(a,w)] [
(Times ee (V /@ fs))
Exp[Sum[ g, (7o + 7o) (€5 + €p)s (0 Wy {Bs w}] - SUM[E, mas o, w3]]]s
g_, Factor]
T2z[p ] := Module[{q = Expand[p], n, c},
If[q ===, 0, c = Coefficient[q, T, n = Exponent[q, T]];
cz2" +T22[q _c (T1/z _T-1/2)1n]]]5

2, [K_] := Module[{Cs, @, Ny A, S, i, 3, ks A, G, d1, Z1, 22, Z3},

{Cs, ¢} =Rot[K]; n =Length[Cs]; A = IdentityMatrix[2n+1];
-TS TS -1 ] 5
o -1 ’

{4, G} = Factore{T(-Tetallvl-Total[CIALLAIN /2 pet @A, Inverse@A};
Z1 =
Exp[Total [Cases[Cs, {s_, i_, j_} » Sum[e™ rgy . [, j1, {d1, d}]]] +
sum[e® yay, opq [K15 {k, 20}, {d1, d}] /. ¥_e[_1 >0];
72 = Expand[F[{}, {}] xNormaleSeries[Z1, {e, @, d}]] //.
FIfs_, {es___}Ix(f: (0| ¥)ps [is__1)P-" =
F[Join[fs, Table[f, p]], DeleteDuplicates@{es, is}];
Z3 = Expand[Z2 /. F[fs_, es_] > Expand[gPair [
Replace[fs, Thread[es » Range@Lengthees], {2}], Lengthees
1/.8a,s »Gleslal, es[A111 13
Collect[{a, z3 /. " > p! A”e"}, e, T2z] ],-

Cases[Cs, {s_,1,3 3} [AII{i, J}s {141, J+1}] +=

1+ (382°+2552% + 1696 2° + 16281 2° + 86952 2'° + 259994 7 + 487372 2'* + 615066 z'° + 543148 2'* + 341714 2% +

153722 7% + 48983 2°* + 16776 2°° + 1554 2%° + 132 7%° + 5 7°%) e +

(-8 -4842% + 9709 2* + 165952 z° + 1590491 z° + 16 256 508 z'° + 115341797 z'% + 432685748 z'* + 395838354 7'° - 4017557792 z** - 23300064 167 2*° -
70082 264 972 7% - 142572271191 7** - 269475563700 2°° - 221616 295209 7°° - 151502 648 428 7°° - 23700199243 7% +
99462146328 z>* + 164920463074 2°° + 162550825432 z*° + 119164 552296 z*° + 69153062 608 z*% + 32547 596 611 z** + 12541195448 2*° +
39613841552 + 1021219696 2°° + 212773166 2°° + 35264 208 2% + 4537548 2°° + 436600 z°° + 29536 z*° + 1252 2% + 25 2%) &%}

TableForm[Table[Join[{K[1l¢py}s Zs[K1], {K, AllKnots[{3, 6}]}], TableAlignments - Center] (+ takes a few minutes «)

31 1+2?
4 1-22

14 (22242% e+ (2-422432%4 425 28) &4 (-12+7422-272%- 2025+ 82% 4 6210+ 212) &3

1+ (-2+22% e?

51 1:32242% 1+ (1022 +212%+122%+22°%) ¢ + (6-282% +332% +3642°+6552° + 536 2'°+ 227 2" + 482" + 4 2'%) €% + (-60 + 970 27 + 645 2% - 3380 2° - 3280 2° + 7470 2'° + 19475 2" + 20536 2'* + 12564 2'° + 4774 2'% + 1109 27° + 144 27 + 8 2*) &7

52 1-22%
61 1-227°
6, 1-22-2%

63 1+22+2%

1+(62°+52%) c+ (4-202°+432%+642°+262°) c* + (-36+ 498 2° - 883 2* + 100 2° + 816 2° + 556 2'° + 146 2" &>
1+ (-222+2% e+ (-4+4422+252%-82°+22%) €®+ (12+ 15427 - 223 7% - 608 2° + 100 2° - 5227 + 10 2" &
1+ (-222-32%+22%4+2%) e+ (-2-422+292%+-282°4+422°-82°-22" - 42"+ 2'%) €+ (12+ 166 2 + 155 2% - 194 2° - 2453 2° - 1622 2'° - 1967 2'* - 258 2! + 49 2'° - 30 2"% + 220 4 6 272 - 27%) &3

1+ (2+822-162°-242%-162"-221) &2
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