Topological invariants and corner states for some Hamiltonians on a lattice

林晋 (産業技術総合研究所・産総研特別研究員 PD)*

概 要

物性物理学におけるトポロジカル物質の研究への応用を念頭に,ある種の自 己共役作用素に対するトポロジーを考察する.(高次)トポロジカル絶縁体の 研究と関連して,特に余次元2の角のある系特有のトポロジーを定義し,その 性質等を議論する.

1. 背景

物性物理学において、トポロジーが重要な役割を果たしている.いわゆる(広義の)トポ ロジカル絶縁体物質には、系の次元と対称性で分類されるトポロジー(位相不変量)が 内在する.これらの物質はバルク¹は絶縁体であるが、このトポロジーを反映して現れ る表面に局在した波動関数(エッジ状態)により表面がある種金属的に振る舞うという 際立った物性を示す.位相不変量がある種の連続変形に対して不変なことに対応して、 金属的な振る舞いを記述するエッジ状態は系の摂動に対して頑強である.トポロジカ ル絶縁体の先駆けとしてはKlitzingらによる量子ホール効果の発見がある.Thouless-Kohmoto-Nightingale-den Nijsは量子ホール効果の背後にあるトポロジーの存在を明 らかにした[18].上記のバルクのトポロジーとエッジ状態の対応関係はHatsugaiによっ て証明され[6]、バルク・エッジ対応と呼ばれている.その後 Kane-Mele らによる量子 スピンホール効果の提唱等を経て、トポロジカル物質と呼ばれる物質群が盛んに研究さ れている².

数学の側ではBellissardらを中心として量子ホール効果に対して非可換幾何の手法を 用いた研究が進められ[1],特に系の並進対称性が破れたdisorderのある系の取り扱い が可能となっている.Kellendonk-Richter-Schultz-Baldesはこの手法をさらに展開し, disorderのある系に対してもバルク・エッジ対応の証明を与えた[10].ここでのアイディ アはToeplitz作用素に対する指数理論に着目することである(これらに関するまとまっ た文献として[14]を挙げておく).

本講演では実際の物質が多様な形状を持つことに着目して,図2のように,二つのエッジの交差としての(余次元2の)コーナーのある系を考える.バルクと二つのエッジが絶縁体であるようなモデルにおいて,コーナーのある系特有の位相不変量を定義しその性質を調べる.その際のアイディアは四半面 Toeplitz 作用素と呼ばれるある作用素の指数理論に着目することである.次元と対称性で分類されるという従来のトポロジカル相

本研究は科研費(課題番号:JP17H06461, JP19K14545)の助成を受けたものである。

²⁰¹⁰ Mathematics Subject Classification: 19K56, 47B35, 81V99

 $[\]not= \neg \neg - \not\models$: Topologically protected corner states, Bulk-edge and corner correspondence, K-theory and index theory

^{*〒980-8577} 宮城県仙台市青葉区片平2-1-1 東北大学原子分子材料科学高等研究機構内 e-mail: shin-hayashi@aist.go.jp

web: https://staff.aist.go.jp/shin-hayashi/

¹物質があるとして, 端の方をエッジ, 内側をバルクという (図1).

²トポロジカル絶縁体と狭義には量子スピンホール系を指す.その後に広く用いられるようになった.

- 図 1: バルクとエッジ
- 図 2: バルクとエッジとコーナー

のパラダイム³に対し,形状の観点を取り入れた議論を展開することがひとつの大きな 目的である.

本稿ではまずToeplitz作用素とその変種について,定義といくつかの結果を述べる.次 いで従来のトポロジカル相に対するバルク・エッジ対応の定式化と証明をKellendonk– Richter–Schultz-Baldesのアイディアに基づいて紹介する⁴. 続く章で [7, 8] をもとに コーナーのある系を議論する. コーナーに関連したトポロジーの定義とその基本的な 性質,具体例の構成法を述べた後に,従来のトポロジカル相との関連や,近年提唱され 活発に研究されている高次トポロジカル絶縁体への応用例などを紹介する.

2. Toeplitz 作用素とその変種

本稿ではTで複素平面の単位円を表し,反時計回りの向きを固定する.本稿で用いる*C** 環やその*K*理論については[12]などを参照されたい.

2.1. Toeplitz 作用素

加法群としてのℤとその部分半群ℤ_{≥0} := {0,1,2,···} を考える. T上の複素数値連続関 数 $f \in C(\mathbb{T})$ は各点 $t \in \mathbb{T}$ で f(t) を掛ける操作によって, $L^2(\mathbb{T})$ 上の有界線型作用素を定 める. ここから Fourier 変換による Hilbert 空間の同型 $L^2(\mathbb{T}) \cong l^2(\mathbb{Z})$ を経由して得られ る $l^2(\mathbb{Z})$ 上の作用素を M_f で表す. $l^2(\mathbb{Z}_{\geq 0})$ 上の有界線型作用素 T_f を以下で定義する⁵.

$$T_f \varphi = (P_{\geq 0} M_f P_{\geq 0}) \varphi = P_{\geq 0} M_f \varphi, \quad \varphi \in l^2(\mathbb{Z}_{\geq 0}).$$

ここで $P_{\geq 0}$ は $l^2(\mathbb{Z})$ の閉部分空間 $l^2(\mathbb{Z}_{\geq 0})$ 上への直交射影である. T_f は**Toeplitz作用素** と呼ばれる. Toeplitz作用素のFredholm性とその指数について以下が成り立つ(例えば [12]を参照のこと).

定理 2.1. (1) f が $\mathbb{C} \setminus \{0\}$ に 値を 持つとき, T_f は Fredholm 作用素⁶.

(2) (Noether) このとき index(T_f) = -Wind(f). ただしWind(f) は連続関数 $f: \mathbb{T} \to \mathbb{C} \setminus \{0\}$ の0のまわりの回転数.

 $\operatorname{index}(T_f) := \operatorname{rank}_{\mathbb{C}} \operatorname{Ker} T_f - \operatorname{rank}_{\mathbb{C}} \operatorname{Coker} T_f$

³Kitaevによって分類に*K*理論が用いられた[11, 5]

⁴後で述べるように2次元クラスAと1次元クラスAIIIと呼ばれるあるクラスの系に限っている. また 並進対称性を保つ比較的簡単な系のみを扱い, その基本的なアイディアを紹介する.

⁵直交射影 $P_{\geq 0}$ による M_f の compression で $l^2(\mathbb{Z}_{\geq 0})$ 上の作用素 T_f を考える際, $P_{\geq 0}M_fP_{\geq 0}$ と表記す ることが多い. 本稿でもこの表記法を採用する.

 $⁶ すなわち KerT_f と CokerT_f が共に有限次元である. このとき Fredholm 指数が次で定義される.$

これらは*C** 環の*K* 理論を用いて以下のように理解できる. *T*を Toeplitz 作用素たち $\{T_f \mid f \in C(\mathbb{T})\}$ が生成する*C** 環とする. このとき次の*C** 環の短完全列が存在する.

$$0 \to \mathcal{K}(l^2(\mathbb{Z}_{>0})) \to \mathcal{T} \xrightarrow{\gamma} C(\mathbb{T}) \to 0.$$
(1)

ここで $\mathcal{K}(l^2(\mathbb{Z}_{\geq 0}))$ は $l^2(\mathbb{Z}_{\geq 0})$ 上のコンパクト作用素のなす C^* 環で \mathcal{T} への射は包含写像, γ はToeplitz 作用素 T_f をそのシンボル f に写す *-準同型である.定理 2.1(1)の仮定の 下では, $\gamma(T_f) = f$ に着目すると, T_f はコンパクト作用素を法として可逆であるから, Atkinsonの定理から Fredholm であることがわかり,定理 2.1(1)は直ちに従う.また,短 完全列(1)に同伴して以下の C^* 環のK理論の6項完全系列がある.

ここで $\partial_0 \geq \partial_1$ は境界準同型.また $K_0(\mathcal{K}(l^2(\mathbb{Z}_{\geq 0}))$ は標準的なトレースが誘導する射 $K_0(\mathrm{Tr}): K_0(\mathcal{K}(l^2(\mathbb{Z}_{\geq 0})) \rightarrow \mathbb{Z}$ により \mathbb{Z} と同型である.定理 2.1(2) は次の二つの(準) 同 型の一致として理解できる.

- $K_0(\operatorname{Tr}) \circ \partial_1 \colon K_1(C(\mathbb{T})) \to \mathbb{Z}$. この写像は $\gamma(T_f)$ のクラスを index (T_f) に写す.
- -Wind: $K_1(C(\mathbb{T})) \to \mathbb{Z}$. ここで $K_1(C(\mathbb{T})) \cong K^1(\mathbb{T}) \cong [\mathbb{T}, \mathbf{U}(\infty)]$ で, Wind は \mathbb{T} から $\mathbf{U}(\infty)$ への連続写像 f に対し, det(f) の回転数を対応させる.

2.2. Toeplitz 作用素の変種

$$A_1 := \{ (m, n) \in \mathbb{Z}^2 \mid -\alpha m + n \ge 0 \}, \ A_2 := \{ (m, n) \in \mathbb{Z}^2 \mid -\beta m + n \le 0 \}$$
$$A_3 := \{ (m, n) \in \mathbb{Z}^2 \mid -\alpha m + n \ge 0 \text{ and } -\beta m + n \le 0 \}$$

 $l^{2}(\mathbb{Z}^{2})$ の閉部分空間 $l^{2}(A_{i})$ の上への直交射影を $P_{A_{i}}$ で表す.各i = 1, 2, 3に対して, $l^{2}(A_{i})$ をそれぞれ \mathcal{H}^{α} , \mathcal{H}^{β} , $\hat{\mathcal{H}}^{\alpha,\beta}$ と書き, $P_{A_{i}}$ をそれぞれ P^{α} , P^{β} , $\hat{P}^{\alpha,\beta}$ と書く (図3を参照).

二次元トーラス上の複素数値連続関数 $f \in C(\mathbb{T}^2)$ は各点 $(\xi,t) \in \mathbb{T}^2$ で $f(\xi,t)$ を掛ける操作によって, $L^2(\mathbb{T}^2)$ 上の有界線型作用素を定める. ここから Fourier 変換による 同型 $L^2(\mathbb{T}^2) \cong l^2(\mathbb{Z}^2)$ を経由して得られる $l^2(\mathbb{Z}^2)$ 上の作用素を M_f で表す. このとき 各 i = 1, 2, 3 に対して $l^2(A_i)$ 上の作用素 $T_f^{A_i} := P_{A_i}M_fP_{A_i}$ を考える. 各 i = 1, 2, 3 に 対する $T_f^{A_i}$ をそれぞれ T_f^{α} , T_f^{β} , $\hat{T}_f^{\alpha,\beta}$ と書く. 作用素 T_f^{α} , T_f^{β} は**半平面 Toeplitz** 作用素 , $\hat{T}_f^{\alpha,\beta}$ は**四半面 Toeplitz** 作用素と呼ばれる. 本稿で着目する四半面 Toeplitz 作用素は Simonenko[17], Douglas-Howe[4] らを中心に研究が進められた.

 \mathcal{T}^{α} を半平面 Toeplitz 作用素たち { $T_{f}^{\alpha} \mid f \in C(\mathbb{T}^{2})$ }が生成する C^{*} 環とする. 同様に C^{*} 環 $\mathcal{T}^{\beta}, \hat{\mathcal{T}}^{\alpha,\beta}$ をそれぞれ $T_{f}^{\beta}, \hat{T}_{f}^{\alpha,\beta}$ を用いて定義する. このとき $\mathcal{T}^{\alpha}, \mathcal{T}^{\beta}$ から $C(\mathbb{T}^{2})$ へ, 半平面 Toeplitz 作用素 $T_{f}^{\alpha}, T_{f}^{\beta}$ に対して fを対応させる *-準同型 $\sigma^{\alpha}, \sigma^{\beta}$ がある. C^{*} 環 $S^{\alpha,\beta}$ をこの二つの *-準同型による引き戻しとして定義する.

$$\mathcal{S}^{\alpha,\beta} = \big\{ (T^{\alpha}, T^{\beta}) \in \mathcal{T}^{\alpha} \oplus \mathcal{T}^{\beta} \mid \sigma^{\alpha}(T^{\alpha}) = \sigma^{\beta}(T^{\beta}) \big\}.$$

このとき以下の*C**環の短完全列が知られている.

 $7\alpha = -\infty$ または $\beta = +\infty$ も許す. ただし共に成り立つことはないものとする.

図 3: 四半面(凸型の角, 左)と凹型角(右)

定理 2.2 (Park[13]).

$$0 \to \mathcal{K}(\hat{\mathcal{H}}^{\alpha,\beta}) \to \hat{\mathcal{T}}^{\alpha,\beta} \xrightarrow{\hat{\gamma}} \mathcal{S}^{\alpha,\beta} \to 0.$$
⁽²⁾

ここで $\mathcal{K}(\hat{\mathcal{H}}^{\alpha,\beta})$ から $\hat{\mathcal{T}}^{\alpha,\beta}$ への射は包含写像, $\hat{\gamma}$ は $\hat{T}_{f}^{\alpha,\beta}$ をペア $(T_{f}^{\alpha},T_{f}^{\beta})$ にうつす*-準同型である.

3. バルク・エッジ対応

ここではKellendonk-Richter-Schultz-Baldes[10]に基づき, バルク・エッジ対応の定式 化と証明の概略を述べる.5章の都合で,2次元クラスAと1次元クラスAIIIと呼ばれ るあるクラスのトポロジカル相を取り上げる(3章全体の参考文献として[14]を挙げて おく).以下,Vを有限次元の複素内積空間とし,Nでそのランクを表す.

3.1.2次元クラスA

連続写像 $\mathbb{T}^2 \to \operatorname{Herm}(V), (\xi, t) \mapsto H^A(\xi, t)$ を考える⁸. \mathbb{T}^2 の各点で $H^A(\xi, t)$ を作用さ せる $L^2(\mathbb{T}^2; V)$ 上の作用素は, Fourier 変換を経由して $l^2(\mathbb{Z}^2; V)$ 上の有界線形自己共役 作用素 H^A を定める. 境界の無い無限系として \mathbb{Z}^2 をバルクのモデルと見なし, ここでは H^A を**バルクハミルトニアン**という⁹. バルクがある種の絶縁体であるような系のハミ ルトニアンを念頭に置き, 次の仮定を置く.

仮定 3.1. H^Aは可逆.

この仮定のもとに,各点 (ξ , t) $\in \mathbb{T}^2$ に対し,エルミート作用素 $H^A(\xi, t)$ のスペクトル sp($H^A(\xi, t)$) は0を含まない.従って,各点で $H^A(\xi, t)$ の負の固有値全てに対する固有 空間の直和ベクトル空間 $E_B(\xi, t)$ を取り,パラメータ空間 \mathbb{T}^2 上でベクトル空間 $E_B(\xi, t)$ の族を考えると,有限ランクの複素ベクトル束 $E_B \to \mathbb{T}^2$ が得られる. E_B は Bloch 束と 呼ばれる. Bloch 束 E_B の第一 Chern 数¹⁰をある種絶縁体的なバルクの不変量とみなし,

$$(H\varphi)_{x,y} = \sum_{\text{finite}} A_{p,q}\varphi_{x-p,y-q}, \ (A_{p,q} \in \text{End}_{\mathbb{C}}(V))$$

ただし (簡単のために) 有限個の $(p,q) \in \mathbb{Z}^2$ を除いて $A_{p,q} = 0$ とする. このとき H は $x \ge y$ 方向の並進作用素と可換であり, Fourier 変換によって連続写像 $\mathbb{T}^2 \to \text{Herm}(V)$ を与え, 我々のモデルに含まれる. 例としては1粒子フェルミオンの tight-binding ハミルトニアンがある.

¹⁰ T²の向きは二つの Tの向きの積で定める.

⁸ここで Herm(V) はV上のエルミート変換全体のなす空間.

⁹例えば以下の形の $l^2(\mathbb{Z}^2; V)$ 上の有界自己共役作用素を考える (ここで $l^2(\mathbb{Z}^2; V)$ の元 $\varphi = \{\varphi_{x,y}\}_{(x,y)\in\mathbb{Z}^2}$ はVの元 $\varphi_{x,y}$ の列で $\sum_{x,y} ||\varphi_{x,y}||_V^2 < \infty$ を満たすものとみなしている).

バルク指数と呼ぶ. この量はTKNN 数とも呼ばれている [18]. 定義 3.2 (バルク指数, TKNN 数). $\mathcal{I}_{\text{Bulk}}^{2D,A}(H^{A}) := \langle c_{1}(E_{B}), [\mathbb{T}^{2}] \rangle \in \mathbb{Z}.$

バルクハミルトニアンを連続写像 $\mathbb{T}^2 \to \operatorname{Herm}(V)$ の範囲内で連続変形するとき, 仮定 3.1 が保たれる限りは対応する Bloch 束は同型で, 従ってバルク指数は不変である.

次にエッジを考える. 部分 Fourier 変換によって H^A を T でパラメータ付けされた $l^2(\mathbb{Z}, V)$ 上の有界自己共役線形作用素の族 $\{H^A(t)\}_{t\in\mathbb{T}}$ に分解する. ここで Toeplitz 作用 素の族 $\{H^A_{Edge}(t) := P_{\geq 0}H^A(t)P_{\geq 0}\}_{t\in\mathbb{T}}$ を考える¹¹. これをエッジハミルトニアンと呼 ぶ¹². 仮定から,この族は T でパラメータ付けされた自己共役 Fredholm 作用素の作用 素ノルムに関する連続族である. この族のスペクトル流,すなわち族 $\{H^A_{Edge}(t)\}_{t\in\mathbb{T}}$ のス ペクトルと 0 の交叉を,重複度と交叉の向きも込めて符号付きで数えたもの (T の向き に対し,0と負から正に交わる交叉を+,正から負に交わる交叉を – で数える),をエッ ジ指数と呼ぶ.

定義 3.3 (エッジ指数). $\mathcal{I}^{2D,A}_{Edge}(H^A) := sf\{H^A_{Edge}(t)\}_{t\in\mathbb{T}} \in \mathbb{Z}$

各交点には、ある $t \in \mathbb{T}$ について $H^{A}_{Edge}(t)$ の固有値0の固有ベクトル(**エッジ状態**)が存在するので、エッジ指数はエッジ状態の個数を符号付きで数え上げたものと言える. エッジ指数が0でなければエッジ状態が存在することに注意する.以上の準備のもとに、バルク・エッジ対応(のトポロジー的な側面)は、以下の定理で述べられる.

定理 3.4 (バルク・エッジ対応). $\mathcal{I}^{2D,A}_{\text{Bulk}}(H^{A}) = \mathcal{I}^{2D,A}_{\text{Edge}}(H^{A}).$

従ってバルクのトポロジーを反映してトポロジカルなエッジ状態が現れる. バルク・ エッジ対応の上記の定式化と証明はHatsugaiによる [6]. ここでは Kellendonk-Richter-Schulz-Baldes [10] による Toepliz 作用素の指数理論を用いた証明を紹介する. 次の図式 に着目する.

このとき状況は以下である.

- *K*₀(*C*(T²))は2次元トーラスの位相的 *K* 理論 *K*⁰(T²)と同型であり, T²上の有限 ランク複素ベクトル束である Bloch 束 *E*_Bはこの *K* 群の元 [*E*_B]を定める. *c*₁は T² 上の有限ランク複素ベクトル束にその第一 Chern 数を対応させる群準同型.従っ て [*E*_B]の*c*₁による像はバルク指数 *I*^{2D,A}_{Bulk}(*H*^A)である.
- *l*²(ℤ_{≥0}) 上の有界線型自己共役 Fredholm 作用素の全体空間の、トポロジカルに 非自明な一つの連結成分を Fred^{s.a.}(*l*²(ℤ_{≥0})) と書く¹³. *K*₁(*K*(*l*²(ℤ_{≥0})) ⊗ *C*(𝔅)) は、𝔅 から Fred^{s.a.}(*l*²(ℤ_{≥0})) への連続写像のホモトピー類 [𝔅, Fred^{s.a.}(*l*²(ℤ_{≥0}))] に 同型であり、スペクトル流が与える ℤへの写像 sf がある. エッジハミルトニアン {*H*^A_{Edge}(*t*)}_{*t*∈𝔅} はここの元を定め、写像 sf によってエッジ指数 𝔅^{2D,A}_{Edge}(*H*^A) に写る.

¹³本質的スペクトルが $(-\infty, 0)$ と $(0, +\infty)$ のどちらにも含まれることのない $l^2(\mathbb{Z}_{\geq 0})$ 上の自己共役 Fredholm 作用素からなるもの.作用素ノルムで位相を入れる. 位相的 K^1 群の分類空間をなす.

¹¹ここで記号の簡略化のために $l^2(\mathbb{Z}_{\geq 0}, V) \cong l^2(\mathbb{Z}_{\geq 0}) \otimes V$ 上の作用素 $P_{\geq 0} \otimes 1_V$ を $P_{\geq 0}$ と書く. 以下, 直 交射影については同様の略記をする.

¹² H^A を $\mathbb{Z}_{\geq 0} \times \mathbb{Z}$ 上に Dirichlet 境界条件を用いて制限する. エッジに沿う y 軸方向には並進不変なので, その方向に部分 Fourier 変換したものが $\{H^A_{\text{Edge}}(t)\}_{t\in\mathbb{T}}$ である.

- ⁰ は短完全列(1)にC(T)をテンソルして得られる短完全列¹⁴に同伴するC*環の *K*理論の境界準同型.
- ここで上記の図式が可換であることから定理 3.4が従う.

3.2. 1次元クラス AIII

本節では*V*がさらに \mathbb{Z}_2 -次数を持つとする. すなわち複素線形写像 $\Pi: V \to V$ であっ て $\Pi^2 = 1$ なるものが与えられたとする. 連続写像 $\mathbb{T} \to \text{Herm}(V), (\xi, t) \mapsto H^{\text{AII}}(t)$ が Fourier 変換を経由して定める $l^2(\mathbb{Z}; V)$ 上の自己共役線形な作用素を H^{AII} と書き, バル クハミルトニアンと呼ぶ. $\Pi \in l^2(\mathbb{Z}; V)$ 上に各ファイバーへの作用によって拡張した作 用素を再び Π で表すものとする. このとき次の仮定を置く,

仮定 **3.5.** (1) H^{AIII} は可逆. (2) H^{AIII} とΠは反可換.

最初の条件はバルクがある種の絶縁体なモデルの考察に対応する.後者の条件はH^{AIII} がカイラル対称性と呼ばれるある種の量子力学的な対称性を保つ場合であり¹⁵, Πをカ イラル作用素と呼ぶ.カイラル対称性により, H^{AIII} は次の off-diagonal な形に表される.

$$H^{\mathrm{AIII}} = \begin{pmatrix} 0 & h^* \\ h & 0 \end{pmatrix}.$$

仮定 3.5(1) より *h* も可逆である. 連続写像 $\mathbb{T} \to \mathbb{C} \setminus \{0\}, t \mapsto \det(h(t))$ の回転数の −1 倍をこの系のバルク指数と呼ぶ¹⁶.

定義 3.6 (バルク指数). $\mathcal{I}^{1D,AIII}_{\text{Bulk}}(H^{AIII}) := -\text{Wind}(h).$

次に、エッジのモデルとして Toeplitz 作用素 $H_{\text{Edge}}^{\text{AIII}} := P_{\geq 0} H^{\text{AIII}} P_{\geq 0}$ を考え、エッジハ ミルトニアンと呼ぶ. エッジハミルトニアンは Π と反可換であり、仮定から $H_{\text{Edge}}^{\text{AIII}}$ やそ の off-diagonal 成分 $P_{\geq 0}hP_{\geq 0}$ は Fredholm 作用素である. この指数をエッジ指数と呼ぶ. 定義 3.7 (エッジ指数). $\mathcal{I}_{\text{Edge}}^{1D,\text{AIII}}(H^{\text{AIII}}) := \operatorname{index}(P_{\geq 0}hP_{\geq 0}).$

Πは H_{Edge}^{AIII} と反可換なため,有限次元ベクトル空間 $Ker(H_{Edge}^{AIII})$ に作用し,その自乗は 1である.エッジ指数は $\Pi|_{Ker(H_{Edge}^{AIII})}$ の+1固有空間の次元から-1固有空間の次元を引 いたものに一致する.従ってエッジ指数は H_{Edge}^{AIII} の固有値0の固有ベクトル(エッジ状態)の個数をПの作用による符号付きで数えたものであり,特にエッジ指数が0でなけ ればエッジ状態が存在する.このとき次が成り立つ.

定理 3.8 (バルク・エッジ対応). $\mathcal{I}_{\text{Bulk}}^{1D,\text{AIII}}(H^{\text{AIII}}) = \mathcal{I}_{\text{Edge}}^{1D,\text{AIII}}(H^{\text{AIII}}).$

これは定理 2.1 (2) の 3.2 節での議論から直ちに従う.本稿ではバルク・エッジ対応 (定理 3.4, 3.8) により互いに等しい整数を, それぞれ *I*^{2D,A}(*H*^A) と*I*^{1D,AII}(*H*^{AII}) と表す.

4. コーナーのある系におけるトポロジーとバルクエッジ・コーナー対応 以下で図2のような余次元2の角を持つ系を議論する.4,5章の内容は[7]に基づく.

¹⁴*C*(T)が可換*C**環なので完全性を保つ.

¹⁵ カイラル対称性を保つ系は AIII というクラスに分類される.特に対称性を要請しない 3.1 節のケース はクラス A に分類される [14].

¹⁶ 仮定 3.5 から V は偶数次元でなければならないことに注意する.

4.1. 設定

連続写像 $\mathbb{T}^3 \to \operatorname{Herm}(V), (\xi, \eta, t) \mapsto H(\xi, \eta, t)$ から $l^2(\mathbb{Z}^3; V)$ のバルクハミルトニアン *H* を考える.余次元2の角を持つ系として図2のような系を考えたい.部分 Fourier 変 換によって $l^2(\mathbb{Z}^2; V)$ 上の作用素の族 $\{H(t)\}_{t\in\mathbb{T}}$ を考える. $\mathcal{H}_V^{\alpha} := \mathcal{H}^{\alpha} \otimes V$ と書き,同様 に $\mathcal{H}_V^{\beta}, \hat{\mathcal{H}}_V^{\alpha,\beta}$ を定義する.これらの上へのバルクハミルトニアン H(t) の compression を 取ることでエッジのモデルとコーナーのモデルを導入する.まずエッジのモデルを導入 する:

$$H^{\alpha}_{\mathrm{Edge}}(t) := P^{\alpha}H(t)P^{\alpha} \colon \mathcal{H}^{\alpha}_{V} \to \mathcal{H}^{\alpha}_{V}, \quad H^{\beta}_{\mathrm{Edge}}(t) := P^{\beta}H(t)P^{\beta} \colon \mathcal{H}^{\beta}_{V} \to \mathcal{H}^{\beta}_{V}$$

これらの有界自己共役作用素をエッジハミルトニアンと呼ぶ.次にコーナーのモデル を導入する:

$$\hat{H}_{\text{Corner}}^{\alpha,\beta}(t) := \hat{P}^{\alpha,\beta} H(t) \hat{P}^{\alpha,\beta} \colon \hat{\mathcal{H}}_{V}^{\alpha,\beta} \to \hat{\mathcal{H}}_{V}^{\alpha,\beta}$$

 $\hat{H}_{\text{Corner}}^{\alpha,\beta}(t)$ をコーナーハミルトニアンと呼ぶ.

本稿では以下の仮定を置き,その帰結を議論する.

仮定 4.1. 任意の $t \in \mathbb{T}$ に対し, 二つのエッジハミルトニアン $H^{\alpha}_{\text{Edge}}(t)$, $H^{\beta}_{\text{Edge}}(t)$ は共に可逆であるとする.

この仮定のもとではバルクハミルトニアンHも可逆である.従って我々が考察する 状況はバルクも二つのエッジも絶縁体的な系をモデルとする.この仮定のもとに,以下 で二つの位相不変量を定義し,その性質や関係を議論する.

4.2. バルクエッジ不変量

まず可逆な二つのエッジ(とバルク)ハミルトニアンを用いて位相不変量を定義する. 二つのエッジハミルトニアン $H_{Edge}^{\alpha}(t)$ と $H_{Edge}^{\beta}(t)$ はバルクハミルトニアンH(t)の compression として定義されたのであった.従って $\sigma^{\alpha}(H_{Edge}^{\alpha}(t)) = H(t) = \sigma^{\beta}(H_{Edge}^{\beta}(t))$ であり、ペア $(H_{Edge}^{\alpha}(t), H_{Edge}^{\beta}(t))$ は $M_{N}(S^{\alpha,\beta})$ の元である.連続関数 $g: \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R}$ を $(-\infty, 0)$ の上では1、 $(0, +\infty)$ の上では0なるものとする. このとき continuous functional calculous によって以下の射影元が得られる.

$$p := g(H^{\alpha}_{\text{Edge}}, H^{\beta}_{\text{Edge}}) \in M_N(\mathcal{S}^{\alpha,\beta} \otimes C(\mathbb{T})).$$

ここから位相不変量を以下の C^* 環のK群の元として定義する¹⁷¹⁸. 定義 4.2 (バルクエッジ不変量). $\mathcal{I}_{BE}^{3D,A}(H) := [p] \in K_0(\mathcal{S}^{\alpha,\beta} \otimes C(\mathbb{T})).$

4.3. コーナー指数

次にコーナーハミルトニアンを用いて位相不変量を定義する.ここで, $\hat{\gamma}(\hat{H}_{\text{Corner}}^{\alpha,\beta}(t)) = (H_{\text{Edge}}^{\alpha}(t), H_{\text{Edge}}^{\beta}(t))$ は仮定から $M_N(S^{\alpha,\beta})$ の可逆元であり, 従って定理 2.2から $\hat{H}_{\text{Corner}}^{\alpha,\beta}(t)$ はFredholm 作用素であることがわかる.自己共役Fredholm 作用素の連続族 $\{\hat{H}_{\text{Corner}}^{\alpha,\beta}(t)\}_{t\in\mathbb{T}}$ からスペクトル流によって整数値の位相不変量を得る.これをいまひとつの不変量と定義する.

¹⁷*C*^{*} 環 *A*に対し, *K* 群 *K*₀(*A*) は, *A*の行列環 *M_n*(*A*)の射影元 (すなわち $q \in M_n(A)$ で $q = q^* = q^2$ なる元) たちの集合 (*n* は任意の自然数をとる) に適切に同値関係を入れて定義される [12].

¹⁸3.1節でバルク指数を与えた Bloch 束 $E_{\rm B}$ は次のように理解できる. $g(H^{\rm A})$ は $M_N(C(\mathbb{T}^2))$ の射影元を定 め, 従って C^* 環のK 群 $K_0(C(\mathbb{T}^2))$ の元を定める. この元は位相的K 群との同型 $K_0(C(\mathbb{T}^2)) \cong K^0(\mathbb{T}^2)$ によって Bloch 束のクラス $[E_{\rm B}]$ に対応する. この意味でバルクエッジ不変量の定義は, Bloch 束が定 める $K^0(\mathbb{T}^2)$ の元の構成を真似たものである.

定義 4.3 (コーナー指数). $\hat{\mathcal{I}}^{3D,A}_{\text{Corner}}(H) := \operatorname{sf}\{\hat{H}^{\alpha,\beta}_{\text{Corner}}(t)\}_{t\in\mathbb{T}}\in\mathbb{Z}.$

定義から $\hat{I}_{\text{Corner}}^{3D,\text{A}}(H)$ がゼロでなければコーナーハミルトニアンの固有値0の固有ベク トル (コーナー状態) が存在する¹⁹. 従ってコーナー指数はコーナー状態の個数を符号 付きで重複度も込めて数え上げたものである.

4.4. 性質

短完全列(2)にC(T)をテンソルして得られる短完全列に同伴するのC*環のK理論の 6項完全列の境界準同型 $\hat{\partial}_0: K_0(\mathcal{S}^{\alpha,\beta} \otimes C(\mathbb{T})) \to K_1(\mathcal{K}(\hat{\mathcal{H}}^{\alpha,\beta}) \otimes C(\mathbb{T}))$ を考える.上記 の二つの位相不変量の間には以下の関係がある.

定理 4.4 (H. [7], バルクエッジ・コーナー対応). sf $\circ \hat{\partial}_0(\mathcal{I}_{BE}^{3D,A}(H)) = \hat{\mathcal{I}}_{Corner}^{3D,A}(H).$

 $Proof. \ \exists - \mathcal{T} - \mathcal{N} \in \mathcal{N} \land \vdash = \mathcal{T} \sim \{ \hat{H}_{\mathrm{Corner}}^{\alpha,\beta}(t) \}_{t \in \mathbb{T}} \ \mathrm{tt} \ [\mathbb{T}, \mathrm{Fred}_*^{\mathrm{s.a.}}(\hat{\mathcal{H}}^{\alpha,\beta})] \cong K_1(\mathcal{K}(\hat{\mathcal{H}}^{\alpha,\beta}) \otimes \mathcal{N})$ $C(\mathbb{T}))$ の元を定める²⁰. 従って境界準同型 $\hat{\partial}_0$ によって $\mathcal{I}_{\mathrm{BE}}^{3D,\mathrm{A}}(H)$ がこのクラスに写るこ とを確かめれば良い. これは境界準同型 Ô0の定義から確認できる.

従ってある種絶縁体的なバルクとエッジのトポロジーを反映して,系の摂動に対して 頑強なコーナー状態が現れ、コーナーがある種金属的に振る舞う.

注意 4.5. 本稿の議論は、バルクエッジ対応における [10] の議論に着目し、 Toeplitz 作用 素の代わりに四半面 Toeplitz 作用素を用いた議論を展開することで得られたものであ る. さらに余次元が大きな場合の取り扱いを可能にするある種の Toeplitz 作用素の指数 理論は[4,3]などで展開されている²¹.

注意 4.6. 我々の設定ではバルクハミルトニアンは可逆であるため、3.1 節と同様にバル クの不変量を考えることができる.具体的に、T³上のBloch 束を3.1節と同様に定義し、 Bloch 束が定める $K^0(\mathbb{T}^3) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ の元を考える. 一つの \mathbb{Z} は Bloch 束の ラン クに対応し,残りの三つのℤに対応するバルクの不変量は(3次元クラスAの系の)弱不 変量と呼ばれる.我々の仮定の下では三つの弱不変量は全て0であることが証明できる [7]. この意味で、本稿のコーナーに関連したトポロジーの考察は、従来のトポロジカル 相のトポロジーに対してある種二次的なトポロジーの考察と位置付けられる.

5. 具体例の構成法

前節で定義したコーナーに関連した位相不変量の非自明な具体例の構成法を与える.本 節では $\alpha = 0, \beta = \infty$ とする.

 $l^{2}(\mathbb{Z}^{2}, V_{1})$ 上の作用素 H^{A} を2次元クラスAのトポロジカル絶縁体のバルクハミルト ニアン (3.1節参照), l²(Z, V₂)上の作用素 H^{AIII} を1次元クラス AIII のトポロジカル絶縁 体のバルクハミルトニアンでカイラル対称性はⅡで与えられるもの(3.2節参照)とす る. ここで W = V₁ ⊗ V₂ とおく. これらを用いて以下の l²(Z³, W) 上の有界自己共役作 用素を考察する.

$$H := H^{\mathcal{A}} \otimes \Pi + 1 \otimes H^{\mathcal{A} \blacksquare \blacksquare}$$

Fourier 変換で $l^2(\mathbb{Z}^2; W)$ 上の作用素の族 $\{H(t) = H^A(t) \otimes \Pi + 1 \otimes H^{A\Pi}\}_{t \in \mathbb{T}}$ に分解する. 定理 5.1 (H. [7]). 上記のハミルトニアンHに対し, 以下が成り立つ.

¹⁹ここでの記号は3次元クラスAと呼ばれる系を考察していることを反映している

²⁰ここで族 $\{\hat{H}^{\alpha,\beta}_{\mathrm{Corner}}(t)\}_{t\in\mathbb{T}}$ が $\mathrm{Fred}^{\mathrm{s.a.}}_{*}(\hat{\mathcal{H}}^{\alpha,\beta})$ に入らない場合があり得るが、その場合は $\mathcal{I}^{3D,\mathrm{A}}_{\mathrm{BE}}(H)$ も $\hat{\mathcal{I}}^{3D,A}_{\text{Corner}}(H)$ も0である.ここでは自明な場合を除いて議論する.

²¹ ただし余次元2の場合の結果[13]と比較すると,この場合の角の形状は特別な形状に限られている.

- (1) 各 $t \in \mathbb{T}$ 二つのエッジハミルトニアン $H^0_{\text{Edge}}(t), H^\infty_{\text{Edge}}(t)$ は共に可逆.
- (2) (1)よりコーナー指数が定義される. コーナー指数は H^{A} と H^{AIII} のトポロジカル 数を用いて $\hat{\mathcal{I}}^{3D,A}_{Corner}(H) = \mathcal{I}^{2D,A}(H^{A}) \cdot \mathcal{I}^{1D,AIII}(H^{AIII})$ で与えられる. ここで右辺は 二つの整数の積.

Proof. (1) 各 $t \in \mathbb{T}$ に対し $H^{\infty}_{\text{Edge}}(t)$ が可逆であることを示す. Hilbert 空間の同型 $\mathcal{H}^{\infty}_{W} \cong l^{2}(\mathbb{Z}_{>0}; V_{1}) \otimes l^{2}(\mathbb{Z}; V_{2})$ により,

$$H^{\infty}_{\text{Edge}}(t) = P^{\infty}H(t)P^{\infty} = H^{\text{A}}_{\text{Edge}}(t) \otimes \Pi + 1 \otimes H^{\text{AIII}}.$$

である. この二乗をとると, ∏と H^{AIII} は反可換なので

 $(H^{\infty}_{\mathrm{Edge}}(t))^{2} = (H^{\mathrm{A}}_{\mathrm{Edge}}(t))^{2} \otimes 1 + 1 \otimes (H^{\mathrm{AII}})^{2}.$

 $(H_{\text{Edge}}^{\text{A}}(t))^{2} \geq 0 \geq (H^{\text{AIII}})^{2} > 0 \downarrow 0 (H_{\text{Edge}}^{\infty}(t))^{2} > 0.$ 従って $H_{\text{Edge}}^{\infty}(t)$ は可逆. $H_{\text{Edge}}^{0}(t)$ の可逆性も同様の議論によって示される.

(2) $H^{A} \geq H^{AIII}$ それぞれのエッジ状態 $\varphi_{1} \in l^{2}(\mathbb{Z}_{\geq 0}; V_{1}) \geq \varphi_{2} \in l^{2}(\mathbb{Z}_{\geq 0}; V_{2})$ があったと する. すなわち, ある $t \in \mathbb{T}$ について $H^{A}_{Edge}(t)\varphi_{1} = 0 \geq H^{AIII}_{Edge}\varphi_{2} = 0$ が成り立つ. この とき

 $H^{0,\infty}_{\text{Corner}}(t)(\varphi_1\otimes\varphi_2) = (H^{\text{A}}_{\text{Edge}}(t)\otimes\Pi + 1\otimes H^{\text{AII}}_{\text{Edge}})(\varphi_1\otimes\varphi_2) = 0$

であり, H^Aと H^{AIII} それぞれのエッジ状態のテンソル積はコーナー状態を与える. 一方 でここでのモデルではコーナー状態はエッジ状態のテンソル積の線形和として必ず表 されることがわかる. Hのコーナー状態の個数と H^A, H^{AIII} のエッジ状態の個数を (符 号に注意して)比較することで (2) 式が得られる. □

定理 5.1を用いることで, 従来のトポロジカル相二つから具体例を構成できる. 実際の具体例は [7, 8] などを参照されたい.

注意 5.2 (H. [8]). ここまでの議論はコーナーの角度が 180 度より小さい場合に限って いるが,図3右図のような角度が 180 度より大きな凹型角の場合も同様に考えることが できる. この形状の角に対するある種の Toeplitz 作用素に対しても定理 2.2と同様の結 果が成り立ち,仮定 4.1の下で凹型角に対するコーナー指数が同様に定義される. ここ で四半面 (凸型角)と凹型角のコーナー指数の間には –1 倍の関係が成り立つことが示 される. 従ってバルクハミルトニアンを固定して角の形状を変えることを考えるとき, コーナー指数は形状に応じて変化する.

6. 応用例:高次トポロジカル絶縁体

トポロジカルなコーナー状態を持つ系は,物性物理学では高次トポロジカル絶縁体と 呼ばれ[15],近年盛んに研究がなされている[2].本稿では3次元クラスAで余次元2の コーナーを持つ系を扱ったが,2次元で余次元2のコーナーを持ち,さらに3.2節のよう にカイラル対称性を保つクラスAIIIの系を考えると,整数値のコーナー指数が定義さ れ,コーナーに関連したトポロジーについて同様の理論を展開することができる[8].応 用例として,Benalcazar-Bernevig-Hughesの2次元モデル[2]はカイラル対称性を含む 複数の対称性を保ち,実際にコーナー状態を持つが,このことを我々の手法で説明する ことができる.すなわち定理 5.1と類似の定理を用いて,コーナー指数を実際に計算し, 非自明であることが確認できる.これによって[2]のモデルが持つコーナー状態の背後 にあるトポロジーについて,カイラル対称性の役割が明らかとなった[8].

参考文献

- J. Bellissard, A. van Elst, and H. Schulz-Baldes. The noncommutative geometry of the quantum Hall effect. J. Math. Phys., 35(10):5373-5451, 1994. Topology and physics.
- [2] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes. Quantized electric multipole insulators. *Science*, 357:61–66, 2017.
- [3] R. G. Douglas. Banach algebra techniques in the theory of Toeplitz operators. American Mathematical Society, Providence, R.I., 1973.
- [4] R. G. Douglas and R. Howe. On the C*-algebra of Toeplitz operators on the quarterplane. Trans. Amer. Math. Soc., 158:203–217, 1971.
- [5] D. S. Freed and G. W. Moore. Twisted equivariant matter. Ann. Henri Poincaré, 14(8):1927–2023, 2013.
- Y. Hatsugai. Chern number and edge states in the integer quantum hall effect. Phys. Rev. Lett., 71(22):3697–3700, 1993.
- [7] S. Hayashi. Topological Invariants and Corner States for Hamiltonians on a Three-Dimensional Lattice. Comm. Math. Phys., 364(1):343–356, 2018.
- [8] S. Hayashi. Toeplitz operators on concave corners and topologically protected corner states. Lett. Math. Phys., 2019, https://doi.org/10.1007/s11005-019-01184-w.
- X. Jiang. On Fredholm operators in quarter-plane Toeplitz algebras. Proc. Amer. Math. Soc., 123(9):2823–2830, 1995.
- [10] J. Kellendonk, T. Richter, and H. Schulz-Baldes. Edge current channels and Chern numbers in the integer quantum Hall effect. *Rev. Math. Phys.*, 14(1):87–119, 2002.
- [11] A. Kitaev. Periodic table for topological insulators and superconductors. AIP Conference Proceedings, 1134(1):22–30, 2009.
- [12] G. J. Murphy. C^{*}-algebras and operator theory. Academic Press, Inc., Boston, MA, 1990.
- [13] E. Park. Index theory and Toeplitz algebras on certain cones in Z². J. Operator Theory, 23(1):125–146, 1990.
- [14] E. Prodan and H. Schulz-Baldes. Bulk and boundary invariants for complex topological insulators. Mathematical Physics Studies. Springer, 2016. From K-theory to physics.
- [15] F. Schindler, et al. Higher-order topological insulators. Science Advances, 4(6):eaat0346, 2018.
- [16] K. Shiozaki, M. Sato, and K. Gomi. Topological crystalline materials: General formulation, module structure, and wallpaper groups. *Phys. Rev. B*, pages 235425–1–54, 2017.
- [17] I. B. Simonenko. Convolution type operators in cones. Mat. Sb. (N.S.), 74 (116):298–313, 1967.
- [18] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized Hall conductance in a two-dimensional periodic potential. *Phys. Rev. Lett.*, 49:405–408, 1982.