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THE SPACE OF SHORT ROPES AND THE CLASSIFYING SPACE OF THE
SPACE OF LONG KNOTS

KEIICHI SAKAI

ABSTRACT. An overview on recent progress in the study of the spaces of long embeddings is
given. Main focus is put on joint work with Syunji Moriya (Osaka prefecture University); the
classifying space of the topological monoid of long knots is shown to be weakly equivalent
to the space of short (or reducible) ropes.

1. AN OVERVIEW

An embedding f: R/ < R" is said to be a long j-embedding in R" if f coincides with the
standard inclusion R/ < R/ x {0} c R" outside [0, 1]*/. Let Emb(R/, R") denote the space of
long j-embeddings in R” endowed with C*-topology. The main Theorem 1.5 describes the
classifying space of BEmb(R'!,R?). The author would like to firstly review recent trends in
the study of such embedding spaces that motivate us to consider the classifying spaces. The
author also hopes that this survey might get any young researchers interested in this topic.

The set mo(Emb(R/, R™)) can be seen as the set of isotopy classes of embeddings. In fact
the knot theory, the study of isotopy classes of embeddings S' < S?, is equivalent to the
study of mo(Emb(R', R?)) :

Fact 1.1. The 1-point compactification R" — S gives an isomorphism

o(Emb(R/, R")) 5 7(Emb(S, $™))
of monoids, where the monoid structure is given by the connected sum.

The connected sum on Emb(R/, R") is defined as a concatenation of two embeddings in
the x,-direction. This makes Emb(R/, R") a topological monoid, whereas the monoid struc-
ture for S/ < S" is defined only on 7. This monoid is commutative, and in particular
no(Emb(R!, R?)) is freely generated by the isotopy classes of prime (long) knots.

1.1. Cohomology of Emb(R/, R"). It is straightforward to see that H*(Emb(R/,R"); A) is
the space of isotopy invariants of long j-embeddings in R” (or equivalently S/ < S" by
Fact 1.1) with values in A. Among them are the Vassiliev type invariants. From the knot-
theoretic viewpoint it might be interesting what the positive-degree cohomology classes of
Emb(R/,R") mean. Computation of cohomology of such mapping spaces (or H-spaces) as
Emb(R/,R") has also been one of the central problems in algebraic topology. We review
some approaches to H*(Emb(R/, R")), with relations to Vassiliev invariants in mind.

1.1.1. Vassiliev’s approach to H*(Emb(R', R")) [35]. Regard Emb(R!, R") as a subspace of
the contractible space Map(R!, R") of “long maps”. By the “infinite dimensional Alexan-
der duality” we may alternatively compute H.(X,), where X, (called the discriminant) is the
complement of Emb(R', R") in Map(R!, R"). The information of multipoints and singular-
ities of maps induces a natural filtration on X, ;. Roughly speaking the Alexander duals of
strata of maps with k transverse double points are the Vassiliev invariants of order exactly
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k (a combinatorial characterization is given in [5]), and they appear as elements of the di-
agonal part El_k’k of the induced spectral sequence. When n > 4, this spectral sequence in
fact converges to H*(Emb(R!, R")) and moreover collapses at E; over rationals (see §1.1.3
below). This also collapses at E; over rationals even if n = 3; see [23, 33].

1.1.2. Chern-Simons perturbative theoretic approach. One way to produce all the Vassiliev
invariants of (long) knots is the integration over configuration spaces associated with graphs.

Example 1.2 (see [7, 20, 34, 37]). The order two invariant is essentially unique (up to con-
stant multiplications) and is given by

e | goﬁqvol;f - f . ga;fvolﬁ‘,
Cx(f) Cy(f)
where
Cx(f) :={(x1,..., xs) € R | x; < -+ < x4} = Confy(R"),
Cy(f) := {(x1, X2, X35 44) € Conf3(R") X R* | f(x;) # ya fori = 1,2,3} c Conf3(R") x R’

are configuration spaces associated with (the vertices of) the graphs

a4
1 2 3 4 1 2 3

and @y s: Cx(f) — (S?)** and ¢y: Cy(f) = (S?)* are defined by
f(x3) = f(x1)  flxg) = f(x2)

e 2\X2
enslat o) = (S0 i — ) € 67
Oy (X1, X2, X3, Ya) = (%)iﬂ,zs € (52)><3.

In general, for any weight system W of order & (see [3]), a formal sum of trivalent graphs
2o viny= WII (added by some “correction terms”) gives an order k invariant via the sim-
ilar integrations over configuration spaces Cr as above.

Generalizing the above construction, we have a linear map /: g;;’j - QER(Emb(R-’ ,R™),
where G, ; is the cochain complex consisting of (not necessarily trivalent) graphs and Q7 is
the de Rham complex functor. Moreover the map [ restricted to particular graphs is a cochain

map in some nice dimensions;

en>3,j=1[14],

e both n, jare odd and nn > j > 1; I|i_100p graphs 18 @ cochain map [15, 27, 30, 38],

e both n, jeven and n > j > 2; Iee graphs 18 @ cochain map [27].
In other cases, the map I gives an element of H'(Emb(R!, R?)) [28] and a nontrivial element
of Hy >~ (Emb(R/,R")) for 2n — 3j — 3 > 0 with j > 1, n — j odd [27]. In particular if
2n—-3j—-3 = 0 (then n = 6k, n = 4k—1 for some k > 1), the latter coincides with the Haefliger
invariant [19]. These cohomology classes generalize the Vassiliev invariants in some sense.

1.1.3. Embedding calculus. As we have seen in the above, configuration spaces often play
important roles in the study of embedding spaces. One of the reason is that there exist
evaluation maps

ev: Confi(RY) x Emb(R’,R") — Conf,(R"), evi(xi,... X f) = (f(x), .., f(xp).

These maps approximate embeddings by a finite number of points, and the adjoint map
Emb(R/,R") — Map(Conf(R/), Conf;(R")) may be expected to become highly connected
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as k increases. This may be thought of as a motivative idea of manifold calculus [39, 18]. In
fact there exists a (homotopy) commutative diagram

T.Emb(R/,R") — ... —— T,Emb(R/,R") — T,Emb(R/, R")

|

Emb(R/, R")

where the horizontal arrows form a tower of fibrations (called the Taylor tower since it has
some similarities to the Taylor expansion of functions), and the connectivity of the map
Emb(R/,R") — T;Emb(R/,R") is approximately k(n — j — 2). The space T Emb(R/, R") is
given by the homotopy limit of the diagram consisting of the spaces of punctured embeddings
with at most k holes (with some tangential data). The tower enables us to describe (a variant
of) Emb(R/, R") as a derived mapping space of operads [2]. Such descriptions provide certain
graph complexes that compute H*(Emb(R/, R")) for n > 2 + 2 and that prove the collapse
of the Vassiliev spectral sequence. They look very similar to that appeared in §1.1.2.

When (n, j) = (3, 1), it is not known whether T..Emb(R!, R?) recovers Emb(R', R?) or
not. But the diagram of spaces that is used to define T},.;Emb(R/, R") consists of 2¢*! spaces,
each of which is the space of embeddings with / holes, 0 < [ < k + 1. This looks similar to
the combinatorial characterization of Vassiliev invariants of order < k. Indeed it is known
that the order two invariant factors through 73Emb(R', R?) [13], and for general k > 2 the
k + 1-st stage produces order k invariants (see [12, 26, 29, 36]).

1.2. Embedding spaces as D-algebras. The little m-disks operad is the collection D" :=
{D}"h0 of spaces, where D" is the space of configurations of k disjoint m-disks in the unit
m-disk. Compositions of embeddings give maps D' X (D! X --- x D)) — Dy, that
encode higher commutativity of m-fold loop spaces [6, 21]. The little j-disks operad acts on
Emb(R/, R"), namely we have maps Z)i x (Emb(R/, R"))** — Emb(R/, R") that encodes all
the possible ways to take connected sums of k long embeddings. Considering the space of
“framed” long embeddings, this action is extended to that of D/*! [8]. If n — j > 3, then
mo(Emb™(R/, R")) is a group and hence the loop space recognition theorem [21] deduces that
Emb™(R/,R") is a ( j + 1)-fold loop space. Although Emb™(R!,R%) is not a two-fold loop
space because mo(Emb™(R!, R?)) is not a group, it is a “free D*-space” and the homotopy
type of each path component of Emb™(R', R?) can be computed in principle [10, 11].

1.3. The group completion of the long knot space; the main theorem. As we have seen
in §1.1, in the (meta)stable range of dimensions (n—j > 3,n>2j+2,0or2n—-3j—-3 > 0 and
j>2), m.(Emb(R/,R")) ® Q and H*(Emb(R/, R"); Q) can in principle be computed by using
algebraic models. On the other hand,in particular the codimension two cases, these spaces
are interesting (from knot theoretic viewpoint) but we can obtain only the information of
mo(Emb(R"2, R")) via homotopy-theoretic methods. For example Emb™(R"~2, R") admits an
action of little 2-disks operad, but it is not homotopy equivalent to any two-fold loop space
since mo(Emb(R"2, R")) can never be a group [9]. The group completion QBEmb(R"~2, R")
would be better from the homotopy-theoretic viewpoint (in fact QBEmb™(R”2, R”) is homo-
topy equivalent to a two-fold loop space).
The following result and the conjecture of Mostovoy [25] are thus quite curious;

Theorem 1.3 ([25]). The fundamental group of the space B, of “short ropes” (see Defini-
tion 1.10 below) is isomorphic to 77y(Emb(R!, R?)), the group completion of mo(Emb(R!, R?)).

Conjecture 1.4 ([25]). B, would be the classifying space BEmb(R!, R?) of Emb(R!, R?).

The conjecture 1.4 has been solved affirmatively in joint work [24] with Moriya. In fact it
can be proved in a slightly generalized form. Outline of the proof is given in §2.
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Ficure 1.1. Tying the tight rope to get a (part of) long knot

Theorem 1.5 ([24]). For n > 3, the space B, of short ropes in R" is weakly homotopy

equivalent to BEmb(R', R").

1.4. Questions. If n > 3, then mo(Emb(R', R")) is the trivial group and hence B, is a de-
looping of Emb(R', R") (see [22]):
Emb(R', R") ~ QBEmb(R',R") ~ QB,.
In fact P. Salvatore [31] proved that Emb(R', R") (n > 3) is weakly equivalent to a double
loop space, and we can expect that B, has a further delooping.
As mentioned in §1.2, Emb™(R', R") is acted on by the little 2-disks operad. Theorem 1.5

is valid for framed cases, and thus the space of framed short ropes in R"” (n > 3) is expected
to have a delooping.

Question 1.6. What are deloopings of the spaces of (framed) short ropes in R"?

For n = 3, Theorem 1.5 gives a partial information of H,(Emb(R!,R?)) :
Theorem 1.7 ([4]). Let M be a topological monoid. If 7y(M) is included in the center of the
Pontrjagin ring H,(M), then there exists a ring isomorphism H,(M)[ro(M)™!] 5 H.(QBM).
Question 1.8. Compute H.(2B,). Which Vassiliev invariants come from short ropes?
Question 1.9. What is BEmb(R/, R") for j > 2?

1.5. Mostovoy’s map Emb(R', R*) — QB,. Mostovoy’s Theorem 1.3 implies that the clas-
sification of 1-parameter families of short ropes generalizes knot theory, and it would be
worth describing the isomorphism 7;(B,) — 7o(Emb(R!, R?)) explicitly.

Definition 1.10 ([25]). A rope is an embedding r: [0, 1] < R? such that r(i) = (i, 0, 0) for
i =0,1. A rope is said to be short if its arc-length is not greater than 3. The space of short
ropes equipped with the C*-topology is denoted by B;.

The tight rope is the short rope ry defined by ry(#) := (¢,0,0) for 0 < ¢ < 1.

Clearly the length of any rope is not less than 1. The subscript “2” indicates that B, is the
space of ropes whose lengths are < 1 + 2.

After reducing the size of f € Emb(R',R?) enough, flo.1) gives a short rope. This rope
can be joined to the tight rope in B; in the following two ways (see Figure 1.1):
(1) “tying rope around (0, 0, 0)” to get flo.13,
(2) “tying rope around (1,0, 0)” to get flo.1-
Gluing the isotopy (1) and the inverse of (2), we obtain a loop in B, based at ry. Therefore
we get a map Emb(R', R*) — QB,. In other words, a natural map Emb(R', R*) — B, given
by f = fljo.1; 1s null-homotopic and there exist two null-homotopies, and hence we have
a map SEmb(R!,R?) — B,. Mostovoy has proved that this map induces an isomorphism
on ;. Because mo(Emb(R!, R?)) is a free commutative monoid, we have an injective homo-
morphism mo(Emb(R!, R?)) < 75(Emb(R!, R?)) = 7,(B,) of monoids. Thus for example an
invariant of the homotopy classes of loops of short ropes restricts to a knot invariant.
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FiGure 2.1. An element of ¢ (the long component is drawn with a thick curve)

2. OUTLINE OF THE PROOF OF THEOREM 1.5

Below let D™ denote the open unit m-disk. The proof of Theorem 1.5 goes as follows;

(1) Define a space ¥ of certain 1-manifolds in R! x D? (Definition 2.2) and a topological
category K of long knots (Definition 2.4), and prove that BK ~ ¢ (Theorem 2.8).

(2) Introduce the notion of reducible ropes (Definition 2.9) and show that B, is weakly equiv-
alent to the space R of reducible ropes (Theorem 2.10; the proof will be omitted).

(3) Define the cutting-off map c: R —  and prove that this is a weak equivalence (§2.3).

Step (1) looks similar to the argument of [16]; the homotopy types of the classifying spaces
of some cobordism categories have been studied in [16], and the methods in [16] work well
for long knots because long knots can be considered as a kind of cobordisms. We need step
(2) because reducible ropes fit better into the framework of step (1) and perhaps R might be
easier to deal with than B,. The map c defined in step (3) is geometric and hence might be
useful in applying the “rope theory” to the knot theory.

Below we only consider the case of Emb(R!, R*). For details see [24].

2.1. The space of reducible 1-manifolds. For a submanifold M c R! x D? and a subset
A c R!, we denote M|, := M N (A x D?). If A = {T} then we abbreviate it as M|; and think
of M|y € D? in a natural way.

Definition 2.1. A 1-manifold M c R'xD? is said to be reducible' at T if it intersects {T}x D?
transversely at exactly one point. If moreover M|7_cr+e) = (T — €, T + €) X {M|7} for some
€ > 0, then we say M is strongly reducible at T. See Figure 2.1.

Definition 2.2. Define the set ¢ as consisting of 1-manifolds M c R! x D? such that
(1) M =0,
(ii) each path component of M is a closed, non-compact subset of R?, and

(iii) there exists 7" such that M is reducible at 7" (see Figure 2.1).

By the above conditions (i)-(iii), we see that for any M € ¢ has exactly one path com-
ponent M, satisfying M|y # (0 for any T € R!. We say such a component is long. Other
components are (if they exist) long on exactly one side; we say M, is long in the left (resp.
right) if there exists T € R' such that M|, # 0 for any s < T but Mi|i7.0) =0 (resp. My|; # 0
for any s > T but M|—c1) = 0).

We topologize ¢ as in [16, §2.1]. Roughly speaking M, N € y are “close to each other if
they are close in a compact set”. This topology looks very similar to the “weak C*-topology”
[1, §1-4 D].

Example 2.3. Let «: [0,1) — [0, c0) be a monotonically increasing function with a(f) i)
co. Let M(t) € ¢ (0 < t < 1) be a family of 1-manifolds satisfying M(®)|—aq).e() =
[—a(t), a(t)] x {0}. This family converges to the trivial long knot R! x {0} € y ast — 1.
See also [16, Example 2.2].

'This word comes from the knot theory; if M is reducible at 7', then M can be decomposed into a “connected

sum” of M|—e,7) and M|i7,.y. But the author does not think it is the best terminology, because M| 7 and
M7,y are not necessarily “non-trivial”. The author would like to ask readers to suggest any better terminology.
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2.2. The category of long knots.

Definition 2.4. Define the topological category K of long knots as follows. Define Ob(‘K) =
D? equipped with the usual topology. For p, g € D?, non-identity morphisms from p to g are
“long knots from p to g,” namely pairs (T, M) € Rio X Y such that

(a) M is connected (and hence long by the conditions in Definition 2.2),
(b) there exists € > 0 such that M| _w¢ = (=00, €) X {p} and M|r_c) = (T — €, ) X {q}.

We define the identity morphism id: p — p to be (0,R' x {p}). We topologize the set of
all morphisms |J, , Mapg(p, q) as a subspace of ({0} U R.o) X ¢, where U stands for the
disjoint union. The composition o: Mapy(q, r) X Mapy(p, g) — Mapy(p, r) is given by the
connected sum

(T, M) o (T, M) := (T +T', M|—o;r1 U (M'|0,00) + Te1)),
where e; = (1,0,0) € R* and +Te, is the parallel translation by 7 in the R!-direction.

The category K has a contractible object space and its morphism space is homotopy equiv-
alent to Emb(R!, R?) LI {id}. One of the reasons why we topologize the morphism space so
that the identity maps are separated is that it makes a proof of “goodness” of the nerve N, K
of K (see [17, 32]) easier; see below.

The nerve of K is by definition a simplicial space N.K = {N;K};>o where N,K is the space
of composable / morphisms in K. Thus N/X is the space of long knots that are connected
sums of at least / long knots;

NK = (T < < T M) € R x ¢ |
M is a long knot that is strongly reducible at each T3}.

The classifying space BK of K is by definition the geometric realization of N,K. To show
BK ~ ¢, we introduce two intermediate posets D and D+ and find a sequence of (weak)

homotopy equivalences BK & BD* S5 BD S v.
Definition 2.5. Define spaces D+ ¢ D c R! x i by respectively
DY = (T, M) e R x W | M is (strongly) reducible at T}

and define a partial order <on D so that (T, M) < (T’",M’)if M = M" and T < T’. We regard
DY as a topological category in a natural way; Ob(D™) = DY and Map ) (x, y) = {(x, y)}
if x < y and 0 otherwise. We topologize | J, ,p Map,(x, y) as a subspace of (A LI (R x R \
A)) X ¢, where A := {(x, x) € R x R} is the diagonal set.

Remark 2.6. For (T, M) € D, M is not necessarily connected, but any path components of
M that are “one-sided long” are separated, namely all the left-sided (resp. right-sided) long
components are contained in (—oo, T) X D? (resp. (T, c0) X D?).

Remark that the [-th space of the nerve of D™ is
NDP = {(Ty <--- < T;; M) | M €y is (strongly) reducible at each T}.

By the definition of the topologies of K and D™, the identity morphisms form disjoint path
components, thus their nerves are good simplicial spaces (see [32, Appendix A]).

Proposition 2.7. There exists a sequence of simplicial maps N, K « N.D*+ — N,D each
of which is a degreewise homotopy equivalence. Since they are good simplicial spaces, this

induces a sequence of homotopy equivalences BK & BD S BD (see [32, Appendix A]).
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Ficure 2.2. Cutting-off and long-extension
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FiGure 2.3. The homotopy from G o F to id in the proof of Proposition 2.7

Proof. Firstly the natural inclusion induces a simplicial map N.D*+ — N, D. It is a degree-
wise homotopy equivalent because, for any (7y < --- < T;; M) € N;D, we can canonically
transform M so that M becomes strongly reducible at each 7; [16, Lemma 3.4].

Define a functor F: D+ — K on objects by (T, M) — M|y and on morphisms by

F(T() <-.-< TI;M) = (0 < T] - T() <-.-< Tl - TO;Ml[To,T[] — Toel),
where
(2.1) Mz, := ((=00, Tl X Mlz,) U Mi7,1m7 Y ([T}, 00) X Mlz,)

(see Figure 2.2) is obtained by cutting M|_« 7,] Ll M|[7,.) Off and adding two half-lines. We
call it the long-extension of (Ty < --- < T;; M). Remark 2.6 confirms that M|z, 7, is a
morphism in K. This induces a simplicial map F: N.D+ — N.K.

The “inverse” G: N,K — N,D" is defined by G(p) := (0,R' x {p}) on level zero and by
the natural inclusion on positive levels. It is not induced by any functor, but is a degreewise
homotopy inverse to F. Indeed F o G is the identity, and

GOF(T()S"‘STI;M):(OSTl—TQS"' STI—TO;Mol[TO,TI])

is a result of a homotopy that “throws M| _« 7,; and M|z, ~) away to +oo” (see Figure 2.3),
and is homotopic to the identity by the definition of the topology of ¢; see Example 2.3. O

Theorem 2.8. The forgetful map N;D — ¢ given by (T} < --- < T;; M) — M induces a
weak equivalence u: BD — .

Outline of proof. This is proved by showing the relative homotopy group 7,,,(¥;, BD) (where
Y’ 1s the mapping cone of u) vanishes for all m. This holds essentially because the fiber of
N;K —  is a union of [-simplices. See also [16, Theorem 3.10]. O

2.3. The space of reducible ropes. We first extend the meaning of ropes (compare the
following Definition 2.9 with Definition 1.10).

Definition 2.9 ([25]). A rope is a compact connected 1-submanifold r ¢ R!' x D? with
nonempty boundary dr = {ry, r;} satisfying r; € {i} x D*. A reducible rope is a rope that is
reducible at some ¢ € (0, 1) in the sense of Definition 2.1. Denote by R the space of reducible
ropes equipped with the same topology as .
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FiGure 2.4. The maps @ and I

By inspection we see that Mostovoy’s short rope (Definition 1.10) must be reducible at
some ¢t € (0,1). Thus there exists an injective map B,/Diff,[0, 1] — R, where Diff, [0, 1]
acts on B, as parameter changes. Composing the natural projection B, — B,/Diff,[0, 1]
(this is a homotopy equivalence because Diff, [0, 1] is contractible), we have a map B, — R.

Theorem 2.10. The above map B, — R is a weak homotopy equivalence.

The proof is not difficult but technical. See [24, §3].
Choose and fix an orientation preserving diffeomorphism f: (0,1) — R, and define the
cutting-off map c: R — ¢ by
c(r) := (f x1dp2)(rlo,1))-

See also Figure 2.4 below. Notice the similarity between ¢ and the “long-extension” (2.1).
The rest of this article is devoted to showing that ¢ is a weak equivalence. As we have
done in §2.2, we introduce posets &) that intermediate R and .

Definition 2.11. Define the spaces & and & by respectively
EW = {(t,r) € (0,1) xR | ris strongly reducible at t},

and define partial order < on & and &* so that (¢,r) < (¢, r)if r = r and t < . We equip &
and & with a structure of topological categories in the same way as D; (J,, Mapg.,(x, y) is
topologized as subspaces of (A LI ((0, 1) X (0,1) \ A)) x R.

Notice that the nerve of & is the space of “connected sums of ropes”;

NEY ={(ty < - < t;r) € (0, 1)V x R | ris (strongly) reducible at each ¢,}.

The nerves N.EY are good simplicial spaces; the reason is the same as for N, K.

Proposition 2.12. There exists a sequence of simplicial maps N.& & N,& S N.D* each
of which is a degreewise homotopy equivalence. Since they are good simplicial spaces, this

induces a sequence of homotopy equivalences BE «— BE* — BD (= BK).

Proof. The inclusion functor && — & induces a levelwise homotopy equivalence N,.&E* >
N.E. The reason is the same as for D+ — D (compare this with Proposition 2.7).

Recalling f: (0, 1) 5 R and ¢ from the above, define a functor @: &+ — D+ by
O(t; 1) == (f(1); c(r)),
and for any / > 0 define amap I': N;D*+ — N,E* by
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[(To<- <TpM):=(ty < <t (f ' Xidp2)(Mlire.r)s

(recall M|z, r, from (2.1)), where ¢, := FU(T;) € (0,1). See Figure 2.4.

Notice that, if N is “knotted” outside any compact set, then possibly 7 := (f~! X id;2)(N)
might not be a regular (or tame) submanifold of R! X D>. But if N = M|y, ) then it is a
union of straight lines outside [T, 7;] X D* and r is indeed a regular submanifold.

The functor @ induces a simplicial map ®: N.&- — D~. Itis in fact a levelwise homotopy
equivalence with homotopy inverse I'. Indeed ® o I" is given by

Pol(To<--<T;M)=(Ty<--- <Ti; Mlizy1)

and it is homotopic to the identity by the similar argument to G o F' ~ id in the proof of
Proposition 2.7. Next I" o @ is given by

Fo®(ty <---<t3r):i=(tg <+ <15y

where L

Vl(to,t,) = ([0, 7] X rlto) U rl(to,t,) U ([, 1] X rlt,) e R
is the “long-extension” of r|y, ), namely we replace 7w 4 U Flj1,.00) With straight segments
(see Figure 2.4). Thus to show I' o @ ~ id, we have to show that r|_c 4 U lj,.) can be
unknotted in a canonical way.

One way to do this has been given in [25, Lemma 10]. The outline is as follows. Notice
that r|_« ) can be seen as a rope that is strongly reducible at the endpoint r{,,. Parametrize
(e by some p: [0, 1] = R? and consider a family of “truncated ropes” p|js.1; (0 < s < 1).
Using some rotation-like homotopy centered at r|,,, the truncated rope p|,;; can be trans-
formed to a rope whose endpoints are (0, 0, 0) and r|,,. This homotopy gives a way to unknot
Il(—0,1 keeping r strongly reducible at each #;. Similarly r[;, ., can be unknotted and hence
I' o @ is homotopic to the identity. O

Theorem 2.13. The forgetful map V& — R given by (¢y < --- < 1;;r) — r induces a weak
equivalence v: BE — R.

The proof is almost the same as that of Theorem 2.8. Thus we have R ~ BK:

Corollary 2.14. There exists a homotopy commutative diagram consisting of (weak) homo-
topy equivalences, where u’, v” are the composite of u, v with the inclusions:

BE 2. ppt L. BxK
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