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Quillen rational homotopy theory revisited

Aniceto Murillo

Abstract

This paper surveys the main properties of the model and realization functors,

fy
sset — dgl
(=)

which are based in the cosimplicial complete differential graded Lie algebra £ae.
This let us extend the Quillen approach to rational homotopy theory to non simply
connected spaces and to any complete differential graded Lie algebra.

Introduction

In his celebrated and seminal paper [21], D. Quillen developed the “Lie” approach to
rational homotopy theory. It is based in the construction of a couple of functors,

A
sset; —— dgly

(—)a

between the categories of reduced or simply connected simplicial sets, those with only
one simplex in dimensions 0 and 1, and that of reduced dgl’s, that is, differential graded
Lie algebras positively graded. These functors are defined as the composition of several
pairs of adjoint functors (the upper arrow denotes left adjoint), in fact Quillen pairs,
with respect to the corresponding model category structures,

G Q 0 N*
A: ssetq SgPo schg sla; dgli: (—)o-
w S P N

Here, sgpg, schg and sla; denote respectively the categories of connected simplicial
groups, connected complete Hopf algebras, and reduced simplicial Lie algebras. Each
of these pairs induces Quillen equivalences on the corresponding homotopy categories
when localizing on the family of rational homotopy equivalences in ssety, sgpg, and on
the family of quasi-isomorphisms in schy, sla;, dgly [21, Thm. I].

The complexity of the functors A and Quillen realization (—)g strongly contrasts
with the conceptual simplicity of the pair of adjoint functors in which the Sullivan
“commutative” approach to rational homotopy theory is based [3, 22]. These are defined
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by the PL-forms 7 (—) on simplicial sets and the Sullivan realization functor (—)s on
commutative differential graded algebras (cdga’s henceforth):
(=)
sset __ cdga.
(=)s
Explicitely, given a cdga A, its realization is
<A>S = Homcdga(Ay JZ{.)

where o7, = o/ (A®) is the simplicial set of PL-forms on the standard simplices. In other
words, (A)g is “corepresentable” by ..

In fact, the lack of an Eckmann-Hilton dual of the simplicial <7 has puzzled rational
homotopy theorists since the birth of the theory. On the other hand, there are many
situations in a wide range of mathematics, from algebraic geometry to mathematical
physics, where a suitable extension of the Quillen functor to non necessarily reduced
dgl’s would be most welcome.

These problems are attacked in the work reviewed by this survey, whose departure
point is the following observation and subsequent general question raised by R. Lawrence
and D. Sullivan in [17]:

The rational singular chains on a cellular complex are naturally endowed with a
structure of cocommutative, coassociative infinity coalgebra and hence, taking the com-
mutators of a “generalized bar construction” it should give rise to a complete dgl (in
fact, all our dgl’s would be of this kind, see next section for a precise definition). What
is the topological and geometrical meaning of this dgl? Allowing 1-cells, what is the
relation of this dgl with the fundamental group of the given complex?

In the same reference they carefully construct such a dgl for the interval. It consists
of a free dgl, R

La1 = (L(a,b,z),0),

in which a and b are Maurer-Cartan elements representing the endpoints of the interval,
x is a degree 0 element representing the 1-cell, and

B
Oz =adb+ ) ﬁ ad(b — a)
n=0
where the B,,’s are the Bernoulli numbers.

We begin by extending this to any simplex and construct, for each n > 1, a free dgl
Lan = (E(s‘lA”), 0) in which s7'A™ together with the linear part of the differential &
is the (desuspension) of the rational simplicial chain complex of the standard n-simplex
A™ and the vertices correspond to Maurer-Cartan elements. We then show that the
family

Lae ={Lan}tn>0

is a cosimplicial dgl and therefore, we may geometrically realize any dgl L as the sim-
plicial set
(L) = Homggi(Las, L).
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On the other hand, The £ construction can be extended to any simplicial set X by
defining its dgl model as
,QX = COlimgex £A|g| .
—

It turns out that the model and realization functors

£
sset — dgl

(=
are adjoint and they extend the original Quillen functors in different directions, all of
them carefully covered by section §3. Here, we mention two:

On the one hand, (L) ~ (L)¢ for any reduced finite type dgl L. This shows that the
Quillen realization functor is representable by the cosimplicial dgl £ae which becomes
the Eckmann-Hilton dual of .@7,. Moreover, under no restriction, our realization coincide,
up to homotoy type, with any other known realization functor for dgl’s including the
Deligne-Getzler-Hinich simplicial functor [1, 13, 14].

On the other hand, unlike the Quillen A functor, our model functor reflects geomet-
rical properties of non nilpotent spaces. Indeed, the non trivial component (£%) of the
realization of the model of a connected finite simplicial set X has the homotopy type of
the Bousfield-Kan Q-completion of X [2]. In particular, Ho(£%), with the group struc-
ture given by the Baker-Campbell-Hausdorff product, recovers the Malcev completion
of the fundamental group 7 (X).

After that, we embed the model and realization functors in a suitable homotopy
theoretical framework. Indeed, we endow the category of dgl’s with a model category
structure for which a dgl morphism f: A — B is a fibration if it is surjective in non

negative degrees; f is a weak equivalence if M@( f): Nfé(A) 5 1\7[\(/3(3) is a bijection and
fo: A 5 BI(@) g a quasi-isomorphism for every a € 1\76@4); finally f is a cofibration
if it has the left lifting property with respect to trivial fibrations. As an immediate
consequence we deduce that the model and realization functor form a Quillen pair. In

particular, they induce adjoint functors in the homotopy categories,

£
Hosset _— Hodgl,
(=)

and both preserve weak equivalences and homotopies.

This survey is extracted from [19] and it contains the main results of a project which
begun some years ago in collaboration with U. Buijs, Y. Félix and D. Tanré to all of
whom I am deeply grateful. All of these results can be found in [4, 5, 6, 7, 8].

1 Differential graded Lie algebras

Throughout this paper we assume that Q is the base field. Direct and inverse limits are

denoted by colim and lim respectively.
— —
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A graded Lie algebra consists of a Z-graded vector space L = ®pez L, together with
a bilinear product
[,]: Lp® Ly — Lptq, p,qE€ZL,

called the Lie bracket, satisfying antisimmetry,

[2,y) = —(=1)F"[y, 2],

and Jacobi identity,
(=) [z, [y, 2] + ()M [y, [2,2]] + (=1)FI¥ [z, [, ] = 0.

Here, || denotes the degree of 2. The commutator operator [a,b] = a®@b—(—1)l*ltlp@q
is a Lie bracket on T'(V'), the tensor algebra on the graded vector space V. The free Lie
algebra (V') generated by V is the sub Lie algebra of T'(V') generated by V.

A differential graded Lie algebra is a graded Lie algebra L endowed with a differential,
that is, a linear derivation 0 of degree —1 such that 8% = 0. By abusing of notation we
say that a differential graded Lie algebra is free if it is so as graded Lie algebra.

Given a differential graded Lie algebra L, a Maurer-Cartan element is an element
a € L_; satisfying the Maurer-Cartan equation

Oa + %[a,a] = 0.

We denote by MC(L) the set of Maurer-Cartan elements which is clearly preserved by
morphisms. Given a € MC(L) the derivation 9, = 9 + ad, is again a differential on
L. Here ad, denotes the usual adjoint operator, ad,b = [a,b]. The component of L at
a € MC(L) is the truncation of the perturbed (L, d,) at non negative degrees,

LY = (L,&a)/(L<0 D J) = Lag® (LO N ker 8a) ,

in which J is a comBlement of ker 0, in Lyg.
The completion L of a differential graded Lie algebra L is

L=limL/L"

where L' = L, L™ = [L, L™ 1] for n > 2, and the limit is taken on the topology arising
from this filtration. An element @ of L is then a sequence @ = (a1, ag, - - - ) with a; € L/L?
and a; = a;_1 in L/Li"1 We write L(V) = IL/(T?) Each element of I/[:(V) can be seen as
a series ) xp with x, € L"(V) for all n.

A differential graded Lie algebra L is complete if the natural morphism L 51
is an isomorphism. Observe that, reduced differential graded Lie algebras, which are
concentrated in positive degrees, are always complete.

We denote by dgl the category of complete differential graded Lie algebras, dgl’s
henceforth.
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Given L = ]IAJ(V) a free dgl and v € V, we will often write dv = ), -, O,v where
d,v € L™(V). Observe that, if 6 is a derivation of L satisfying #(V) ¢ L=%(V) and
[0,0] =0, then ¢ =" % is an automorphism of L and in particular, it induces a
bijection on the Maurer-Cartan set.

Recall that given a dgl L, the Baker-Campbell-Hausdorff product * equips the vector
space Lo with a group structure. Since a*(—a) = 0 we often use the notation —a = a=!.

The gauge action, see for instance [18, §4], of (Lo, *) on MC(L) is defined by

(0) = Z ad;'(a) B Z ad’ (0x)

. ' .
= ! = (i 4 1)!

edds _ 1

ad,

2Ga = ¥ (a) —

Here and from now on, 1 inside an operator will denote the identity. We denote by
MC(L) = MC(L)/S the orbit set, that is, the set of equivalence classes of Maurer-Cartan
elements modulo the gauge action.

Geometrically [15, 17], interpreting Maurer-Cartan elements as points in a space, one
thinks of z as a flow taking x Ga to a in unit time. For the more topological oriented
reader [10], the points a and x Ga are in the same path component.

The Deligne groupoid of L has MC(L) as objects, and elements = € L as arrows
from 2z Gz to z.

A fundamental object, which illustrates all of the above concepts and facts, turns
out to be the starting point of our work:

Definition 1.1. [17] The Lawrence-Sullivan model for the interval, LS-interval hence-
forth, is the dgl R
Lar = (L(a7 b, ZL‘), a)a

in which a and b are Maurer-Cartan elements, x is of degree 0 and

> B, x
0r = adsb+ Y~ ad?(b— a) = adgb + ajd
n. e

ﬁ(b—a),

n=0

where the B,,’s are the Bernoulli numbers.

~

Let (L(ap,a1,az,z1,22),0) be two glued LS-models of the interval. That is, ag, a1

and ag are Maurer-Cartan elements, dr; = ady, (a1) + ﬁ%(al — ap) and Oxy =
adg, (a2) + eaijzil (ag — a1). Then, the “subdivision of the interval” is given by:

In [5, Thm. 2.3] the reader may find a complete description of the Deligne groupoid
of the LS-interval as two disjoint rational lines.

2 The cosimplicial dgl £a.
Given n > 0, let A™ be the standard n-simplex ,

Ap = {(io,---,ip) [0 <idp < -+ <ip <}, if p<mn,
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and denote by s~tA™ the graded vector space of desuspended rational simplicial chains
on A™ with the usual boundary operator,

p
o _E _1\ ~
dal()...’bp - ( 1) aio...ij...ip‘
Jj=0

Here, a,...;, denotes the generator of degree p—1 represented by the p-simplex (i, ..., i) €
A7. Consider (E(s‘lA”), d) the free dgl generated by s~'A™ with the differential in-
duced by d.

For each 0 < ¢ < n consider the i-th coface map ¢;: {0,...,n—1} = {0,...,n} and
the i-th codegeneracy map o;: {0,...,n+ 1} — {0,...,n} defined by:

so= {1, wise =
and use the same notation for the induced dgl morphisms,
8 (L(s7'A™ 1), d) — (L(s7'A™),d), o3: (L(s7' A", d) — (L(s7'A"™), d),
defined by

Silas ) =aqa with ¢, =
z( J0~--.7p) fo...bp k {]k +1, if g >

, _ [ o). ity i 0illo) <o < oilly),
7ilat..t,) { 0 ’ otherwise,

The following is the core result on which our dgl realization is based.

Theorem 2.1. [4, thms. 2.3 and 2.8] There is a cosimplicial dgl, unique up to dgl
isomorphism,

Lae = {L€antnzo = {(L(sT'A™),0) }nz0,

such that,
(1) For eachn >0 and eachi = 0,...,n, the generator a; € s~ LAP is a Maurer-Cartan
element, Oa; = f%[ai, a;).

(2) The linear part 8y of O is precisely the desuspension s~'d of d.

(8) The cofaces and codegeneracies are the morphisms d;’s and o;’s defined above.

3 The model and realization functors

Given a simplicial set X, identify as usual any simplex o € X,, with a simplicial map
o: A" — X. Here, A" denote the simplicial set whose p-simplices are integer sequences
0 <ip <--- <1y, <n. Then, X can be recovered from its simplices as the colimit

X = colimoexé“".
—



2650 MROY—Y VIRV Y LEEE (201848A - EMNKE)

Definition 3.1. The model of any simplicial set X is defined as the dgl
SX = COlimUeX £A|g| .
—

In fact, Theorem 2.1 is a special case of the following: It can be proven that the
model of X is the free complete Lie algebra

£x = (L(s71X),9)

where, abusing of notation, s~'X denotes the desuspension of the normalized chains
on X. Recall that these are the simplicial chains on X modulo degeneracies. In other
words, s'X is generated by the non degenerate simplices of X. The differential 0 is
completely determined by the following:

(1) The non degenerate O-simplices are Maurer-Cartan elements.

(2) The linear part 9; of O is precisely the desuspension of the differential in the
normalized chains on X.

(3)If j: Y C X is a subsimplicial set, then £(j) = L(s~).
On the other hand the cosimplicial structure on £ae gives rise to the following.
Definition 3.2. The realization of a dgl L is defined as the simplicial set
(L) = Homggl(Las, L).
Theorem 3.3. the model and realization functors are adjoint,
£
sset _— dgl.
(=)
The first results describing the homotopy type of the realization of a given dgl are
the following.
Theorem 3.4. [4, Thm. 4.6] For any dgl, (L) ~ U
MC(L).

Theorem 3.5. [4, Prop. 4.5] Let L be a non negatively graded dgl and z € MC(L).
Then, (L?) is a connected simplicial set and there are natural group isomorphisms

Tn(L*) = H,—1(L7), n>1,

< FO(L) (L?). In particular, mo(L) =

in which Hy(L,d) is considered with the group structure given by the Baker-Campbell-
Hausdorff product.

Finally, concerning the realization functor, we state that, under the usual bounding
and finite type assumptions, it extends the original Quillen realization functor (—)q
[21], and the realization (¢*(—))g of the cdga given by the Chevalley-Eilenberg cochain
functor €* on L [3]. This is the composite of the functors,

¢ = (—)ﬂ 0%¢: dgly - cdga and (—)s: cdga — sset,

where dgl; is the full subcategory of dgl of finite type dgl’s. The second one is the
Sullivan realization functor defined by (A)g = Homcqga(A, ).

7
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Theorem 3.6. [4, Thm. 8.1] Let L be a finite type dgl with Hy(L) = 0 for g < 0. Then,
(L) ~(€*(L))s. If in addition L is reduced, (L) ~ (L)q.
This exhibits the Quillen realization as a functor representable by L£ae

We also show in [7, Thm.4.8] that, with full generality, our realization is homotopy
equivalent to the Deligne-Getzler-Hinich simplicial functor on L [13, 14].
We now analyze the main properties of the model functor:

Theorem 3.7. [6] For any finite simplicial set X,
MC(€x) = mo(XH).

Here, X+ denotes the disjoint union of X with a point. This, together with Theorem
3.4, gives,
mo(Lx) = mo(X ™).

Moreover, we are able to determine the homotopy type of each of these components.
Theorem 3.8. [8, Thm. 2.7] Given X a finite simplicial set, <£g(> s contractible.
For the non trivial components we have:

Theorem 3.9. [8, Thm. 2.9] Let X be a connected finite simplicial set and let z € £x
be a non trivial Maurer-Cartan element. Then, <£§(> ~ Qu X, the Q-completion of X

2],

In particular, by [12, Cor. 7.4], and taking into account Theorem 3.5 for n = 1, we
deduce:

Corollary 3.10. Hy(£%) is the Malcev Lie completion of the fundamental group w1 (X).

4 A model category structure on dgl

Henceforth, by model category we mean the original closed model category definition
of Quillen [20]. In the category sset of simplicial sets we consider the classical model
category structure, see for instance [2, Chap. VII], in which fibrations are Kan fibrations,
cofibrations are injective simplicial mpas, and weak equivalences are homotopy weak
equivalences. Then, we have:

Theorem 4.1. [8, Thm. 3.1] There is a model category structure on dgl for which:

o A morphism f: A — B is a fibration if it is surjective in non negative degrees.

e A morphism f: A — B is a weak equivalence if m(f) ﬁé(A) 5 MC(B) is a

bijection and f*: A* = Bf(@) is a4 quasi-isomorphism for every a € MC(A).
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o A morphism is a cofibration if it has the left lifting property with respect to trivial
fibrations.

Corollary 4.2. the realization and model functors, form a Quillen pair. In particular,
they preserve weak equivalences and induce adjoint functors in the homotopy categories,

£
Hosset —— Hodgl.
(=)

We end this section with the following important observation which compare our
model structure in dgl with other known model structures:

Remark 4.3. (1) One may consider in the category dgl the classical model structure given
on categories of unbounded chain complexes enriched with some algebraic structure, see
for instance [14, §2]. Fibrations are surjective morphisms, weak equivalences are quasi-
isomorphisms and cofibrations are morphisms satisfying the left lifting property with
respect to trivial fibrations.

Then, the zero map 0 — L(a), in which a is a Maurer-Cartan element, is not surjec-
tive but it is a fibration in our model structure. The same example is a quasi-isomorphism
but it is not a weak equivalence in our structure. Contrarily, consider the abelian dgl
L generated by a single cycle of negative degree. Then, the zero map 0 — L is a weak
equivalence in our structure but it is not a quasi-isomorphism.

(2) On the other hand, in [16, Thm. 9.16], A. Lazarev and M. Markl define a model
category structure on the full subcategory of dgl formed by the profinite complete dgl’s
where:

f is a fibration if it is a surjection.
f is a weak equivalence if €*(f) is a quasi-isomorphism.

f is a cofibration if it has the left lifting property with respect to all trivial fibra-
tions.

Here €* is a generalization of the usual cochain functor [16, §7]. In [8, Thm. 6.12] we
show that if f is a weak equivalence in this structure, it is so in our model structure.
However, this inclusion is strict: let L be the abelian Lie algebra generated by a single
cycle of degree —1. As observed in (1) the zero map f: 0 — L is a weak equivalence
in our model structure but ¢*(f) is not a quasi-isomorphism. Also, it is obvious that
the class of fibrations in the above structure is also properly contained in our class of
fibrations.

A final word

Needless to say what would be the natural continuation of the work presented in this
survey: the literature is plenty of deep results describing the non torsion behaviour of the
homotopy type of simply connected complexes, all of them using the Quillen approach
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to rational homotopy theory. Is it possible to extend these results to general complexes
by means of the new framework reviewed in this paper?

On the other hand, there are deep results concerning rational invariants of “highly
non simply connected” spaces. Illustrative examples include the Mumford conjecture on
the rational cohomology ring of the moduli space of Riemann surfaces, and the rational
homological stability problem in general, and that of configuration spaces in particular.
Would it be possible to use our new machinery to attack related problems?

We finish with another general question which may attract experts in various math-
ematical subjects to this new approach to rational homotopy theory:

Let R be a local commutative algebra with maximal ideal 9t and let &k = R/9. Let
A be an lk-vector space endowed with some additional structure. An R-deformation of
A is another such structure in A ®y R such that, modulo 91, it reduces to the original
one in A. The Deligne principle asserts that, whenever [k is of characteristic zero, every
deformation functor is governed by a dgl. That is, denoting by Def(A; R) = the set of
equivalence classes of R-deformations of A, there exists a dgl L such that

Def(A; R) = MC(L).

In words of Kontsevich, finding the appropriate L for a given deformation functor is an
art. Nevertheless, we may consider its realization (L) and think of it as the “homotopy
moduli space” of Def(A; R). Is it then possible to translate homotopy invariants of (L)
into properties related with deformation phenomena?
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