PRESENTATIONS OF（IMMERSED）SURFACE－KNOTS BY MARKED GRAPH DIAGRAMS

SEIICHI KAMADA，AKIO KAWAUCHI，JIEON KIM＊，AND SANG YOUL LEE

1．Introduction

An immersed surface－link is a generically immersed closed oriented surface in the 4 －space \mathbb{R}^{4} ．When the surface has only one component，it is also called an immersed surface－knot．When the surface consists of 2 －spheres，it is also called an immersed sphere－link or simply an immersed 2－link．When the immersion is an embedding，it is also called a surface－link．Two（immersed）surface－links \mathcal{L} and \mathcal{L}^{\prime} are equivalent if there is an orientation－preserving auto－homeomorphism h of \mathbb{R}^{4} sending \mathcal{L} to \mathcal{L}^{\prime} orientation－preservingly．An immersed 2 －link is studied in［11］ in relation to a cross－sectional link．A normal form of an immersed surface－link introduced by S．Kamada and K．Kawamura in［5］is used to define a marked graph diagram of an immersed surface－link．In［6］，we extend the method of presenting surface－links by marked graph diagrams to presenting immersed surface－links．We also give some local moves on marked graph diagrams that preserve the ambient isotopy classes of their presenting immersed surface－links，which are extension of moves given by Yoshikawa［19］for presentation of embedded surface－links．In［13］， with an example described by a marked graph diagram of an immersed 2－knot，it is shown as the main theorem（Theorem 3．6）that for any positive integer n ，there are infinitely many immersed 2－knots with only n essential double point singularities， that is，infinitely many immersed 2－knots with n double point singularities which are not equivalent to the connected sum of any immersed 2－knot and any unknotted immersed sphere．

2．Marked graph representation of immersed surface－Links

In this section，we review（oriented）marked graph diagrams representing im－ mersed surface－links described in［6］．A marked graph is a 4 －valent graph in \mathbb{R}^{3} each of whose vertices is a vertex with a marker looks like ．Two marked graphs are said to be equivalent if they are ambient isotopic in \mathbb{R}^{3} with keeping the rectangular neighborhoods of markers．As usual，a marked graph in \mathbb{R}^{3} can be described by a link diagram on \mathbb{R}^{2} with some 4 －valent vertices equipped with markers，called a marked graph diagram．An orientation of a marked graph G in \mathbb{R}^{3} is a choice of an orientation for each edge of G ．An orientation of a marked graph G is said to be consistent if every vertex in G looks like A marked graph G in \mathbb{R}^{3} is said to be orientable if G admits a consistent orientation．Otherwise，it is said to be non－orientable．By an oriented marked graph we mean an orientable marked graph in \mathbb{R}^{3} with a fixed consistent orientation．Two oriented marked
graphs are said to be equivalent if they are ambient isotopic in \mathbb{R}^{3} with keeping the rectangular neighborhood，marker and consistent orientation．For $t \in \mathbb{R}$ ，we denote by \mathbb{R}_{t}^{3} the hyperplane of \mathbb{R}^{4} whose fourth coordinate is equal to $t \in \mathbb{R}$ ，i．e．， $\mathbb{R}_{t}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{4}=t\right\}$ ．An immersed surface－link $\mathcal{L} \subset \mathbb{R}^{4}=\mathbb{R}^{3} \times \mathbb{R}$ can be described in terms of its cross－sections $\mathcal{L}_{t}=\mathcal{L} \cap \mathbb{R}_{t}^{3}, t \in \mathbb{R}$（cf．［3］）．It is shown［5］that any immersed surface－link \mathcal{L} ，there is an immersed surface－link $\mathcal{L}^{\prime} \subset \mathbb{R}^{3}[-2,2]$ satisfying the following conditions：
（1）The intersections \mathcal{L}_{1}^{\prime} and $\mathcal{L}_{-1}^{\prime}$ are H －trivial links；
（2）All saddle points of \mathcal{L}^{\prime} are in $\mathbb{R}^{3}[0]$ ；
（3）All maximal points of \mathcal{L}^{\prime} are in $\mathbb{R}^{3}[2]$ ；
（4）All minimal points of \mathcal{L}^{\prime} are in $\mathbb{R}^{3}[-2]$ ；
（5）The intersections $\mathcal{L}^{\prime} \cap\left(\mathbb{R}^{3}[1,2]\right)$ and $\mathcal{L}^{\prime} \cap\left(\mathbb{R}^{3}[-2,-1]\right)$ are disjoint unions of a disjoint system of trivial knot cones and a disjoint system of Hopf link cones．
We call \mathcal{L}^{\prime} a normal form of \mathcal{L} ．Let \mathcal{L} be an immersed surface－link in \mathbb{R}^{4} ，and \mathcal{L}^{\prime} a normal form of \mathcal{L} ．Then \mathcal{L}_{0}^{\prime} is a spatial 4 －valent regular graph in \mathbb{R}_{0}^{3} ．We give a marker at each 4 －valent vertex（saddle point）that indicates how the saddle point opens up above as illustrated in Fig．1．We choose an orientation for each edge of \mathcal{L}_{0}^{\prime} that coincides with the induced orientation on the boundary of $\mathcal{L}^{\prime} \cap \mathbb{R}^{3} \times(-\infty, 0]$ from the orientation of \mathcal{L}^{\prime} ．The resulting oriented marked graph G is called an oriented marked graph of \mathcal{L} ．As usual，G is described by a link diagram D with rigid marked vertices．Such a diagram D is called an oriented marked graph diagram or an oriented ch－diagram（cf．［17］）of \mathcal{L} ．

Figure 1．Marking of a vertex

Let D be an oriented marked graph diagram．We obtain two links $L_{-}(D)$ and $L_{+}(D)$ from D by replacing each marked vertex in D as shown in Fig．2．Links $L_{-}(D)$ and $L_{+}(D)$ are also called the negative resolution and the positive resolution of D ，respectively．By replacing a neighborhood of each marked vertex $v_{i}(1 \leq i \leq$ n ）with an oriented band B_{i} as illustrated in Fig．2．Denote the disjoint union $B_{1} \sqcup \cdots \sqcup B_{n}$ of bands by $\mathcal{B}(D)$ ．A link L is H －trivial if L is a split union of trivial knots and Hopf links．A marked graph diagram D is said to be H －admissible if both resolutions $L_{-}(D)$ and $L_{+}(D)$ are H－trivial classical link diagrams as shown in Fig． 3.

From now on，we recall how to construct an immersed surface－link \mathcal{L} in \mathbb{R}^{4} from a given H －admissible oriented marked graph diagram（cf．［5，6］）．Let D be an H －admissible oriented marked graph diagram．We define a surface－link $\mathcal{F}(D) \subset$ $\mathbb{R}^{3} \times[-1,1]$ ，called the proper surface associated with D ，by

Figure 2．Marked vertex resolutions

D

$L_{-}(D)$

$L_{+}(D)$

Figure 3．An H－admissible marked graph diagram

$$
\left(\mathbb{R}_{t}^{3}, \mathcal{F}(D) \cap \mathbb{R}_{t}^{3}\right)= \begin{cases}\left(\mathbb{R}^{3}, L_{+}(D)\right) & \text { for } 0<t \leq 1 \\ \left(\mathbb{R}^{3}, L_{-}(D) \cup \mathcal{B}(D)\right) & \text { for } t=0 \\ \left(\mathbb{R}^{3}, L_{-}(D)\right) & \text { for }-1 \leq t<0\end{cases}
$$

It is known that a marked graph diagram D is orientable if and only if the proper surface $\mathcal{F}(D)$ associated with D is an orientable surface．Since D has a consistent orientation，the resolutions $L_{+}(D)$ and $L_{-}(D)$ have the orientations induced from the orientation of D ．We choose an orientation for the proper surface $\mathcal{F}(D)$ so that the induced orientation of the cross－section $L_{+}(D)=\mathcal{F}(D)_{1}=\mathcal{F}(D) \cap \mathbb{R}_{1}^{3}$ at $t=1$ matches the orientation of $L_{+}(D)$ ．Let $[a, b]$ be a closed interval with $a<b$ ．For a link L ，let $\hat{L} *[a, b]$（or $\check{L} *[a, b]$ ）be a cone with $L[a]$（or $L[b]$ ）as the base and a point in $\mathbb{R}^{3}[b]$（or $\mathbb{R}^{3}[a]$ ），respectively．Let $H=\left(O_{1} \cup \cdots \cup O_{m}\right) \cup\left(P_{1} \cup \cdots \cup P_{n}\right)$ be an H－trivial link in \mathbb{R}^{3} ，where O_{i} is a trivial knot and P_{j} is a Hopf link for $i=1, \ldots, m$ ， $j=1, \ldots, n$ ．
－Let $H_{\wedge}[a, b]$ be a disjoint union of a disjoint system of trivial knot cones $\hat{O}_{i} *[a, b](i=1, \ldots, m)$ and a disjoint system of Hopf link cones $\hat{P}_{j} *[a, b](j=$ $1, \ldots, n)$ in $\mathbb{R}^{3}[a, b]$ ．
－Let $H_{\vee}[a, b]$ be a disjoint union of a disjoint system of trivial knot cones $\check{O}_{i} *[a, b](i=1, \ldots, m)$ and a disjoint system of Hopf link cones $\check{P}_{j} *[a, b](j=$ $1, \ldots, n)$ in $\mathbb{R}^{3}[a, b]$ ．
By capping off $\mathcal{F}(D)$ with $L_{+}(D)_{\wedge}[1,2]$ and $L_{-}(D)_{\vee}[-2,-1]$ ，we obtain an oriented immersed surface－link $\mathcal{S}(D)$ in \mathbb{R}^{4} ．We call the oriented immersed surface－link $\mathcal{S}(D)$ the oriented immersed surface－link associated with D ．It is straightforward from the
construction of $\mathcal{S}(D)$ that D is an oriented marked graph diagram of the oriented immersed surface－link $\mathcal{S}(D)$ ．

Definition 2．1．An immersed surface－link \mathcal{L} is presented by an H －admissible marked graph diagram D if \mathcal{L} is ambient isotopic to $\mathcal{S}(D)$ constructed from D ．

Theorem 2．2．Let \mathcal{L} be an immersed surface－link．Then there is an H －admissible marked graph diagram D such that \mathcal{L} is presented by D ．

We discuss moves on marked graph diagrams which preserve the ambient isotopy classes of the immersed surface－links presented by the diagrams．
$\Gamma_{1}:$
$\Gamma_{1}^{\prime}:$

$\Gamma_{2}:$

\rightleftarrows

$\Gamma_{3}:$

\qquad

$\Gamma_{4}:$

$$
\rightleftarrows
$$

$\Gamma_{4}^{\prime}:$

\qquad

$\Gamma_{5}:$

\rightleftarrows

Figure 4．Moves of Type I

The moves depicted in Fig． 4 on marked graph diagrams are called moves of type I，which do not change the equivalence classes of marked graphs in \mathbb{R}^{3} ．

The moves depicted in Fig． 5 on marked graph diagrams are called moves of type II，which change the equivalence classes of marked graphs in \mathbb{R}^{3} ．When a marked graph diagram D is H－admissible（or admissible）then the result obtained from D by any move of type II is also H－admissible（or admissible）and the immersed surface－ link（or surface－link）presented by the diagrams are ambient isotopic，respectively．

It is known that two admissible marked graph diagrams present ambinet isitopic surface－links if and only if they are related by the moves of type I and II（cf． ［14，18，19］）．These moves are called Yoshikawa moves．

Let D be a link diagram of an H－trivial link L ．A crossing point p of D is an unlinking crossing point if it is a crossing between two components of the same Hopf link of L and if the crossing change at p makes the Hopf link into a trivial link．

PRESENTATIONS OF（IMMERSED）SURFACE－KNOTS BY MARKED GRAPH DIAGRAMS 5
$\Gamma_{6}:$

\qquad

$\Gamma_{6}^{\prime}:$

\qquad

$\Gamma_{7}:$

\rightleftarrows

5：
\rightleftarrows

Figure 5．Moves of Type II

Definition 2．3．Let D be an H－admissible marked graph diagram and let D_{-} and D_{+}be the diagrams of the lower resolution $L_{-}(D)$ and the upper resolution $L_{+}(D)$ ，respectively．A crossing point p of D is an lower singular point（or an upper singular point，respectively）if p is an unlinking crossing point of D_{-}（or D_{+}）．

We introduce new moves for H－admissible marked graph diagrams．They are the moves $\Gamma_{9}, \Gamma_{9}^{\prime}$ and Γ_{9} in Fig．6，which we call moves of type III．For the moves （a）of Γ_{9} and Γ_{9}^{\prime} in Fig． 6 we require a condition that the components l^{+}（in the resolution $L_{+}(D)$ ）and l^{-}（in the resolution $L_{-}(D)$ ）are trivial，respectively．For the moves (b) of Γ_{9} and Γ_{9}^{\prime} ，we require a condition that p is an upper singular point and a lower singular point，respectively．
$\Gamma_{9}:$

$\Gamma_{9}^{\prime}:$
$\Gamma_{10}:$

$\underset{(b)}{\stackrel{(a)}{\rightleftarrows}}$

Figure 6．Moves of Type III

The generalized Yoshikawa moves for marked graph diagrams are the moves $\Gamma_{1}, \ldots, \Gamma_{5}$（Type I），$\Gamma_{6}, \ldots, \Gamma_{8}$（Type II），and $\Gamma_{9}, \Gamma_{9}^{\prime}, \Gamma_{10}$（Type III）as shown in Fig．4，Fig．5，and Fig．6，respectively．

Definition 2．4．Let D and D^{\prime} be marked graph diagrams．Marked graph diagrams D and D^{\prime} are stably equivalent if they are related by a finite sequence of generalized Yoshikawa moves．

Theorem 2．5．（［6］）Let \mathcal{L} and \mathcal{L}^{\prime} be immersed surface－links，and D and D^{\prime} their marked graph diagrams，respectively．If D and D^{\prime} are stably equivalent，then \mathcal{L} and \mathcal{L}^{\prime} are ambient isotopic．

Definition 2.6 （cf．［5］）．A positive（or negative）standard singular 2－knot，denoted by $S\left(+\right.$ ）（or $S(-)$ ）is the immersed 2 －knot of the marked graph diagram D（or D^{\prime} ） in Fig．7，respectively．An unknotted immersed sphere is defined to be the connected sum $m S(+) \# n S(-)$ for any non－negative integers m, n with $m+n>0$ ．

A double point singularity p of an immersed 2 －knot S is inessential if S is the connected sum of an immersed 2－knot and an unknotted immersed sphere such that p belongs to the unknotted immersed sphere．Otherwise，p is essential．

Figure 7．Standard singular 2－knot

3．Confirming immersed 2 －knots with essential singularity

In this section，the main theorem will be shown with an example of infinitely many immersed 2－knots with essential singularity．For an immersed 2－knot K ，let $E(K)=\mathrm{Cl}\left(S^{4} \backslash \mathrm{~N}(K)\right)$ ．Let $\tilde{E}(K)$ be the infinite cyclic covering of $E(K)$ ．Then the homology $H(K)=H_{1}(E(K))$ is a finitely generated Λ－module，where $\Lambda=\mathbb{Z}\left[t, t^{-1}\right]$ ． This module is called the first Alexander module of K（cf．［15］）．Let

$$
D H(K)=\left\{x \in H(K) \mid \exists\left\{\lambda_{i}\right\}_{1 \leq i \leq m}: \text { coprime }(m \geq 2) \text { with } \lambda_{i} x=0, \forall i\right\},
$$

called the annihilator Λ－submodule，which is known to be equal to the integral torsion part of the Alexander module $H(K)$（cf．［9，Section 3］）．Let $\epsilon(K)$ be the first elementary ideal of $D H(K)$ ．A Λ－ideal is symmetric if the ideal is unchanged by replacing t by t^{-1} ．Let $D H(K)^{*}=\operatorname{hom}(D H(K), \mathbb{Q} / \mathbb{Z})$ have the induced Λ－module structure，called the dual Λ－module of $D H(K)$ ．The following lemma is used in our argument．

Lemma 3．1．If K is a 2 －knot such that the dual Λ－module $D H(K)^{*}$ is Λ－isomorphic to $D H(K)$ ，then the first elementary ideal $\epsilon(K)$ is symmetric．

For any marked graph diagram D of K ，the fundamental group $\pi(K)$ of K is generated by the connected components of D ，namely，the connected components obtained from D by cutting the under－crossing points and the relations $s_{3}=s_{2}^{-1} s_{1} s_{2}$ for all crossings as in（a）or（b）in Fig． 8.

Figure 8．Labels at a crossing or a vertex

A computation of the Alexander module $H(K)$ and the ideal $\epsilon(K)$ is shown in a concrete example as follows：

Example 3．2．Let K be the immersed 2－knot of D in Fig．9．The immersed 2－knot K has only one double point．The fundamental group $\pi(K)$ is computed as follows： $\pi(K)=<x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15} \mid x_{1}=x_{2}^{-1} x_{3} x_{2}, x_{2}=$ $x_{3}^{-1} x_{5} x_{3}, x_{1}=x_{3}^{-1} x_{4} x_{3}, x_{2}=x_{1}^{-1} x_{3} x_{1}, x_{6}=x_{2}^{-1} x_{1} x_{2}, x_{6}=x_{1}^{-1} x_{7} x_{1}, x_{1}=x_{7}^{-1} x_{8} x_{7}, x_{2}=$ $x_{7}^{-1} x_{9} x_{7}, x_{10}=x_{2}^{-1} x_{7} x_{2}, x_{10}=x_{1}^{-1} x_{11} x_{1}, x_{1}=x_{11}^{-1} x_{12} x_{11}, x_{2}=x_{11}^{-1} x_{13} x_{11}, x_{14}=$ $x_{2}^{-1} x_{11} x_{2}, x_{14}=x_{1}^{-1} x_{2} x_{1}, x_{1}=x_{2}^{-1} x_{15} x_{2}>$ ．

This group $\pi(K)$ is isomorphic to the group $<x_{1}, x_{2} \mid r_{1}, r_{2}>$ ，where

$$
r_{1}: x_{2} x_{1} x_{2}^{-1}=x_{1} x_{2} x_{1}^{-1}, \quad r_{2}:\left(x_{1} x_{2}^{-1}\right)^{3} x_{1}\left(x_{1} x_{2}^{-1}\right)^{-3}=x_{2}
$$

Then the following Λ－semi－exact sequence

$$
\Lambda\left[r_{1}^{*}, r_{2}^{*}\right] \xrightarrow{d_{2}} \Lambda\left[x_{1}^{*}, x_{2}^{*}\right] \xrightarrow{d_{7}} \Lambda \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0
$$

of the group presentation of $\pi(K)$ is obtained by using the fundamental formula of the Fox differential calculus in［1］，where $\Lambda\left[r_{1}^{*}, r_{2}^{*}\right]$ and $\Lambda\left[x_{1}^{*}, x_{2}^{*}\right]$ are free Λ－modules with bases $r_{i}^{*}(i=1,2)$ and $x_{j}^{*}(j=1,2)$ ，respectively，and the Λ－homomorphisms ε, d_{1} and d_{2} are given as follows：

$$
\varepsilon(t)=1, d_{1}\left(x_{j}^{*}\right)=t-1(j=1,2), d_{2}\left(r_{i}^{*}\right)=\sum_{j=1}^{u} \frac{\partial r_{i}}{\partial x_{j}} x_{j}^{*}(i=1,2)
$$

for the Fox differential calculus $\frac{\partial r_{i}}{\partial x_{j}}$ regarded as an element of Λ by letting x_{j} to t ． The Alexander module $H(K)$ is identified with the quotient Λ－module $\operatorname{Ker}\left(d_{1}\right) / \operatorname{Im}\left(d_{2}\right)$ （see［10，Theorem 7．1．5］）．The Alexander matrix $M_{K}=\left(m_{i j}\right)$ defined by $m_{i j}=\frac{\partial r_{i}}{\partial x_{j}}$ is a presentation matrix of the Λ－homomorphism d_{2} and calculated as follows：

$$
M_{K}=\left[\begin{array}{ll}
2 t-1 & 1-2 t \\
4-3 t & 3 t-4
\end{array}\right]
$$

Hence we have

$$
H(K) \cong \Lambda /(2 t-1,4-3 t)
$$

which is equal to $D H(K)$ ．Thus，the first elementary ideal $\epsilon(K)$ of K is

$$
\begin{aligned}
\epsilon(K) & =<2 t-1,4-3 t> \\
& =<2 t-1,4-3 t, 3(2 t-1)+2(4-3 t)> \\
& =<2 t-1,5>
\end{aligned}
$$

Figure 9．An H－admissible marked graph diagram D

The following lemma is useful in a computation for a symmetric ideal．
Lemma 3．3．（［13］）The following statements are equivalent：
（1）The ideal $<2 t-1, m>$ is symmetric．
（2）An integer m is $\pm 2^{r}$ or $\pm 2^{r} 3$ for any integer $r \geq 0$ ．
Lemma 3．4．（［13］）There are infinitely many immersed 2－knots with one essential double point singularity．

Let J be one of the immersed 2－knots $K_{n}, K_{n}^{\prime}(n=1,2,3, \ldots)$ such that the first elementary ideal $\epsilon(J)$ is asymmetric．Then the following corollary is obtained．

Corollary 3．5．The connected sum $J \# U$ of J and any immersed 2－knot U such that the group orders $|D H(J)|$ and $|D H(U)|$ are coprime is an immersed 2－knot with at least one essential double point singularity．

Finally，the ideal $(2 t-1,5)$ is known to be the first elementary ideal of a ribbon torus－knot in［4］．

By using an immersed 2－knot in Lemma 3．4，the following main theorem is proved．

Figure 10．H－admissible marked graph diagrams D_{n} and D_{n}^{\prime}

Theorem 3．6．（［13］）Let $K=n K_{m}^{*}$ be the connected sum of n copies of an immersed 2 －knot K_{m}^{*} with one essential double point singularity whose first ele－ mentary ideal is $\langle 2 t-1, m>$ for any integer $m \geq 5$ without factors 2 and 3 ．Then K gives infinitely many immersed 2 －knots with n double point singularities every of which is essential．

References

［1］R．H．Crowell and R．H．Fox：Introduction to Knot Theory，Ginn and Co．，Boston，Mass．， 1963.
［2］M．S．Farber：Duality in an infinite cyclic covering and even－dimensional knots，Math．USSR－ Izv． 11 （1977），749－781．
［3］R．H．Fox：A quick trip through knot theory，Toplogy of 3－manifolds and Related Topics， （Prentice－Hall，Inc．，Englewood Cliffs，N．J．，1962），120－167．
［4］F．Hosokawa and A．Kawauchi：Proposals for unknotted surfaces in four－space，Osaka J．Math． 16 （1979），233－248．
［5］S．Kamada and K．Kawamura：Ribbon－clasp surface－links and normal forms of singular surface－links，Topology Appl．（to appear），arXiv：1602．07855．
［6］S．Kamada，A．Kawauchi，J．Kim，and S．Y．Lee：Marked graph diagrams of an immersed surface－link（preprint）．
［7］S．Kamada and K．Kawamura，Ribbon－clasp surface－links and normal forms of singular surface－ links，Topology Appl，to appear，ArXiv： 1602.07855 v 1 ．
［8］A．Kawauchi，T．Shibuya，S．Suzuki，Descriptions on surfaces in four－space，I；Normal forms， Math．Sem．Notes Kobe Univ． 10 （1982），75－125．
［9］A．Kawauchi：Three dualities on the integral homology of infinite cyclic coverings of manifolds， Osaka J．Math． 23 （1986），633－651．
［10］A．Kawauchi：A survey of knot theory，Birkhäuser， 1996.
［11］A．Kawauchi：On a cross－section of an immersed sphere－link in 4－space，Topology Appl．（to appear）．
［12］A．Kawauchi and S．Kojima：Algebraic classification of linking pairings on 3－manifolds， Mathematische Annalen， 253 （1980），29－42．
［13］A．Kawauchi and J．Kim：Immersed 2－knots with essential singularity，preprint， 2017.
［14］C．Kearton and V．Kurlin，All 2－dimensional links in 4－space live inside a universal 3－ dimensional polyhedron，Algebr．Geom．Topol． 8 （2008），no．3，1223－1247．
［15］J．Kim，Y．Joung and S．Y．Lee，On the Alexander biquandles of oriented surface－links via marked graph diagrams，J．Knot Theory Ramifications 23（7）（2014），Article ID：1460007， 26 pp．
［16］J．Levine：Knot modules．I，Trans．Amer．Math．Soc． 229 （1977），1－50．
［17］M．Soma：Surface－links with square－type ch－graphs，Proceedings of the First Joint Japan－ Mexico Meeting in Topology（Morelia，1999），Topology Appl． 121 （2002），231－246．
［18］F．J．Swenton，On a calculus for 2－knots and surfaces in 4－space，J．Knot Theory Ramifications 10 （2001），1133－1141．
［19］K．Yoshikawa，An enumeration of surfaces in four－space，Osaka J．Math． 31 （1994），497－522．

