PRESENTATIONS OF (IMMERSED) SURFACE-KNOTS BY MARKED GRAPH DIAGRAMS

SEIICHI KAMADA, AKIO KAWAUCHI, JIEON KIM*, AND SANG YOUL LEE

1. INTRODUCTION

An *immersed surface-link* is a generically immersed closed oriented surface in the 4-space \mathbb{R}^4 . When the surface has only one component, it is also called an *immersed surface-knot*. When the surface consists of 2-spheres, it is also called an *immersed sphere-link* or simply an *immersed 2-link*. When the immersion is an embedding, it is also called a *surface-link*. Two (immersed) surface-links \mathcal{L} and \mathcal{L}' are *equivalent* if there is an orientation-preserving auto-homeomorphism h of \mathbb{R}^4 sending \mathcal{L} to \mathcal{L}' orientation-preservingly. An immersed 2-link is studied in [11] in relation to a cross-sectional link. A normal form of an immersed surface-link introduced by S. Kamada and K. Kawamura in [5] is used to define a marked graph diagram of an immersed surface-link. In [6], we extend the method of presenting surface-links by marked graph diagrams to presenting immersed surface-links. We also give some local moves on marked graph diagrams that preserve the ambient isotopy classes of their presenting immersed surface-links, which are extension of moves given by Yoshikawa [19] for presentation of embedded surface-links. In [13], with an example described by a marked graph diagram of an immersed 2-knot, it is shown as the main theorem (Theorem 3.6) that for any positive integer n, there are infinitely many immersed 2-knots with only n essential double point singularities, that is, infinitely many immersed 2-knots with n double point singularities which are not equivalent to the connected sum of any immersed 2-knot and any unknotted immersed sphere.

2. MARKED GRAPH REPRESENTATION OF IMMERSED SURFACE-LINKS

In this section, we review (oriented) marked graph diagrams representing immersed surface-links described in [6]. A marked graph is a 4-valent graph in \mathbb{R}^3 each of whose vertices is a vertex with a marker looks like \checkmark . Two marked

graphs are said to be *equivalent* if they are ambient isotopic in \mathbb{R}^3 with keeping the rectangular neighborhoods of markers. As usual, a marked graph in \mathbb{R}^3 can be described by a link diagram on \mathbb{R}^2 with some 4-valent vertices equipped with markers, called a *marked graph diagram*. An *orientation* of a marked graph G in \mathbb{R}^3 is a choice of an orientation for each edge of G. An orientation of a marked graph

G is said to be *consistent* if every vertex in G looks like \checkmark . A marked graph

G in \mathbb{R}^3 is said to be *orientable* if G admits a consistent orientation. Otherwise, it is said to be *non-orientable*. By an *oriented marked graph* we mean an orientable marked graph in \mathbb{R}^3 with a fixed consistent orientation. Two oriented marked

graphs are said to be *equivalent* if they are ambient isotopic in \mathbb{R}^3 with keeping the rectangular neighborhood, marker and consistent orientation. For $t \in \mathbb{R}$, we denote by \mathbb{R}^3_t the hyperplane of \mathbb{R}^4 whose fourth coordinate is equal to $t \in \mathbb{R}$, i.e., $\mathbb{R}^3_t = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_4 = t\}$. An immersed surface-link $\mathcal{L} \subset \mathbb{R}^4 = \mathbb{R}^3 \times \mathbb{R}$ can be described in terms of its *cross-sections* $\mathcal{L}_t = \mathcal{L} \cap \mathbb{R}^3_t$, $t \in \mathbb{R}$ (cf. [3]). It is shown [5] that any immersed surface-link \mathcal{L} , there is an immersed surface-link $\mathcal{L}' \subset \mathbb{R}^3[-2, 2]$ satisfying the following conditions:

- (1) The intersections \mathcal{L}'_1 and \mathcal{L}'_{-1} are H-trivial links;
- (2) All saddle points of \mathcal{L}' are in $\mathbb{R}^3[0]$;
- (3) All maximal points of \mathcal{L}' are in $\mathbb{R}^3[2]$;
- (4) All minimal points of \mathcal{L}' are in $\mathbb{R}^3[-2]$;
- (5) The intersections $\mathcal{L}' \cap (\mathbb{R}^3[1,2])$ and $\mathcal{L}' \cap (\mathbb{R}^3[-2,-1])$ are disjoint unions of a disjoint system of trivial knot cones and a disjoint system of Hopf link cones.

We call \mathcal{L}' a normal form of \mathcal{L} . Let \mathcal{L} be an immersed surface-link in \mathbb{R}^4 , and \mathcal{L}' a normal form of \mathcal{L} . Then \mathcal{L}'_0 is a spatial 4-valent regular graph in \mathbb{R}^3_0 . We give a marker at each 4-valent vertex (saddle point) that indicates how the saddle point opens up above as illustrated in Fig. 1. We choose an orientation for each edge of \mathcal{L}'_0 that coincides with the induced orientation on the boundary of $\mathcal{L}' \cap \mathbb{R}^3 \times (-\infty, 0]$ from the orientation of \mathcal{L}' . The resulting oriented marked graph G is called an *oriented marked graph* of \mathcal{L} . As usual, G is described by a link diagram D with rigid marked vertices. Such a diagram D is called an *oriented marked graph diagram* or an *oriented ch-diagram* (cf. [17]) of \mathcal{L} .

FIGURE 1. Marking of a vertex

Let D be an oriented marked graph diagram. We obtain two links $L_{-}(D)$ and $L_{+}(D)$ from D by replacing each marked vertex in D as shown in Fig. 2. Links $L_{-}(D)$ and $L_{+}(D)$ are also called the *negative resolution* and the *positive resolution* of D, respectively. By replacing a neighborhood of each marked vertex v_i $(1 \le i \le n)$ with an oriented band B_i as illustrated in Fig. 2. Denote the disjoint union $B_1 \sqcup \cdots \sqcup B_n$ of bands by $\mathcal{B}(D)$. A link L is H-trivial if L is a split union of trivial knots and Hopf links. A marked graph diagram D is said to be H-admissible if both resolutions $L_{-}(D)$ and $L_{+}(D)$ are H-trivial classical link diagrams as shown in Fig. 3.

From now on, we recall how to construct an immersed surface-link \mathcal{L} in \mathbb{R}^4 from a given H-admissible oriented marked graph diagram (cf. [5, 6]). Let D be an H-admissible oriented marked graph diagram. We define a surface-link $\mathcal{F}(D) \subset \mathbb{R}^3 \times [-1, 1]$, called the *proper surface associated with* D, by

FIGURE 2. Marked vertex resolutions

FIGURE 3. An H-admissible marked graph diagram

$$(\mathbb{R}^3_t, \mathcal{F}(D) \cap \mathbb{R}^3_t) = \begin{cases} (\mathbb{R}^3, L_+(D)) & \text{for } 0 < t \le 1, \\ (\mathbb{R}^3, L_-(D) \cup \mathcal{B}(D)) & \text{for } t = 0, \\ (\mathbb{R}^3, L_-(D)) & \text{for } -1 \le t < 0. \end{cases}$$

It is known that a marked graph diagram D is orientable if and only if the proper surface $\mathcal{F}(D)$ associated with D is an orientable surface. Since D has a consistent orientation, the resolutions $L_+(D)$ and $L_-(D)$ have the orientations induced from the orientation of D. We choose an orientation for the proper surface $\mathcal{F}(D)$ so that the induced orientation of the cross-section $L_+(D) = \mathcal{F}(D)_1 = \mathcal{F}(D) \cap \mathbb{R}^3_1$ at t = 1matches the orientation of $L_+(D)$. Let [a, b] be a closed interval with a < b. For a link L, let $\hat{L} * [a, b]$ (or $\check{L} * [a, b]$) be a cone with L[a] (or L[b]) as the base and a point in $\mathbb{R}^3[b]$ (or $\mathbb{R}^3[a]$), respectively. Let $H = (O_1 \cup \cdots \cup O_m) \cup (P_1 \cup \cdots \cup P_n)$ be an H-trivial link in \mathbb{R}^3 , where O_i is a trivial knot and P_j is a Hopf link for $i = 1, \ldots, m$, $j = 1, \ldots, n$.

- Let $H_{\wedge}[a, b]$ be a disjoint union of a disjoint system of trivial knot cones $\hat{O}_i * [a, b](i = 1, ..., m)$ and a disjoint system of Hopf link cones $\hat{P}_j * [a, b](j = 1, ..., n)$ in $\mathbb{R}^3[a, b]$.
- Let $H_{\vee}[a, b]$ be a disjoint union of a disjoint system of trivial knot cones $\check{O}_i * [a, b](i = 1, ..., m)$ and a disjoint system of Hopf link cones $\check{P}_j * [a, b](j = 1, ..., n)$ in $\mathbb{R}^3[a, b]$.

By capping off $\mathcal{F}(D)$ with $L_+(D) \wedge [1,2]$ and $L_-(D) \vee [-2,-1]$, we obtain an oriented immersed surface-link $\mathcal{S}(D)$ in \mathbb{R}^4 . We call the oriented immersed surface-link $\mathcal{S}(D)$ the oriented immersed surface-link associated with D. It is straightforward from the 4

SEIICHI KAMADA, AKIO KAWAUCHI, JIEON KIM*, AND SANG YOUL LEE

construction of $\mathcal{S}(D)$ that D is an oriented marked graph diagram of the oriented immersed surface-link $\mathcal{S}(D)$.

Definition 2.1. An immersed surface-link \mathcal{L} is *presented* by an H-admissible marked graph diagram D if \mathcal{L} is ambient isotopic to $\mathcal{S}(D)$ constructed from D.

Theorem 2.2. Let \mathcal{L} be an immersed surface-link. Then there is an H-admissible marked graph diagram D such that \mathcal{L} is presented by D.

We discuss moves on marked graph diagrams which preserve the ambient isotopy classes of the immersed surface-links presented by the diagrams.

FIGURE 4. Moves of Type I

The moves depicted in Fig. 4 on marked graph diagrams are called moves of type I, which do not change the equivalence classes of marked graphs in \mathbb{R}^3 .

The moves depicted in Fig. 5 on marked graph diagrams are called moves of type II, which change the equivalence classes of marked graphs in \mathbb{R}^3 . When a marked graph diagram D is H-admissible (or admissible) then the result obtained from D by any move of type II is also H-admissible (or admissible) and the immersed surface-link (or surface-link) presented by the diagrams are ambient isotopic, respectively.

It is known that two admissible marked graph diagrams present ambinet isitopic surface-links if and only if they are related by the moves of type I and II (cf. [14, 18, 19]). These moves are called *Yoshikawa moves*.

Let D be a link diagram of an H-trivial link L. A crossing point p of D is an *unlinking crossing point* if it is a crossing between two components of the same Hopf link of L and if the crossing change at p makes the Hopf link into a trivial link.

PRESENTATIONS OF (IMMERSED) SURFACE-KNOTS BY MARKED GRAPH DIAGRAMS 5

FIGURE 5. Moves of Type II

Definition 2.3. Let D be an H-admissible marked graph diagram and let D_{-} and D_{+} be the diagrams of the lower resolution $L_{-}(D)$ and the upper resolution $L_{+}(D)$, respectively. A crossing point p of D is an *lower singular point* (or an *upper singular point*, respectively) if p is an unlinking crossing point of D_{-} (or D_{+}).

We introduce new moves for *H*-admissible marked graph diagrams. They are the moves Γ_9 , Γ'_9 and Γ_9 in Fig. 6, which we call moves of type III. For the moves (*a*) of Γ_9 and Γ'_9 in Fig. 6 we require a condition that the components l^+ (in the resolution $L_+(D)$) and l^- (in the resolution $L_-(D)$) are trivial, respectively. For the moves (*b*) of Γ_9 and Γ'_9 , we require a condition that *p* is an upper singular point and a lower singular point, respectively.

FIGURE 6. Moves of Type III

6

SEIICHI KAMADA, AKIO KAWAUCHI, JIEON KIM*, AND SANG YOUL LEE

The generalized Yoshikawa moves for marked graph diagrams are the moves $\Gamma_1, \ldots, \Gamma_5$ (Type I), $\Gamma_6, \ldots, \Gamma_8$ (Type II), and $\Gamma_9, \Gamma'_9, \Gamma_{10}$ (Type III) as shown in Fig. 4, Fig. 5, and Fig. 6, respectively.

Definition 2.4. Let D and D' be marked graph diagrams. Marked graph diagrams D and D' are *stably equivalent* if they are related by a finite sequence of generalized Yoshikawa moves.

Theorem 2.5. ([6]) Let \mathcal{L} and \mathcal{L}' be immersed surface-links, and D and D' their marked graph diagrams, respectively. If D and D' are stably equivalent, then \mathcal{L} and \mathcal{L}' are ambient isotopic.

Definition 2.6 (cf. [5]). A positive (or negative) standard singular 2-knot, denoted by S(+) (or S(-)) is the immersed 2-knot of the marked graph diagram D (or D') in Fig. 7, respectively. An unknotted immersed sphere is defined to be the connected sum mS(+)#nS(-) for any non-negative integers m, n with m + n > 0.

A double point singularity p of an immersed 2-knot S is *inessential* if S is the connected sum of an immersed 2-knot and an unknotted immersed sphere such that p belongs to the unknotted immersed sphere. Otherwise, p is *essential*.

FIGURE 7. Standard singular 2-knot

3. Confirming immersed 2-knots with essential singularity

In this section, the main theorem will be shown with an example of infinitely many immersed 2-knots with essential singularity. For an immersed 2-knot K, let $E(K) = \operatorname{Cl}(S^4 \setminus N(K))$. Let $\tilde{E}(K)$ be the infinite cyclic covering of E(K). Then the homology $H(K) = H_1(\tilde{E}(K))$ is a finitely generated Λ -module, where $\Lambda = \mathbb{Z}[t, t^{-1}]$. This module is called the *first Alexander module* of K (cf. [15]). Let

 $DH(K) = \{ x \in H(K) | \exists \{ \lambda_i \}_{1 \le i \le m} : \text{coprime } (m \ge 2) \text{ with } \lambda_i x = 0, \forall i \},\$

called the annihilator Λ -submodule, which is known to be equal to the integral torsion part of the Alexander module H(K) (cf. [9, Section 3]). Let $\epsilon(K)$ be the first elementary ideal of DH(K). A Λ -ideal is symmetric if the ideal is unchanged by replacing t by t^{-1} . Let $DH(K)^* = \hom(DH(K), \mathbb{Q}/\mathbb{Z})$ have the induced Λ -module structure, called the dual Λ -module of DH(K). The following lemma is used in our argument.

Lemma 3.1. If K is a 2-knot such that the dual Λ -module $DH(K)^*$ is Λ -isomorphic to DH(K), then the first elementary ideal $\epsilon(K)$ is symmetric.

For any marked graph diagram D of K, the fundamental group $\pi(K)$ of K is generated by the connected components of D, namely, the connected components obtained from D by cutting the under-crossing points and the relations $s_3 = s_2^{-1} s_1 s_2$ for all crossings as in (a) or (b) in Fig. 8.

FIGURE 8. Labels at a crossing or a vertex

A computation of the Alexander module H(K) and the ideal $\epsilon(K)$ is shown in a concrete example as follows:

Example 3.2. Let *K* be the immersed 2-knot of *D* in Fig. 9. The immersed 2-knot *K* has only one double point. The fundamental group $\pi(K)$ is computed as follows: $\pi(K) = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15} | x_1 = x_2^{-1} x_3 x_2, x_2 = x_3^{-1} x_5 x_3, x_1 = x_3^{-1} x_4 x_3, x_2 = x_1^{-1} x_3 x_1, x_6 = x_2^{-1} x_1 x_2, x_6 = x_1^{-1} x_7 x_1, x_1 = x_7^{-1} x_8 x_7, x_2 = x_7^{-1} x_9 x_7, x_{10} = x_2^{-1} x_7 x_2, x_{10} = x_1^{-1} x_{11} x_1, x_1 = x_{11}^{-1} x_{12} x_{11}, x_2 = x_{11}^{-1} x_{13} x_{11}, x_{14} = x_2^{-1} x_{11} x_2, x_{14} = x_1^{-1} x_2 x_1, x_1 = x_2^{-1} x_{15} x_2 > .$

This group $\pi(K)$ is isomorphic to the group $\langle x_1, x_2 | r_1, r_2 \rangle$, where

$$r_1: x_2 x_1 x_2^{-1} = x_1 x_2 x_1^{-1}, \quad r_2: (x_1 x_2^{-1})^3 x_1 (x_1 x_2^{-1})^{-3} = x_2.$$

Then the following Λ -semi-exact sequence

$$\Lambda[r_1^*, r_2^*] \xrightarrow{d_2} \Lambda[x_1^*, x_2^*] \xrightarrow{d_1} \Lambda \xrightarrow{\varepsilon} \mathbb{Z} \to 0$$

of the group presentation of $\pi(K)$ is obtained by using the fundamental formula of the Fox differential calculus in [1], where $\Lambda[r_1^*, r_2^*]$ and $\Lambda[x_1^*, x_2^*]$ are free Λ -modules with bases r_i^* (i = 1, 2) and x_j^* (j = 1, 2), respectively, and the Λ -homomorphisms ε , d_1 and d_2 are given as follows:

$$\varepsilon(t) = 1, \ d_1(x_j^*) = t - 1 \ (j = 1, 2), \ d_2(r_i^*) = \sum_{j=1}^u \frac{\partial r_i}{\partial x_j} x_j^* \ (i = 1, 2)$$

for the Fox differential calculus $\frac{\partial r_i}{\partial x_j}$ regarded as an element of Λ by letting x_j to t. The Alexander module H(K) is identified with the quotient Λ -module $\operatorname{Ker}(d_1)/\operatorname{Im}(d_2)$ (see [10, Theorem 7.1.5]). The Alexander matrix $M_K = (m_{ij})$ defined by $m_{ij} = \frac{\partial r_i}{\partial x_j}$ is a presentation matrix of the Λ -homomorphism d_2 and calculated as follows:

$$M_K = \left[\begin{array}{cc} 2t - 1 & 1 - 2t \\ 4 - 3t & 3t - 4 \end{array} \right]$$

Hence we have

$$H(K) \cong \Lambda/(2t - 1, 4 - 3t),$$

8

SEIICHI KAMADA, AKIO KAWAUCHI, JIEON KIM*, AND SANG YOUL LEE

which is equal to DH(K). Thus, the first elementary ideal $\epsilon(K)$ of K is

$$\begin{split} \epsilon(K) = &< 2t-1, 4-3t > \\ &= < 2t-1, 4-3t, 3(2t-1)+2(4-3t) > \\ &= < 2t-1, 5 > . \end{split}$$

FIGURE 9. An H-admissible marked graph diagram D

The following lemma is useful in a computation for a symmetric ideal.

Lemma 3.3. ([13]) The following statements are equivalent:

- (1) The ideal < 2t 1, m > is symmetric.
- (2) An integer m is $\pm 2^r$ or $\pm 2^r 3$ for any integer $r \ge 0$.

Lemma 3.4. ([13]) There are infinitely many immersed 2-knots with one essential double point singularity.

Let J be one of the immersed 2-knots $K_n, K'_n (n = 1, 2, 3, ...)$ such that the first elementary ideal $\epsilon(J)$ is asymmetric. Then the following corollary is obtained.

Corollary 3.5. The connected sum J#U of J and any immersed 2-knot U such that the group orders |DH(J)| and |DH(U)| are coprime is an immersed 2-knot with at least one essential double point singularity.

Finally, the ideal (2t-1, 5) is known to be the first elementary ideal of a ribbon torus-knot in [4].

By using an immersed 2-knot in Lemma 3.4, the following main theorem is proved.

PRESENTATIONS OF (IMMERSED) SURFACE-KNOTS BY MARKED GRAPH DIAGRAMS 9

FIGURE 10. H-admissible marked graph diagrams D_n and D'_n

Theorem 3.6. ([13]) Let $K = nK_m^*$ be the connected sum of n copies of an immersed 2-knot K_m^* with one essential double point singularity whose first elementary ideal is $\langle 2t-1, m \rangle$ for any integer $m \geq 5$ without factors 2 and 3. Then K gives infinitely many immersed 2-knots with n double point singularities every of which is essential.

References

- [1] R. H. Crowell and R. H. Fox: Introduction to Knot Theory, Ginn and Co., Boston, Mass., 1963.
- M. S. Farber: Duality in an infinite cyclic covering and even-dimensional knots, Math.USSR-Izv. 11 (1977), 749–781.
- [3] R.H. Fox: A quick trip through knot theory, Toplogy of 3-manifolds and Related Topics, (Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962), 120–167.
- [4] F. Hosokawa and A. Kawauchi: Proposals for unknotted surfaces in four-space, Osaka J. Math. 16 (1979), 233–248.
- S. Kamada and K. Kawamura: Ribbon-clasp surface-links and normal forms of singular surface-links, Topology Appl. (to appear), arXiv:1602.07855.
- [6] S. Kamada, A. Kawauchi, J. Kim, and S. Y. Lee: Marked graph diagrams of an immersed surface-link (preprint).
- [7] S. Kamada and K. Kawamura, Ribbon-clasp surface-links and normal forms of singular surfacelinks, *Topology Appl*, to appear, ArXiv: 1602.07855v1.
- [8] A. Kawauchi, T. Shibuya, S. Suzuki, Descriptions on surfaces in four-space, I; Normal forms, Math. Sem. Notes Kobe Univ. 10 (1982), 75–125.
- [9] A. Kawauchi: Three dualities on the integral homology of infinite cyclic coverings of manifolds, Osaka J. Math. 23 (1986), 633–651.
- [10] A. Kawauchi: A survey of knot theory, Birkhäuser, 1996.
- [11] A. Kawauchi: On a cross-section of an immersed sphere-link in 4-space, Topology Appl. (to appear).

- [12] A. Kawauchi and S. Kojima: Algebraic classification of linking pairings on 3-manifolds, Mathematische Annalen, 253 (1980), 29-42.
- [13] A. Kawauchi and J. Kim: Immersed 2-knots with essential singularity, preprint, 2017.
- [14] C. Kearton and V. Kurlin, All 2-dimensional links in 4-space live inside a universal 3dimensional polyhedron, *Algebr. Geom. Topol.* 8 (2008), no. 3, 1223–1247.
- [15] J. Kim, Y. Joung and S. Y. Lee, On the Alexander biquandles of oriented surface-links via marked graph diagrams, J. Knot Theory Ramifications 23(7) (2014), Article ID:1460007, 26 pp.
- [16] J. Levine: Knot modules. I, Trans. Amer. Math. Soc. 229 (1977), 1–50.
- [17] M. Soma: Surface-links with square-type ch-graphs, Proceedings of the First Joint Japan-Mexico Meeting in Topology (Morelia, 1999), Topology Appl. 121 (2002), 231–246.
- [18] F. J. Swenton, On a calculus for 2-knots and surfaces in 4-space, J. Knot Theory Ramifications 10 (2001), 1133–1141.
- [19] K. Yoshikawa, An enumeration of surfaces in four-space, Osaka J. Math. 31 (1994), 497–522.