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This report is concerned with a joint work with Jean-Frangois Bony (Bordeaux I),
Thierry Ramond (Paris XI) and Maher Zerzeri (Paris XIII).
We consider the semiclassical Schrodinger equation in R™

Pu=zu, P:=-h?A+V(x),
where A = Z;Lzl 59722, h > 0 is a semiclassical parameter, z € C is a spectral
J
parameter and V(x) is a short-range real-valued analytic potential with a positive

non-degenerate maximum FEj at the origin x = 0. More precisely, we assume the
following conditions (A1)-(A3) on the potential V.

(A1) V(x) is real on R", and analytic in a domain D := {x € C";|Imz| < 6(Rex)}
for 6 > 0, and verifies V(z) = O(|z|~?) for p > 1 as || — oo in D.

To the self-adjoint operator P on L?(R") with o.,s(P) = R, we associate a distorted
operator P, = U,PU_,, where (U,f)(z) := (det(Id + pdF))~'/2f(x + pF(x)) for
small |p|, and F' € C*°(R™;R") with F =0on || < R, F =z on |z|] > R+ 1 for
large R. The complex eigenvalues of P;y for § > 0 are independent of 6, and called
resonances of P (Hunziker ’86).

(A2) V(0) = Ey > 0, V'(0) =0, V"(0) < 0, i.e. for suitable coordinates, V(z) =

2
Eo =370 %’x? +O(|z]?) as x — 0, for some 0 < A; < Ag < -+ < A,

Let us also consider the corresponding classical dynamics in the phase space R%;‘ €)

i.e. the vector field H, = V¢p-V, — Vep- V, of the Hamitonian p(z, &) = €2+ V() .
The assumption (A2) implies that the origin (x, &) = (0,0) is a hyperbolic fixed point
of Hp, and there exist outgoing and incoming stable manifolds

As = {(2.6) € R?"; exptH,(2,€) — (0,0) as t — Foo}

which are tangent to the eigenspaces associated respectively with the positive and neg-
ative eigenvalues {\;}}_; and {—A;}}_; of the fundamental matrix of H,. They are
Lagrangian manifolds, and, near the origin, they have generating functions ¢4 (z) =

£ 22 4 O(|e*); Ax = {(2,6) € R2€ = Voo (2)).

(A3) The origin (x,£) = (0,0) is the unique trapped set in p~1(Ep), i.e. if (z,&) €
p 1 (E0)\(0,0), then |exptH,(z,£)| — oo as t — +o0 or as t — —oo.

The assumption (A3) implies that V reaches its global maximum Ey only at « = 0.
Under the assumptions (A1)-(A3), the semiclassical distribution of resonances are
known near the barrier top energy Ey (Sjostrand 87, Briet-Combes-Duclos ’87): In
a complex disc centered at Ej of radius Ch, there exists a bijection b(h) between
the set {z0},en» and the set of resonances such that b(h)z — 2z = o(h), where 20 =
Eo—ih )7 Nj(aj + 5).
Let us fix a € N satisfying the condition

(A4) If 20 = 20, then a = /.



We denote by z, = b(h)z2 the corresponding resonance, and by II, the corre-
sponding spectral projection; Il = 5 flzfz ‘:6(P9 —2) " tdz.

Theorem 1 (Spectral projection). Assume (A1)-(A4). Then, for any x € C3°(R"),

L h n/2—la] n 1
Mox = () XPxf.  e(h) = () ]2+,
j=1
where f = f(x,h) is a solution to Pf = z.f, locally L* uniformly in h, 0 in the
incoming region (in the microlocal sense) and has an asymptotic expansion

f=d(@ h)e @M d(a,h) ~ Y di(@)h!, do(x) = 2 + O(Ja[*1F)
near the origin.

The point consists in the calculus of (Py — z)~'u for non-resonant z and for a
certain u that we choose to have its microsupport near a point on the incoming
stable manifold A_. Our recent work (BFRZ ’07) enables to represent (P — z)~lu
near the fixed point (0,0) as superposition of WKB solutions to the time-dependent
Schrédinger equation. The microlocal argument is based on the resolvent estimate:

Theorem 2 (Resolvent estimate). Assume (A1)-(A3). For any C > 0 and z €
D(Ey,Ch) ={z € C; |z — Ey| < Ch}, there exists K > 0 such that

N(Po—2)"I<n ™ J]  (-zo)7"
23€D(Eo,2Ch)

As applications, we obtain the following Theorem 3 and Theorem 4:

Let Ay, A,/ be the set of Hamiltonian curves with asymptotic direction w,w’ €
S~ ast — 400, t — —o0 respectively. We assume
(A5) Ay and A, [resp. A_ and A,/] intersect transversally along a Hamiltonian

curve v, [resp. y_].

Let x4 (t) be a-projections of y4. Then x4 (t)* =", 5 x gf,t(t)e_)‘ﬂt + O(e™Nt) as
t — Foo for every N € N. gﬁi (t) are at most polynomials and g are constants.
Theorem 3 (Residu of the scattering amplitude). Assume (A1)-(A5). Let A(z;w,w’)

be the scattering amplitude with outgoing and incoming directions w,w’ respectively.
Then its residu at z = z,, 15 given by

ReszaA(z;w,w/) — aa(W,w/)g;gih%leilal + O(h%+2,‘a|)’
where aq(w,w’) is a non-zero constant independent of h.

Theorem 4 (Long time asymptotic of the Schrodinger group). Assume (A1)-(A3)
and that {\;}}_, is Z-independent (i.e. every resonance is simple). Then, for any
C >0, x € C°(R™), ¢ € C§°(R) supported near Ey, there exists € > 0 and K > 0
such that

Xe—itP/th(P) — Z e—itzg/h XHﬁxw(P) + O(hoo) + O(e_(c+€)th_K).
23€D(Eq,Ch)

This is a consequence of Theorem 2. Thanks to Theorem 1, the error is smaller
than the first term in RHS when ¢ is larger than A|log h| for large enough A.



