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We consider the semiclassical Schrödinger equation in Rn

Pu = zu, P := −h2∆ + V (x),

where ∆ :=
∑n
j=1

∂2

∂x2
j
, h > 0 is a semiclassical parameter, z ∈ C is a spectral

parameter and V (x) is a short-range real-valued analytic potential with a positive
non-degenerate maximum E0 at the origin x = 0. More precisely, we assume the
following conditions (A1)-(A3) on the potential V .

(A1) V (x) is real on Rn, and analytic in a domain D := {x ∈ Cn; | Imx| ≤ δ〈Rex〉}
for δ > 0, and verifies V (x) = O(|x|−ρ) for ρ > 1 as |x| → ∞ in D.

To the self-adjoint operator P on L2(Rn) with σess(P ) = R+, we associate a distorted
operator Pµ = UµPU−µ, where (Uµf)(x) := (det(Id + µdF ))−1/2f(x + µF (x)) for
small |µ|, and F ∈ C∞(Rn; Rn) with F = 0 on |x| < R, F = x on |x| > R + 1 for
large R. The complex eigenvalues of Piθ for θ > 0 are independent of θ, and called
resonances of P (Hunziker ’86).

(A2) V (0) = E0 > 0, V ′(0) = 0, V ′′(0) < 0, i.e. for suitable coordinates, V (x) =

E0 −
∑n
j=1

λ2
j

4 x
2
j +O(|x|3) as x→ 0, for some 0 < λ1 ≤ λ2 ≤ · · · ≤ λn.

Let us also consider the corresponding classical dynamics in the phase space R2n
(x,ξ),

i.e. the vector field Hp = ∇ξp ·∇x−∇ξp ·∇x of the Hamitonian p(x, ξ) = ξ2 +V (x) .
The assumption (A2) implies that the origin (x, ξ) = (0, 0) is a hyperbolic fixed point
of Hp, and there exist outgoing and incoming stable manifolds

Λ± = {(x, ξ) ∈ R2n; exp tHp(x, ξ)→ (0, 0) as t→ ∓∞}

which are tangent to the eigenspaces associated respectively with the positive and neg-
ative eigenvalues {λj}nj=1 and {−λj}nj=1 of the fundamental matrix of Hp. They are
Lagrangian manifolds, and, near the origin, they have generating functions φ±(x) =
±
∑ λj

4 x
2
j +O(|x|3); Λ± = {(x, ξ) ∈ R2n; ξ = ∇xφ±(x)}.

(A3) The origin (x, ξ) = (0, 0) is the unique trapped set in p−1(E0), i.e. if (x, ξ) ∈
p−1(E0)\(0, 0), then | exp tHp(x, ξ)| → ∞ as t→ +∞ or as t→ −∞.

The assumption (A3) implies that V reaches its global maximum E0 only at x = 0.
Under the assumptions (A1)-(A3), the semiclassical distribution of resonances are

known near the barrier top energy E0 (Sjöstrand ’87, Briet-Combes-Duclos ’87): In
a complex disc centered at E0 of radius Ch, there exists a bijection b(h) between
the set {z0

α}α∈Nn and the set of resonances such that b(h)z − z = o(h), where z0
α =

E0 − ih
∑n
j=1 λj(αj + 1

2 ).
Let us fix α ∈ Nn satisfying the condition

(A4) If z0
α = z0

α′ , then α = α′.



We denote by zα = b(h)z0
α the corresponding resonance, and by Πα the corre-

sponding spectral projection; Πα = 1
2iπ

∫
|z−zα|=ε(Pθ − z)

−1dz.

Theorem 1 (Spectral projection). Assume (A1)-(A4). Then, for any χ ∈ C∞0 (Rn),

χΠαχ = c(h)(·, χf)χf, c(h) =
(
h

i

)n/2−|α| n∏
j=1

λ
αj+

1
2

j ,

where f = f(x, h) is a solution to Pf = zαf , locally L2 uniformly in h, 0 in the
incoming region (in the microlocal sense) and has an asymptotic expansion

f = d(x, h)eiφ+(x)/h, d(x, h) ∼
∑

dj(x)hj , d0(x) = xα +O(|x||α|+1)

near the origin.

The point consists in the calculus of (Pθ − z)−1u for non-resonant z and for a
certain u that we choose to have its microsupport near a point on the incoming
stable manifold Λ−. Our recent work (BFRZ ’07) enables to represent (Pθ − z)−1u
near the fixed point (0, 0) as superposition of WKB solutions to the time-dependent
Schrödinger equation. The microlocal argument is based on the resolvent estimate:

Theorem 2 (Resolvent estimate). Assume (A1)-(A3). For any C > 0 and z ∈
D(E0, Ch) = {z ∈ C; |z − E0| < Ch}, there exists K > 0 such that

||(Pθ − z)−1|| ≤ h−K
∏

zβ∈D(E0,2Ch)

(z − zβ)−1.

As applications, we obtain the following Theorem 3 and Theorem 4:
Let Λω, Λω′ be the set of Hamiltonian curves with asymptotic direction ω, ω′ ∈

Sn−1 as t→ +∞, t→ −∞ respectively. We assume

(A5) Λ+ and Λω [resp. Λ− and Λω′ ] intersect transversally along a Hamiltonian
curve γ+ [resp. γ−].

Let x±(t) be x-projections of γ±. Then x±(t)α =
∑
λ·β<N g

±
β (t)e−λ·βt +O(e−Nt) as

t→ ∓∞ for every N ∈ N. g±β (t) are at most polynomials and g±α are constants.

Theorem 3 (Residu of the scattering amplitude). Assume (A1)-(A5). Let A(z;ω, ω′)
be the scattering amplitude with outgoing and incoming directions ω, ω′ respectively.
Then its residu at z = zα is given by

ReszαA(z;ω, ω′) = aα(ω, ω′)g−α g
+
α h

3n
2 +1−|α| +O(h

3n
2 +2−|α|),

where aα(ω, ω′) is a non-zero constant independent of h.

Theorem 4 (Long time asymptotic of the Schrödinger group). Assume (A1)-(A3)
and that {λj}nj=1 is Z-independent (i.e. every resonance is simple). Then, for any
C > 0, χ ∈ C∞0 (Rn), ψ ∈ C∞0 (R) supported near E0, there exists ε > 0 and K > 0
such that

χe−itP/hχψ(P ) =
∑

zβ∈D(E0,Ch)

e−itzβ/h χΠβχψ(P ) +O(h∞) +O(e−(C+ε)th−K).

This is a consequence of Theorem 2. Thanks to Theorem 1, the error is smaller
than the first term in RHS when t is larger than A| log h| for large enough A.


