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1 Eigenvalue asymptotics for perturbed Maass operator

In the first part, I talk about the eigenvalue asymptotics for the Maass operator perturbed by a decaying
scalar potential. (For omitted proofs in this part, see [Shi].)

Let Hl be the hyperbolic plane equipped with the metric y~2(dz®dz+dy®dy). The Riemannian volume
is given by y~2dz A dy. The Riemannian measure on H is given by dzdy/y? and the hyperbolic distance
du(z, z9) on H is given by cosh (d(z, z0)) = (Jz—=zo|* +y*+v2)/(2yyo) for any z = (=,y), 20 = (%0, y0) € HL.

Let B be a real constant. We introduce the (unperturbed) Maass operator as

H(B) = y* ((D: = B/y)* + Dy)

on L*(H). Here, we write D, for —/—18/0z, etc.

The operator H(B) has a physical interpretation as the Hamiltonian which governs a non-relativistic,
charged particle moving on H under the influence of the magnetic field of constant strength B perpen-
dicular to H.

The spectral properties of the Maass operator has been investigated by many authors (see [Roe],
[Els], [Fay], [Gro], [C-H], [Com], [A-P], [I-M], [K-L] and references therein). We recall some basic results.
The Maass operator H(B) is essentially self-adjoint on C$° (H), the set of all complex-valued, smooth
functions with compact support on H ([Roe], Satz 3.2). (In what follows we use the same notation for
an operator and its operator closure if there is no fear of confusion.) The spectrum of H(B) consists
of the absolutely continuous part [B? + 1/4, co) and the discrete Landau levels {En}lnvz(lf =1/ 2), where
E, = (2n 4+ 1)|B] — n(n + 1) and N(z) denotes the largest integer less than z. In case |B| < 1/2, the
set of discrete Landau levels is empty. If |B] > 1/2, each of E,’s is an eigenvalue of infinite multiplicity.
In the rest of this part, we may restrict ourselves to the case B > 1/2, provided we are concerned with
the discrete Landau levels, since the Maass operator H(B) with B is unitarily equivalent to the one with
—B via the transform (z,y) — (—z,y).

For a measurable function V on Hl, we say V decays at infinity if for any € > 0 there exists a compact
subset K of H such that |V (z,y)| < € outside K. Any bounded, measurable function V' decaying at infinity
is relatively compact with respect to H{(B) (see [I-S], Lemma 3.10), so the perturbed Maass operator
H(B,V) = H(B) 4+ V is a well-defined self-adjoint operator when V is real-valued, and the essential
spectrum of H(B, V) coincides with that of H(B). (Note that, examining the proof, one can easily find
that Lemma 3.10 in [I-S] is still valid if we drop the continuity condition of V.) Then the perturbed
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operator H(B,V) may have the discrete spectrum (i.e., discrete eigenvalues of finite multiplicity) in the
spectral gaps.
To formulate our results, we make the following condition (V). on the perturbation V.

(V)e The perturbation V' is a real-valued, bounded, measurable and non-negative function on H. More-
over, there exist zo € H and positive constants ¢ and Cy such that the asymptotic relation

lim  exp (edy(z,20))V(z) = Cy (1.1)

d(z,20)—> 0

holds.

2

Let n be any non-negative integer n satisfying 0 < n < N(B — 1/2) and let ¢ > 0. We introduce the
notations 8, = 2B —2n—1 (> 0) and

L(Bn +€)l(Bn+n+1) . . |
L(8,)C(n+ DT (B, + 1)F2(:3n +e—n,—n; B+ 1,60 +1;1,1)

T(B. +¢) —-n,l—g,&
T(6,) 3F2< Bn+1,1 ’1)'

Here, I'(z) = fooo e~'4*~1dt is the gamma function, 3F; is the Gauss hypergeometric function and

O,(e)

(@)i14m (0)1(6)m aly™

. /. /. —_
Fg(a,b,b,C,C,w:y)—' Z (C)[(C m I'm!

I,m=0

is the Appell hypergeometric series and (z)g =1 and (), = z(z+1)--- (¢ +m—1) if m > 1. We note
that, because of the parameter —n, the hypergeometric series in the expressions of ©,(¢) terminate and
it turns out that ©,(¢) is positive.
For any real numbers a,b and for any self-adjoint operator 7" in a Hilbert space, we set N(a < T' <
b) = dim ran(Pr((a,b))), where Pp([I) stands for the spectral projection for 7" on an open interval I.
The main results of this part are the following two theorems.

Theorem 1.1 Assume that |B| > 1/2. Let {En}i:"il(;?l—lﬂ) be as above. Let E' be any point between E,
and Ep 41, where we set Eny1 = B2 +1/4 forn = N(|B| - 1/2). Then the condition (V). implies that

N(B, + B < H(B,V) < B') = 1-(04())/*Vola{z € HIV(2) > E}(1+ (1)) (12)

as E 0, where Voly is the Riemannian volume on H.
For any zy € H, we denote by Fr, ,, the characteristic function on the set {z € Hlt < d(z,2) < T7}.

Theorem 1.2 Assume that |B| > 1/2 and V is bounded, measurable, non-negative on H and decays at
infinity. Let E' be any point between E,, and E, .1, where we set E,y1 = B*+1/4 forn = N(|B|-1/2).
Let zo € H and 0 <t < T. Then the following assertions hold:

(i) If there exists a positive constant ¢ such that 0 < V(z) < ¢Frpy ,,(z) holds for all z € H, then we
have

|log tanh® (7'/2)| limsup N (E, + E < H(B,V) < E')/|log E| < 1.
ENO



(1) If there exists a positive constant ¢ such that cFr ,,(z) < V(z) holds for all z € H. then we have

|log tanh? (T/2)] liminf N (En + B < H(B,V) < B)/|log B| > 1

(i11) In particular, if there exist positive constants c,c’ such that cFry ,,(z) < V(z) < ¢ Fr.,(2)
holds for all z € H, then we have

| log tanh? (T/2)] éi\r?o N(E,+E< H(B,V) < E')/|log E| = 1.

Let D be the Poincaré disk {w = peV=1#|0 < p < 1, 0 < § < 27} equipped with the standard measure
4r(1 — p?)~2dpdf. The Cayley transform ¢, is defined by z — (2 —/—1)/(z + /=1 for each z € H, and
it defines an isometric diffeomorphism between H and .

We note that, in the case of zg = v/—1, the asymptotic relation (1.1) is equivalent to the condition
that limyy| ~ V(e7 ' (w))(1 - |w|?)=¢ = 47¢Cv holds uniformly in 6 for w = lwleV=1¢ & D, which follows
from the relation 1 — |w[? = cosh™2 (dp(w, 0)/2).

Remark 1.3 Let V satisfy (V). for some e > 0 and let Fr; ,, be the function as in Theorem 1.2. Then
a simple calculation shows that

lim E'/*Voly {z € H| V(2) > E} rCye,

EN O
g{I}O Volg {Z € Hl FT>t,zu (Z) > E}

47 (cosh? T' — cosh? t).

In the Euclidean case, Raikov ([Rai], [Rai2]) has obtained the asymptotic distribution of the number
of the discrete spectrum near the boundary of the essential spectrum of the Schrodinger operators with
constant magnetic fields and power-like decreasing electric potentials. In the two dimensional case, the
leading asymptotics are independent of the level-number n, and behaves quasi-classically, i.e., behaves
like (B/2m)Volge {z € R?|V(z) > E} as E \, 0 (see, e.g., [R-W], Remark 2.5). Here, B is the strength
of the constant magnetic field and B/(2x) is the density of states for the n-th Landau level of the Landau
Hamiltonian.

Recently, several authors ([R-W], [M-R]) investigate the asymptotics for the case where the decay of
the electric potentials V is Gaussian or faster. They show that the asymptotics are non-classical if the
decay of V is faster than Gaussian (in an appropriate sense), or support of V' is compact. The leading
asymptotics are independent of n, and in the case of compact support, it does not depend on V.

On the other hand, our results shows that the asymptotic behaviour of N(E, + E < H(B,V) < E)
has the form (1.2) as E \, 0. The density of states of the Maass operator can be found in [Com],
Eq.(5.14)—(5.16), Eq.(B.19). In particular, the density of states for the n-th discrete Landau level is given
by Bn/(4m), which depends on n. The quantity f,/(47) does not coincide with the leading coefficient
0, ()¢ /(4r) in (1.2) unless ¢ = 1. Obviously, ©,(¢)'/¢ depends on both n and €. So, this is different
from the flat case.

2 A formal flat space limit for the Maass operator

In the second part, I talk about a flat space limit for the Maass operator and show that the leading
coefficient of the asymptotics (1.2) converges to the corresponding one for the Landau Hamiltonian on




the Euclidean plane in the flat space limit. However, the statements in this part are more or less well-
known (and trivial) facts (see [Comy], Section IV).

Let R > 0. We introduce the space Dg = {w = u+ iv € C| |w| < R} equipped with the Riemannian
metric gp, = 4(1 — |w/R|?)~%(du ® du + dv ® dv). Here, |w| = ([u|> + |[v|>)/%. (In what follows we
denote by |- | the standard Euclidean norm.) Note that the metric is expressed as 4(1 — (p/R)?)"2(dp ®
dp + p?df ® df) in the polar coordinates w = peV-16 (0<p < R,0<6<2m), and is also expressed as
dr@dr+R?sinh? (r/R)df®d6 in the geodesic polar coordinates (r, §) given by w = Rtanh (r/(2R))ev 1.
Moreover, the Ricci curvature is given by —R~2?gp. . In the case of R = 1, we may write I and H for Dy
and M, respectively.

The space D has a different model Hg = {z = z++/—1y € C|z € R,y > 0} equipped with the metric
R%*y~%(dz ® dz + dy ® dy). Indeed, the spaces Dg and Hig are isomorphic as a Riemannian manifold, via
the transform ¢g(z) = R(z —1)/(z +1). This follows from the facts that g, = *(Dyr)gp,(Der), where
(Dyg) is the Jacobian of ¢g, and that the usual Cayley transform gives an isometric differomorphism
from H to D.

Remark 2.1 As is easily seen, the space D converges to the Euclidean plane R? with the metric 4(du®
du+dv®dv), at least, in a formal level. Indeed, one can find that Dy converges in the (pointed) measured
Gromov-Hausdorff topology.

For any B > 0 and R > 0, we define the (scaled) Maass operator
Hg(B) = R™%y* ((D, — R’B/y)* + D})
on L?(Hg) with the Riemannian volume dVoly, = R*y~?dzdy. In the case of R = 1 we may write H (B)
for Hy(B).
This operator is the Bochner Laplacian on H with the connection one form a = By~ 'dz. Then
a gives the curvature two form wp = BR*y~?dz A dy = BdVolg,, so we call Hg(B) the Schrodinger

operator with constant magnetic field B (or the Landau Hamiltonian) as in the Euclidean case.
The operator Hgr(B) is essentially self-adjoint on C§°(Hg).

Lemma 2.2 The spectrum of Hg(B) s explicitly given by

N(BR*-1/2)
Spec(Hr(B))= |J {@+1)B-1(+1)R™*}JB*R® +1/(2R)*, ),
=0
where N(z) stands for the largest integer strictly less than x. Moreover, the first part of the spectrum

consists of the eigenvalues of infinite multiplicity, which is regarded as empty in the case of BR? < 1/2,
and the second part consists of the absolutely continuous spectrum.

Proof. Define the unitary transform Ug from L?(Hg) to L2(H) by Ugf(z) = Rf(z). Then we can find that
UrHr(B)Uz' = R-2H(R?B) holds on L?(H), from which we have Spec(Hg(B)) = R™2Spec(H (R*B)).
The results follows from the well-known result Spec(H(B)) = Ufi(f_l/z){(21+1)B—l(l+1)}u[32+1/4, 00)
(see, e.g., Elstrodt [Els]). |

From Lemma 2.2, we observe that the set Spec(Hpr(B)) ’converges’ to the set Uj2,{(2{ +1)B} in the
flat space limit R — oo (at least, in the Hausdorff topology on any compact set in R).



Lemma 2.3 The operator Hr(B) is unitarily equivalent to the operator

~ 1
fn(B) = (1~ hw/RI)? ((Dy = bi)? + D2)
on L?(Dg), where w = u + iv as before and

1 v/R
1—(u/R)?1—|w/R|?

bi(u,v) = =—2BR

2\—3/2 -1 v/R
—2BR(1 — (u/R)?)~%/? tanh T /B

Proof. Let pg be as in the previous section. By the transformation rule for connection forms, we find
that

(pr) Ha(B)(pr)" = (1 = ho/REY? (D = @1)? + (D, - @))

with a; = Rzalg—i and @y = R%a; -‘g—f.
Using the relations

bx _ _4_ (o/R(1-u/R)
bu ~ TR{I-w/R+ /R
dr _ 2 (1=u/R)P=(v/R)
o T TR w/BF (/R
I Y7 O
(= o/B)? + (v/R)”’

we find that the gauge function
_ R u/R - v/R
= 2BR? [ tan~! v/ — tanh™! ———
v ( TSwWR i-@wR? o V1o W/RE

satisfies 8,6 + @, = 0 and by = @; + J,. Then a simple gauge transform procedure shows that the
operator Hg(B) is given by eV~ (¢or). Hr(B)(¢r)s'e™Y =", |

Observation 2.4 The operator Hg(B) tends to the Landau Hamiltonian %((Dy + 4Bv)* + D7) on the
space R? with the metric 4(du ® du + dv ® dv), which has the essential spectrum UR2,{(2l + 1)B}, as
R — o in a formal level.

Proof. For each u and v, we can observe from Lemma 2.3 that
1 1
1—(u/R)?1-|w/R|?

(= (/R /R
v/R (1= (u/R)?)7?

bl = —2Bv

—2Bv(1 — (u/R)?)~?
— —2Bv —2Bv=—-4Bv



as R — oo, where we used the fact that limg,_¢ tanh™ z/z = 1. In the same way as in the proof of
Lemma 2.2, we can show that the spectrum of the above Landau Hamiltonian is given by U2 ({(2/+1) B},
which coincides with that of 1((Dy + 4Bv)? + D2) on R? with standard Euclidean metric. |

Let € > 0 and Cy > 0 and put Vg(z) = Cy exp (—edg,(v/—1, 7)) for any z € Hgr. We consider the
following unitary equivalences:

(¢r)* Ur (1)«
L2(DR) = L*HR) = I(H) = L*D).

Then the multiplication operator Vg on Hpg is unitarily equivalent to each of the multiplication oper-
ators Cy exp (—edpy (0,w)) on L?(Dg), Cy exp (—Redm(v/—1,2)) on L*(H) and Cy exp (—Redp(0,v"))
on L%(D), where w = ¢gr(z) and v’ = ¢1(z).

Hence it follows that, for each large R > 0,

N(EP + E < Hr(B)+ Vr < E')
= N(R’E(®) + R°E < H(R?B) + R*Vg < R*E)
= N(E,(BR?)+ R*E < H(R*B,R?Vg) < R’E')
1 1

= E(Gn(Re))ﬁVohm{z € H|R*Vr(2) > R*E}(1 + o(1)) (2.1)
holds as E \, 0, where we set B = (2n+1)B —n(n+1)/R? and E,(BR?) = (2n+1)BR? — n(n+1),
and we used the unitary equivalence Hg(B) = R™?H(BR®) in the first equality and used Theorem 1.1
in the first part with B — BR?, V = Vg, ¢ — Re in the last line.

The next obvious but natural fact is the main claim in this part.

Observation 2.5 For each small E > 0 and each ¢ > 0, the leading coefficient on the right-hand-side of
(2.1) converges to 3 Volg:{w € R?|Cy exp (—2¢|w|) > E} as R — oo.

Proof. In this proof we use the notation ﬂgR) = 2BR? — 2n — 1. Then we have

T8 + Re) (—n,l—Re,Re )
O,(e) = ———>nr——+ 3F: ;
) remn L AP+
e T + Re) —n,1— Re, Re
= (2BR%»)fc.(9BR%)fe 1) . 2.2
(2BR*)" - (2BR?) TaE) (CITEI (22)
First, by the Stirling asymptotic formula, we find that
. (8 + Re) . T(2BR? —2n— 1+ Re)
9 2\ —Re n — 2\—Re -1 2.3
Am (2BE) T(BE) Am (2BE) T(2BR? —2n— 1) ’ (2:3)
and
_ —n,1 — Re,Re -n €’ g2
Rll_I)Tganz ( BB 411 ,1> =1/ ( 1 ,—557) = Ln(—ﬁ)y (2.4)




where we used the formulas (z); = T'(z + j)/T'(z) and (—z); = (=1)’T'(z +1)/T'(z — j + 1). Here, L, (2)
is the Laguerre polynomial, which does not vanish on the negative real line. Finally, we find that

R*Volg{z|Vr(z) > E} = Volu,{z|Vr(z) > E}
Volp{w|Cy exp (—edp, (0, w)) > E}
—  4Volg:{w|Cy e~ %l > E} (2.5)

as R — oo for each E' > 0. Then the claim follows from (2.1)~(2.5) since

1
N((2n+1)B +E < 7((Du +4Bv)* + D) + Cye~ 2l < By

4B
= ﬁvolm{w[cve—%lwl > E}(1+o(1))

holds as £\, 0 (see [R-W]). 1

3 Decay of the magnetic eigenfunctions on H

In the third part, following [Shi2], I will talk about some decay properties of the magnetic eigenfunctions
of perturbed Maass operator Hy = H(B) + V and a related flat space limit if I have the time.
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