ON PATH INTEGRAL FOR THE RADIAL DIRAC EQUATION
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Abstract. For the radial Dirac equation, we construct a countably additive path space
measure on the space of continuous paths living on the real half-line to give a path
integral representation to its Green function.

Introduction and Results

Consider the radial Dirac equation, namely, the radial part of the Dirac equation in
spherical coordinates, given, for C2-valued functions v (r,t) = *(¢1(r,t), s (r,t)), by

gzw(r, t) = —irg + V(r)]eb(r, 1), (1)

with a real-valued spherically symmetric potential V = V(r), i.e. a function in the real
half-line R := (0,00), where the variables (r,t) lie in radial space-time R x R. Here
T, is the free radial Dirac operator with mass m defined for k = +1,42,---, by

woel(8 )8 (5 ) e

for suitably smooth C2-valued functions f = *(f1, f2) in R, in short,

0 k
Tk = —103— — 01— + Mo3, (2b)
r

or

with the Pauli matrices

0 1 0 —i 1 0
=(Vo) = (0 7)) =m0 5)

* Talk given at the Meeting on “ Differential Equations”, The University of Tokyo, Komaba, De-
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The free radial Dirac operator 7 arises from the spin-angular momentum decomposition
of the free Dirac operator in three space dimensions. The nonzero integer k represents
an eigenvalue of the “spin-orbit operator” (see [BD], [Th], [W]).

The operator 7 is a symmetric operator with domain D[rx] = C§°(R;C?) in
L*(R4;C?). Here L?(R; C?) is the Hilbert space of the C2-valued square-integrable
functions in R with respect to the Lebesgue measure dr, and C5° (R4 ; C?) the locally
convex space of the C2-valued C* functions in R with compact support. It has a
singularity at 7 = 0 as in (2ab). This is indeed harmless if we consider it as an operator
in the L? space, but is a problem to construct a path space measure, for we need to
consider it as an operator in the L space (see also [IT 1, IT 3]). In this context, in [IJ],
we have made an explicit construction of the propagator, namely, the integral kernel
K:(r, p) of e ™ for k = 1, and shown that, though it turns out to be a distribution of
order zero in the variables (r, p) € R x Ry = R, ?, there exists no countably additive
path space measure to give a path integral representation to the solution of the Cauchy
problem for the radial Dirac equation (1).

The aim of this note is to construct a countably additive path space measure to
represent by path integral, though not the propagator, the Green function for the radial
Dirac equation (1). The main idea is to combine our method of constructiong a path
space measure developed for the one-dimensional Dirac equation in the papers [I 1,
12, IT 1, IT 2, IT 3], in particular, in their a little more refined review [I 3], with
the following simple but intriguing procedure of dealing with the singularity, which was
invented by Duru and Kleinert [DK] and has since been employed by many physicists
(see [InKG, p. 6], [K, Chap. 12 and 14], [GS, pp. 77-83]) to perform space-time
transformations in path integrals.

The free radial Dirac operator 74 has a singularity at r = 0. However, if we multiply
this operator 7, by some (nonnegative) functions a(r) and b(r) from the left and right
sides, respectively, then a(r)7b(r) becomes no more singular. Let us take a(r) = b(r) =
rl/z, and put Ty = r1/20.71/2 Then —31%. becomes

—il, = —irl/QTkrl/Q = —027'1/2 (62)9“1/2 +i(koy — mros)
r
_ (0 —1 1/2(_6_) 12 ;[ —mr  k (3)
- Z(l 0>T ar )" U E me
== —iTkO - iTkl.
We also consider the operator
H(k,rV) =T, +rV(r), (4)

relevant to the radial Dirac operator in (2ab). Then T} is a symmetric operator with
domain D[Ty] = C§°(R4; C?) in L*(R4; C?). For the potentials V' (x) we are concerned
with, we can show H(k, V) is essentially selfadjoint on C§°(R.y; C?), as well as Tj,. We

shall denote their closures or unique selfadjoint extensions again by the same H(k,rV)
and Tk

Then consider, for H(k,rV) instead of 7 + V(r), the Cauchy problem

) = ~iH(E, V)l 1), u(r0)= () = {@()e@) O
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for t € R or the solution u(r,t) = (e~ *#*V)g)(r). Since T} has no more singularity
at r = 0, we expect to be able to construct a path space measure associated with the
semigroup e~ *H V) - Since the resolvent is expressed by the Laplace transform of the
semigroup, we shall find the following relation between the desired resolvent kernel of
% + V and the semigroup e *#H(%"V) though a little formally expressed ,

(7 +V = N) Y (r, p) = r2I(H (K, vV) = Ar)~H(r, p)p*?

_ 2/ p1/2g—st(H (krV)=2r) 172 gy
0

for suitable real or complex numbers A. In this way, we might get, for the original radial
Dirac operator 7 + V(r), a path integral representation of the resolvent kernel and the
Green function if A might be taken to be zero, though we were unable to find such a
representation for the propagator e~ (7+V) itself.

For the potential V (z), we assume that it is a real-valued function in Ry such that
V(r) = Vi(r) 4+ Va(r), where Vi(r) = e/r with a real constant e satisfying |e| < y/k? — 1

1
and Va(r) is a locally square-integrable function in Ry which is bounded near r = 0.

Note that this class of potentials V' (r) contains the Coulomb potential.

In this case it can be shown that the radial Dirac operator 7 +V in (1) is essentially
selfadjoint on C§°(R;C?). We denote its unique selfadjoint extension in L?(R.; C?)
also by the same 7, + V. Thus this operator has a real spectrum. Further, as to
its spectrum, for instance, the following results are known ([W], [Tha, Theorems 4.18,
4.19)). If Va(r) = Vai(r) + Vaa(r) satisfies for some 79 > 0 that Vo; € L*((rg,o0))
and Vag is of bounded variation in [rg,c0) with lim, o, Vaa(r) = 0, then the operator
Tk + V has a purely absolutely continuous spectrum in the real line R outside the
closed interval [—m,m]. If Vi(r) is absent (i.e. e =0 ) and if lim, o |Va(r)| = co and
f:oo “2&7(3)2 dr < oo for some rg > 0, then 7, + V has the whole real line R as a purely
absolutely continuous spectrum.

We will show the following path integral representation for the resolvent kernel [(7 +
V Fie)~t](r, p) for € > 0 and the Green function for the radial Dirac operator 74 + V()
in (1).

The set of all complex 2 x 2-matrices is denoted by M>(C) = C? ® (C?). With
[0,00) = R being the closed real half-line, let C53([0,00)?; M2(C)) be the locally con-
vex space of the My(C)-valued C* functions M(r,p) in [0,00) x [0,00) which have
compact support and whose derivatives 9r™9p" M(r, p), for all nonnegative integers m
and n, vanish at (r,0) and (0,p) for all » > 0 and p > 0. Let CS5([0,00)%; Ma(C))
be its dual space. As C°(R4?; My(C)) is a subspace of CS5([0,00)2; M2(C)), so
Cs5([0,00)%; M2(C))' is a subspace of the space D' (R.%; M3(C)) of the My(C)-valued
distributions in Ry xR4. By (:,) and (-,-) we denote respectively the sesquilinear and
bilinear inner products of a dual pairing.

The main result of this note is the following theorems. The notation |0, ¢| stands for
the interval 0 < s <tor 0> s>t accordingast > 0ort <0.

Theorem 1. Let V(r) be a potential mentioned above.
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(i) For every € > 0, there exists a 2 x 2-matriz distribution-valued, precisely speaking,
C55([0,00)%; M3(C))'-valued, countably additive path space measure iz on the Banach
space C(]0,t] — [0,00)) of the continuous paths R : |0,t| — [0, 00) such that the resolvent
kernel function [(tyx +V F i)~ (r, p) for the radial Dirac operator T, +V in (1) admits
a path integral representation: for every pair (f,g) € C§5([0,00); C%) x C§3([0, 00); C?),

(fs (e +V Fie)™ / / (76 + V Fie) (7, p)g(p) drdp
Foo
i [ / (TR, dueo(R) a(R(0)
0 O(10,t|=[0,00))

< R(1)/2R(0)"” exp| - /0 (V(R(s)) R(s) + £R(s)) ds].
(6)

In particular, the resolvent kernel function [(1x +V Fie) t|(r,p) is a distribution of
order zero in Ry x R.

(ii) The measure pis is concentrated on the set of the continuous paths R : |0,t] —
[0,00) for which there exists a ﬁm’te partition: 0 =t) St S -+ Sty = t of the

interval |0,t] such that for t;_4 > sz Sty 1<j<n+1,

R(s) = R(O)ei[zi;i (=) (tp—tp1)+(=1)" " (s=tj-1)] (7)

Therefore each of these continuous paths R(-) is, for some finite n, an n-vertex piecewise
smooth curve in radial space-time, starting from R(0) at time O and reaching R(t) at
time t, and exponentially growing or decreasing in each partioned short time interval.

We denote by G4 (r, p) the Green function for the radial Dirac operator 7, + V to be
given as the limit of the integral kernel of the resolvent (74 +V Fie)™! as ¢ — +0, if
this limit exists.

Theorem 2. For the same potential V(r) as in Theorem 1, suppose that 0 is not
an eigenvalue of the radial Dirac operator 7, + V. Suppose that the Green function
G(r,p) for the radial Dirac operator T, +V in (1) exists. Then it is a distribution of

order zero in (r,p) € Ry X Ry, and admits a path integral representation: for every
pair (f,g) € Ooo([o 00); C?) x Cg5([0, 00); C?),

(i)
/O h /0 ootf (r)G+(r,p)g(p) drdp
+oco _
— i lim it / (" FIR{)), dyue o (R) g(R(0))) (8)
10,¢]—[0,00))

e—=+40 0

x R(t)Y2R(0)Y/? exp[— fo (iV(R(s))R(s) £ eR(s)) ds];
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/ / F(r)G+(r,p)g(p) drdp

+oo
=it [ (CFED).duo®)EO) )
x R(t)Y2R(0)"/? exp[-—i /O V(R(s))R(s) dsj;st].

If we formally take the delta functions at the two points r > 0 and p > 0 respectively
for f and g, the formula (8)/(9) looks like

+oo
G:{:(T,p):i/ dt/
0 C(10,t]-[0,00)),R(0)=p,R(t)=r

: (10)
r/2pY2 exp [—i /0 V(R(s))R(s) ds] dpiz,0(R).-

For the Dirac equation in the one-dimensional space, i.e. the whole real line R, a
path integral measure to represent the propagator was constructed first in [I 1}, [T 2,
IT 1] and then further studied in [IT 2], [IT 3] and [I 3]. The problem was treated in
[BICS] from a different point of view based on Poisson process, and there are further
related works [G], [GJKS], [CS] and [Z] on the subject.

This note is only to give the first step to describe the idea, and application to some
problem in quantum field theory will be discussed elsewhere.

To prove the theorems, we investigate first the Cauchy problem (5) in the L* norm for
the relevant operator to our radial Dirac operator, and also show essential selfadjointness
of both the radial Dirac operator (2ab) and its relevant operator (4). Next, we construct,
by means of the Riesz represntation theorem, a countably additive path space measure
associated with the semigroup for the Cauchy problem (5), on a big space of paths living
on the closed real half-line over each finite time interval [0,¢]. Then it is shown that this
measure is in fact concentrated on the set of continuous, piecewise smooth paths with
a finite number of vertices in radial space-time. Finally, we shall show, together with
this measure constructed, a path integral representation of Feynman—Kac type first for
this semigroup associated with (5) and then through the procedure mentioned for the
resolvent kernel and the Green function for the radial Dirac operator we are concerned
with. This lecture explains some idea of T. Ichinose, Path integral for the radial Dirac
equation, to appear in JMP, 2005 [mp-arc 04-318], with mention of a beyond.
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