
French-Asian Summer School onSingularities in PDEs 19-31 July 2010, IH́ES

General Setting of the School

Five lecturers will present a course in four lectures of one and a half hour each in
the mornings. The lecturers and the topics of their courses are:

• Yann B (CNRS-Université de Nice) will lecture onHidden Convexity in
Nonlinear PDEs from Geometry and Physics;

• Nicolas B (Université Paris-sud) will lecture onLarge Time Dynamics for
the One Dimensional Schrödinger Equation;

• David G́-V (Université Paris VI) will lecture onBoundary Layer
Theory for the Navier-Stokes Equation;

• Yvan M (Université de Versailles-Saint Quentin) will lecture onInelastic
Interaction of Solitons for the Quartic gKdV Equation;

• Laszlo S́ Jr. (Universität Bonn) will lecture onFrom Isometric Em-
beddings to Turbulence.

More detailed presentations of the courses, including prerequisites and a list of
references, can be found in the following pages.

One afternoon special sessions will be organised by:

• Jean-Marc D (Université Paris XIII) onNonlinear Evolution Equations
and Birkhoff Normal Forms;

• Alessio F (University of Texas at Austin) onOptimal Transport, or the
Geometric Theory of Measures and the Calculus of Variations;

• Clément M (École Normale Supérieure) onHypocoercivity and Cinetic
Equations;

• Fabrice P (Université Paris XIII) onWaves on Domains: Geometry
and Dispersion;

• Olivier D (École Normale Supérieure de Lyon) onAsymptotic Analysis for
some Elliptic PDEs;

• Laure S-R (École Normale Supérieure) onHydrodynamics Limits;

• Nikolay T (Université de Cergy-Pontoise) onLimit Properties of Ran-
domly Forced PDEs;

• Michael D (Cambridge University) onThe Equations of General Rel-
ativity.
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Hidden Convexity in Nonlinear PDEs from Geometry and Physics

Yann B (CNRS-Université de Nice)

The purpose of the course is to analyze several examples of nonlinear PDEs -with
both strong geometric and physical features- which enjoy a hidden con- vex structure.
Robust existence and uniqueness results can be unexpectedly obtained for very gen-
eral data. Of course, as usual, regularity issues are left over as a hard post-process,
but, at least, existence, uniqueness and stability resultsare obtained in a large, global,
framework.

We will discuss:

• 1. The real Monge-Ampère Equation (we will show how the convex structure is
related toOptimal Transport Theory);

• 2. The Euler Equations of Fluid Mechanics (that describe themotion of inviscid,
incompressible fluids and provide the most famous example ofa geodesic flow
in infinite dimension) and theirhydrostaticandsemi-geostrophiclimits;

• 3. The Born-Infeld System (a non-linear electromagnetic model introduced in
1934, playing an important role in high energy Physics sincethe 1990’s).
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Large Time Dynamics for the One Dimensional Schr̈odinger Equation

Nicolas B (Université Paris-sud)

In this course I will present some recent results with L. T and N. T
on the behaviour of solutions to Schrödinger equations with random initial data. The
main question I want to address is the following: Are solutions to Schrödinger equa-
tions better behaved when one consider initial data randomly chosen (in some sense)
than what would be predicted by the deterministic theory? Tomy knowledge the first
result known in this direction is due to Rademacher-Kolmogorov-Paley-Zygmund, and
states that random series on the torus enjoy betterLp bounds that the deterministic
bounds. These lectures are somehow a natural extension on the partial differential
equations field of these harmonic analysis results. We shalluse some basic results from
probability theory. The non linear Schrödinger I will be interested in, is the following
one dimensional non linear harmonic oscillator















i∂tu+ ∆u− |x|2u = |u|r−1u, (t, x) ∈ R × R,

u(0, x) = f (x),
(1)

wherer > 1 is the order of the non linearity. On a deterministic point of view, this
equation is well posed inL2(R) as soon asp ≤ 5, and the assumptionp ≤ 5 is known
to be optimal in some sense (see the works by Christ-Colliander-Tao and Burq-Gérard-
Tzvetkov in slightly different contexts). However, we shall prove, that for all non
linearities |u|p−1u, not only is the equation well posed for a large set of initialdata
whose Sobolev regularity is belowL2, but also that the flows enjoys very nice large
time behaviour (in a probabilistic sense).
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Boundary layer theory for the Navier-Stokes equation

David G́-V (Université Paris VI)

Objectives. The aim of this course is to give mathematical insights into acentral
problem of fluid mechanics: the understanding of fluid flows around obstacles. This
problem appears in many situations of practical interest, for instance the spreading of
air around the wings of an airplane. The main difficulty comes from high speed, or low
viscosity fluid flows. Mathematically, one needs to describethe asymptotics, asν goes
to zero, of the Navier-Stokes equation

(NSν)


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

∂tu+ u∇u+ ∇p− ν∆u = 0, t > 0, x ∈ Ω ,

∇ · u = 0, t > 0, x ∈ Ω ,

u|t=0 = u0 , u|∂Ω = 0 .

in a domainΩ with boundary. Asν goes to zero, it is known from experiments that the
velocity uν concentrates near∂Ω in a thin zone near the boundary, called aboundary
layer. The mathematical description of this layer, and its impacton the asymptotics
ν → 0 is still poorly understood. In particular, it is not known in general whether or
not a sequence of smooth solutions (uν) of (NSν) converges to a solution of the Euler
equation.

During the course we shall describe the main mathematical results on this conver-
gence problem, namely:

• 1. The convergence criteria of Kato [3];

• 2. The Prandtl approach for proving convergence, and the well-posedness results
of Oleinik on the Prandtl model for the boundary layer [4];

• 3. The justification of the Prandtl approach in the analytic setting [5];

• 4. Instability problems in the Sobolev setting [1, 2].

Prerequisites.Acquaintance with some basic notions of mathematical fluid mechanics
(local existence of strong solutions for Navier-Stokes andEuler, or global existence of
weak solutions for Navier-Stokes) is recommended, but not necessary.
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Inelastic Interaction of Solitons for the Quartic gKdV Equation

Yvan M (Université de Versailles-Saint Quentin)

The main objective of the course is to present recents work byYvan Martel and
Frank Merle on collision of two solitons for the generalizedKorteweg-de Vries equa-
tions, and in particular the quartic KdV equation. It is a nonintegrable equation and
no explicit multi-soliton solutions can be found in this case. However, we are able to
describe accuretely the interaction of two solitons in two disctinct situations: first, the
case where the size of one soliton is small with respect to theother soliton, and second,
the case where the two solitons have almost the same size.
Prerequisites.Only basic PDE theory.
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From Isometric Embeddings to Turbulence

László S́ Jr. (Universität Bonn)

The following dichotomy concerning isometric embeddings of the shere is well-
known: whereas the onlyC2 isometric embedding ofS2 into R3 is the standard em-
bedding modulo rigid motion, there exist manyC1 isometric embeddings which can
”wrinkle” S2 into arbitrarily small regions. The latter ”flexibility”, known as the Nash-
Kuiper theorem [8, 7], involves an iteration scheme called convex integration which
turned out to have surprisingly wide applicability.

More generally, this type of flexibility appears in a varietyof different geometric
contexts and is known as the ”h-principle” [6]. But one has todistinguish two con-
trasting cases: in problems which are formally highly undetermined, such as isometric
embeddings into Euclidean space with high codimension, onemight expect to find
flexibility among smooth solutions. On the other hand in problems which are formally
determined, like embedding a surface intoR3, the flexibility can only be expected at
very low regularity. In these lectures I will focus on this latter case and in particular
show how the same ideas can be applied to the Euler equations in fluid mechanics.

After a discussion of the proof of the Nash-Kuiper theorem, we show that - at least
if we relaxC1 to Lipschitz -, the ideas can be applied in a general framework originally
due to L. Tartar [12], which consists of a wave-plane analysis in the phase space. We
then show that with this framework at hand, the celebrated results of Scheffer and
Shnirelman [10, 11] concerning the existence of weak solutions to the Euler equations
with compact support in space-time, can be recovered [4, 5].

Finally, we take another look at the Nash-Kuiper theorem andanalyse whether
the construction can be extended to produce more regular solutions [1, 2, 3]. The
motivation for this comes from Onsager’s theory of turbulence [9], which predicts the
existence of certain weak solutions of the Euler equations.

Prerequisites Familiarity with basic PDE theory, conservation laws and differential
geometry is assumed.
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