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General Setting of the School

Five lecturers will present a course in four lectures of omé a half hour each in
the mornings. The lecturers and the topics of their counses a

Yann BRENIER (CNRS-Université de Nice) will lecture adidden Convexity in
Nonlinear PDEs from Geometry and Physics

Nicolas BURQ (Université Paris-sud) will lecture oloarge Time Dynamics for
the One Dimensional Schrodinger Equation

David GERARD-VARET (Université Paris VI) will lecture orBoundary Layer
Theory for the Navier-Stokes Equatjon

Yvan MARTEL (Université de Versailles-Saint Quentin) will lecture lorelastic
Interaction of Solitons for the Quartic gKdV Equatjon

Laszlo SEKELYHIDI Jr. (Universitat Bonn) will lecture oRrom Isometric Em-
beddings to Turbulence

More detailed presentations of the courses, includingeppgsites and a list of
references, can be found in the following pages.

One afternoon special sessions will be organised by:

Jean-Marc BLORT (Université Paris XIII) onNonlinear Evolution Equations
and Birkhgf Normal Forms

Alessio RGALLI (University of Texas at Austin) o@ptimal Transport, or the
Geometric Theory of Measures and the Calculus of Variations

Clément MOUHOT (Ecole Normale Supérieure) dtiypocoercivity and Cinetic
Equations

Fabrice RANCHON (Université Paris XlIl) onWaves on Domains: Geometry
and Dispersion

Olivier DRUET (Ecole Normale Supérieure de Lyon) Asymptotic Analysis for
some Elliptic PDEs

Laure S\INT-RAYMOND (Ecole Normale Supérieure) étydrodynamics Limits

Nikolay TzEvTKOV (Université de Cergy-Pontoise) dimit Properties of Ran-
domly Forced PDEs

Michael DAFERMOS (Cambridge University) oifhe Equations of General Rel-
ativity.
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Hidden Convexity in Nonlinear PDEs from Geometry and Physis

Yann BRENIER (CNRS-Université de Nice)

The purpose of the course is to analyze several examplesihear PDEs -with
both strong geometric and physical features- which enjogddn con- vex structure.
Robust existence and uniqueness results can be unexpechtdined for very gen-
eral data. Of course, as usual, regularity issues are left @y a hard post-process,
but, at least, existence, uniqueness and stability reardtebtained in a large, global,
framework.

We will discuss:

e 1. The real Monge-Ampere Equation (we will show how the @astructure is
related toOptimal Transport Theody

e 2. The Euler Equations of Fluid Mechanics (that describertb&on of inviscid,
incompressible fluids and provide the most famous exampteg#odesic flow
in infinite dimension) and thehydrostaticandsemi-geostrophitimits;

e 3. The Born-Infeld System (a non-linear electromagnetidehdntroduced in
1934, playing an important role in high energy Physics sthe€1990's).
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Large Time Dynamics for the One Dimensional Schadinger Equation
Nicolas BURQ (Université Paris-sud)

In this course | will present some recent results with HoMANN and N. TZVETKOV
on the behaviour of solutions to Schrodinger equationk vahdom initial data. The
main question | want to address is the following: Are solusidco Schrodinger equa-
tions better behaved when one consider initial data ranglehbsen (in some sense)
than what would be predicted by the deterministic theory™¥icknowledge the first
result known in this direction is due to Rademacher-KolnrogePaley-Zygmund, and
states that random series on the torus enjoy bé&ftdsounds that the deterministic
bounds. These lectures are somehow a natural extensioregmattial diterential
equations field of these harmonic analysis results. We sbalsome basic results from
probability theory. The non linear Schrodinger | will bearested in, is the following
one dimensional non linear harmonic oscillator

idu+Au—|x2u=u""tu, (tx) eRxR,
u(0, x) = f(x),

wherer > 1 is the order of the non linearity. On a deterministic poiftiew, this
equation is well posed ib?(R) as soon ap < 5, and the assumptign < 5 is known

to be optimal in some sense (see the works by Christ-Coliafido and Burg-Gérard-
Tzvetkov in slightly diferent contexts). However, we shall prove, that for all non
linearities|u/P-*u, not only is the equation well posed for a large set of initlata
whose Sobolev regularity is belola?, but also that the flows enjoys very nice large
time behaviour (in a probabilistic sense).

1)
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Boundary layer theory for the Navier-Stokes equation

David GERARD-V ARET (Université Paris VI)

Objectives. The aim of this course is to give mathematical insights intceatral
problem of fluid mechanics: the understanding of fluid flonsuad obstacles. This
problem appears in many situations of practical interestirfstance the spreading of
air around the wings of an airplane. The maiffidulty comes from high speed, or low
viscosity fluid flows. Mathematically, one needs to desctiteeasymptotics, asgoes
to zero, of the Navier-Stokes equation

oU+UuVU+Vp—-vAu=0,t>0, xeQ,
(NS)) V-u=0,t>0 xeQ,
Ut-0 = Ug, Uga =0.

in a domainQ with boundary. As’ goes to zero, it is known from experiments that the
velocity u, concentrates nedQ in a thin zone near the boundary, calleb@undary
layer. The mathematical description of this layer, and its impactthe asymptotics
v — 0 is still poorly understood. In particular, it is not knowmgeneral whether or
not a sequence of smooth solutions)(of (NS,) converges to a solution of the Euler
equation.

During the course we shall describe the main mathematisalteeon this conver-
gence problem, namely:

e 1. The convergence criteria of Kato [3];

e 2. The Prandtl approach for proving convergence, and thiepeskdness results
of Oleinik on the Prandtl model for the boundary layer [4];

¢ 3. The justification of the Prandtl approach in the analygitisg [5];
¢ 4. Instability problems in the Sobolev setting [1, 2].

Prerequisites.Acquaintance with some basic notions of mathematical fliedmanics
(local existence of strong solutions for Navier-Stokes Batér, or global existence of
weak solutions for Navier-Stokes) is recommended, but aoéssary.
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Inelastic Interaction of Solitons for the Quartic gkdV Equation

Yvan MARTEL (Université de Versailles-Saint Quentin)

The main objective of the course is to present recents workuan Martel and
Frank Merle on collision of two solitons for the generalizéafteweg-de Vries equa-
tions, and in particular the quartic KdV equation. It is a riotegrable equation and
no explicit multi-soliton solutions can be found in this eaglowever, we are able to
describe accuretely the interaction of two solitons in twsztinct situations: first, the
case where the size of one soliton is small with respect totther soliton, and second,
the case where the two solitons have almost the same size.

Prerequisites.Only basic PDE theory.
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From Isometric Embeddings to Turbulence

Laszld6 ZEKELYHIDI Jr. (Universitat Bonn)

The following dichotomy concerning isometric embeddin§she shere is well-
known: whereas the onig@? isometric embedding d8? into R3 is the standard em-
bedding modulo rigid motion, there exist ma@y isometric embeddings which can
"wrinkle” S? into arbitrarily small regions. The latter "flexibility”,iown as the Nash-
Kuiper theorem [8, 7], involves an iteration scheme calledvex integration which
turned out to have surprisingly wide applicability.

More generally, this type of flexibility appears in a varietydifferent geometric
contexts and is known as the "h-principle” [6]. But one hagligtinguish two con-
trasting cases: in problems which are formally highly ued®ined, such as isometric
embeddings into Euclidean space with high codimension, might expect to find
flexibility among smooth solutions. On the other hand in peois which are formally
determined, like embedding a surface ifit4 the flexibility can only be expected at
very low regularity. In these lectures | will focus on thistéa case and in particular
show how the same ideas can be applied to the Euler equatifingi mechanics.

After a discussion of the proof of the Nash-Kuiper theorem slvow that - at least
if we relaxC? to Lipschitz -, the ideas can be applied in a general framkewoginally
due to L. Tartar [12], which consists of a wave-plane analysihe phase space. We
then show that with this framework at hand, the celebratedlt® of Sché&er and
Shnirelman [10, 11] concerning the existence of weak smhstio the Euler equations
with compact support in space-time, can be recovered [4, 5].

Finally, we take another look at the Nash-Kuiper theorem analyse whether
the construction can be extended to produce more regulatiea [1, 2, 3]. The
motivation for this comes from Onsager’s theory of turbekef], which predicts the
existence of certain weak solutions of the Euler equations.

Prerequisites Familiarity with basic PDE theory, conservation laws anfliedential
geometry is assumed.
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