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1 Introduction
Given a topological space X, the configuration space of ordered k-tuples of points in X is defined by
Confy(X) = {(x1,+++,x0) € X* | xi # x; if i # j}.

With the notations

H;(X) = {(Xl, cx) e X | X = xj}
ax) = Hy,
1<i<j<k

we have
Confy(X) = X* = Ap(X).
The space Ax(X) is called the k-th discriminant or the fat diagonal of X. Being an open subspace of X*,

Conf(X) can be often deformed onto a much smaller subspace.

Example 1.1. Consider the case of X = S' and k = 2. Under the identification S' = [0, 11/9[0, 1],
Conf,(S ') is the complement of the diagonal in S' x S! as depicted below, in which four vertices and the
dotted line are removed.




Thus we have a homotopy equivalence

Confy(S") = S!.

Several attempts have been made to find a systematic way of constructing such a “core” in Conf;(X).
When X = R* = C, each H, ;(C) = {(zl, oo, zx) € CK | z= zj} is a hyperplane in CK. The collection

Ay = {H,; 1(®) | 1<i<j< k} is called the (complexified type A) braid arrangement of rank k — 1. In
general, given a real hyperplane arrangement A in a real vector space V, Salvetti [Sal87] constructed a cell
complex Sal(A) embedded in the complement

MARC)=VRC - UH®C
HeA

of the complexification as a deformation retract. The construction has been generalized to the complement

M(A®RY) = VOR" - U H®R"
HeA

of the n-dimensionalization. A sketch can be found in a paper [BZ92] by Bjorner and Ziegler. A more
detailed construction along the line of [Sal87] can be found in a paper [DCS00] by De Concini and Salvetti.
Their construction gives us a cellular model for Conf(R") = M(A;-; @ R").

On the other hand, Abrams proposed a cellular model for Conf(X) when X is a 1-dimensional finite
cell complex in his thesis [Abr00O]. The construction can be applied to any CW-complex without a change,
although the resulting model may not be homotopy equivalent to Conf(X). For a CW-complex X, he defined
a subcomplex

Cpoms () = U erX X ey

Ne;=0 if i+

of X* contained in Conf,(X). This subspace is not a deformation retract of Conf,(X) in general, but Abrams
found conditions under which C,f‘b”‘ms(X) is homotopy equivalent to Confy(X), when dim X = 1.
Let us summerize the pros and cons of these two models.

Salvetti Abrams
X VeR" < any CW-complex
Ar(X) (hyperplanes)®R" > fat diagonal
homotopy equivalence always > very limited cases
deformation retraction explicit > not constructed

As we can see from this table, Salvetti’s construction is far better than Abrams’. We should try to modify
Salvetti’s construction in such a way it works for any cell complexes.

2 The Salvetti Complex

Let us quickly recall Salvetti’s construction following Bjorner and Ziegler [BZ92]. Although Salvetti con-
structs a deformation retraction very explicitly in [Sal87], the construction is hard to understand. It’s better
to use a more sophisticated language of combinatorial algebraic topology as is done by Bjorner and Ziegler.



Consider a real hyperplane arrangement A = {H,, -, H;} in a real vector space V defined by affine

1-forms £y, - -+, € : V — R. For simplicity, let us assume that A is central, i.e. £y, - - -, { are linear. These
linear forms define a stratification of V ® R” as follows: Let A = {£|,--- ,{;} and consider the evalulation
map

eval : VXA — R.

It induces
eval@R" : (VOR") XA — R"

or
ad(eval ®R") : V®R" — Map(A,R").

Define a poset S, of 2n + 1 elements by
S,={0< xe; <--- < xe,}
and define the n-dimensional sign vector

sign, : R" — §,

by
sign(x,)e,, ifx, #0
sign(x,-1)e,—1, ifx, =0,x,-1 #0
sign, (xp, -+, x,) =
sign(xp)ey, ifx,=---=x=0,xy#0
0, ifx,=---=x=0,

where sign : R — {0, =1} is the standard sign function. Let
sa = (sign,) o ad(eval ®R") : VO R" — Map(4, S ).

Then we have a stratification
VeR" = U 53'(0).

pelm sy

Let F#(V®R") be the collection of s/}l(go) for all ¢ € Im s4. Let F7(A(AQR")) be the subset of F#(V®R")
consisting of all faces contained in
AA®RY) = U H®R"
HeA
Since we are assuming that (A is central, we have a homotopy equivalence

MAQIR) =VOR" = A(AQR") ~S(VOR") = SA(A®R"),
where S (—) denotes the unit sphere and
SAABRY) =S(VOR) NAA®R).

It turns out that each s;l(go) is a convex cone and defines a regular cell decomposition on the unit sphere
S(VeR"). Let Fa(S(V ®R") be the face poset of this regular cell decomposition and F #(S (A ® R")) be
the subposet consisting of those faces contained in S (A ® R"). Let

LOA) = FaS(VOR") — Fa(SA(AR®R") = Fa(VOR") — Fa(A(A®R")).



Definition 2.1. The n-th order Salvetti complex is the simplicial complex defined by

Sal”(A) = B(L"(A)),
where B(-) is the classifying space functor for small categories and posets are regarded as small categories'.

The following two facts guarantee that Sal™(A) can be embedded in M(AQR™) as a strong deformation
retract.

Proposition 2.2. Let Q be a subposet of P, then B(P — Q) can be embedded in BP — BQ as a strong
deformation retract.

Proof. As is observed by Quillen [Qui78], the classifying space functor on posets converts disjoint unions
into joins. Thus we have a homeomorphism

BP = B(P- Q)11 Q) = B(P - Q) * BO.

The general property of join tells us that B(P — Q) is a strong deformation retract of B(P — Q) * BQ — BQ =
BP — BQ. O

Proposition 2.3. For a regular CW-complex X, we have a homeomorphism BF (X) = X, where F(X) is the
face poset of X.

Proof. See Proposition 4.7.8 in [BLVS*99] and its proof. O

Corollary 2.4. Let A be a real central arrangement in V. The Sal™(A) can be embeddd in M(A & R") as
a strong deformation retract.

Proof. Tt suffices to show that Sal™ (A) can be embedded in S (VOR") — S A(AQR") as a strong deformation
retract. By the above Propositions,

S(VOR") —SA(A®R") = BF(S(VQR")) — BF(SA(A®R"))

contains
Sal”(A) = B(F(S(V®R") - F(SA(A®R"))

as a strong deformation retract. O

3 Cellular Stratified Spaces

The above discussion suggests that, when we want to study Conf;(X),
e we should subdivide X* into cells,

o the decomposition does not have to be a decomposition into a cell complex (i.e. open cells are al-
lowed),

e and well-known facts in combinatorial algebraic topology will tell us a small cell complex Cy(X)
contained in Confy(X) as a strong deformation retract.

'For a poset P, BP is called the order complex of P and is often denoted by A(P) by combinatorialists. Since we are topologists, we
follow Segal and Quillen.



Here we introduce a notion of totally normal cellular stratification and state a theorem which can be
regarded as a generalization of Proposition 2.2 and 2.3 combined.

Definition 3.1. Let X be a topological space. A cellular stratification on X is a filtration
XocXjc---CcX,cXyCc---CcX
satisfying the following conditions:
1. The filtration is complete, i.e. X = [J;, X, as a topological space equipped with the colimit topology.
2. Xo has the discrete topology.

3. Forn > 0, X,, — X,,-1 decomposes into a disjoint union

Xn _Xn—l = U (]

A€,

in such a way that

(a) for each e,, called an n-cell in X, there exists a subspace D, C D" with IntD"” C D, and a
continuous map

called the characteristic map of e,, whose restriction
Gl - IntD" — ey
is a homeomorphism, and
(b) if dime, = n, de, = e; — e, is contained in X,,_;.
We usually impose certain conditions on cellular stratified spaces.
Definition 3.2. Let X be a cellular stratified space.

e We say an n-cell e, is regular if its characteristic map is a homeomorphism onto e,. We say a cellular
stratification is regular if all cells are regular.

e An n-cell is called closed if its characteristic map is defined on the whole D". If all cells are closed, X
is called a cell complex.

e A subspace A of X is called a stratified subspace, if it is a union of cells in X under the induced
filtration from X.

o Let A be a stratified subspace of X. We say the pair (X, A) is relatively regular, if X — Y is regular.
e X is called strongly normal if, for each pair of cells e, and ¢, with ¢, C de,, there exists a map
bya:D,— D,
making the following diagram commutative

Pa
D, ——

Y

D,.
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e X is called totally normal if it is strongly normal and, for each n-cell e,, there exists a struture of
regular cell complex on S"~! containing dD, as a stratified subspace of S"~!.

The collection of all cells in a cellular stratified space forms a poset.

Definition 3.3. For a cellular stratification C on a space X, define
F(X,C) ={e|eisacellin C}.

Define a partial order on F(X, C) by _
e<e =ecCe.

This poset F(X, C) is called the face poset of C. When C is obvious from the context, we denote it by F(X).
Here is a main theorem of this talk.

Theorem 3.4. For a totally normal regular cellular stratification C on X, BF(X;C) can be embedded in X
as a deformation retract.

4 Applications

Our main theorem can be regarded as a generalization of Corollary 2.4 in the following sense.

Example 4.1. Let A be a real (not necessarily central) hyperplane arrangement in V. Then the stratification
described in §2 defines a totally normal regular cellular stratification of V ® R” which contains A(A ® R")
as a stratified subspace. Then L(A) = Fa(V ® R") — F4(A(A ® R")) is nothing but the face poset of
M(A @ R") and Theorem 3.4 says that Sal”(A) = BLM(A) can be embedded in M(A ® R") as a strong
deformation retract. O

Example 4.2. Let X be a CW-complex. The product cell decomposition on X* does not contain Ay(X) as a
subcomplex. We need to subdivide further to apply Theorem 3.4.

Consider the case X = S" = ¢° U ¢". Since we are interested in the complement of Ax(S"), all we need
are cells in (S™)* of the form

(en)k’ (en)f X 60 X (en)k—[—l.
Under the identification
(en)k ~ (Rn)k ~ Rk ®Rn’

the stratification by the braid arrangements A;_; and Ay_, define stratifications on (¢")* and (¢")*! which
contain the fat diagonals as stratified subspaces, respectively. The resulting cellular stratification on Conf(S")
is a totally normal regular stratification. By applying Theorem 3.4, we obtain a finite simplicial complex
BC(S™) of dimension (n — 1)(k — 1) + 1 embedded in Conf;(S") as a X;-equivariant strong deformation
retract.

According to a known computation of H.(Conf(S"); Z), for example in [FZ02], this dimension is opti-
mal. m|

Remark 4.3. The above model can be used to obtain a good upper bound of the symmetric topological
complexity of S”.

In general, the braid stratification may not give us a regular cellular stratification. By subdividing further,
we should be able to get a good cellular model. Assuming the existence of such a good model, it is easy to
count the dimension of the complex. Thus we have the following conjecture.
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Conjecture 4.4. Let X be a finite CW-complex of dimension n with a single 0-cell. If X has no cell e with
0 < dime < ¢, there exists a finite cell complex Ci.(X) of dimension (n — 1)k — (£ — 1) embedded in Conf;(X)
as a Xp-equivariant deformation retract.

5 Concluding Remarks

I'might have given an impression that Abrams’ model is bad. Let me conclude this talk by making a couple of
comments on Abrams’ model. One of the most significant properties is its connection to the Hom-complex.

Definition 5.1. Given a graph G, the sets of vertices and edges are denoted by V(G) and E(G), respectively.
For graphs G and H, define a cell complex Hom(G, H) by

Hom(G, H) = U 1—[ AT,

f€PG.11 veV(G)
where
Pon = {p: V(G) — 2" — {0} | (v,V) € E(G) = (w,w) € E(H) for any w € g(v), ' € ¢()}.
As is observed by Kozlov in [Koz08], for any finite simplicial complex X, we have
CPms(X) = Hom(Ky, Kjvex) N X¥,

where V(X) is the set of vertices in X. Although Abrams’ simply-minded construction fails to give us a
right model in many cases, we might be able to use Hom(—, —) or related constructions to obtain a good
cellular model for Conf;(K). In fact, the following striking result of C. Schultz tells us that Conf3(S") can
be constructed as a Hom-complex.

Theorem 5.2 (C. Schultz [Sch08]). We have a homeomorphism
Hom(Cs, K12) = Vir1.

Theorem 5.3 (Fadell [Fad62]). We have a fiber homotopy equivalence

Confy(R") —— Conf3(S") ——— §"

sl ——— Vip1g ———— 5",
We have the following combinatorial model for Fadell’s fibration.
Theorem 5.4. We have a quasifibration of the following form
Hom(K>, K1) — Hom(Cs, K,,2) — A",
Proof. Quillen’s Theorem B. m|

Remark 5.5. It is known that Hom(K5, K,+1) is the boundary of a convex polytope of dimension n. See a
paper [BKO6] by Babson and Kozlov.
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RATT—DWLEZZ FF DR EHIC DWW T

SRR TERET
Dep. of Mathematical Sciences, KAIST

20108 H 12 H

1 XC&IC

(TRIZS Rt & 13 2 RRk EORIRRYE (BEPER) & KRR LA SIS 208 Th B, HTE G/H OIFT
BB BEZEM L EN BRI S - & B EORFE G T 37 E LTSN D (BIES) AR TP T
W3 ([30) HEBI). RATE 1 OUEEHOLHIKE. FEEMORIHFEDRHN Y A LBS CENTES,
SRR E & D BB A 2RO T < . — IR E 2 RO A1 e T Bl U KR 2
CEWNTEZDT, MO Y—ORE S TR TN EENTV S,

AT, SREA OBHERIARAIT 1 OREEROBAI. AARMETEDE ST e VS C ki
R RIS B0 BHBEROBAIE RIS OV TIEBE LR [5, 17, 18] FEBME N,

2 BEAKXRE

XIWDIC, B 2E A% LTHALRSSEEREZEALLS (T OREBEAMGEOFIAL D THAMIE L
TEH5->TEMDE),
M 7% n JOTERAM G 2 080 TR ) —REE T 5, AN E S ¢ 1 G x M — M W _DORA:

(1) p(g, p(h,x)) = p(gh,); (2) p(e,z) =z

Zlilz R, Gld M ICERT 5. £k M & G-ERERDLWVS, TTTre M, g,h € G, eld GDHANIIL,
GERIZ D M % (M, G) EF-RIFIBART (M, G, o) 8%, M % G-BHHEL TR,
G-EHEOREMRERO & 51c LTE BNB, (M,G.0) & (M, G, o) B8 (G-) FERIETS 5 L 1.
SRNIEG £ M — M 2R ¢ G — & BEHEL. f(olg, 7)) = o' (b(g), f(z)) BiliT=RAES S, &L
&. 2 identity map THBES. (M,G) & (M',G) & (G-) FERMBTHZ LS. M2 M 2L,
Mz GEHTEN Ui M OFDES {0(g,2) | g€ Gt Z 2 ZlbBEL SV, G(z) £EHL, 2mz,ye M
KR LT, ZN5OWHEIERAT, G(z) =Gy) M G)NG(y) # 0 2Tz LTWa, Xo>T. M LOZtOMICH
HEHE—ICE 2 E S M THIERERZ AN HHHKRS, M 72 2 OFEMEBIGR TH - 7222/, b bl eikz g

* kuroki@kaist.ac.kr; http://mathsci.kaist.ac.kr/~31871/index.html
T The author was supported in part by Basic Science Research Program through the NRF of Korea funded by the Ministry
of Education, Science and Technology (2010-0001651) and the Fujyukai Foundation.
LERCHI D RORD . ZEEAIR C° THESRRAZ R RV E D EIGET 5,
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WizZEfZe ., PEZERE SV, M/G EELS M5 M/GNDERHZERDEK S I1CEL:

T M — M/G
w w (2.1)
C T T [z] I3WUE G(x) 22K,
Bz ZEN TG0 GDOERES {ge G| o(g,x) =2} Za DTAY bAE—BREHL V. G, EilT 5, G
MO RT NaD T, x Z@5H5E G(x) &7 Y P E—fHa I K > TRD X D ITHIT %!

Glz) £ GG, (2.2)

LELERTOTAY PO E—EDRENHEARE, DX D G, = {e}. B3 GIE MICEBRIAMFHLTWVWAEES, X
Too Meem Gy = {e} DEH*2. Gid M ICHRNICERT 5. £/l GERIEHRNTHZ L5 5.

I G, OHBHRKICH LT, G Ok L L CugfRzHWTHFZ ANS Z ENTE S, TOEFIC
Ko TN ZHEH (G,) D x OWEZEME L5, TOLE, FHERRAIITOWYLIEICIR S T LD
%o FHHEEL D EIOTOMCHLEZFREE L TS, ZNLANOHLE, DX D ERAIITIED EHUE TR WVINE,
ZBINENE &S (FHOEZHINFED G IRHEIC 2 ).

—o0 G-EREHE (M, G) & (N,G) 5. Hi LW G-ZHEk (M x N, G) DERAOMERIC & > THERTE 5,
(M x N,G) DEZEMZ M xg N £#H<, &LE, GH M E£FIE NICHHIEHLTWSERS5IE, M xg N
EERINC B, FIC. K-SRk (N, K) 18 LT, ROBD G-SHIKE SR8 1N 5

G Xk N,

CTT. K3 GOMERET GITEHEDNDS (WrtOFRICE>TO) MFAL TV, - T K-ZRAKEAER LT
(G, K) WHHEEHICZD., G xxg N E2HRARICES, £Too G xxg N O GAEHIE. G x N O G-FHFADLE
P BD (HNFEIC & B) G &> CHARSEND, FIC, Gxx N & G/K LON BT 7 AN—ET%, T7A
N—IROWENH BT EETH 5,

ROFWHPASA AER(ZERSAAERE) 3. a>/87 FEEORMOER 27T % _ETRANDDIERIC
BN EERTH %,

Theorem 2.1. fLED z € M O G(z) = G/K I LT, G-AZ%E (G-PMEHLTWS ) PRI X DMEE
L. X EROBSTEZhRIA L G-RIZRIMICES -
X=dG XK .Dgc7

{H LA D, (X5i& dim M — dim G(z) = ky) EAD KAERIZ, ETRAOSIEER 0 : K — O(D,) ~ O(ky)
ZELUTIERIL T 5.

Theorem 2.1 1CH2EBl 0 2 v DASAARMEMS, £/, HiLts X 2 G(z) © () BIREFE LTS, BE
RIEEE S5 58 X OWEEDS int(X) 252 %,
3 (M,G) hERT 1 OBEZFDZEDAER

n JTCE R M OE 2K N D n — dim N = k Z{iiiz Sl N Z2RRTT k DBRSHEL S5, AFETIE
RATL 1 DWUEZEFFD G-ZHAADRIEIC DOV TS %,

2 DAMHERDE S ICEVNRB T EETES, T0(g) = p(g,) THXBNEH © : G — Diff (M) HBEHC 5 28,

2
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31 (M,G) DRRIT 0 DHEZFDOHZE

AREDFIC ADHICT, n RTZhklk M ED GEHIDRRIT 0 DYLEZFRDHZFICDOVTEXTHEL S, DX
D, RDKI7% x € M MMFAET % ERET %:

dim G(z) = n.

GHAVIRY P ERELTOBOT. M EAVST R EED. M = G(z) I B3 LRHh 5™, (22) XV H3
BEBE H MEELT M S G/H L1552 ERERS (COES 5 M O%E (G 0O) FEEEE S0, G2 M e
WBMIIERT L 55), DD, T28Y FMESEHE M EORKIT0 O G-E (M, G) Z AZHIC & - C
SET BB, TG OMRE BT B L SVHABT ENTES, 20K HIEE. SR LT
VB U —BEROREEA NG T LIC - TR T LA TE S ([30] SEBI).

PRI, LR OB EABEIC /5 3 DEARKT | OBGHE OB AN 5 THS™, 3.2 5. RATT L OHH
EHOLREOMEEEZ TV 5,

3.2 (M,G) DRRIIT 1 DHEZERDIHE (Q # [0,1] DIFE)

n ZotE ik M LD GEIIDRIUL 1 OfUEZ R DL EZE X 5. Tabb, RDKXS7% v € M WMFET %
GaEERS:

dimG(z) =n—1.

COES5% M LD GAEHORZRRT 1 OREZRF > TEAS/ERL LLRIRFEM 1 DERAZRDLE S, £
oo GV P THZDT, EWEDOIITTARITT L, DED n—1, IKEZT N5,

[FIZZRIHELZ AN B Te e, £ EPUEZEMICEH LTH K S, RIUT 1 OWLEZRDSE. HUEZEM Q = M/G
IS 1 oD (ST & D) 2RISR B HEN IS, 505 Q BROVITNMNCES:

(1) Q@ =R, B (2) Q =RY, FHEk (3) Q =S', MH; (4) @ =[0,1], KXIH.

32 # T, RAID3IDDEFE (Q =R, RY, SHIZDWVT M O G-AZEFRMHENED KX S1CHZDNEZ THb,

321 Q=RODFE

2T A ZARBE TEWEOEIEHICBWTHICHHIC AR 2] &5 HEZHWS &, HuEZEfoONSZ (2.1) D
TICE > THIRRT &, FHUEICEZ EE S TN 5,

COFFERATAZEHZHNT Q = R OYGIZEKRNIC, H2EHIE K C G BMAEL T, XD KD KE
DIETEITFZ T Ehbhb:

G
M= G/K xR, (3.1)

CTT. Gl G/K-RTACENBIFA L, RICHFICIENT 5, COLE, ik G/K OFOMESHT LAb
BB,

3T, G IET Y MRS BIBA . COTERIEK LAV ([39] HE2BI). G MUEECRIUT 0 OBLEZEFOE A, BRI
BT, toric variety & > & —fIWIC spherical variety & 5 5 HEDWNWT TABEZLENTNS ([6] F2BR),
M ZORN D, EEENE ) —BERO LS T LB TES,
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/G G/K

/G

M1 Q=RDAA—.

PEED, Q=R OHEE., 3.1 EORXIT 0 DPEZFDEEZEA ST & EARAAMNICED SR,

322 Q=R"DEs

I, ATA AKBDIEHADE A, D% G(z) = G/K MR EEGENHINGEIC /R 2555 EZ THD, TO
Ba. Gz) OFIREEE X %G xg D FDfye X % [g,2] € G xg D & (AT ZEHOFMZEAWT) [H—#
T2, RDTDHRITIT %,

o 21D DE 0 D5bIE. y OWEE G/K ZTDEDIES:
o z € DAEUTARIFIUE, y OB EHE G/H 1c5% (HL. H C K).

COHFIE 321 BTN RFREZHOD &, Q =R OELEIEEMANIC, HAMEIH K C G MFELT. X
DES% G/K EOXNT FIVROETEHIT 5 HNDNS:

G

K
TTT. VERIT K OFIEEBIZAE T, ZOWHEZEEMNA RT ICABZEDTH B, WO ZE L,V EDO K-{EHD
K
FHHE LT, K/H= SV ABNSEDICR%, AL, S (0— 1) Kt T £ = n — dim G/K > 1
Ziilzd, COEE, G/K FFEIE (0 > 1 O5H) MISGE (0 =1 O5HE) 1Kk, G/H EEHEICE S,

ra

/@ G/H

M/G ®

B2 Q=R*OfA—.

EED, Q=R* DEFHE. GOWHBONHC K TK/H=S"'\({=n—dimG —dimK) %% &D%H
DIFB T LITIEEND, —ROXTTOERMENCHERINIC (FIZIC) (EIS 237 b U —REO 8L, 1950 44K
¥ TIC Borel[4], Montgomery-Samelson[31], Poncet[35] IC &K > THRENTWVAHDT ([16] LBM). TOHEBIEZ
NEZHAVZ T ETHENEENS,

323 Q=S'Digs
R Q = S DFFICDOVTEATHD, TOHAF. 3.2.1 ETAXNZHEZHNNE, 2TOPEED FHE
G/K iz eMTQInn5b, B, SLIZZDOD 1 XthER U, V ZIRD GO R T LICKDIES T &

4
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TEREOT, ZNSOBEAICHLT (U)X G/K xU, Y (V) 2 G/K xV £555T L &9h b, &oT
Q=S'OBEF. T 7 AN—DEHEG/K 7% ST FOT 7 AN—HIZixD, DED, (2.1) DR LT, X
DT 7 AT L—aVMiEd %:

G/K — M = S'. (3.3)

&

/G G/K

K3 Q=S"DAA=Y

T 7 A= (3.3) OREREETND 20T, M LD GAERIZBHEZND SHKT 2 FEEATHES, OF
D, M= U)Ur (V) RKC 71 U) & 7 (V) D GAFRMMLET 2DIRVONEEZ THS, TOXS %
HEENMEET 2720IE. UNV FOT 74 183— G/K DD &bEES 7 G/K — G/K H G-RZETRIFE
BERNT EDN D, Fiee ZOXS% 7 1d. ROBEDTEE HEE BT LSRN TV S:

7€ No(K)/K, (3.4)

HL. No(K) = {g € G | gKg~! = K} & K OEBLEE, C T, G-AZAMEEE r : G/K — G/K(e
N(K)/K) & G/K ~DENBOBMIEL H3 T L THEHTE S,

LLEED. Q= S' OHAE. ST FORERD No(K)/K 2155 G/K-KOMEICREE NS, X TH
ML E NI T 7 A N—HOSBUC BT BEERAMEZ B ([30, 36) HEBI, X0FLIE (1] LBH).

33 (M,G) BRR5T 1 DMEZFDOHE (Q = [0,1] DIFR)

Q =R, RT, S' OHEHIHBNRIEADODER ST LORRZNY FIVOSFICRE TE M, Q = [0,1] D
BRZOII GBI ET ST LIFTERY, KXo T, TOHEDRIIT 1 OWLEZ R DR EH O TIEAER
BB THS RIS, mBEMTATHS, LMLEND, Q = [0,1] DA, mEA < ERN7EF7Z S8
RUELTINZDT, H<ALBEXETIFRRY—DAELTEXIEENTDOANLBICK > THEINTWS
(11, 3, 5, 11, 13, 19, 20, 21, 23, 24, 34, 37, 40] %A'H 2, 3.3 ETIE. BRI FORIKTT 1 OIERIZ T Wang[40]
DOFERZ U E Uz Uchida[37) D72 %/71% (T T Tl Wang-Uchida DAEL MR 2, BARNZZHRIAD 7 T X
(Hattori-Masuda ® ;b —Z AZEk1A [15, 26]) ZHNAAT LK S,

331 Q=10,1 DiHFE

EFFTYIDIC. Q = [0,1] DREDO— R EEZ EHICATA K S,

Q =[0,1] DHFAE. Q = Rt DFEZE DRV AbELFBICKS, DED, 7 1(0) & 7 1(1) KBNZWHED
FEEEMINHGEIC R D . I FHEICR S T e B, FiEE G/K, ThDSNOiEs G/Ky, G/K,y &
EEG/K; OFREREE X; LECTS (i=1,2)0 ATAREHND X; 2 G xg, DY Bhb, M40X55A
A—=VIlIn %,
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a/K 6/K,
/G

G/K

M/G L °

B4 Q=101 DA A=

332 b—FRZHE

3.3.2 AT, Hattori-Masuda[l5] IC K> TEFRKE NIz, F—FT ALK LTINS ZEIAD 7 S AZEAL K
5 ([26) &B). ZTL T, T DI I AN Q =[0,1] DFELMFET 2O EEZ %,

(M,T) 7% 2n ZItDMEDF 5NI 287 MEREZ A M 1O n JotD F—F X TAEH™® L9 %, (M, T)
MRDZDDEM 72Tz RIS b—F AZHE L 5 57

(1) T OYERIEEEI D S TH %; (2) T HEIIC & 2 RBEs MT DT,

CTTT. FERESL I MY ={r e M | T(z) = 2} 755 TIERATED RN M OROESDHTH S, EEND.
MT FOOEERERICED2HEN N5,
RDOZD (S, T™) & (CP(n), T") 1. &5 L EHAMNE b —F AZHAEDHITH %,

Bl 2n ZoLOEKHE DR (21, .., 20,7) €SP CCPBRAD (ty,...,t,) € T EAZERD X S ICEHKT %:
(21, «ovy Zn,T) = (t121, -y tnzn,T).

CTDOEE, REFUEIILM (0,...,0,+1) L@ (0,...,0,-1) DB XS E 2 /4,
B2 HEFE 0 RCEBGEER LD (200 -+ 1 2,] € CP(n) = C"L — {0} /C* \D (tq,...,t,) € T" {EAZEX
DEITEHET B:

[20:21: - rzp) = [20 1 t121 oo Enzn).

CDEE, PuaZEMIE n ZoTHkERXT T ENTE, TOHFDAIRISHIST Do DED n+ 1 HOA
Wz,

OO0 T (FHIZZREN, C D Un) (B (£721& C" = R2 &5z LIBED SO(2n) FFH) & Crtl
D PU(n + 1) (ERID BABEN TV T EICHET %, T PUM+1) = SUMm+1)/CHHL, C &
SU(n+1) OFD). £, ThLOERIEZNZN, RRTT 1 OUGEE O, HERIERIC A S T & &1
LTHT S, ko TROMESERICEZ BN S:

5 JItD b —F A LEMERE ST O n HOBROF, DEO n XITOIALRY FEAHRD —HOT L THS,

*6 AR (15, 26] DEFETIE, HUCEEEANAZ DI AREL 5 5 723 T L TRAIE 2 D) F—F AL A LDaE ) Db T h—
FAZERIR LIS (TDXSITHR ZERADME &5EDH T2 E D% omniorientation LFF5), Omniorientation QD J5i& M ED
T-A"487% stable almost complex structure DD FICBIRL TL %0 ARTIE b —F AZEEK EADR#537FH (omniorientation
ZIRIFS 2% LIRS HWER) ICBlkAYSD 2 D T omniorientaion (FRE L TULVEW,
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Problem 1. (M,T,¢) 72 b—J AZKIA, G2 T ZMRK+—F A& UTHRDIFA#A a8 MU —EEL T 5,
b= ALK LD T-ED G-EH (M, G, @) MERT 5 L%, DXD @lrm = ¢ Ziiilicd & 5 7% G-EHD
S5 L9 %, L LY GAEHDRIIT 1 DWEZR DG M I ED K S 7% G-ZRIKICTZ 5007

3.3.3 Wang-Uchida DA3&

Problem 1 DX SIAET B &, F—F AZERIKDERNS M/G = [0,1] THB T L0 h %, Problem 1 %
Wang-Uchida O ETHRNTHAI S, T TEEHODIC M ZHEETHD G/K, & G/Ky B b—F &
ZHATH2Z LIGEL (3.3.1 BZ2ZM). 7Y F A4 YDORENTT % (FELLIE (23] 25]),

STEP 1. Wang-Uchida DAHECHES &, BHIC G/K, & G/Ky ZRHB T LICHE S, M EHEES h—F X
IAETHZET DD, G/K, & G/Ky 8RR F—F AZEME, DFED K L Ko 8 T 2K F—F XL LT
RO K S HHHZEM (T DK S B2 2 R—EEOFEERM ETS) ICEE T N5, b—T AN EHEZE
MICE2 2R LKE 22 5, ROFERPDMN ST

Lemma 3.1. EOXSIETHE, G & Ki(i =1,2) IZRDED LD
G~ 15 PUW; +1) x [T _y SO@my, +1) x G, K; = [_; P(U(t;) x U(1)) x [Th_; SO2ma) x G},
HU, ~ TU—BDAME S5 8k DD G/K; =[]}, CP({;) x [T_; S

STEP 2. REEIRLEHE X; 2 G X, DY ORTA AL 0,(i = 1,2) DFtREICKR S, THHIC, Lemma 3.1
IKH B G B G DMK —FZADRTTH n THBT L (G, K) & (G, Ky) ZRINBZ T Lok > T, BlAMIC
RDZTENTED, o T 3228 (Q =RT OBH) DHILET, X; DATAREB o; L& BICEHEDT A
VERE—EORE K O D0OWEEH/ 1, K - K; ZINd TN TE S,

STEP 3. XiC. 3.3.1 BTNz Q = [0,1] DHEEDOHEN S, X, & Xy OBEAZIEL GDET G-2HAZE
RINCHEIN S %0 Ko T. RO ADOEEBREERT Z0EN D%, X; DEHD 0X,; 2 G/K Wih 2D TED GD
WEMRE T G/K S G/K L75%, TOLE, 3235 (Q =5 DBA) LS T € Ng(K)/K 2905, &5
T No(K)/K Z#HETIUIED ADEGBBEDL 5VHZDD N %,

STEP 4. STEP 2 TH (X1, Xo) B E Nz, STEP 3 TZNHDRD GbEE 7 oI NZ, X1, Xo
Z T TIRODADETTELLZHRERE X1 U, Xo EET I, WL, ZDORD ADLEEHRTIES LZ AN, 1D
[AZ NS IR B e ERT 20080 H 5, ROMEEES ([37) Fx2BIE),

Lemma 3.2 (Uchida’s criterion). X; U, Xo & X1 Uy Xo ZBLFOWT N R8I FZ [ -
(1) 7 & 7/ & G-diffeotopic; (2) 71" W'=Y X; EORZFRMHEGHENIEET 5.
LUEX O ROEHENET 5,

Theorem 3.3 ([23]). F—FAZEREK (M, T) WRIOT 1 OWHEZRED (M, G) N\ (LR LTARED T T) Lk T %
L9 ERD G-ZHRAE L RIZARIC % -

(ngl S % N, T, SO2my +1) x H)

*7 2] & toric variety DMUBIMICHESINZMEM Z R DL A I N TV 5,

7



20

CTT (N, H) EFROWTNDZHTd

| N | H |
( ° sﬂﬁl) x7a S(Ck & R) © PU(t;+1) x U(k)
( . s’”ﬁl) xre P(C5 @ C*) | TT%_, PU(l; + 1) x P(U (k1) x U(ks))
[1;_, CP(4) x S(R** & R) [15_, PU(; + 1) x SO(2k)

TTT. P(CE @ CP) & dime = ky + ko — 1 OBEREETZER, S(V o W) C Vo W IR,

Theorem 3.3 D LS5 DD N ZFHAL K S, N & EF T = H?Zl St 7z R O E R H?Zl S26+L FICi T
TEIMEREE, 77 A= p: T* — ST 153 KBT Ch ~ CF, Ch ~ C LIcZAH T — S TIERE B
ERZEMZE ST 6 Do DED . N IIERFEZEMOER [[;_, CP(¢;) LOWRE AL FIVE U dBkmN >
RILERS TN TES,

KO —ROEE (MEDFZIRE LR b —F AZRADEE) ICDWTIE [24) 28, £z, RAoC 1 OiiEx
FFORHMEH O EICIE, £k Wang-Uchida OFTELSNC, Alekseevskii-Alekseevskii D751 [1] £H %,

4 TEO—4

Theorem 3.3 H SRS B WL EE W DOBRTAFEZEZDDICL LS,

41 . SRT 1 DHEEEDETBDH?

Theorem 3.3 THIzX ST, RIUL 1 DHLHIEZTNEEAPEBRATWVE S A2 GBI T, WIS
TEBHTENZBV, ZTT T, RAUT 1 DYUEZFFDOZHIAZ I HT 2 T EDFERDO—DI, IRAHRREICN T % it
Bty ) EEA %, HIRIE. ROMEIE [29] TIRIEEN, XTERMRTH S,

Problem 2 (cohomological rigidity problem). DD h—1 v 7 ZRAD IR EO Y —EMHFARG S IEZN51E
[FHTHA 5?7

RV 2 R (ERIE 9] HEBH) E. b5 ALHEOTTE L TEREDOVWNY SR TH S, [29] T
LORERE > L — OB IT-EHORRHZEBMARE F E—RLTH5 &5 7% h—T ZLRK] IEOWT B
BRI LTV A, Theorem 3.3 THRIL /4 HZ . AARMTIAE S GAEAEE AL, FHHTHET S
L. COBBIH U THEENASEZ #5250 LATES (1] #B1),

42 RRIT L DBEICOWNT

—MDRIIT k OYIEZFFOHAE. <3 [16] TEA LN, k=2 DEAEIER [32, 33, 38] HFTEHEINTWV 5,
LA LENS k> 2 DA, BIZR [33] TRERNESEZ VUL 1S DO ORER T 4 oTD b —F ALk
RIGFEAR R b —F AZHkk (CP(2) & Hirzebruch i) 75 ORZHEMEMTHIT S L5 KSRl %0.
k=10ORDX S KR TONIIIZ L AEARIREICR S, o T, TOXI BEAEERERERORLE (A%
IRERYF) ZEEL, TNEZHOTHBETERONERA ST L LRD, 4.2 ETIEREDFIEDOM 2 fHHIC
IRANRTHTZ,
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421 FEZEEDLSBR LT G-ZRMEZHART S

BEZE ORI k R EORITC k DEHEA O LITHE LK S, T TR, 3.2.3 8 3.3 T L7z
KO 7%, WUEZER (ICRHEH O RZIUTZYD) 25 G-2RAEZRR L. Th2eifsd 5 &5 5 HiEMEEEN
TW3 ([1, 8,9, 13, 14, 42] HEBIES),

FRC b=V w 78z 8# & L7z Davis-Januszkiewicz[9] OWZEC K D MHHINICTER LIz b—U v 7 ZEkik L
HuEZE R OMA G DG & ORI IICN DL T EMWREN, BITETE M=y 7 FRaYd—E 355708 E
RO BAICIIZRENT WS, HTERZFRMBREOSEICBIL TE, T9] THE N G-ZRAEFRIZ IR ERn Y —
ZRWTREICHFHTES] EVDH > TS (Masuda OEH [27], [25] &E),

422 b—=3ZZ{ERDIIRIERICONT

Theorem 3.3 % [22, 23, 24] D [+ —5 ZAZEAKD T-1EHD G-TEHIANDHLRDOWIFL) (ZAEE(TD Demazure O
W72 [10) O M RO Y—fREZEES TN TEE, —RICHREA O EHEIX. RAIT 1 DHESTRIC k(> 2)
DFENENS, I TIE, MROY—D7h 5 Masuda[28] B b —F ZAZHEAKDIL— FRE S 5 FERE0,
Wiemeler[41] A% admissible 5-tuple & &9 ANERZEA LT, IREHZDEHT 2 EMHAENT NS, T15
DOMFEIC KB &, F—F AZEMAK LOILIEIER 1Z Theorem 3.3 THTE/2& 57 SU, SO # (A, B, D) D& D
BRSNS T Ehnh % (toric variety DEFETE A BIOAICTTER).

F—F AZHAEX D EEBIARGE F—F AEHZRD I I AL LT GKM 2L 55 DM H 5 ([12) F=
Z), GKM ZHRARICII AP OFEZEM G/H BDETEaENEDT. COLEOINEEFAZE AN A~G 2
TORNBND EAGIIUETE B, GKM ZhA FOIEIEHZYEd % DIdSBROMED—DTH %,
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A SURVEY OF HALPERIN-CARLSSON CONJECTURE

LIYU

1. SOME HISTORY OF HALPERIN-CARLSSON CONJECTURE
Let G be a topological group and let X be a Hausdorff topological space.

Definition 1.1. A G-action on X is a continuous map ¢ : G x X — X which
satisfies:

(1) ¢(g,0(h,x)) = ¢(gh,x) for any g,h € G and = € X.
(2) ¢(e,x) = a for any = € X, where e is the identity of G.

ForVz € X, G, :={g € G| ¢(g,x) = x} is called the isotropy subgroup of G at
x, and the set G-z = {¢(g,x) |V g € G} is called the orbit of x. For convenience,
one often replaces ¢(g,z) by g -z or g(x).

A basic philosophy in theory of transformation group is that a group action on
a space can often reveal some interesting information of both the space and the
group itself. The following theorem proved by P. A. Smith in 1944 is one of the
earliest practices of this philosophy.

Theorem 1.2 (Smith [1]). If a finite group G acts freely on a sphere, then any
abelian subgroup of G must be cyclic.

In 1957, Milnor [2] found another necessary condition for a finite group G to
act freely on a sphere, which is: if G acts freely on a sphere, then every order 2
element in G must be in the center of G. Moreover, in the study of the spherical
space forms in 1970s, people found that the two conditions in Smith’s and Milnor’s
theorems are actually sufficient to guarantee the existence of a free G action on
some sphere. The following theorem is due to Madsen, Thomas and Wall [3].

Theorem 1.3 (Madsen, Thomas and Wall [3]). A finite group G can act freely
on some sphere S™ if and only if all of its abelian subgroups are cyclic and every
order 2 element of G is in the center of G.
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2 LIYU

Let Z, (p is a prime) denote the quotient group Z/pZ. The Smith’s theorem
just says that if (Z,)" can act freely on some sphere S”, it is necessary that r < 1.
Then it is natural to conjecture the following on any (Zy)"-action on a product
of spheres.

Conjecture 1: If (Z,)" (p is a prime) acts freely on a product of spheres S™ x
<o x S™ then r < k.

This conjecture was confirmed to be true for S™ x S™ by Cornner [6] and for
any S™ x S™ by Heller [8]. Later all the k& < 3 cases are confirmed by Carlsson
in [16]. And a general result for an arbitrary product of equi-dimensional spheres
was obtained by Adem and Browder in [10].

Theorem 1.4 (Adem and Browder [10]). If (Z,)" acts freely on a finite CW-
complex X which is homotopy equivalent to (S™)k, then r < k for p an odd
prime. If p = 2, this holds for n #1,3,7.

Later, the above result was extended to the case p = 2 and n = 1 by Yalcin [13].
In addition, the Conjecture 1 was completely settled by Carlsson [14] and [15]
with an addition assumption that the induced action of (Z,)" on the integral
homology groups of S™ x --- x S™ is trivial. The most recent progress for this
conjecture is made by Hanke in [17].

Theorem 1.5 (Hanke [17]). If (Z,)" acts freely on X = S™ x --- x S™ and p >
3-dim(X), then we must have r < ko where kg is the number of odd dimensional
spheres in the product.

But the other cases for Conjecture 1 remain intriguingly open. The main
tools used to study this conjecture in the papers mentioned above come from
the theory of spectral sequence, group cohomology, rational homotopy theory
and commutative algebras. More information of the Conjecture 1 can be found
in [12] and [18].

Moreover, Halperin and Carlsson formulated the following conjecture in the
middle of 1980s, which significantly generalizes Conjecture 1.

Halperin-Carlsson Conjecture:

(1) If (Z,)" (p is a prime) acts freely on a finite CW-complex X, then we
have: > dimy, H (X, Z,) > 2";

(2) If (S1)" acts almost freely on a finite CW-complex X, then we have
Soog dimg H (X, Q) > 2"

Here, an (S!)" action on X is called almost free if the isotropy subgroup of any
point = € X is finite. The above conjecture was proposed by S. Halperin in [4]
for the torus case, and by G. Carlsson in [5] for the Z,-torus case. It is also called
toral rank conjecture in some papers.
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Aside from those confirmed cases in Conjecture 1, Halperin-Carlsson conjecture
has been proved for general CW-complexes in [19] for < 3 in the torus and Zo-
torus cases and r < 2 in the odd Z,-torus case. But the general cases are still
wide open. In the recent years, more and more new evidences were found to
support the Halperin-Carlsson conjecture. In the next section, we will list some
very recent results of this kind.

2. SOME RECENT RESULTS
2.1. Canonical torus actions on moment-angle complexes.

Definition 2.1. An (abstract) simplicial complex on a set [m] = {1,...,m} is a
collection K of subsets of [m] such that for each o € K, all subsets of ¢ (including
@) also belong to K. Any o € K is called an (abstract) simplex of K.

Definition 2.2. Suppose K is a simiplicial complex on [m]. Let (X, A) be a a
pair of CW-complex with A C X. For any subset o of [m/|, define

(X, A)7 ={(x1,- ,xm) € X" |x; € Afor i ¢ o}

The K-power of the pair (X, A) is (X, A)X := J, (X, A)?. By this notation,
the moment-angle compler Zyx = (D* SY)X and real moment-angle complex
RZj := (D', 9K,

In 2009, Cao and Lii [20] and Ustinovsky [21] independently proved the follow-
ing result (via different methods).

Theorem 2.3 (Cao and Lii [20] and Ustinovsky [21]). If K is an (n — 1)-
dimensional simplicial complez on [m]. Then Y, dimg H(RZx, Q) > 2™ and
> dimg HY(Zg, Q) > 2m™™,

Note that the standard actions of (Z3)™ on (D')™ or (S*)™ on (D?*)™ descent
to a canonical (Z;)™-action on RZx or a canonical (S')™-action on Zp. Tt is
not hard to see that if a subgroup H C (Zy)™ (or H C (S')™) acts freely on
RZ (or almost freely on Zy) through the canonical action, we should have
rank(H) < m —n. So Theorem 2.3 confirms the Halperin-Carlsson conjecture
for those canonical actions of the subtori of (Zy)™ and (S')™ on RZx and Zx
respectively.

2.2. Free (Zs)"-actions whose orbit spaces are small covers.

Suppose (Zy)" acts freely on a closed n-manifold M"™. Let Q™ = M"/(Zs)"
be the orbit space. Let m : M™ — Q" be the orbit map. We can think of M"
either as a principal (Z,)"-bundle over Q™ or as a regular covering over Q" with
deck transformation group (Z.)". It is shown in [24] that 7 determines a (Z2)"-
valued coloring A, on a nice manifold with corners V" (called a Zy-core of Q™),
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and up to equivariant homeomorphism, we can recover M" by a standard glue-
back construction from V™ and A;. Using this language, the following theorem is
proved in [25].

Theorem 2.4 (Yu [25]). If (Z2)" acts freely on a closed n-manifold M™ whose
orbit space 1s homeomorphic to a small cover, then we must have:

> dimg, H'(M", Zy) > 2" (1)

Recall that an n-dimensional small cover is a closed n-manifold with a locally
standard (Zs)™-action whose orbit space can be identified with an n-dimensional
simple polytope (see [22]). An n-dimensional polytope P™ is simple means that
any vertex of P" is the intersection of exactly n facets of P". Small covers are
introduced in [22] as a topological analogue of non-singular toric variety in the
category of real manifolds with Zs-torus actions. It was shown in [22] that many
topological invariants of a small cover can be computed from the combinatorial
data of the underlying simple polytope.

2.3. Torus actions on real Bott manifolds.

A manifold M is called a real Bott manifold if there is a sequence of RP!-

1
bundles M = M, i M, _1 RP, ... B M, i My = {a point} such that

for each 1 < j < n, M; — M;_; is the projective bundle of the Whitney sum
of a real line bundle L;_; and the trivial real line bundle over M;_;. Note that
M is a small cover and it is the quotient space of some free (Zy)"-action on the
n-dimensional torus 7.

Theorem 2.5 (Choi, Masuda and Oum [26]). If a real Bott manifold M admits
an effective action of (S1)", then Y, dimg H*(M;Q) > 2".

Here, any effective action of (S')" on M actually must be almost free. The proof
of this theorem uses the fact that real Bott manifolds are aspherical manifolds
and some geometric results from [7] and [27].

3. ALGEBRAIC ANALOGUE OF HALPERIN-CARLSSON CONJECTURE

There is a purely algebraic analogue of the Halperin-Carlsson conjecture, which
is proposed in [5] in the context of commutative algebras. Let G = (Z5)", and
let Zy|G| be the group ring of G over Zy. We think of Z,[G] as a graded ring by
assigning the grading 0 to all its elements.

Definition 3.1. Let R = @, R; be a graded ring. A differential graded R-module
is a graded R-module M = €, M; with a graded R-module homomorphism
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d: M — M of degree —1 so that d o d = 0. The homology group H,(M,d) of M
is defined in the usual way.

The following conjecture is proposed by Carlsson in [5].

Conjecture 2: If M is a finitely generated free Zy|G]-module where G' = (Z,)",
then ) . dimy, H;(M,d) > 2.

This conjecture was confirmed by Carlsson in [16] for < 3. More discussions
along this line can be found in [28]. Notice that Conjecture 2 implies the Halperin-
Carlsson conjecture in the (Zs)"-action case. Indeed, if (Zy)" acts on a finite CW-
complex X freely, by subdividing the cells of X if necessary, we can assume that
the cellular chain complex C.(X,Zs) is a finitely generated free Zs[G]-module,
and the cellular boundary map on C, (X, Zs) makes it a differential graded Z,|G|-
module whose homology is just the Zs-homology of X.

In addition, there is another conjecture in homological algebra, called Horrock’s
conjecture, which is analogous to Conjecture 2.

Horrock’s conjecture: Let M be an Artinian graded module over the poly-
nomial ring R = F[xy,- -+ ,z,], where F is a field. Then

Z dimg Tor}* (M, F) > 2".

Recall that an R-module M is called Artinian if every ascending chain of R-
submodules of M eventually terminates. Horrock’s conjecture is known to be
related to the study of algebraic vector bundles over projective spaces (see [29]
for more information).
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Abstract

In 1969, J. Wood showed that any plane field on a closed 3-manifold can be de-
formed into the tangent plane field to a foliation. In these notes, we outline the proof
of a one-parameter version of this statement: if two C*> foliations have homotopic
tangent plane fields, they can be connected by a path of C! foliations. Under some
restrictions on the holonomy of the initial foliations, one can actually remain in the
C® class. The full proof is to appear in an upcoming paper [Ey3] and is part of the
author’s PhD dissertation [Ey1].

Introduction

A codimension one foliation on a closed 3-manifold M is a partition of M into connected
subsets, called the leqves, such that every point of M has a neighbourhood U with coor-
dinates (z,y, z): U — R? in which every connected component of F N U, for every leaf F,
is defined by z = constant. In other words, a foliation is a partition of M into immersed
surfaces which locally pile up nicely like a family of parallel affine planes. Until further
notice, everything — manifolds, coordinates, etc. — is assumed C*°.

An important example is the Reeb foliation on the solid torus, which can be visualized
by rotating the leftmost picture on Fig. 1 around a vertical axis and quotienting out by
the unit vertical translation. It has only one compact leaf, the boundary torus, on which
all the other leaves accumulate. When this foliation appears in a larger foliated manifold,

it is called a Reeb component.

Figure 1: Reeb foliation of the solid torus




Whether any closed 3-manifold admits a codimension one foliation is not a priori ob-
vious. It turns out however that they all do, according to Lickorish [Li] and Novikov and
Zieschang [No] (independently). The next natural step is to try and classify these objects:
how many “different” foliations are there on a given manifold M?

One (rather unexplored) way of tackling this question is to put a nice topology on the
set F(M) of foliations on M and to try and describe the topological properties of this
space. To that end, a key observation is that foliations can be viewed as “a special kind
of plane fields”. Indeed, each leaf has, at each point, a tangent plane, and the collection
of those planes defines the so-called tangent plane field to the foliation, which determines
the foliation completely. Thus, one can consider a foliation and its tangent plane field to
be the same object, and endow F (M) with a natural topology, inherited from the space

P(M) of plane fields on M.
%//

Figure 2: Nonintegrable plane field on R3

Note that not every plane field is tangent to a foliation. The ones that are are called
integrable. The others actually form a dense open subset of P(M). The topology of the
closed subset F (M) is therefore likely to be quite complicated. As a matter of fact, little
is known about this topology, apart from the following fundamental theorem, proved first
by J. Wood [Wol, and then by W. Thurston [Th2], whose original techniques underlie the
work presented in these notes.

Theorem (Wood [Wo)). Every plane field on a closed 3-manifold M is homotopic to an
integrable plane field.

In other words, every connected component of P(M) contains at least one component
of F(M): the map moF(M) — myP(M) induced by the inclusion F(M) < P(M) is
surjective. It is tempting to ask whether this inclusion is actually a homotopy equivalence
— or equivalently if foliations satisfy Gromov’s h-principle — all the more as this kind of
result exists in the close field of 3-dimensional contact geometry: Y. Eliashberg [El] has
generalized Thurston’s ideas [Th2] to prove a similar equivalence for overtwisted contact
structures (another subspace of P(M)).

In these notes, we focus on the injectivity of the map between my’s, though similar
arguments give the surjectivity of the maps between m’s, k > 1 (see [Ey3]). The concrete
question we have to tackle is:

If two foliations have homotopic tangent plane fields, are they connected by a path of
foliations?

The aim of these notes is to present the strategy leading to the following partial answer:

Theorem A. Let M be a closed 3-manifold. Two transversely oriented C*° foliations with
homotopic tangent plane fields can be connected by a continuous path of C' foliations.
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The complete proof lies in the author’s PhD dissertation [Ey1] and will be transcribed
and improved in an upcoming paper [Ey3].

Let us make a few remarks about this statement. First of all, by C' foliations, we
mean C' integrable plane fields, which is slightly stronger than the usual terminology but
makes the notion of “continuous path” much simpler. Integrability has a meaning in any
regularity class: for all » > 1, a C" plane field is said to be integrable if every point of the
manifold belongs to a C" surface which is everywhere tangent to this plane field. Just like
F(M)(= F>*(M)), the space F'(M) of C! foliations inherits a natural topology from the
space PL(M) of C! plane fields on M.

As a matter of fact, the foliations we build are C*° outside finitely many regions of the
form T? x [0,1], on which they are transverse to the [0, 1] factor, and they can even be
made C* everywhere if we put some restriction on the holonomy of the initial foliations
(cf. Theorem 7).

Let us note that a positive answer to the above question had already been obtained
by A. Larcanché [La] in two specific cases: when M is a circle bundle and the foliations
under scrutiny are transverse to the fibres, and, for a general M, when both foliations are
taut and sufficiently close to each other (we will recall later what a taut foliation is). Her
main tool plays a key role in the proof of Theorem A.

Let us finally dwell for a while on the perhaps misleading notion of “deformation” or
“homotopy” of foliations. A continuous path of foliations/integrable plane fields is not
necessarily induced by an isotopy! In particular, the topology of the leaves can change
completely under such a deformation. Let us illustrate this via two crucial examples.

=

=

Figure 3: Linear foliations on the torus

1

For the first example (cf. Fig. 3), we drop one dimension and consider codimension
one foliations on the torus T2, obtained by quotienting out linear foliations of R? (that
is foliations by parallel straight lines). A one parameter family of such foliations on R?
(obtained by increasing the slope continuously) induces a continuous family of foliations
on T?, which are clearly not pairwise isotopic: if the slope is rational, all the leaves are
compact, whereas if the slope is irrational, all the leaves are dense.

The second example is the creation of a Reeb component: on the solid torus, the
foliation by meridian disks can be homotoped (among foliations and relatively to the
boundary) into a foliation with a Reeb component along the core and cylinder leaves
accumulating on it. This homotopy can be visualized by rotating each picture of the central

In most figures, tori are represented as cylinders for a better visibility. The top and bottom should be
identified to get the real picture.



sequence of Fig. 4 around a vertical axis. This sequence represents a continuous path of
dimension one foliations invariant under vertical translations, the continuous deformation
of their tangent line fields being sketched above.

L0

Figure 4: Adding a Reeb component

Strategy of the proof

The main idea to prove Theorem A is to give a parametric version of the process carried
out by Thurston in [Th2] to deform any given plane field into a foliation. But we must
also deal with the relative aspect of the problem: the ends of the one parameter family of
plane fields we want to deform must remain unchanged along the process.

Thurston’s construction, outlined in Section 1, consists of three steps: first make the
initial plane field integrable outside ball-shaped holes, then enlarge the holes into solid
toric ones by digging out tunnels along arcs transverse to the newly defined foliation, and
finally make the plane field integrable inside the enlarged holes. Recently, A. Larcanché
found a new way of carrying out the last step so that, in addition, the foliations inside
the holes depend continuously on the foliations already given on their boundaries, which
will be very useful for our problem. We recall her construction in Section 2. In Section
3, we start the parametric adaptation of Thurston’s construction by perturbing a given
one-parameter family of plane fields into a family of foliations with holes. This step relies
on works by Eliashberg in 3-dimensional contact geometry. In Section 4, we complete the
proof of Theorem A in a specific case: when the initial foliations (the ends of the initial
one-parameter family) have “sufficiently many” transversals. Eventually, in Section 5, we
explain how to reduce to this specific case. Basically, the idea is: given any foliation,
eliminate as many torus leaves as possible by a homotopy of foliations, and in particular
get rid of those which do not bound solid tori. In Sections 1 to 4, all plane fields and
foliations are C*°. The regularity loss occurs in Section 5, while trying to eliminate torus
leaves.

1 Thurston’s process

Let M be a closed 3-manifold. In this section, we recall how Thurston deforms a given
plane field £ on M into a foliation.

Step 1. First, he constructs a triangulation “in good position” with respect to &, and
makes £ integrable in a neighbourhood V' of its 2-skeleton. More precisely, he requires
all faces and edges to be transverse to &, and the direction of £ to be almost constant
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on each 3-simplex. Then he makes £ integrable in a neighbourhood of every vertex, then
every edge, and finally every face (cf. Fig. 5). The key point is that, in a neighbourhood
of every simplex o of the 2-skeleton, there exists a nonsingular vector field v tangent
to ¢ and transverse to o. The deformation consists in making ¢ invariant under v in a
neighbourhood of o. Since £ is already integrable near Oo, it is already invariant under
v there and thus remains unchanged. This guarantees the global coherence of these local
perturbations. The neighbourhood V' of the 2-skeleton can be chosen so that, at the end
of this step, every component of JV is a sphere S enclosed in a 3-simplex on which & is
almost horizontal, meaning that the foliation traced by & on S has only two singularities,
the poles, which are connected (on S) by a vector field transverse to £ (see Fig. 5).

7 2
pie

Figure 5: Making ¢ integrable near the 2-skeleton

Step 2. At that stage, we have a “foliation with holes” (the new & | /), and we want to
extend it to all of M. However, because of the Reeb Stability Theorem [Re], this is only
possible if € | g is a foliation by circles away from the poles for every component S of OV
So the newly built foliation £ |y needs to be modified in some places (outside the holes). A
nice situation, Thurston observes, is when, for every S, there exists a properly imbedded
arc A C V transverse to £ | v joining the poles of S. In that case, the union of the ball
bounded by S and a tube around A foliated by disks forms a solid torus W ~ D? x S!
on the boundary of which ¢ induces a foliation transverse to S'. Now Thurston shows
that such a foliation is always the trace of a foliation of the solid torus (homotopic to &
rel. boundary), using the simplicity of the group DP(S'), proved by M. Herman and J.
Mather. A different argument, due to A. Larcanché and outlined in Section 2, provides an
extension which, in addition, depends continuously on the foliation given on the boundary.

£ N\

[l

i

Figure 6: Enlarging the holes

Step 3. The required transverse arcs A do not always exist. A classical sufficient con-
dition for them to exist is that £ |y has no compact leaf. Thurston artfully reduces to this
situation by digging a number of new ball-shaped holes in V' and breaking the integrability



on these balls. More precisely, assume that the grey surface on Fig. 7 is a small piece of
compact leaf and that the foliation is horizontal in the neighbourhood represented on the
picture. Then consider two little balls centered on this leaf and linked by a “cubic tunnel”.
Perturb the foliation continuously inside the cube like the picture suggests. Because of
the Reeb stability theorem again, this does not extend into a homotopy of foliations inside
the balls, but it can be extended into a homotopy of plane fields. Now (what remains of)
the grey leaf is not compact anymore since its boundary spirals around the balls and even-
tually accumulates on circles. Repeating this trick as many times as necessary (finitely
many times since the manifold is compact), Thurston gets rid of all compact leaves.

N>

Figure 7: Killing all compact leaves

2 The key construction of Larcanché

As we said before, A. Larcanché [La] invented a continuous process to extend to D? x S!
any foliation of 9D? x S! transverse to S'.

To clarify this statement and give an idea of her construction, we first need to define
the holonomy of a foliation ¢ of 9D? x S! transverse to S'. The transversality condition
implies that, for every z in S!', the leaf through (1,z) € dD? x S' goes all the way
around the solid torus, alternately intersecting every fiber {e?™} x S!. t € [0,1], at a
point (¢*™, fy(x)). This defines a one-parameter family (f)¢e[o1] of smooth orientation-

preserving diffeomorphisms of the circle, which has a unique lift (ﬁ)te[o’” in DP(S!) — the
group of orientation-preserving diffeomorphisms of R commuting to the unit translation —
satisfying fo = idg. What we call holonomy of the foliation ¢, and denote by hol(y), is
the diffeomorphism f;.

If 7(D? x S') denotes the set of foliations on D? x S! transverse to the boundary (and
homotopic rel. boundary to a plane field transverse to the S' factor), Larcanché’s key
result can be stated as follows:

Theorem (Larcanché [La]). There exists a continuous map

.. D(SY) — F(D? x St
f — ﬁf

satisfying hol(ly | op2xs1) = f.

Her proof relies on two important facts. First, when the foliation on the boundary is
linear — in which case the holonomy is a translation 7T): z +— x + A — there is a classical
way of extending it: put a Reeb component along the core of the solid torus, and wrap
the external leaves around it as shown on Fig. 8 (explicit formulas can be written). We
will call the resulting foliation a Reeb filling of T, or of slope A. This also works when
the holonomy is conjugate to a translation, but not in the general case.
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Figure 8: Reeb filling of a linear foliation

To deal with the general case, Larcanché’s idea is to combine the above with a decom-
position theorem of Herman:

Theorem (Herman [He], p.123). Let u = (1 ++/5)/2 denote the Golden Number®. There
18 a continuous map

{Dﬁ’f(Sl) R x DX(S))
f= (s, 97)

such that f =Ty, o (gJT1 oTy0gy) for all f € DX(SY), and (Nid, gia) = (—p,id).

Now take any holonomy f. Roughly speaking, the foliation /; is obtained by taking the
Reeb fillings of T}, and g)?l oT,0gy, gluing them together as Fig. 9 suggests, and inflating
the result a little (to remove the angles). The holonomy on the boundary of the resulting
bigger solid torus is exactly the composition of the holonomies on the smaller tori, i.e
precisely f, and this construction depends continuously on f since the decomposition of
f does.

S—
= =

Figure 9: Larcanché filling

Recb filling ) ="  Reeb filling of
of Txg h ' g?loTMogf

Note that when f is the identity, Larcanché’s extension is far from being the most
natural one (i.e. a foliation by disks), since it consists of two Reeb fillings (of slope p and
—p respectively) glued together. The “inflated” picture is depicted on Fig. 10.

It is crucial, however, to realize that ¢;q and the foliation by meridian disks are ho-
motopic among foliations. Indeed, let us start with the foliation by meridian disks. By
a homotopy of foliations (cf. Introduction), we can create two Reeb components (or, in
other words, two Reeb fillings of slope 0) in two smaller solid tori within the big one.
In these small tori, we simply increase the slopes of the Reeb fillings continuously, from
0 to +u respectively. Using some basic knowledge of suspension foliations on “Pair of
pants” xS! (that is foliations transverse to the S! factor), we extend this deformation to
the complement without affecting the trivial foliation on the boundary of the big torus.

Zactually any diophantine number would do according to [Yo]



Figure 10: From the trivial foliation to f;q

3 Making foliations with holes

We are now ready to try and adapt Thurston’s construction to the one-parameter situation.
We start with a family &, ¢ € [0, 1], of plane fields on M, with £, and &; already integrable,
and we want to make all the &,’s integrable. Like Thurston, we first want to construct a
nice triangulation and make all plane fields integrable near its 2-skeleton. However, we
have a priori no chance of finding a triangulation whose edges and faces are transverse to
every &, the direction of the latter varying with the parameter in an uncontrollable way.
Still, we can find a triangulation such that the direction of each & is almost constant on
every 3-simplex; but we will have to deal with the situation in which, for some parameter
t and some point x of the 2-skeleton, the plane & () is tangent to the face or edge through
T.

Fortunately, this problem has been studied by Eliashberg [El] in the case of contact
structures, and his arguments work the same for foliations (see [Ey1] for the adaptation).
As in Thurston’s construction, the idea is to find near each simplex a continuous family
v, t € [0,1], of nonsingular vector fields tangent to their respective &, and to make &
invariant under 4. But this time, 14 will not necessarily be transverse to the simplex,
and to ensure the coherence of the local deformations, we will have to start with the
“problematic” simplices. Eliashberg also deals with the perhaps bigger issue of ensuring
the almost horizontality of the resulting plane fields on the boundary spheres of the newly
foliated area V. This requires a careful control of the amplitude of the deformations and
of the size of the neighbourhood of the 2-skeleton on which the plane fields are made
integrable.

Note that this process leaves &y and £; unchanged, since they were integrable from the
beginning.

4 Enlarging and filling the holes in the taut case

We are now dealing with a (new) family &, ¢t € [0, 1], of plane fields which are integrable
outside a number of ball-shaped holes on the boundary of which they are almost horizontal,
and we want to make them integrable everywhere on M. Note that the poles of the
boundary spheres vary continuously with the parameter t. Let V denote the complement
of the holes. As in [Th2], a very nice situation is when one can find, for every sphere
S of 9V and every t € [0, 1], an arc A; in V transverse to & | y connecting the poles of
S and depending continuously on ¢. In that case, Larcanché’s construction (cf. Section
2) is the perfect tool to fill the time-dependent toric holes obtained by the union of a
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ball-shaped one with a moving tubular neighbourhood of a moving transversal. Note that
even in this ideal case, we are not quite done yet, because this last manipulation affects
& and &1, which were supposed to remain unchanged. Indeed, the new & and &; differ
from the initial ones by a number of Larcanché ¢4 foliations inserted in solid tori (toric
holes)which initially contained simple foliations by meridian disks. But this is not a real
problem according to the last remark of Section 2.

However, two real problems can prevent the situation from being ideal:

e though we can apply a parametric version of Thurston’s trick (cf. Section 1) to the
family (&)¢(0,1) to ensure the existence of transverse arcs A; for all ¢ € (0,1), the
ends & and & must remain unchanged (and one can easily come up with examples
of § and & which do not have “enough” transversals);

e even when it is possible to find A;’s for all ¢ € [0, 1], it is in general impossible to
make them depend continuously on t.

Let us forget about the first problem for a while by assuming that & and & are
taut foliations, that is foliations for which each transverse arc can be extended into a
closed transversal (note that not every manifold admits such a foliation, so this temporary
hypothesis is a very restrictive one).

Now, for all ¢ in [0,1] and all S in OV, there is an arc A; in V transverse to & | v
connecting the poles of S. For s close enough to ¢, A; is still transverse to &, so one can
actually make the family A; piecewise continuous. In other words, for some values of the
parameter ¢, we have two transverse arcs A_ and A, joining the poles of some S C 9V,
which means two ways of digging out a tunnel in which to replace £ := & by a Larcanché
foliation. So what we need to check is:

Lemma 1 (Communicating Vessels Lemma). The two foliations built from & by Lar-
canché’s construction using the arcs A_ and A respectively are homotopic among folia-
tions.

To see this, let us define two foliations £ and &, which are not exactly the foliations
mentioned above but isotopic ones. First, we perturb A4 and A_ near both ends to make
them disjoint (see Fig. 11). Then, we cut the ball B bounded by S along a disk D through
the poles and, to each half-ball By, we add a small tubular neighbourhood of Ay so as
to obtain two (slightly angular) solid tori W and W_ intersecting along D. Outside B,
both solid tori are foliated by disks.

W ~—W,
Figure 11: A4 and W4

The foliation £+ is obtained by filling W= with a trivial foliation by meridian disks,
which traces a new foliation on D, and then putting a “Larcanché foliation” in Wi —



the “only one” inducing the new foliation traced on 0W,. The key observation is that
the holonomies of £, | gy, and {_ | s are the same. This diffeomorphism f essentially
describes the holonomy of £ around the ball.

Figure 12: £, and &

Now to homotope &4 into £_, we start with &, we perturb the trivial foliation on W_
into 4;q, then we perturb the foliation on D so that the resulting holonomy on OW. (resp.
OW_) varies from f to id (resp. id to f) and we extend this perturbation to W (rel. their
complement) by continuous paths of Larcanché foliations. At the end, W, is foliated by
lig. To get £, we only need to homotope fiq back into a foliation by meridian disks (cf.
Section 2).

At this point, we have:

Theorem 2. Two C* taut foliations homotopic among plane fields can be connected by
a path of C* foliations.

Actually, little extra work is needed to generalize this to a larger class of foliations,
namely the kind we just used to build the path, which will be called malleable in these
notes. A smooth foliation is malleable if it is taut outside finitely many solid tori on which
it is of the form ¢y, for an f having a whole interval of fixed points.

Theorem 3. Two malleable foliations homotopic among plane fields can be connected by
a path of C* foliations.

5 General case

To obtain the full force of Theorem A, the last thing to prove is that any C* foliation can
be deformed into a malleable one by a homotopy of foliations. This is where the loss of
regularity occurs.

Theorem 4. Any C* foliation can be connected to a malleable one by a continuous path
of C' foliations.

The general idea is to try and make the given foliation “as taut as possible”, by a
homotopy of foliations. To that end, note that a foliation on some region is taut if and
only if every leaf meets a closed transversal in this region. So basically, we want to alter
the given foliation so that in the end, as many leaves as possible meet closed transversals.
Now according to works by Novikov [No] and Goodman [Go], only torus leaves do not
necessarily satisfy this condition. So our first task is to get rid of as many torus leaves as
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possible (we call this cleaning, cf. 5.1). Then (cf. 5.2), we will have to see to it that the
remaining “problematic” ones all lie in “Larcanché foliated” solid tori (in particular, we
will need to get rid of the incompressible ones).

5.1 Cleaning

We start with any foliation and we want to reduce to a finite number of torus leaves by
a homotopy of foliations. To do so, we first note (thanks to Novikov [No] and Thurston
[Th1]) that the problematic torus leaves always arise in “bundles”: there are finitely many
disjoint saturated sets of the form T? x J, where J is a segment, on which the foliation is
transverse to J and outside which every leaf is cut by a closed transversal. The idea then is
to shrink these foliated bundles into isolated compact leaves. By holonomy, this is in fact
equivalent to proving that the space of representations (homomorphisms) of Z? = 7 (T?)
in D[0,1] is connected. This is a difficult problem, but the following result, based on
classical works by Szekeres [Sz] and Kopell [Ko| on commuting interval diffeomorphisms,
at least allows us to shrink the bundles via a homotopy of C! foliations.

Theorem 5 ([Ey2]). Every representation of Z* in D°[0,1] can be linked to the trivial
representation through a continuous path of representations of Z* in Di [0, 1].

With similar arguments (related to commuting germs of interval diffeomorphisms), we
can actually reduce to foliations whose torus leaves all have a neighbourhood parametrized
by T?x] — ¢, e[ where the foliation has an equation of the form:

dz —u(z)(atdry +bTdzs) on T2 x [0,¢]
and
dz —u(2)(a”dry +b dry) on T?x] —e&,0]

with (a*,b%) € R?\ {0} and u a smooth function vanishing only at 0 (see Fig. 13). We
call them clean foliations. In the next step, we use the flexibility of this simple model to
“kill” the problematic torus leaves of clean foliations, or, more precisely, to replace them
by compressible ones enclosed in Reeb fillings.

T2x{—¢}

T2 % {0}

(a=,b7)=(0,1)
(at,b1)=(4,5)

T2 x{e}

Figure 13: Model foliation near a torus leaf

5.2 Killing incompressible torus leaves

There is a nice case in which getting rid of the torus leaf T? x {0} =: Tp in the above
model is easy: when (a™,b%) = (a,b7) and u has a constant sign outside 0. In that case,
we only need to perturb u locally around 0 into a nonvanishing function.

11



Now let us deal with the general case, represented on Fig. 13. In order to reduce
to the previous case, we want to deform the foliation on one side of the compact leaf to
make its slope match the slope on the other side. But this deformation has to be local —
say between the compact leaf Ty and some slightly larger parallel torus 1" — because the
foliation near the outermost tori 7. and 7. must remain unchanged.

Figure 14: Desired deformation between 1" and the compact leaf Tj

But this will trace on T' a path of linear foliations of slope varying continuously from
A # 0 to 0, which must then be extended between 1" and 7 rel. T.. To make this possible,
we first need to add a Reeb component in this external region, along a “vertical” transverse
circle (see Fig. 15). We denote by 7" the boundary torus of the affected region. T', T.
and 7" bound a region of the form “Pair of pants” x S'. In this region, it is easy (again
using some basic knowledge on suspension foliations) to define a path of foliations which
is invariant on 7. and varies from the linear foliation of slope 0 (resp. A) to the one of
slope A (resp. 0) on T" (resp. T) (cf. Fig. 15). We extend this by Reeb fillings on the
solid torus bounded by 7" and by the desired path of spiralling foliations between T" and
the compact leaf Ty (cf. Fig. 14), and we are done.

!
N

)

Figure 15: Deformation between 7. and T

5.3 Holonomy fragmentation

After the above step, we end up with a foliation which is taut outside finitely many solid
tori foliated by Reeb fillings. The last thing to do is to replace each Reeb filling of slope A
by a collection of Larcanché foliations whose holonomies on the boundary have intervals of
fixed points and have T for product. To that end, we first homotope the Reeb filling into
the Larcanché foliation ¢, (adapting the last remark of Section 2). Then we conclude with
a combination of Larcanché’s theorem, the following (elementary) fragmentation lemma
and, once again, the flexibility of suspension foliations on “Punctured disk” x S'.

Lemma 6. Every element of DX (S) a (finite) composition of elements of DL (S) which
all have an interval of fixed points.
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Note that 5.2 and 5.3, together with Theorem 3, yield the following intermediate result:

Theorem 7. Two clean foliations homotopic among plane fields can be connected by a
continuous path of clean foliations.

Conclusion

The surjectivity of the map m F (M) — mP(M) induced by the inclusion is actually much
easier to prove than the injectivity of the map between my’s, since one avoids the relative
aspect of the problem. All the necessary tools lie in Sections 3 and 4. As a matter of fact,
most techniques described in these sections adapt to any number of parameters, yielding
the surjectivity of the maps between m’s for all k > 1 (see [Ey3]). Injectivity, on the other
hand, requires, among other things, a better understanding of the topology of the space
of C* orientation-preserving actions of Z2 on [0, 1], of which little is known.
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Reeb foliations and contact structures on S°

# 175 Atsuhide MORI (Osaka Univ.)

1. Results (English summary)

This work is the sequel of the following result.

Theorem 1 ([M’02]). Any (co-oriented) contact structure D on M? is linearly
deformable to a spinnable foliation F, i.e., there exist a contact form o of D and
a 1-form 3 of F such that (1 —t)a +tf is a contact form for any t € [0, 1).

Here a spinnable foliation is a foliation associated to an open-book decomposition
by inserting a Reeb component along the binding and coiling pages to it. The
proof requires the Giroux correspondance between contact structures and open-
book decompositions. Note that any family {D;} of contact structures on a closed
manifold M?"*! can be traced by a family of diffeomorphisms ®, of M?**! so
that @y = Id and ®.(Dy) = D;. Surprisingly certain higher dimensional contact

structures are also deformable into spinnable foliations. For example,

Theorem 2 ([M’09]). The standard contact structure on S3(C C3) is smoothly
deformable to a spinnable foliation F, i.e., there exists a smooth arc connecting

the standard contact form via contact forms to a 1-form of F.

For codimension 1 foliations on M? without Reeb components, Thurston proved
the TB inequality —(e(D|X), [¥,0%]) < —x(X) for any Seifert surface ¥ whose
boundary 0% is positively transverse to D = T'F, where ¢(-) denotes the relative
Euler class. Bennequin proved the same inequality for the Reeb foliation and for
the standard contact structure on S*. (“TB’ abbreviates Thurston-Bennequin.)
Applying Giroux’s convex surface theory, Eliashberg proved that a contact struc-
ture on M?3 is tight iff the TB inequality holds for any . Refining Giroux’s convex

hypersurface theory, we define the tightness for contact structures on M?"+L,

Definition 3. (1) A closed oriented hypersurface ¥ on a contact manifold is said
to be convex if there exists a contact vector field X positively transverse to X.
(2) Let +X (resp. —X_) C X denote the region where the contact vector field X
is positively (resp. negatively) transverse to the contact structure. Generically,
the dividing set I' = {«(X) = 0} = +09%1 is a contact submanifold.

(3) We say that a compact oriented hypersurface ¥ with boundary is convex if
it admits a positively transverse contact vector field X such that the contact

submanifold I' = {a(X) = 0} contains +0% as a positive contact submanifold.



(4) For a connected convex hypersurface ¥ with 0¥ # (), we define the convex
TB inequality as x(X_) < 0. We say that a contact structure is (¢TB-)tight if
any convex hypersurface 3 with 9% # () satisfies the inequality.

Theorem 4 ([M’09]). There exists an exotic contact structure on S° which is not

tight. This contact structure is also deformable to a foliation.

Conjecture 5 ([M’09]). For the standard contact structure D on S?"* (n > 1),
0% would be either connected or empty. Particularly D would be tight.

This conjecture can be considered as a variation of the following Calabi’s question.

Calabi’s question. Is there any compact exact symplectic manifold of dimension

greater than two with disconnected contact-type boundary?

This question was affirmatively answered by McDuff, Ghys, Mitsumatsu and

Geiges. I used their examples to generalize the propeller construction.

Proposition 6 (see [M’09]). (1) The contact structure ker(sin zdy + cos xdz) on
RxT? > (z,y, 2) is called the propeller. Suppose that a closed oriented 3-manifold
M?3 admits integrable 1-forms & and n which satisfy ¢ Ndn =n Adé > 0. Then
the symplectic manifold ([—1,1] x M3, d(§ + tn)) has disconnected contact-type
boundary. The product R x M3 x S* > (z, p, z) with the contact structure ker(& +
sinxn + cosxdz) is called the five dimensional propeller. Then the hypersurface
Y, = {—g <z< g +2nm, z = const} is convex with respect to 0/0z.

(3) A Giroux-Lutz twist is roughly the insertion of the domain ¥, x S! of the
propeller to a given contact 5-manifold after removing Y x S'. Precisely, we
can use a neighbourhood of a hypersurface S in N° which is contactomorphic to
a neighbourhood of {x = const} in the propeller. If the binding of a supporting
open-book decomposition is contactomorphic to the above (M3, £+n), we can take
S as the boundary of the tubular neighbourhood of the binding. In this particular
case, we can take back the “half” of the twist by blowing-down a smaller tubular

neighbourhood of the binding. This is a generalization of a half Lutz twist.
The following result relates to Sol-geometry and a spinnable foliation.

Theorem 7 ([M’09]). There exist a Sol-manifold M?* C S® which is a link of sin-
qularity. Since M3 admits an algebraic Anosov flow, we can perform a half Lutz
twist along the binding M? of the Milnor fibration. Then we obtain a non-tight
exotic contact structure on S°. The T?-bundle of M3 defines a spinnable foliation
on S° to which the standard contact structure is smoothly deformable. Moreover

the above exotic contact structure is also smoothly deformable to a foliation.
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2. EAEEIC “BITTW B BB

ARG FZHA M2 EOREMIER o lda A (da)” > 0 25729 1 K
TH5. B D = ker o FHEMMIE LTINS, IR 1B g H
RITC 1B F ZEDBEMEE LA =0 THS. n=1 OEEIHEMRGED
ERFHICETWB E VI DIFHIC |a] =1, aAda < dvol TERWADY, THidn>1
TIEBKHZZ DT, confoliation HEmM 3 Xt TOH EFL WL ELTEREET
W7z, LU n ZEEIEOD 1-jet 220 R (21,91, - Ty Yny y) (yi = Oy/Ox;)
IR DR dy — >, yide; = 0 DED HIZEFMEE2E A2 L, R 1
BN 1B PDE RICK>TERDENB TN, ThIEEA n+ 1 O
2RI N c R FOERTH 5. &£ LE N 2135 MMELT % HAtEks
ZHR N DX, N OBEEIE N OEMEESICIITWATEA 5.

U UAK, B SEI3ERE XD €9 5 & symplectic &Iz HDTHS.
2n JTLEHER B 1T exact symplectic & (d\,\) DEGABNZ L, L xR(2) I
BRflSE ker(\ + d2) DEF 5. B R FOBHERMBENZNTH 5.
17 I tyd\ = X ZHICTHERNY BV Y B0, Y 2R L TE5N
% 1 KIeHERICIE ker A DR/ I —ANELMWHE G Z2EH 5. L<ICY
OWrmIC A ZHIR I XML TH 5. —MICa 787  symplectic ZHk{A
V DB O < ICESR 2 E ISR IR T MV Y Z2FD5E, 0V &
Y OWii& U T OEMMEZHRD, V OBMEER EWIINS. £/ V &2 0V
@ strong symplectic filling &5, HIZIEHAEEKRE 52+ C CvHIEER(K
DOFMIRITER & UTORZEEBMIEE 2 F D, R™ M OEHERRED 1 oY
I8 MEIZIZ > TV, TO XD ICHEMZHARIE symplectic 2Rk ¥ DAFECK
TUREWAZEDTH D, ZDOHA 0% M L xR & LTHNS. Darboux O
EHIC S MDD D, 2n+ 1 RoeDEMZERIADHE RO T8 & I3 ARERE
G2 FFD R DWW 5 THERERERAZ T, T LIRARFHIHEICIES T,
IFEDFERICOWTE, HikEE & symplectic M DOFLLIZFH D 200,

FEE [Ibort-Martinez-Presas’00] (& Donaldson-Auroux O iYIERITED PG
MY symplectic ZAAKRTENT Tx S M2 RRIKICN L CEEHTE 52 L 2R L.
[Giroux-Morsen’02] 1% Z 117 exact symplectic open-book 73 fEDIFAE & L T AR
L, @il s Ra P —oFmmZ# L7z, exact symplectic open-book 77
1, RX—IHADY exact symplectic TH D, & UMNN—I OEMIUEIFICES
EDTH 5. Thurston-Winkelnkemper (& 70 4R8I T 5 L7z open-book 73 f#D
N—=VRDOMEIEN A DB 2% FEE X OFIR O TH S T L =R L.
D& EHMAEIZ MY FE—R1EE LT—REICEE 5. Giroux-Morsen (331
EREOHEMNGED D % open-book DN LEX S EZ/RLTIEDIFTH 5.

SCHERF EDHLICTDOWTIE, 3 KITERRIAD open-book 7 fRICAS S % [ElER



AEEEB L VO EENDH S R EDUEHED Reeb ICED, HNANDRX—INEK
WHEICEZTDOWVWTELKLS) . FAD Theorem 1 & open-book 7fiEMNHEE %
Pk, RS 2 Rl rTRESEE ISR ICEIEATRE CH 5 LWV > T 5. Gk
WF RIS HER T 5 T &Ic Xk B, BICRHELD LD,

Theorem 8 ([M02]+[=A8-M'06]). M3 LD XA bSO OMBE & 75 %
A5 AT REBERE I Reeb D ZFEBDDE TB AHEX &2, Wi TB A5 %
it 729" [AlR ] RESEEE O open-book 71iEH 57 £ 2 filkiEIE 2 A b TH 5.

AT HHTH 5. % FI3IEEHHED Bennequin HVEEAEREE S I LT TB
AFEAZRUIEDEIFEAERIUAETRENS. 2n+1 ZotDHLHEICE, open-
book 73 fED&E UHIERER 1K v ZF D551, BlisngEEENVER I NS.
R LCOEHE Ty DWED BT LHMIROETH O, TNAEHEORFICEE
DL &I > TReeb AR ENS. HADLERX—IDRVEFICEED
WTCHEERS.) TOXK S REHRAIFEEFICEI U THEICRZIET 5.

Definition 9. #& U_ DO # ikt D &b % e X O du 28 ED kerv 1T
RMELTWAEET%. 94505 (du)" tHkerv=0&,95%. (n>1 DX D
Reeb X7 MUGWERBICHET S5 28, n=1DEZWGHAEEZS.) C
D& VT B [Alis ] RETE S X RGBT WL B &V 9.

Theorem 10 ([M’09]). M1 O open-book 73 fi#th 5 7E & % ffilikd D M E
B EHRATREER FICETWA7A51E, DIE FIIEOMNICEIRTRETH 5.

3. [Giroux’91] O hitE M 5
M X C (M2 o) ISR 7 SV X ZFRD L XM THB L0 9.
e o &, BT RV X 2B a(X) IS5 DIRIEE B L B2, Hfil
N7 MIVIGOZER & B ZERINORIEB®R TH 5. (o> TEAET = {a(X) =0}
1 generic IC1d 2n — 1 ZITDFRZHATH O, S\T & a(X) DFFFICE>T
FAOMHEE £, ICHEENS. =08, =08 AV NE—EELLT—E
MR ZHATH S, (D DAEN L DOME LES T LICHEEEX)
IR S o ITHEYIEDORBZE#NT 5 2 LICE 5T, dalXy B EEIC (IED)
symplectic G & LTXWY. TOEE T IF Iy ICHEINEMNERTHS.
IR E MEBRE & X, MR 2RO 28T b7k exact symplectic ZAkA
Y, ORKEOMICER 2N X =3, U(-X_) Tho>7T, 95 C 5, =TI i
eTEDELTE DX I IFIEDTHEEKS, (=3, \I) OALET B LIHE
B9 5. wyda|Xy = +a|Xy ZifilzTX7 MVG Y BEH B S+ EOAM 1R
e, Ao T ¥ OFMMEERICARS. FREER I RT /I — AR
EkhG 2R S, AP0 &0 FIF LAV, RREEEN T 2/l 21m S
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FIEDFHED 5 A OB, B 2 WG IEDOHE 5 552\ <.

Definition 11. EEFDZETHRWERIEICE TS [T TB 2FRX] &&, &AD
T X D Euler BHBUCBIT 5 AEHFK x(32) <0 THS.

M TBAFERE, RBNEFFHEMAOTT, @HO TB FFX
—(e(D|X%), [%,0%]) < —x()  (e(:) (&HHX} Euler #HiZ2£HT)

EIRMETH B, T2 UM TB AERIK, ZZ 58l X Z2M7xE DICRES 728
TEO BT 2 A% LTI TB AEFEXK D & 550,

Bfikiis o 2 1 MMEZ ™Y TB ANEXTEHRT2HHIEZDOH 5.
1) £9 3 XD TB AEFXIE™ TB AEXICHET 2. DT &id 3 Jochin
ZRRIARICHEDIA T NI BRI DY C-BENIC K > TMIC R 5 LWV 9 [Giroux’91] D
W EUERICHES . (TB AFEXZ A iMhmE X 252 K. S I3 EREE & Db D
WEEREE 2 €, o SEAM OSSO R & FRICREES. £ T
MmO EOMEERIC EZ T IR LU TITS &, iﬁﬁﬁﬁ@ﬂﬁﬁﬁkﬁg‘é
CNWEROZMHImE DENTHS. ULHh LEDHEED 0% 72 & TEts ks
Euler #EIZIFICESBWT EWNEAITT N B DT, %9Lthﬁ&\%ﬁﬂf
o BRO 7zl Y (3™ TB AEX 255D & Ml & 7% 5.)
2) RIC 5 Koeld L OFEMZRRIAD Darboux drf5iC TB AEFXZIE S ™ Tiauitd
A ENS ((M08], Ak 6 HizZi) . /g TB AFERUTDONTIE, RO
[Calabi OV EDBARMN S, BHIEENTHNEBbNS.

Calabi DRELN. LN D (4 ol ED) 32737 B 7% exact symplectic ZAk{A
THo> T, HAE TR AVEMAUGERZRDE DIRFEET 50 7

Co XV TB REXDWNZGE, S, OHZHEEND VX, —/HTlE S #0
DMFERR 2 ELD A, 75Tl 0% # 0 1T 2D T, R oV 13k Tuw.
'y TB AEFX 720 5 fah 2 Mol e ta i & PSS, FlAE 3 JociEfilikidom
WHEFIAR A 1, BLOMR A ZIEDOT7 Za 53X A, THAREDTHS. HE
&BA%CﬂEﬁLT,%%%LD&QA®§5%A@ R A OHLE P
ET a5 A A, OFLLER ST ORIE LTI, TOEE ST IEE@EOEfEFIN
Z k% Legendrian unknot T 5. 3 KRouiEfkEED % A MEDIEMZEE,
WHEFRDMFEE LN & THS. L L, BXTOLRELEHT, EMEED
24 M2 TB AFRCK > THEERT S LIFFFENE725 9.

Definition 12. 'y TB ANEX 272 9 Hfilidld (Y TB-) 24 b THB L0 5.

& T Calabi DRWZDE DICIE McDuff, Ghys, = K% 3 Ryt Anosov (I
BHHE U 7o HEMNRIRE N D 203, RETTIANS K SIS Z DL ZFIH L T S°



ICREHE RS & 13 70 B (BREAH Ta V) G 2R L, iz nh
TB AEAZHA 2Rz, &8 EDORDERIE Calabi DRWVOEER
THIZHERT 5 2 L ThHoTeh, 5 TRV ZEEER G D X 1 MMEDRE S
ZA N TIROVKIEDIFEREND R L CHIfET 5 2 W HE LR o Tz,

4. open-book 73fi# & Giroux-Lutzig¥
KEITIEZA N THRWEEZRD [ open-book 77fi#] ZFIH L THERKT 5.

Proposition 13 ([M’09]). (1) compact 7% exact symplectic ZEIA (3, d\, \) D
SR EMIITH L L35, 405 = \oY FEMEXTHD, TnhH o2
ICEDBMEIFT T DOMEEREGTEHLTEH. COLEIXR(2) IKIE ag=A+dz
EVOEMIERDH S, (2 x R,ap) & S OFfbLEMEIINS. 08 DI
0¥ = {s = 0} LZZRBPELR s(< 0) ZEHITEDNUL, TITIE A =e'p DT,
a2 a= f(s)e*u+g(s)dz DIRITEIEL T, RO TCa=pu—sdz &
5BHEIICTES. (xR o) ZEEENTHEMILE VNS, BIESNHA LD
NEBIE E 2 s —» 400 X TRE LG O@EH Ol L EAtRIHTH 5.

(2) BEATIEER (DO—) Z 9% DD exact symplectic ZHASL DGR 5
Nz &, BIEINHEMEYS. x R(+£2) ZRiOEHDETE =3, U(-2) &
R(z) OEMMESLNS. LICoN_ B ox, OFDEADLE, ¥ xR IFER
& fhEadhm ¥ x {0} OEHBEOETIVERRS.

(3) (2) D T x R DEIANICHFE I % T > /N7 MEREZAA (FIR s —F X)) TH-
T, BRI TiE ST LOBERICESTNWREDZEEZS. TOBFL (08 xSt 1)
7 (0%, p) I blow-down U7cE DIFPARMZEATSH O, WllimzX—T L9
% open-book 7 fEZHFD. (RUDEHFICIE /—s ZFFE L, 2 AL T5H
MM A S.) T2 fhopen-book BfEE 9. symplectic open-book 773 &
BRI, ™ open-book 77 iR & HEfilkG 2 — I ED 5.

" open-book 73 il exact symplectic open-book 73D —f b THB. LLTFT
EE/ Fa I — X EDmEE & A DmEEICHEZRFD symplectomorphism DEE &
9 %. TDXKS 7% symplectomorphism DHRE b E—FHlE lexact 1-form DA%
FRWNT X ZfRD symplectomorphism o] IZ K> THREE NS (Giroux-Morsen).
COEE Y, LOEYRIEOREBA(+EE) ISHLT oA =\+dh THHMNDH,
Bt ¥, x R(2) 2 (p, 2+ h) ~ (o(p),z) £V [FAHERIGRTHI>72BH F—F X
MTES. pld T O THEFEHE LTEKL, #il{bDEIEIEZZ Z TI79.

McDuff, Ghys, ZADHIMNE Z A S ThW 5 IoTEMZRRAERER L X 5.

Proposition 14. (1) R x T? 5 (z,y,2) EOTANT ker(sin xdy + cos zdz) &
(MEOFENTBZINED) XA M aihE TH 5.
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(2) M3 T 2 DOMERAREIR 1B & n (ENdE = nAdy = 0) DMFIEL T,
ENdyp=nAdE >0 DD DET S, To&ZIX M3 ITAE Anosov D H
DA, € n i AnosovIEEZED S 1-EETIEXWV. TDEE exact
symplectic ZERIK ([—1,1] x M3, d(¢ + tn)) ORFUIEAMILTH 5705, Calabi
DRINNDOEEMNZH & 755, THIC R x M? x St > (x,p, 2) FICIZEARES
ker(€ + sinan + coszdz) BdHBH. T (1) DTEXTD 5 KIThRE WA 5.
(3) Geiges IZfif> T (2) DM ZHIC—RILd 5. M1 ICIEEDOEMIEX o,
BIMFELT, aA(da)" = —=BAAB)" >0 THDH, BT a, 3,
da, d3 OFRICEIND 2n — D)EREITXRT 0 £T5. TDOEEE = a+
B,n=a—-p8,BLEL, Rx M1 xS > (2,p2) FITIIEMFGE ker(€ +
sinan + cosxdz) WP 5. THDNBRTDTANS THS. ZOL Y, =
{—g <x< g +2nm, z = const} SR T NIV 0 /02 & RN 72 il il i ¢
HY, - O n EADOELER D Ny D n+ 1 HOHEEERNCHENTVS.

5 JITHMZARIRIC 5 Dot 7T RT D {20} x M? x St O & FEfblEH7E 57
MMEET B &, TNE 19,10+ 27] x M3 x ST DIEFEICROBEZ S Lick->
THAEEZ 1 IR B ED 5 Xt Giroux-Lutz 2% TH % (FlT ot
TEAMTH S). 7z& 21X LD open-book 77 iRDKE UHME Anosov FiRICAT
B9 % 3 JutHEZ ik Th NI, & COBAEIRERF DRI > THfibkE G~
1 \iRiR5 2 EMTE5. Tz TRLITBS>E Lutzigy | LS. s, #&
ClZih 9 4 Lutz 120D 21707218, UMD S FREERIZR > Tz & T A X TOEIRERS
e IHEDRR U\ EIET blow-down I K > T, ZHAAZZ Z 9IRS 2 0]
IR DRI T EMTE S (72 U TG BOEME T 2HKICTR%). &5 LT
CICit»> T LG E ARz 5 EED T3 Lutz 382Y ] TH5. Y Lutz 20 D
FERIIR—=T DA E L'/ Fa 2 —23C Lz open-book 73R FED.

& <IT exact symplectic open-book 73 fiEDRKR CIih> T Lutz {20 Z17-o 7=
(" open-book 7MREDR—I1F, EOMEZ IEOEENHLD PHE M X ThH 5.
L L=V D Euler BEMETHNUL S 131N TB AEXZWS. H1ZE 3 20t
Brieskorn Z4k{AlE Euler 22 ED Milnor fibre DR CTHS. HE>T S° D
FEEHERE ST Brieskorn SLo-ZRHKICH S 2 Lutz 20 2175 &, XA R Th
WEARGE DN T X 5 (ZORNE=MERORBICK B). FAE U TERETDOHZ 5l
DT TDIED, TNETERBANDYCRZFRIFHICE X TN e b TH 5.

5. Sol-ZHxEDAEMF
3 Xt Sol-Z kARl T DM E EEAS (Anosov) DEBR F—F A TH %.

Theorem 15 ([M’09]). C* ORI TH > T, KDY 27 Sol-Z Ak
TH2EDOMNEREIFAET S, TNH5D Sol-ZHARD T2 5 7E X 5 [BlHs A HE



TER I ERMERS TS, XTI NED Sol-Z IR > T Lutz 20
21195 L S5 LD XA TRV exotic REEMEHENMEENS.

Niederkriiger & Chekanov (& [@hgh&] (=Plastikstufe) &\ 95 & DG TS
ZRKIE strong (semi-positive) symplectic filling ZFi/zZNZ & Z2/R LTz 5 X
TEDN: Lutz £2.0 3 Anosov (RO EATLE &g MR OFEDIE 2 U 7o ek
ZpERT. o T LOEHMNSIEENS ZA b THRWVEEMNGEX, symplectic
BRIRD BRI SR ORHERMIAEIE L 3B A28 DTH 5. T D exotic HfilkEEZ
28, &I open-book 73 iRDNE D % FEFRREE I RO ERZITBI TV .

Theorem 16 ([M’09]). " open-book 7 fEDEHLAIREREE DR N—I R X, &
—Y_ YD RF T —S_ DEEMYIC (DFEDL_IT) BB K5I [ x ST IcEE
DUF72HERE 1L, ™open-book 73RN B E K % #EfilkEIC LI TN 5.
B ZERIRD Darboux drfsld, HEHMERMNGSG ZFDBRI 52+ 5 1 KD
ZRWIEEDTH S, iE> T Darboux irFEIC BV T LD Lutz 120 Z17 A1,
EREOHENGGEZ 2 1 b ThViEEICRZETE 5.

S THEEOD Reeb T8 & 1 Theorem 16 DOIEFZHAIFIE T 25EDTH 5.

Definition 17. EK S?"*! D Reeb TR &3, JAFITITEEARER MRS ICLITZ
FELAEEEEE CThH > T, R—VED Euler BN IEQOEL D TH 5. FFEITITHIC
U » TRMERMFGEIC Lutz {20 29 2 T LD AJEER B DEV .

Theorem 16 (FIRFED Reeb HJg@H 5 2 % Sol-ZHADHIN T2 TAHB Lo
TW5. FERRICIE Sol-ZHRIKICEE T 2 RO ZES .

Theorem 18. (1)(A&H) 7% ORI EH CEARIEROTEDI [, gy (T2TEL
m >0,k >0,k + -+ ky >0 DDEIEEMNNTCEDEERTHS.

; (10 1 K 10 1k,
(brekn) = 1 o1 ) "\11 0o 1 )

(2)(Van Horn “Zi7m ) Smkr,... k) 9 suspension Anosov FRICATBE T % 1D ik
R X, D open-book MBEFE 2 E D LHEMETH S - XR—=I3 Y R

P z2Fo m @R&E —F AT, THY, £/ FAI—& PNPy(#0) I
=1
189545 k; Bl Dehn 20 & 9T, ICi 545 1 18] Dehn 20 DB TH %.

FADVREF IO link & L CHBIT 5 LM TE Sol-ZHAlE m = 1,2 DEDT
5. RO link & Milnor open-book 73# (Caubel-Nemethi-Popescu)
EWVSEDNHH, TNH link DEMFHEZED TNSDT, 1D Theorem 19
ICENN TS E D% Milnor open-book 73 & L THEEIF 1UX Theorem 16 HVR
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ENB. (T RO link & Milnor HR & WS HEIEKE _ED open-book 73D U
THBHN, TO link HEBHE open-book 77 +5H, ZNA link 0 Milnor
open-book ZfREFHIN TS, R LVLOTEFE.) ULME Theorem 19 T
m=1D&Z (HBZNEm=2DLZE), BN ky =0 (HBNE ky = ky =0)
&3 UL Brieskorn Nil-ZRkIA M(2,3,6) (H2 WM& M(2,4,4)) & BfEMEICK
DT, TNEDLILT Sol-ZhAZRKT 5 EMNTE. I4bH

Proposition 19. fi;, (B2 for, k) DED S Sol-ZHEAIE C* DOl
{(y — 22?)(y" + 22%y + 2" — 20 + 2% = 0}

(%%L\Ci {(:132 + 2zy -I—yQ _ $2+k1)(x2 _ 2:17y+y2 +$2+k2) 422 = 0})

DAV AL (0,0,0) O link EHEfl[FEHTH S, T L Z Milnor B 10 + &
(BHBHNVIEI+k + k) THB.

Milnor BOEIHEIT m = 1 TEERTED, m =2 Tl Cardano DFEZ 1%
fERTN S > THEL V. %D Brieskorn Nil-ZHA1E M(3,3,3) THH, m =3
DIGEITHICT 5 EBDONDDY, f31, kyks DED D Sol-ZhkthZ C3 DR OD
link & UTHEHRT 2DIFFROFETH S (RF 0 4 XG5 G0H 7).

6. BE

(1) FAIEHZ CAHVEARS 7R open-book 7372 FFDEAA W 3-2HAMG 2 b NI & &,
Tz S° ICHOIAL T ENTET, HICZD open-book 77fi#NY B IC K% S5
DHEHZ open-book MREDF|IERLICTES T &R LTz, £72T O open-book
HDAREEOEMERMRZ R LIz DE D TV, £/ FaI—h2»BREMHINT
NGB T F vy Thd o Tz (BIEH). THUIROERDKEETH 5.

Theorem 20 ([M’04]). {EE DA 3-ZH(AlE, open-book 7fiE7ZFIH LT S°
OFHEREMREEICIZ DAL T ENTES. XD EICE, 2 THH 34
DRTTDREAER AL I 13 DAL MDA T E N TE 5.
EFOFTPEER—T O 0 DEAIIIHOIAATHS. Tz Etnyre D
fiR & O NS RE O el 3-2kkiA7Z 55 OREUEREMIEIEIC DAL T LA
TE5. fMAUCE X S° I 3 rDfEMi D52 DAL T L IR A TH 5.
SONTHLDIA K NIBFE MM ODE B DTN D B 2 M E OiE 5 ZBR Tz D? x S?
&, RISz [TB NEXZ 5 ™ Thrnigihm ) 1272 5.
ETATRY(HBWIERT) DT 3 el n 2 k22 U CEERICRD
32 ENS T LIFTERDIEA S ? XD RS L R E% PDE &
(DED 1-jet ZEEDED ZHRIR) E VS BIURMNSIA TEDRREDT LN TE S
M ? T 5 LRI RHDIAR & DRIfRE H > THEAWVWE LS.



(2) kGRS [Giroux’91] WAJELIREEAR 7 VG ZHiD Morse BAEZ2 W9%
THHTIED LT DTH%. Z LT [Giroux-Morsen’02] DFEHRIE, BHTZ S
L7z Morse BIEDIFFEZ FIRLTWS. LW o DL, H5IERX—ID Morse B
D& exact symplectic ZH{A (Weinstein Z4k{E) TH 5 open-book 7 iRDMFE
THEEO>TVBENHLTHS. FEEE [Ibort-Martinez-Presas’00] W7 EAEH%Z L7c
N E AR ZRBE ¢ - M* T — C DI 6 = argp : M* T\ {p =0} — S!
& open-book FEDRX—IVHDHEETH D, FX—VITITHEHE || DML
Weinstein @ Morse BI#EZT® 3. § =0 DX—=TS_ =71 DX—=Y ¥, D
Y =%, Up (=X) 1&, P FmOWgE M, = o 1(H) O & 7% 2 Bkl
TH5b. 0=7/2 D=V LEOMEH Morse BIE & AIRRIERAN 7 MV Y I
M, ~intV x R _EOMEA Morse BIE & AIBLIRBIN Y BV AIRICHEE S %
DT, FFFEomGg M_ &8 T M* L |0 Morse BA#DME 5N 5.
[Giroux’91] (&, FEAMZERIA M2 IC[EA Morse BAEL f & 2 OLJRIREEfAEA
7 MV X DMEEdT A2 ez2oE LT, FEEEmE C = {o(X) =0} &5
EDREZ, [ DEFFRRMNET C D Morse BAEL f|C DA TH A L 72K
Llc. FOBHIE C =V THO, TiE ¢ IKXBEHOMNBETHS. DFD
[ M R QRS R L Mo ORI OFRIZEIO LICEE > T3,
Tk Hamilton BEEL, FEERAY Morse BEEUR 5 IXFFHHIC 2= T DS AR,
Fefih Hamilton X727 VG AIEIRIC 7R D £ W09 #21E open-book K D FEL L.

SE R
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G-ZHED SHEZBMNDER®D PL b

T ERYE M5

1. &

CNIHFE TRRZORNIDEEE A L OHFEINZETH %,

G7% Lie Bt U M Z[EG7% C" G-ZhAELET S, r=1,...,wo TIT G-ZRIADEFA
TH5EEEH G x M > (g,7) — (v,92) € M2 WEEEHRTHZ T & TH5, Cairns-
Whitehead IC K> T M & PL 2R LAHTH S T &, K7z Yang [11] FIC K > THEZE
M M/GREZHEKLFETHAZENHIENT VWS, T TRZARAEAMEESR T . P> M
Eo:Q— M/GEHLENE o toror: P - QMWPLEMREERDZKIICTESR LR
ARz, 272U, 7 M — M /gl ZARZEHIESTH S, IEMEICIERS EXD K H I
%o HAMNEIK K I LT |K|=U{ae K} 5L,

FE 1. FOM & GITHUTHANER K & L L5458 |K| - M &o:|L| — M/G
MFAELT, o tomor: K — LIFHAMNEIRT |K| & PL 2HIATH %,

AE. 2T T 7 & LT Cairns-Whitehead O M O C" ZffEREIN NG, 5T 3L |K]|
X PLFEMHZDZNT—ENTH S, LATICEHIAT 2HEMRITINES &L B AT T —T
MG O=MAEnEzdL, MUXSIC|L| & —ENTHS, LhhLoloror: |K|— |L|
M—ENNE I DI EREV, £z G & M PMREMEE &, M DEE &V &2k
T, M/G D Hausdorff EWNVS JMHTHTERWNEESI D, GEHTE A>T, EH
TMZEFTE L LTERV, ZHUI M DX TN EEZNUIR Y, BICEA2I L. &
HICHBWT, B M Tlda<. M DERMED C" G-Zhkik M; Z 3. £ M,; B M TH
CTWaEE, K DEEIKK, e, 7(|K|) = M; £ TE %,

G-Zhkik & I F i M & M AR AAHRR M DV 0 5 NiE EOERZ RIFTICI3REI T E %
TH5 5, TORWN 3 DDITHFOHANTHAGDETH S, L LKEIICIZZN T
TaThhwERE S, MERITINES L FIRD /T 3 — Ciganz 2 LTI TRAZFEEH T &
Teo TERE T M — M/G ZHEfET /17 TV =@ E R0, T2 T ICRBIAATRHIZ
DD, CORRISHERT /17 TV — DD ITHANDISH TH %o FADHMI 5w &
gt 17 IV —TH2M, b ROV —DHTEALMENDH LT DHISE, D
EHISGENWT L2 JREBERFOMATEEE A EHFENIZE U THRIRZ1S 72, JarIc i gl
TWT, KNI RZRT TR MR E O —OREICHET 71 7 3 — DRSO E L
Nz, FARE =050 NS EOFEDN H LD D ATz,

2. MEMTINER S & AR
UTFHEBETEZ S, HEBRETEEZINSDD., MEZOREIE TRV, [EARITEHRIC
K B IRNTINEE S DBEDIIFEN S & L TELL W E I DWW IZDIE Gabrielov Th 5,
D%, FEhhZEnZHE Lz [1].

1
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2 PEEARE  HHHELL

EE. R" OWMOES X DEMNTNTH 2 LISHRMBEOMMIINZEEAR N, ; & FEARTNE
% fij:Ni; = R" NH-oTX = Ui(fia(Ni1) — fia(Nig)) &7 T &, (HEfRFTIEE S IV
DHEI—7 V) y REMOEDEETH BN, ZTDIL—21) v RZEMZEALRT LEVBNBNS
IR0, HERRNTIAE AR OEG BARDERNTIN & X Z DT 5 T WEMMNIINES TH S T &,

WIS L BRI VAV AREEER > TV 5, X &Y 7% R HOUERNTINES &
T5, §HERDTENFA %o
() XNY, XUY, X xY, X -Y, R"—X, X [JHEMH, X Qs OES IR
R C 838 B o0 U HERRATT I
(2) f: X - R" ZEEREMITINEHRE T2 L f(X) IFHERTIN,
(3)r=0,..,w &9 %, Reg, X & X DEHEATZDRRDIEL T X DmRD O Zhkik
558D ET %, §5 & Reg, X IFHEfRMTHY, & 51T {Reg, X, Reg, (X —Reg, X),Reg, (X —
Reg, X — Reg, (X — Reg, X)), ...} (&G X OMERNTHIDE, Zh7Z X ORHERNUERT
I CT REEWVS,
(4) Reg, X DXtz X DRyLEM5, ZTAUITCHERIC K B0t LR, £leric k5
Vo X WEEETHREVED, X — X OIITIE X OXRTTE D/INEW,
G)YUTFr>0&95%, XY ZC LMD, f: X =Y ZWIAIReAERMTING G &
%o THEHRTX — X &M df - TX — TY FHEMN, (LA UHERHTABIEOAE
R, YEMRATINAN T B OVIGORE ). MEREMTRIBEER ORI 2285 RT3 YERRAT I Tiaw, e
FRATINAE S & AR OBERICIBN T, WNICHED ZEET 2D 8 W05 OD TR TH S [9)0)
Reg, f 72 f DY LT THIDRAERICKE S X Okl 3%, 35 & Reg, f IX1EfR
T, X BEfETZEESTRVAEDL, X — Reg, f DXITIE X DXITX D/NEW,
6) X LYWRR"THLTWR T 5, f: X - Y ZEAERTNERET S, 58X
&Y OUEfRRTI C™ 8 { X} £ {Y;} BBHD. Bl LT flx, 1dH 5 Y NDILFHART
BB, fAXi} = {Yj} 2 XY DC nElE VWS, TOHAEL (3) AU KD R
HERRITIY C™ 28I D % T & (5) LD b B,
(7) R™ OHICH U7 Z KIS HERTIN, W R O T U X ISR LT R ORTHU
ZR P & X DS P A\OUERITIEESENH 5, 2L T P PLEKZDZNT—E
TH 5 [9)

3. FEFLS B D OUE

CCTlErZ2l EOBEET S, 72720 0o & w TEEV, R THEMNTINAT TV —
Trbz2tED B, r DARTEVEZNED ITZEWV, M & N 7% R" OHO C" 2Rk L
LT(M—-MNN#0 ERET %,

EFE. (M,N) M N Dgiy T Whitney 502729 &1d. N Ofidly;, i =1,2,.. L M D
FA s, i =1,2,.. Dy IKBCRL, T HICh UBZEM T, M W2ER LICUR U, o &y 2
EAEMRDERR IR T R E, HWICIc L kbl (M} Z R"DHZEHDOHRE
D C™ ZRAENDE] (CT nEEND) T2, ED M; & My DXT ERTD My D5t
T Whitney S&ff 20729 & &, {M;} 72 Whitney C" 73E| &9,
HERRITIAESICBI L T RO T EMEZ %, X &Y ZUERITINES &3 5,

B) X EYNCZHRAERT (X -X)NY #0255, §5LY DRTEIT (X,Y) N
Whitney §eF 2172 Sia 0 O E L THED S LHERITINERICRD, ZTOXITIXY OXT
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KO/INEWV, Ko T X OFHENHERATIY Whitney C" 77EIDMFET %,
(9) ED (6) EREICARET. f: X — Y OBHENUERATIT Whitney C" 73% £ : {X;} — {Y;}
W5,

F/e— D Cr HENCIR B,
EE- MOCELRZT = (|T),7p) T|T| & M DR TOBBIEE. & |[T|H5 M AND
CT WRIRARDL N Z T a >, pld |T| EOIEA O BIETE 2 € MISHLUT plr-1(y) &
r CORERTZTTIERIETH S, {M;} & R DHZESOHERED C" 5EIL T3, Z
DEZE {Mz} DCr %%}:Li {Tz = (‘Tzl,ﬂz,pz)} T%’Tz [ Mi @%@Z (1_)_0 3 Llﬁi@%ﬁ%‘
WrENTVBEE (T} REREATLS LWV,

T;|N|T;| T mjom =mj, pjomj=pj.

ROT LR EHER TR SN TV 5,
BE 1. {M;} Z Whitney C" B#| & %, 95 EEHING (M} D C" ERMWFET
%o FHT M; DERITIND & Z | BRI ENTHERITIN CT BERMN NS, 7220, BR{T =
(I T3], ms, pi) } IVERRATI £ 139 XTD T, w3, ps DHEMHTINZ C &

AR L TEFMRRERE FHEND %,
B (M} &N} 2 Cr I {TM = (|TM|, =M, pM)} ZEEE NI {M;} D C" ER,
f i UN; — UM; &2 C" B (37bb fld U;N; OIEFFIC CT 58 f & LTIES 1
%) EL. & GICHLUT fly, BB M, N\OhHAR LT B, ZDLE (N;} O C" ER
(TN = (IT)N], 7}, p)} BRD 3 DOZM 27 d & & {TM} PEBHENTV2 eI, %

J
AT UTHTY : Ny C f7H (M)} & AN : Ny C f~1(My)} OFEHEN CTERTH %,

TN F(TM) T A oF = fonl,
(N;— N;))NNj #£0 7%, %% Nj, Ny icit LT (wéy,f)\ij\TJ?Y\ &7 7 AN=RENG X (g )
(M; O |TH)) NDWF*AF, F272U My & My W& f(N;) € M;, f(Ny) C My £75550,

EBE. (M} (N} &f:{N} - {M}ZEERILCET S, THIC{M;} & {N} &
Whitney C" 77EI1& 9 %, fWROFEM2IE2d & & T2 Thom BIREMTS, N; & Ny
ZbERUET S, yp, k=1,2,..., 2 Ny DRIy IZPORT S N; OFsEd %, & LT
DI Ty, (fIn;) " (f (yw)) DVZER LSS HUEL Ty (fn,) ' (f(y)) C Lo

BR 2. (M} E{N;}E{TM}Y & f: (N} - {M;}ZLEERULEL, f% Thom Gk
T3, T5&{TM} LICEHENT (N} OER (TN MFET 5. F72 {M;} & {N;} &
{TMY & fINGNTHERRITIN D & X MR (TN} e B,

Thom (3 [E45 7 Thom HA%ld PLALAIREZZ L PRL. ZHUIIELA > 7z,
EIE [10]. f:{N;} — {M;} %Z Thom B L L., f: U;N; — UM, ZEHR C? G5,
Uij E U M; I R" THEGLT S, THHIKNEARK & L ERMEEES T ’K| — Uij
Eo:|L| - UM WMFELTo tofor: K — LIZHAINEBRTH S,

(B4 Thom B TH 2 T &I PLALFRETH 2 T & DB TIE R, LA LEE
FRRTIND & Z N T &M 2] KO D5, EEMHTINZARAR OEEMHTING8 PL L
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4 PEEARE  HHHELL

e 3 2 £ D 1 DORELIHIBEDTIHTH S L TH2 (9], ) T OFHEYTIZHT
T RAIT I, fHEE £V S RAEDHRT €5, ST 1T [10] DFFHIEROE
FIELD 17O L STl B,

EE 2. f:{N;} - {M;} % Thom B L, {N;} & {M;} DIFEEEARFETCEL, &i
I LT F(N;) = M; &9 %, SHICEIIN (M} OFER{TM} & {TM} FEHEI N
{N;} DEZR TN} AEL T, B (=N, f) [TV N (UiN;) — Ny x [TM| WEETH 2 &
RET %, §5LHAENEARK & L EEEES T |K| — U;N; & o1 |L| — U;M; DMFE
LColtofor: K — LIFHARNEHRTHS,

4. EF 1 OFFFI ORI

GlE CY WIZEMETE S, £72 3]0 [4). [5)s [7]). ] FICK->TCY G-ZRHAM & M
D M \D G-RIZMAFMEESNH O, r=w EIRETE S, EHIC[6]ICEK>T. mZz T
DRIZERE UR™IC GREACEHAT % & 34U, M A5 R™ NOUERHTIREIZH 53 [H
FER p MAEL T, p(M) & R™ TH U TO TR TE SICHREESR M/G — p(M)
MR E RS, &o>T M/G%p(M) THEEHBEANS, LhL, ZOLEp: M — p(M) &
CY TRNDT, EHITM ZRDXHICTKA %, X =graphp, Y =p(M) <, L
To: X - Y& LT 5, 95& X FHEMTNEST. FHGEGXM xR DG x X 3
(g,7,p(x)) — (gz,p(x)) € X C M x R™ FHEMATIND C¥ . o1& O il 72720 X 1
WONRZHATIE R MER"ZLTX B R xRTICHEENTVS LT 5,

¢: X — Y IZEETIZROD, 3D (9) DD IID, Ziabb ¢ OREEAEFHERATIY Whitney
cv ﬁ%ﬂb‘ﬁﬁ‘é‘%o {ﬁbﬁ%%ﬁbzﬁ/\%o Xl - Regw ¢|Reng &B< o 3‘% & X1 Ci@ﬁg
Filtt) C G-ZARA T, Xy Dz —DTEET X OEEKNSZ Xo &3S dim(Xo— X7) <
dim X T GX; = X1o £2T ¢ Ho(X1)) = X1 T o(Xq) FHEMRH C ZAIKT 9|y, -
X) — ¢(X1)IE CYLIAF V1 = ¢( X)) EBL o KT UHEERZ ¢l x_x, : X—X1 = Y-
IR LTI, 2N O Z LT ¢ OFEHERMERITI Cv 5#] ¢ - { X} — (Y} DME5N
%, EHIC3D (8) &0 {X;} & {V;} 1& Whitney C* DB THBESICEND, TDLX
¢ {X;} = {Y;} 2 Thom B TH B T EMEFIHEICK > TRE B,

r 2 T KIEEE LT, 20HE 1, 2IC Ko TERI N {Y;} OUERNTIN CT EHR {T) =
(T |.w¥ o))} & A{TYy BEBE N7 (X} ORI C7 H55R (TX = (1T, 7¥, o)} 2
5T %, LA UEH 2 25 T3 TEM 1 213 512d {TX) Z54% (7, ¢) [ TX N X —
X; < |TY | BEETHZ KDL SRTNENT RV, ThbE, 78 ¢ |TX| — X; EEIRE
HTHED., B X, Oz LT, ) 2) ZBRELEST, o(mX ) =) Hp(2))
EB L2 LTV RN, GBIV INT FOGEZFNIBL TH S M. B TR
J AT FOEEEEZIRTIURNTIRND T, {TX} Wz 3 &FTRDOWz>TH
RS 2NN A B

(%) i (gz) = gmi* (x),  (g,2) € G x (X NT}).

(x); DNz E U, o7 L (2) = 1) "Hop(x) 7B KT {TX} HEN D T LI L,
Th»s5, AV8Y FOBATE (x); Zililzd & 51 {TX) ZIEZDOXEATIE R XD
Yk az2EZ T, TOR, —MOBGEIEZAT A A (near slice) EFZE-> T, Z DRk
KEAEIGEWSESICRESE 5,

G HERE O(m) DAVING FRDET G DRTIE M ICEREHRE LTERT 515
B, MEAGROHEETRZM>T. TOBH (x); Ziilcd {15} Zfh%, LA L G-
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ZRADHMFICIEZ CADNZNTHA I 0D, D LAIHT %, id5Z2HICT 5728,
dim X; < dim X;41 &9 %, WLz f> DT, {TX) Oz NEEME2E 5 —EEL,
FHE (%) &

()i pom =m o,
(% %); 5 7TZ~Xo7r3~X:7TiX, i< J.

22U gl X D R™ x R™ TOEHEND ¢ D O Hiik, HREEE NH-> T, {7 1i <k}
PRLT (%); & (%) & (k% %), DIGIZEND XS INFENTWeL TS, TDLEEECH M
ICHERZEHE LTEHLTOWR T e D 1k 72 (%)) & (xk) D7z SN2 K DI L 2DIEFA
DTHBo (xxx);; Ml ENB K I mf ZBIELZRFNEIOT R0, Ktz
I <kZBHEL, EAGRITEI<i<kDEE (xxx) MtilzENTVBLT 5, ZD
EE (x#x) Ml ENB X o ZIEIEL AT NUTVIT RV, ThiZ, GEM DT D
FRa e OTEE & 1 OHERTIY O 82 > THRENHEROFHE TR TTE %, TDX
312G & M DR (TX) 355,

GEMB—RDBZE, M OFalHLTGE, ZGDallBIT2ETRETD, THER
FAREMICED aZEL M D CY G-tttk SNH O ER G, S > (g,8) = gs € M
& a D M TOEFHEAD C° FHITBIC 55, & BIC Gy & O(m) DESIRET S 1 ERZ
ELTEHLTWA EREE S, TR LUG xg, SE MY 4 AT 4 FEZENKT 5, 95L
WD G & M OFREHAEORRE G 2> T, {75} D (x); & (6x); & (k5 %), DT
X2 p I (f(9)) TFN S, f(S)IFY DFER. MDY Id2—27 Yy FZEMTHLTWS
DT, M OHFTAFEMED an, o € A, VEN a0 IKRHLT ED S, WEN {f(Ss) : a € A}
XY CTRFARERS, BillLlTaec AZ X; CGS, x R ERBEIICED, TN
Zoa EEHE S =5, £BL,

LORHERALACLSIC. BEEREAB>T, (71X i < k) BEME (1), & (+5)
& (kxx); MliTeENDEIMEENIZL T B, SHICHIBEI(< k) DH->T, 7l M
(K & (o) & (ko x)ip, | <i < k,DililcENBKSIMFENTLTE, ZDLE ) %
(e x)p DT2 END K ITBIETIUTRV. ZHUE S, = S, D & ZE S, ORFEREZ 5
TLEOGHERIULXIICTES, LML S # S DE XIS OEMIEE S, DZNEILE
IAMREMEND B, Ko THIENED 5N K ST, RDOIFEDLAIC nf ZIEIETE 5T
LRAIHLT, —ROBAIC X REET 3.,

GHAVINT bk C¥ Lie B¥T M & C¥ G-Z8fF. LT M I<lE C¥ G-AZ Riemann
HEHLNHBIHEE.

COHmEE, DUEMICEZD, MIBEHRELERCELSIC )l ZIBIETE S, £ GH
287 C¥ Lie BET M D C¥ G-ZRAD L& M I C¥ G-[AZE Riemann H &I
5 &Ci%ﬂ%hflx‘éo XoT Sl el Sk I Gl—(l_”_ Gk—ﬁlg Riemann %Jr%%b\fhéo %h%ci
B, A URIGINC | OUERINTIY O 58 lio T, B35, 2 UT (x5 #),, Zilil=d
X3 nX BIEET %, O

RARICBICMIRINTTE I L TH DM, M T T —DORKFEFFEO—DZIRN
THL, TN 1 DHERRTI C™ EIMER BT L TH B, C¥ ATV —TIRHZEL,
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jb{Pﬁ@EEﬂB@éburwitzWﬁ&
EXt bARAOo—~Dis A
KROFE (AAFIHRBESRRIFEE (DC 2))

7 IR LSY b Hurwitz fEAE, BHEOBERB~OT LA REOBRRIEAE LTERSN
LZH0T, KT hARrY—72EE )/ Fa I =R’ bh b xR 25T 5 EToREM 72
BHRTHD. 7oA REEO R HEEMERAOTOMIC T D Hurwitz {ERHIC X 2 HuE DT
BRERE L. &5, ZOREOT LA RIREE~DIGHIZOWTRR S,

1 Hurwitz {ER

nik7 LA Nt B, OFRRPEERAERKIC 01, 001 (0 IZTFTORD L D707
VA RORMEFE) ZHWT, RCTHEIXOLNAFITES LN TS,

<017 o, 0p—1

oio; =oj0,(]i —j| > 1)

%%ﬁzqﬂﬂﬂﬁ—ﬂ=1%>
)

Figure 1.1

nIkK7 v A R#EEB,IE, BEG DO n{HOBERE G ~KO XS IZENSIERT S
(B, ® Hurwitz {fEH & FEZIL TV D) -

(91, 1 9i-1, 96 Git1, Giv2, "+ 5 Gn) * O
= (g1, »9i-1, Yit1: Gi1 GiGi+1s Gitas 5 Gn)
IFTIE, GEREEL, (91, ,9,) € G" O Hurwitz 858 (Hurwitz fEHIC XL 5
WH) &S (g1, 0, 90) - B £ EL.
G"D2ODIC (g1, ,9n) & (91, ,9,) 7S Huwitz [ TH D L1, £ b
23[A U Hurwitz JLEICSH 5 & &, BIG (g1, ,90) € (g, -+ g,) B, £ 70D L &%
AN

ANETIHE, n+1RT A RREB, . Onflo (8722%) EAERAERTOMIC
BT 5, B, D Hurwitz WuE DTSR EZRE LR 2 TR E L CHRETSH. £
7o, EREROT LA Nikdhm GEHIEL 3 F) ~DOISHE T 5.
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R TATUH (T LA REEOIER) OFEMERAERMITOMIZIT % Hurwitz B
MO TR THD LIEDNS (2,5,68,). EOMBERD LTS :

GHELBEORETSH. G"OEEDIT G = (g1, ,90) (XL, my; =min{l €
NU {oc} | 7(gi,9;,0) = 7(g;,9:,0)} £F 5. 27T, 7(g;95,00) = id &L,
I # 00 251 7(gi,95.1) = gig;9i-- (g & g; PRSI OW) &35, (B2,
7(9i, 95, 3) = 9ig;9: THBH.) ZOBE, TAFUBEAT & (ty, - to|w(ts, t;, mi) =
m(tj, timy), 1 Si<j<n) LEDDI LT, R f9 0 AT S G b g DY

&, (Ot ,tn)-B) (91, +gn) - Ba —?’ B, k7. Lienio

T, Hurwitz #UE (t1,--- ,t,) - B, DIz KD 53 - B, Dtk E Rk
LYK AVAS RN Y oY AW

KANFIIT VT VD1 DOTHLT LA FRICESRZH TS,

2 Some notions

ZDETIE, n+1R7T LA FﬁiBnH D nEHDOEFE B, 1" ~® B,, ® Hurwitz /E

FIZHOWTH RS, EHES 25 <T20IZ, B, & B, OEEHERERITTEXBT 5 2

2D ity ety ZENER By ORI AEROT o, -+ yo, &L, 01,00 001
% B, OREMERERITE T 5.

EHE 2.1. 175 nETOBEBROTT p € Sym{l,--- ,n} ITH LT,
(1) (t w(l : @(n)> B, = {90 good},

J¥E. S.P.Humpries O3 [6] IZHBWT, ¢ = id DYH O Hurwitz #iE, A5
(t1, -+ tn) By DTS, " HHERM” 2z Z EAVRENTWD. £ TEHIT
6] CEAINT “HDOFRMT &, D plZxt LTIEBE L “ p-good” &4 fHT 7=,
LT, Hurwitz B (L), o tpm)) - Bn PILHY, SefF “ p-good ” & 7o § F %

RLTC. , BE L LTO%ES (tw( L tom)) - Bn = {¢ —good} THD Z &
R LT itﬂﬁ#« (1, W) )ﬂ@H&Wlf%é LiE, o =id
®%QK[],TéhTwéﬂ —fED o DA B Y SEDFER DT

ST, @&z —DEELT, p-good DEFKEZILRLD.
A={keN|2Zk<n e (k-1) < (k)} &BL.
ORI 1§z’<j<n+1 IR LT, Bpp O, ZIRTERT S ¢

t;§:< k= z+1tk > tHk z+1 ’ 1EL/Ek:1(k€A)’€k7é_1 (]CQA)

th & o \TATRET 23 RAEROT LIRS,

77, BOTPEN = (1Y, € By | 1Si<jSn+1} TERTS.
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1SkSn+1ICxLT, Pk:(k,O)eRsz%)

C, #RENOHET, 28 Py, P,y 280, #55P P, #ERIRKF LD L
T5. 4, CL R Q. 1<k<n+ 1) ZROEIICED

* Q1 =P1, Qu1=Pnp

2 kSt LT, Q= (k) 1BLy, <0 (k€A), yp >0 (k&A).
SorE, B QQ &, 1 HIET B85 LIRS,

Bl 2.2. n=411, (p(1),0(2),0(3),0(4) = (4,3,1,2) £T5H. ZDL&E, A=
{(keN|2<k<4,07(k—1) <o (k) = {2} THY,

(1) 5, e X2, tf, =tsta™ 1t1t2t3 L(®21) Th5.

(2) K2.21%, tf, € SPICHIET DO THD.
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FE. AIOR—=UT, IV RERTUIZHICT 287 ZERLTEN, REZDOX
IR T L0, ZOEHEZHIT5

Po=Qo=(0,00€R? P,is=Quo=n+20)cR2EL, C, ZRZNDH
AT, 28 Py, Poyy Z38Y, PP, 2 #EEICHOLD LTS,

DER*WNDID = Cy 725 E 35, DOT BT M A Y ME—{hy, e
T, % u € [0,1] & LThy = id, hylop = id Z¥i/=L, K u € [0,1] &4
(z,y) € UM QiQi1 \IZH L, hu(z,y) = (v, (1 —u)y) 2T bDE L 5.

IDOLE, FilZK LT, m@Q)=P &b, ZZT, 1Si<j<n+1iZxf
LT, af = h(QQ) LEWD. 20L&, 0af, = {P,P;} THY, ke ARD
Faf TP, DO LS, ke AbiXal 3P, OTHIC< D (KM2.31%, #12.21281)
L5y QuQu D hy IC kB of, KT .

T LA NEEE RS EMAROGHIFHOB ORI (1)) 2 LT, /N2 RAER
TS F o LREARED (K210, 1F, K230 o, OTH/NERT T —
%, TOMUZIED 7R3 6 180 ERERT 5 L9, (D, {Py,---,P5}) DEHLE
[FAR GG OA Y P =T 5) .

EBIZ. M EBLT, of & QQ; BH—HTE2DT, tf & QQ; FH—HT
X5, I, Qi—Qj%tf} (XIS T D5 E AT T TH 5.
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EE 2.3. (29" DI (g1, ,gn) DY p-good THD LI, g1, , g [TENEIURE

ST DT ar, -+, an DG (1)-(11) Z2h72 3 & ZiTn D

D) kAIRBIE, ap & 3ZbBERN, £EH518Q TRD5.

(i) k < 12D, ap & qp BRDDHILHIE, RO (k) Bk o, 22T, (i) &

D, 04y U0q 3B XD E3RNBRY, dap = {Qqu, Qy}, 0a; ={Q,. Q.} &%
(%) TQ,, Q, Q.IZZDMEI, A C, RICEERE D IZIES. ]

(i) a U+ Ua, 11 R/ERE PE—FHETHD.

Bl 24. n=4,1L, (o(1),0(2),0(3),p(4) = (4,3,1,2) T %.

P
(E9)4 L p-good TH 5.

IDLE, (515,113, 15) €
B, A ={keN|2 <k < 4,90‘1(k— 1) < oY k)} = {2} THY,
t53, 154, 13, 55 WK T 2HNE 2.4 D LD IT72 2.
Y
Qs
Q4
a2
a1
T
Q1 Qs
Q2
% 2.4

WRE. o€ Sym{l,-- XL T, {ig, -, ipy={2,--- ,n}\A (iy < <iyp)
EL, A=A A, AL EB 1 ET AL, A=ttty € Buyy }:a“
L. ZOEE, (Ay) A, (Ay) 1t Ay) 1E p-good TH D (EHER) .

21(1) ZRDD &, (Ay) Ay, -, (Ay) ) € (toay, - W)) B, w;é
Ziux, Hurwitz #uE (lf1, e ,tn)-Bn YR A<p WL HARIZ K- T (¢ ( o(1)s " ,tw(n)) -B,
ICBDFEEEWRLTBY, #((te), - stom) Bn) = #((t1, -+ ,tn) - Bn) D A/RYA
D, T, [6]1CE o TH((t, - 1 t,) - By) = (n+ 1) THVY, EHL2.1(2) HR
.
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ZOETHE, PLAT7AV—, H LIZC® BT IV —DOHFT, 7 LA Rkl
([3,4]) DEFEL, F2ETHOLNIEROISHELRRD.

D?, D% 2%t E L, D? x D2 — D? (i = 1,2) % i & B OFEREN T &
T5. D? OWNES IntD? NO mAHO R OES Q,, € D? Z#[HE L, R 0D Lo
=3 Yo € 8D§ ZIEETD.

D? x D2 O ~EUNT 2> FFTEHICHOIA F 7 10 & (11 ATRE 7R 2 IRT A%
KSRy ZFERLETD2mIRT LA NiRihiE Th D L1X, WOFMERT-T L&
AR
(1) HIBRGAR pro|s : S — D2 SREm OB THE TH 5,

(2) SOBER ISRV Y v s b—F 2 D? x ODFIZEHEND,
(3) pri(S Npry*(yo)) = Q-

Z 2T, WISHE pro NEMTH D L1, IntD2 NOFRES B(S) C D2 237
EL, Ry eX(9)ITHLT, [Snpry'(y)|=m—1ThHV, Kiiyec DI\ Z(S)
LT, |SNpryt(y)|=m THDHEXIZWI. Zorkx, N(S)C D% S D4y
IR DEEE &5,

IR, FRZWr 6720 RY, BIZmiR7T LA Rkl e Wole b, yo 2 5m e 7
LZmR7T A NRMETHL &3 5.

EFE 3.1. S, Zmk7 LA Nkl &+ 5.
(1) S & S BMWEME THhDH E1E, &S BROEM () %77 D} x D2 D
AV P A{hSucpo [CE2TDI x D O TT B b Y FE Y 72725
- AR

(%) Fuel0,1]iZx LT, prg=pryoh,, 7D hu|prg1(y0) =id.
(2) SESNEME THDHEIX, S&SPROEME (k) &lild DI x D3 DAV
FE = {hutuep (L2 T D} x Dy DR TT By b Y FE Y 7D L&
N9

(J) Fuc[0,1]1cx LT, hyopry = prooh, ZiMii= 3 FAHEM h, : D2 — D?
ﬁ‘ﬁ@j—é, VR hu|pT;1( id.

vo)

LIFTIE, S% D?x DNOWEcm 7 LA RikghimE L, (S) % S D5yl
MOEA LTS, 12, Cp = Cn(IntD?) % IntD?* ® (AP 28 L) m sl
BEZEMET 5.

ZoEE, v—=Tc:([0,1,{0,1}) — (D3 \ 5(S), yo) (X LT, =T as(c) :
([0,1],{0,1}) = (Cpn, Q) & as(c)(t) = pri(S Npryt(c(t))) € C,, TEFET H. S
DT LA RE FaI— SFHERM ag 7 (D3 \ 2(5),y0) — 71(Cony Q) = Bons
as([c]) = [as(c)] DT ETHS.
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LR, #(3(9) =n &3 5. X(9) BT 5 Huwitz 7 —27 Y X7 A &1F, Dj
O nEOREMT —27 O A = (a1, ,a,) T, WOFHETTZTHOEN D

- % a; DIERIL Yo, KR S(S)OEN TR THD.

i A jblEaNa ={y} THD.

sy DAY Tay, - ,a, I TZDNEIZENS.

F72, Hurwitz 7— 27 VA7 A AHEET 5, GEARRE m (D3 \ 2(9),y0) D)
Hurwitz AR (p, -+ pin) DEE D

ZDLE, SOAIHRETD T LA RV AT A LiE, B O (as(im), - as(in))
DI L&V,

1% D? x OD2INOHAm 714 KT, pri(lNpry'(y)) = Qn 2= o &3
5. b€ By %, L7745 =pryy) TRV TEONEZm 7 LA RET5.
SA,, %, B, OEMEFERTOREITE, B, OEENERTTOW OIS
2%, By, OERHEAE LTS,

#RE 3.2. ([3,4))B", DI (by, -+ ,by) B, L ZBER LT D nHORE S EHD>m ik
DT LA MR O T LA RURT LA THDI2DOMEGEMHE, RO (1), (2)
il 2 ThD

(1) Kie{l,--- ,n}IZXLTh € SA,,

(2) by---by, = b.

i’ 3.3. ([3,4)S, S" & nfHOSIR AL, X(S) =X(S) AT 7 LA NIk
M s 45, £, (b, ,b,), (U, 0) ZFC Hurwitz 7— 27 ¥ 27 WA
BT 57 LA RV ATLETDH, 2L X,

(1) S & S BBRNFEME T & 2 BAG3 AR, (by, - by) = (U, -+, 0)) 272
ZEThD.

(2) S & & WEUET o D BEFEAEE, (by, -+, by) & (W, -+, b.) A Hurwitz 7]
iz THS.

S%, (by, - ,bn) € (SA,)"&ET LA RVAT LELTREORE M DT LA Rk
HiEE 35, Xg%, S(S)=%(5) 2H7=79 S LEfERT LA KRl S’ ZEO5E
FEEE L 5. MifE3.2 L33 LV, XgDmaR s Hurwitz 85E (by, -+ ,b,)-By
DOILEERIZIT I LI H 5. BEH21DRE L TIRESED 72720, t,---t,
1% By OEMAERITTE L, % Sym{l,--- ,n} OEESNTLET5.

R34 S%, (ty), tpm) € (SApn)" BT LA FUAT A& LTHD, ki
n+107 LA RIS T2, Z0LE, #(Xg)=n+1)"Ths.
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FRRFOFREE KL [T 128 WTC, 7 LA NEEB, ® 2 2OEE B2 Ot
B 5 Huwitz BUENGRO & X, 2OHE LT 25 m OXE 52T\,
Flom =3DHEITENTL, (RO nIZX L T) nfEOER B OILicBiT 5
Hurwitz BUENAIRD & &, ZT0H%2 Lo oiidt o2 noX&E252T0nd. &5
IZm=n=3DHAICBWTIE, Huwitz BENFRO & X, ZOHREO T
K%, fEHOHRE 7 7 7 %o THREAICEEL TW5D.
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Braid presentation of handlebody-knots

FEA B (RIRANZ AR AT

1 XC&IC

INY RIVEEECR &1, 3 KockRi SPICHDIAENTNY RIUEAD T £ TH5. NV R
JWAFE O HOREE L 1, DALY RIVAOHEROZ & ThH5. BHEOFETCHE, ZD
IEHIERS 2 & % 2 & TR DNV RIVIAFECH EHRT T EMTEHDT, N FIVEK
EOHIIMECHDOBRBILED O D TH 5.

2 DD\ RIUKETHED, S DAY FE—=THWCZHS> DO H S &, ZNHIIEHET
HBLVS. e 93 NICEHEMICHDAE NI BIVK AR S D% BBEG > R
JZEN OIS RARE N

N FIVIKEOHIZ, H2HEE5ZZRM 3T S 7 (SP ICHDIAENTGR 37 < 7)
DIFAGEEE LTERT T ENTE ([7)2W), TOZEM 36T Z 722 RIVEFTHD

ERANA >V EV .
©» (0

L N RIUVIARE O H & ZFDZE A ISA

— DDV RIVIAFECEICH U T, ZDZEB A1 IR EFEET 20, 2N Hid S8
DAY FE—=L, SSHNO JFMEKE THS IHERTHWIEODH S T &M, shiillck>T
IRENTNS [2).

ETORTHIE, (ROETEETS) T LA FZ2HWTEREINSZ EMHILENTNS.
T LA RRHIEEZE DT NS, 7L A REHEUHX D PR TVEDTHD,
T LA RERZEELUIECHOMRIZEAICITDNTWS. NV RIVEFETHICEWT
&, WYET LA RERESZ2LICK>T, 7LA REBEL TN RIVER O HZ
T BH T ENARNFOIETH 5.
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5

X 2: TH 2

AR T, N FIVEKRECHD 7 LA FRRDEFREZ G X, BTONY BIVIERTHED
TULA RERZL DT 2R Y. RI23RT LA FERZ L DR 2 DNV BIVIARTTH
ICDOWVWTRBNTIRIRZHNT %,

2 N\YFIVEEUBEDT LA FRT

NERHNICBNT, B S FICHIICHE STz n AOMOREARD T L2 n RTLA K
WS RS, FOEGROMEDRI T LA RZ2fiT LA RS, M3D &I, 7L
A ROUSZIEIC DR S T & THRUH (F7238AH) BWE5h, ThZz 7 L1 RORMa
EWVS. COXSIHUTEHZT LA FOMaL LTI Lz BUCBDT LA FRRE
WD, BTOREUCHDT LA REREE DT LA Alexander IZ K> TORENTWVS [1].

&
Lt

3: T LA R EZDOEAUDOH]

N RIVKRUCHD 7 LA RERZUTOLSICE52 5.

nRKTLARBEARE g < nlcHLT, KI4DXIICET 1 HEHD L RO E
(g+ 1) HBEEHMS n BFEHD L TN (n— g+ 1) HO AT THATL 5. ZD% 2% H
Mo gHFRHD L FObSZ, 1 /EO L NObG R Z8E SHfc 22 3 liES T2
%. D EOBSRC K-> T, 22 34l 72 7 LA HOREEMRENS. ThZ2T LA RS
DFE g DEAT L VW, ol (B) TET. AT, o, (8) DEHTHS5E, DX oy (8)
DEFER DD 1 D THIHEEEZD. cl,(8) &, FE g DNV RIVIREET HOZER A8
AV THZEDT, ZONY RIVAEUHIZT LA RICE>TERIT T ENTZS. 2DXD
IKNY RIVIEREUHZ T LA RTERT BT 2N\ RIVEHEUBDI LA FRREW
5. ZDT LA RERE, MUCHDT LA RERROILEEZ> TS, HRICg=10Dk
X, DX 01 DT, EFEOT LA ROBAUTHS.

2



69

clg

4: TRy g DPAL

BE 2.1. Z2TCONY FIVAREOHIZ T LA FERRZED.

COEMIZE, Alexander I K BFETHICDWTORERDOILIE E 75> TN 5.

INY RIVIKEEOH H 27 LA RERT 27D E T LA ROMOE/ Nz T LA
RIEE L U, b(H) THET. 7L FISHIZESOHICH LTS hie i Rk
DOEDT, MUHDOEMEZNZEDTHS.

AR TEA LT LA REROEFO—DIX, N> RIVIAECHOBEANE 7 LA Rig
BOMICROEGZRNH B ETHS.

M 2.2. W8 g DY RIVIKESOH H B EWITH 2 BB DI, b(H) = g TH 5.

3 NYFRIVERBUBRDR, 8

COETE, NV PV CHDOANERTH S R, ¥t (2, 3] DERZMHINT 5.

XZETHRVEGETS. THER «: X x X - X HBRONEERTZT EE, (X, )
ZHVEIV[4, 6] &0,

Q] EEDae XIZH LT, a*a=a,

Qo) FED a e XITHLT, S, : X — X 5 o xxaNEHY

(Qs] EED a,b,c € X I UT, (axb)xc=(axc)x(bxc).

X =27, (=2/pZ), “H#HBEZ axb=2b—a T 2L E R, = (Zy,*) EHY FILD
NHZEHIZL, CheZEEhY FIbEnS.

KZZEf3Mi7 570, B(K) % K DIUDEGETS. o E(K) — Zy VK D Zy
7O0—TH5 LiF, & 3MERICH LT, #hi L TWBIU%Z e, 60,03 T EZ, pleg) +
o(es) +¢(e3) =0 (mod 2) ZHIcT L EZNS. K & o Dl (K, ) 2 Z, 7O—{FEZE
M3@I>7L05.

R Ly 7 O—FE 24 34l 75 71K LT, R, BHZ2EFKT S, (K, 9) 2 Ly 71—
XEM 3T T 7L, DEZTORRETS. AD) 7% D OilEhOEH{ETS. 2T
D Oyl ld, PREEIGTEMZME TS D O iR 5. BRC: AD) — R,
MWDDR,EBTHSLIF, RTORRETHRDOREMATK S DIRETH B L EZ2 5.

CCTC,sl370—p THANEUOEERUEZERL, £Tca"b:=a, ax*b:=axb
£9%.
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/\ €L
4 a

X 5:

a a*Sh

|«

BARC: AD) — R, WEMEBSTHZLE, CIEIDDR,EOTHS. CTDOXSKR,
FazBRAELL VS . £z DD R, BEak% Colg, (D) ££KT.

a0

6: HZx Ry R EIEEWR Ry o

EHE 3.1 (3). D, D' 2 Z, 70— EZER 37 F 7T (K, ) DA ETS. TDEZE,
#COZRI](D) #COZRP< ) 75\&@4[‘9 Oi D COlRp( y ) = COZRP(D> Ci Zg 71:[‘_{71
X 3IM T T TOREETHS.

LEED #C0l% (K) ZRTEDS.
#Coly, (K) = {#Colg,(K,¢) | & K DZ, 7T1—}.
EE 3.2 ([3]). N FIVARUH H OZEAISA 2 K, K'IRL T, RDEKD 31D,
#Coly (K) = #Coly (K').
DED #Coly (H) = #Coly (K) 3N FIVERTHORZERTH %,

ZE3M TS 7 KD MRV 7(K) &1E, 0t C K THH, D KUt U---Ut, Dffi
ZERIMNY RV E 755 X 97, K ORI OIAT NIz A WICH b%tcb\é’)l&tl,...,
DEINIDT L THS (5] Z). NV FIVAKTHODEREDN S, [ U2 FIVERTH
H7Z2RTZER 37 Z 7D~ FIVEIEETEHELN EDNDNBZDT, 7(H) = 7(K) &

ERCY

EE 3.3 ([2). NV RIVEKUH H OEEDOZEMANA Y K &, K OFEED Z, 71—
QIR LT, KOO ILD.

log, (#Colg,(K,p)) —1 < 7(H).
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T LA RIBBOEREDNS 7(H) < b(H) — g D ILDDT, IMEFHN S

% 3.4. NV RIVAREOH H DITEDZER ZN VK b K OTEED Z, 70— o IZHf L
T, XKD LD
log,(#Colg,(K,p)) +g9—1<b(H).

il 3.5. K7D Zy 7—{FEZEM M T Z T 7% (K, ) &L, KDEITNY FIVIAKETH
THETD TDEE, #Colp,(K, @) =21 THHT NS, 4 <b(H)DIh5B. X
(K, ) 1Z4RT LA RO 2 DT E LTREINTWVWEDT, b(H)=4Thb

%h

AN

e

1
" J

~

(=}

X 7

4 3RITLA FRTELDEH 2D\ FIVEFEUB

DI, 3 X7 LA RERZE & DR 2 DNV RIVIKRSCEICOWTIHERS . 3 X7 LA
R B3t U T, 2 DAL cly(3) DWW Ol il 2 DN RV U HIC R 2 2%
Z%. TLAROUED EFODEMNDEXKEDXSIC 6D THASH, (1) DEHIFE
TGN 2 D TH S T2DR< .

Ol 1] @] ] & ]
3 1] T N
. @[] &1 1] ©®] ]
T 1] T
X 8:
1S DAY PE—T, MIDESICKRTIOM O TURAEAZLFESETEXVDT,

8 (3) DIKD 3 KT LA REEZNETHTH BT ENDNS.
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B = | B = | B
C C

s

10:

EHICHI0DEXICT LA FOUEZEYICRAEZIEEHT LICKD, g3 RT L
ARB EL1IDORFITHTBHENTZS.
F3RT LA Rid, 3RT LA REEOBHENERTTC o1, 00 ZHWT, 02, 02, A? = (010901)?

DIETEITEMNTES.
k\

L L
A AR
ot 0y

AZ
11:

78 4.1. b(H) = 3 DR 2 DNV FIVIRRSTH H 1E, RDKX 573 RXT LA K 3D

WTEINS.
B =A%* (H Ugia‘f’) O'STH.
i=1

TTC, kEER a;,b; (1 <0 <) 3MEEL by 13AETH B,

EHE 4.2 p 2w FHE T2, p2ME 41 THEASNTVWE3IRT LA e L, TOME

ICEZABNTWD Zy DIeZHNT, @ik (i, ),k € Zy) TET.
(1) (K, ¢1.10) DIEEAMAR R, BEtOZEDDIILUTO L EDRTH .
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elrez

12:

r+1

J ZbiPi =0 (mod p).

i=1

a; a;
Piys = (1 — @it1biy1 + aﬂ) Pi1 + (aiﬂ — Qiy1b; — aH) P,

( i

TTTh= Y %,&:0&‘9‘6

k=it
(3) (K, ¢101), (K,p000) FIFEZ R, a2 727300,
COEMA42 ER34ADLLURNENINS.

% 4.3. \Y PV OH H OZERI AL Ve K £ 3%, K OWHER2 3D0D 7, 70—
IR LT, K WIEEIAE R, Btz D7R 5, 4 < b(H).
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A POLYGONAL PERSPECTIVE OF NIELSEN
REDUCTION AND THE CHORD SLIDE GROUPOID

ALEX JAMES BENE

ABSTRACT. Nielsen reduction is an algorithm which decomposes any
automorphism of a free group into a product of elementary Nielsen
transformations. While this may be applied to a mapping class of a
surface Sy,1 with one boundary component, the resulting decompo-
sition in general will not have a topological interpretation. In this
survey, we discuss a variation called fatgraph Nielsen reduction which
decomposes such a mapping class into elementary Nielsen transfor-
mations interpreted as rearrangements of polygon domains for Sy,
described by systems of arcs in Sy1. These elementary moves gen-
erate the chord slide groupoid of Sy 1, which we survey and describe
in terms of generators and relations.

1. INTRODUCTION

Let us begin by briefly recalling Nielsen reduction for an automorphism
of a free group F,, on n free generators {x;}_ ;. An elementary Nielsen
transformation with respect to these generators is an automorphism of
F,, given by either permuting two generators: z; — x;, inverting some
generator: x; +— I;, or multiplying some generator by another: z; —
x;xj for j # i. Nielsen reduction is an algorithm which applies basic
cancellation theory to decomposes every f € Aut(F,) into a product of
these elementary transformations [4]. Roughly, the algorithm proceeds
by continuously applying elementary transformations which reduce the
total word length of the generating set { f(z;)}7, with respect to the z;’s
whenever possible, with the final goal of obtaining {z;}?_ ;. In the event
that no length-reducing transformation is available, a lexicographical
ordering of F}, is used to ensure progress is made towards this final goal.

Let S, 1 be a surface of genus g with one boundary component, and
let m = m1(S,,1,p) be its fundamental group with respect to a basepoint
p € 05,1 on the boundary. The mapping class group M, ; of S, acts
on 7 and can be identified with the subgroup of Aut(m) which preserves
the element 0S,; € 7 representing the boundary [8]. Since m = Fy,
is a free group, every mapping class ¢ € M, ; can be decomposed via
Nielsen reduction; however, this decomposition has no obvious topolog-

ical interpretation.
1



2 ALEX JAMES BENE

In this short survey, we will discuss a variation of the above algo-
rithm for mapping classes called fatgraph Nielsen reduction which was
introduced in [3]. This algorithm has a simple topological interpretation
in terms of polygon domains of S, ; (see the next section) and in fact
produces a sequence of elementary moves, called CS moves, relating any
two polygon domains of Sy 1, not only those differing by the action of a
mapping class.

Motivated by this application to Nielsen reduction, we introduce the
chord slide groupoid €&, ;, the groupoid naturally generated by CS
moves, which can be thought of as a groupoid laying somewhere “be-
tween” the mapping class group M, ; and the full automorphism group
Aut(m) (as discussed at the end of Section 2).

This survey essentially summarizes the results of [2] and [3], as well
as some results of [1]. However, the perspective taken here is different in
that we do not emphasize the use of fatgraphs and chord diagrams, but
rather choose to focus on the dual notions of triangulations and polygon
domains of S, ;. In some ways, this perspective is the most natural and
classical, and hopefully this will allow for these results to be accessible
to a wider audience.

2. THE CHORD SLIDE GROUPOID

Instead of considering all generating sets of 7, let us consider only those
which can be topologically realized by 2¢ disjoint arcs in S, based at p.
We will call such a set a CG set! and consider two CG sets equivalent if
they are realized by the same collection of arcs. Cutting along any such
collection X = {xz}fil of arcs decomposes S, into a polygon Px with
4g+ 1 edges labelled by 7 (see below), 4g of which are identified in pairs.
We call this a polygon domain of S, ;, and there is a 1-1 correspondence
between (equivalence classes of) CG sets and polygon domains of S,,.

When a particular polygon domain is assumed, we shall denote its
oriented sides by {ci}?io, where the ordering and orientation is given by
the clockwise cyclic ordering of 0P with ¢y = 05,1. See Figure 5.1. We
shall often abuse notation and confuse an oriented side of P with the
corresponding oriented arc of a CG set or generator in 7, so that we
will often simply write ¢; € m. An immediate observation is that for any
polygon P decomposition of S, with sides {c;}%,, we have

4g 4g
(1) ch- =1, thus Hci = 05,1,
i=0 i=1

IThese initials stand for combinatorial generating set as introduced in [3], although
perhaps topological generating set may have been a better name.
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where again we consider the boundary 05, € 7 as an element of 7 and
we use a bar to denote an inverse in 7 or the reversal of an orientation
of an arc. As each arc of a CG set X corresponds to two oriented sides
of Px, we can (and will) canonically orient and order the arcs of X
according to their first appearance in JP.

As a familiar example, a symplectic generating set {c;, 5;}7_, with

_ilai, Bi] = 05,1 defines a polygon domain of S, ; with sides ¢; = f,,
Cy = g, c3 = [3, etc., identified in the “standard” way.

Recall that a groupoid can be described as a category in which ev-
ery morphism is an isomorphism. We define the chord slide groupoid,
denoted €&, 1, to be the groupoid whose objects are copies of 7, one
for every equivalence class of CG set, and whose morphisms are the
automorphisms of 7 provided by taking one (canonically ordered) CG
set to another. In this way, we have a groupoid morphism (functor)
CS,1— Aut(m) which is neither 1-to-1 nor onto (neither faithful nor
full), but does have trivial kernel.

By the fundamental result of decorated Teichmiiller theory, it is known
that €&, ; is equivalent to a trivial groupoid, as it represents a discrete
version of the fundamental path groupoid of a contractible space, the so-
called decorated Teichmiiller space of S, (see [1, 5, 7]). In other words,
there is a unique morphism between any two objects of €&, ;. Moreover,
the mapping class group M, ; acts freely on the chord slide groupoid via
its action on (isotopy classes of) collections of arcs. Thus, the quotient
CS,1/ M, is a groupoid equivalent (as a groupoid) to the mapping class
group M, itself. The advantage of the groupoid viewpoint presented
here is that the generators and relations can be stated quite simply, as
we shall see.

3. CS MOVES

As the source and target of every morphism of €&, ; both correspond
to a particular generating set for 7, it makes sense to ask when a mor-
phism of €&, ; is an elementary Nielsen transformation. Instead, let us
ask the related question, when a morphism is a product of elementary
transformations involving only one multiplication, so that up to permu-
tation we have

+1 il)il

z; = (2775 for some i # j, xj, > a7t for k #14,7.

It is easy to see when the answer to this new question is “yes”. It is ex-
actly when a morphism is between CG sets which differ by the exchange
of a single generator such that the corresponding polygon domains P,
and P, are related by cutting a triangle off of P, and reattaching it to
another side of P, (according to the identification of sides of P;). See
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X

9S8y 0544
Ficure 3.1. Triangle cut slide move.

Figure 3.1 where we depict the transformation z — yz. We call such a
move a triangle cut-slide move, or simply a CS move for short.

It is not hard to see that a more general cut-slide move, where we
cut off a larger polygon from P; and reattach it to another side, can
be decomposed into triangle cut-slide moves. In fact, we shall soon see
that CS moves generate all of €&, but first we return to the topic of
Nielsen reduction.

4. NIELSEN REDUCTION

We now adapt Nielsen reduction to the case of polygon domains of Sy 1,
with CS moves taking the place of elementary Nielsen transformations.
For this, it will be convenient to fix a particular symplectic generating
set S = {ay, B;}72, to serve as our “basepoint” in €&,,. Let Ps be the
corresponding polygon domain of S, ;, and let us denote its (ordered)
sides by {o;}:25", so that o = 3, etc.

Now consider any other CG set with polygon domain P and sides
{ai fﬁo. Our goal is to find a sequence of CS moves which will trans-
form {c;}2, to {o;}/%,. As with classical Nielsen reduction, we first
concentrate on word length and define the length of P by

4g
[Pl=2 e
i=1
where |z| denotes the word length of x € 7 with respect to the letters
{Ui}?il'

We call a side ¢; of P unbalanced if more than half of it cancels with
one of its neighbors, meaning either ¢; = fy and ¢;.1 = yr as reduced
words with |y| > |{|, or ¢,y = ¢z and ¢; = ar as reduced words with
|z| > |r|. It is immediate that if ¢; is unbalanced, a CS move involving ¢;
can reduce the word length of P. As |P| = 4¢ if and only if P = Ps (due
to the restriction (1)), if we were always able to find an unbalanced side
of P, we would have our algorithm for evolving P into Ps. Unfortunately,
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we cannot always do this; however, we will always be able to find a CS
move which makes progress towards Ps and is non-increasing in length.

We say that ¢; is balanced if ¢; = xy, ¢;_1 = {x, and ¢;41 = yr as a
reduced words with |z| = |y|, so that ¢; cancels equal amounts to the left
and to the right. Our choice of CG set S was motivated by the following
fact (which we conjecture to be true for any CG set), whose proof we
leave to the interested reader.

Lemma 4.1. If P has no unbalanced or balanced side, then P = Ps.

Now, to make use of the above lemma, we need to introduce an energy
function which lexicographically orders m. We define the energy ||z|| of
an element x € 7 by ||o;]| =i for 1 <i < 4g and

|w| |w|
lwll = 1] Josll = > (49 + D)o |
j=1 Jj=1
for w = H‘;ﬂl o;; as a reduced word. Note that this indeed defines

a lexicographical ordering on 7 and that it extends the word length
function in that |z| < |y| implies ||z|| < |ly||. We similarly define the
energy of a polygon domain by

4g
1Pl ="l
i=1

Lemma 4.2. If¢; is a balanced side of P, then a triangle cut-slide move
involving ¢; reduces the energy || P|| of P.

Proof. Let ¢; = xy with |z| = |y|, ¢;_1 = €z, and ¢;1 = yr. If we cut
off the triangle 7,_; ; defined by ¢; and ¢, and reattach it to the side
i_1, then the CG set is changed by £z + £ (and thus also zf — y/).
Similarly, if we cut off 7; ;41 and attach it to ¢;;;, then we have yr — xr
(and also 7y — 7z). Thus it is not hard to see that if ||z| < ||y||, then
the first cut-slide move reduces the energy, while if ||z|| > ||y|| then the
second one does. As one of these two inequalities must hold, we have
our result. O

Collecting the above lemmas, we are able to describe our “fatgraph”
Nielsen reduction algorithm: whenever possible, reduce the word length
of P by a CS move involving an unbalanced side. When no unbalanced
side exists, perform a CS move on a balanced side to reduce the energy.
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5. PRESENTATION OF €&,

Recall that a groupoid can also be defined as a partially composable
set with inverses. Viewing €&, ; in this way, we see that a consequence
of the fatgraph Nielsen reduction is the following lemma:

Lemma 5.1. Triangle cut-slide moves generate €S, ;.

In this section, we shall give an alternative proof of this, as well as a
description of the relations of €&, ;. To this end, we begin by noting
that any polygon domain P of S,; can be canonically extended to a
triangulation 7'(P) of S, (based at p) by triangulating the polygon in
a fan-like fashion as depicted in Figure 5.1a.

C3

C2

c Cig

05,
95,1 !

FIGURE 5.1. a) Fan triangulation and b) Arcs based at p
with 7, to the right of .

Conversely, an inverse to this fan-like triangulation is given by the fol-
lowing greedy algorithm [1]: Given a triangulation 7" of S, ; based at p,
we canonically order the arcs of T" according to their first appearance in
the clockwise ordering at p (see Figure 5.1b). In this ordering, we consec-
utively remove every arc from this collection as long as the compliment
of the remaining arcs in S;; consists of a union of polygons. This is
clearly an inverse of the fan-like triangulation. Moreover, we have the
following “locality” result:

Lemma 5.2. Given an arc v in a triangulation T', let 7., be the triangle
lying to the right of v € T at its first occurrence in the ordering of arcs
at p (see Figure 5.1b), and let v be the sector of T, opposite to . Then
v 1s removed during the greedy algorithm if and only if v precedes v in
the clockwise order at p.

Proof. Whenever an arc is removed during the greedy algorithm, its com-
plement in S, changes by attaching a triangle to the current polygon
containing 05, as a side. This can happen for 7 if and only if v does
not precede 7. 0
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FIGURE 5.2. a) A Diagonal exchange. b) A Whitehead move.

We are now ready to give our alternate proof of Lemma 5.1.

Alternate proof of Lemma 5.1. The proof relies on the classical result of
Whitehead which states that any two triangulations of S, are related
by a sequence of elementary diagonal exchanges (see Figure 5.2a), where
an arc is removed and replaced by the opposite diagonal in the resulting
quadrilateral. Note that a triangle cut-slide move can be realized by
(usually) two or (sometimes) one diagonal exchange on the corresponding
fan-like triangulation of S, ;. We essentially need to show the converse.

Given any two polygon domains P and P’ of S, ;, we can canonically
triangulate each to obtain triangulations 7" and 7’. By Whitehead’s
result, 7" and 7" are related by a sequence of diagonal exchanges: T =
To—Ty—---—T, =T'. Let P, = P(T;) denote the ith polygon domain
corresponding to 7T; via the greedy algorithm so that Py = P and P, =
P’. Lemma 5.2 can be interpreted as saying the inclusion of an arc in
T; as a side of P; is a “local” property; thus, as T;,; differs from 7T;
by the replacement of a single arc, P;,; can differ from P; only by the
replacement of a single arc. As we have already noted, such a move can
be realized by a sequence of CS moves; thus, we have our result. O

Once we know how to generate €&, it is natural to ask what re-
lations the groupoid satisfies. Some relations are immediate, such as
following a CS move by its inverse, which reattaches the cut triangle to
its original position. We call this the involutivity relation I. Similarly,
cut-slide moves for non-adjacent triangles (which remain non-adjacent
after sliding) are easily seen to commute with each other, and we call
this the commutativity relation C. Also, it is not hard to see that we
have the following triangle relation 7" where a triangle 7, , with sides z
and y is cut off and attached to z, then cut off again and attached to y,
then cut off again and reattached in its original position.

Finally, we have two relations which involve cutting and sliding two
adjacent triangles. The left pentagon relation L is depicted in Figure
5.3. The right pentagon R is defined analogously.

Theorem 5.3 ([2]). I, C, T, L, and R generate all relations in €S, ;.
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£

N

FIiGURE 5.3. Left pentagon relation.

FIGURE 5.4. Pentagon relation.

Proof. The proof is a bit technical and involves many cases, but the main
idea is simple. It relies on the results of decorated Teichmiiller theory [5]
which tell us precisely what the relations are for the analogous groupoid
generated by diagonal exchanges, the so-called Ptolemy groupoid ‘Bt ,
[6]. All relations in Pt ; are generated by three types of relations: the
obvious involutivity relation where a diagonal exchange is followed by
its inverse, the commutativity relation involving diagonal exchanges on
non-adjacent arcs, and the famous pentagon relation which is depicted
in Figure 5.4.

The proof then proceeds by doing a careful analysis between diagonal
exchanges and cut-slide moves via the greedy algorithm to rewrite (the
image under the greedy algorithm of) each possible incarnation of a
relation in ‘Bt ; as a product of the relations I, C', T, L, and R. (|

6. FATGRAPHS AND CHORD DIAGRAMS

While we have so far focused on the perspective of arc systems and
polygon domains, there is a dual perspective which is worth briefly men-
tioning (and in fact is the perspective taken in [1, 2, 3]). Given any
(non-degenerate) arc system Y = {y;} based at p which cuts S, into a
number of polygon components, we define the Poincaré dual graph Gy
of Y to be the graph embedded in S, ; which has one vertex for every
component of S;1\Y and one edge e; for every arc y; of Y such that e;
intersects y; if and only if 7+ = j. In particular, if 7" is a triangulation, G
is a trivalent graph, and if X is a CG set, G x is a “rose” graph with only
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one vertex. Note that every oriented edge of the graph Gy is colored by
an element of 7 in a natural way (after choosing an orientation of Sy ;).

In fact, this dual graph inherits some additional structure, as the ori-
entation of the surface induces a cyclic ordering of half-edges incident
to every vertex. We call such a vertex-oriented graph a fatgraph. It
is convenient (for technical reasons) to consider the boundary 05, ; to
be an arc included in every arc system, in which case Poincaré duality
will produce bordered fatgraphs: fatgraphs with a special edge called the
tail whose univalent endpoint lies on the boundary ¢t # p € 9S,1. (See
Figure 6.1.)

FiGURE 6.1. Chord diagram and corresponding fan-like
triangulation evolving under a chord slide.

We are primarily interested in trivalent bordered fatgraphs which are
dual to triangulations of S,;. In particular, the graph we obtain as
the dual of a fan-like triangulation of a polygon domain takes the form
of a linear chord diagram. A linear chord diagram is a trivalent graph
immersed in the plane consisting of a segment of the real axis called the
core, together with line segments lying in the upper half-plane called
the chords which are attached to distinct points of the core. Under this
duality, the chords of a linear chord diagram embedded in S5, exactly
correspond to pairs of identified sides of a polygon domain of Sy, and
the structure of the chord diagram essentially captures the information
of how these sides are identified.

We now depict how the elementary moves of arc systems look in this
dual viewpoint. Firstly, a diagonal exchange on a triangulation corre-
sponds to a Whitehead move on a trivalent bordered fatgraph, which is
a move where one non-tail edge is collapsed to a four-valent vertex and
then expanded in the opposite direction. See [1]. A triangle CS move,
on the other hand, corresponds to a chord slide (thus, finally explaining
the name of the chord slide groupoid) on a linear chord diagram, which
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is a move where one endpoint of a chord is slid along a neighboring chord
to a new position on the core, as depicted in Figure 6.1. During both of
these moves, m-colorings of the edges of these graphs evolve in natural
ways, according to certain “vertex compatibility” relations. See [1, 2].

For convenience, we finish by listing diagrammatically the T', L, and R
relations for linear chord diagrams, where the thin lines represent chords
and the thick lines represent segments of the core.

R: Right Pentagon

FIGURE 6.2. T, L, and R relations for chord diagrams.
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3.2 SfER

REZ > 7))V O-ZTERD 4 TESICIRAT 5 T & T, ZBONEWVIHICE TORRMESNS. Tn5
7 constituent knots *® constituent links TAE L, IHHZEA TN S 2L TV 7SRO
F75 - FHE T Z 71T LTI, 2N S TREICHTE . EH 2 & Litherland OFAK [3] I K - TR

PRETREREINTOEEDLEEFALTHY, INTIZ5A7T LICES.
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T RRARDORGEFERET T BT O B HTHS.

@@@@@%&@
9 8) ) 8 8 B W
DD DD
QYO
i@@®@@@@
9D H 9 Y

T TR T ORETET T 7.

TRV - E FHE T 7T U TEREBICHEL T D7, IHHZEK & 240 7 Z 7 O THAGERF
Ho BEU #3 ICHITBROMEND 5.
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el 1 ([9]). g, ¢ ZZEM T T THAET B L E

29') =R(g) R(g")/(z+1+a7")

= R(g) R(g
39') =R(9)R(¢")/(—2* —x =2 -z~ —27?)

EE 4. 6 RaLLFORERTHEWY O-iIFHIK 8 D 20 HTH 5.

o &0 wR

0f #,31 0f #, 41 0f #, 51 0f #,55
5 (©
(L 8)
0 #,6f 0y #,65 0y #,6%
o8 G5 98 38
07 #, 3% #, 3% 0f #, 35 #, 3¢ 344,004, 3% 35 #, 004, 3%
QB F Y K
304,34 304,31
30 #33] 30437

X 8: 6 HATDZ TR O-HhifR.

EE 3. L ED 13K 6 D o-lifEE L, FED* & Conway [1] DERFEICH - AT HEER LTV 5.
2, G TG ORED FFERTANEABBEXL TV, FIZIE, 37 3 3} OBETH 2.

EE 4. 3] 13K 6 D 3y O-HIFR LMD TR L TH BN, TNIEGHZRDIDTHS.
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EI 5. 6 KELATOHRETHEWFEET 77X I D 23 HTH 5.

GO o o Oy K

U # 3% 0?#2(:’{ 07 # 5(’{‘\ 01 #, 55
"R oB)
&G & °TBOLK
< o~ (4
93 &) b &

9: 6 RLAFDETHEVWTEET T 7.

FE 5 IMED RN TOFERT I TEELTOS.

9
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AR 6. N6 9ICHBZEMTTT7IE, TNHHOHEBRLEFALEDERZLTNS.

TR DZETIZRVTEEY T 71DV T constituent knots % constituent link, [HHZIEA 2D TR
AIEERE DM TE . ZNHICH L TR RERZ M5 HEND 5.
SHBOBEE LTREINETENS.

R 1. fhDZEM 325 7 DRIERICH D, WO FIEDHEZ 2D

fIRE 2. —fRODZEM T T TIRE S H.

BE X
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A2 RIVESROHEFEUBNDBAICDOWT
HF D REEEREE BEZEER)

1. INTRODUCTION

HIAS O H &3 4 ot — 27 U v FZERINIC /AT RIS IA £ N 7@k A Pl o %
TH U, K2 HOTZEFE2 00 FEALIRERIEL TE T3 (of. [9]). T TRE&E, i
MO HZ 3oeL—2 VU v RZERANGHE L7eg (DR RAESISOERRE G AL D) OF
Th . MmO HIERORAEEL, himfiC HORFRNIC K 2 FEEOSETH O, thmks
CHZXHIT B mIChRR EAZBNEZ BN TE . BRI,

o MiIZEMIDRE h E—RUCE D2 AR (MEROHRZE) 9,
o fHZEM DMK R EMICBD 2 LR (7 LFT VA —ALERTE)

B MBI ENTWE. ITE, AV RbEns REGRE2HO GRS OCEAZE (VR
IVABEL 27, 38) A1 Y BV AT A V)AL R [4] 75 8) WRAEIN, LGN TSN T
5. TNEDAEREIKAZHOTERI NS A, KX Z Wik L IERITHEDN R L.
AT, 12 BVRZUHES RER Y —HEah S E NS AEE&28 L, TN 5 Z v
TIELNTAS R 2T 5.

F—TU— RERDZARLRIE, FOHB >V RV 27, 38] LEANM [6] THB. TTT, fECEA
YRV EIE A Y FIVEAEICE T 2 5NN TH D, AT I A F)Lvay 1y
IWAZERICET 2 EBN NS THS. (TNHDFLWVERE, §§2.4 & §§2.6 22T XK. )
REBNEZ BNTZRRIC, ADHID T2 0WHIZLL O fHTHAS.

o TOAZ R EDEEMHE U HZXE]T 2 D7
o TOARZENSHIEFEUCHD ED K S Il mh amiAHIN S 7

—HEH OIS LT, FIZERTHEA Y FLORHREAVZ R EST, $% 2 5 ZADHk
HREOHED (F—F AEECHDSIESNS YA A R AR UAEUCHES) ZHWICKAITE 3 [2]
EWVSTEMHISNT WS, £z, ZHHORMBEICH LT, BIZIERD X S S & ORIFRN
H5NTWVS.

A MOHAY RV (Y FIVEEE) ISRl T ~

K%ﬁ%laaﬁ@%ztiﬁi 27, 38], i O HHEL [24], > — M [44, 47). )
| BAB (&2 VAT A 7 VAL ISBILT ~
FERTETE [4, 1, 23], BN R[50, 51, 22, 53, 40, 49], —H RUFTHEL [24],
VR VIAEE [10], & — M [45, 48], w-45EK [25]. )

ARTIE, —FHHOU D S OWFFERER [54] 72 §3 IRV T, £z —FHOH S 5 OWFTEHS
R [52] 2 §4 IRV, ZNENFHT 5.

Y RGCEREIN O DIAREE Z D556 H 5. Tz, IBEEEGEA MK AH EMHENS. [ ) ARn]hEx
HiZZAZ %5 L& H2M, ARTIEHDEW.

2ty Z AR EERR G A2 H ISR U T, SEH O 1 > RIVEIERIZER T ERWOD, Shfnh >~ RVE 2 v
SRS TS [35, 43, 8]. &35, XA~ RILLZDORED Y —HERIE [33, 35] THEHAINMZTHS.
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2. EF

RS O H G & 4 > ROVEERORARIAZEE T 5. COMONER, [9, 32, 6] IZFEL <
HBRE5NTNS

2.1. HEFKUBEZDH. 4ot —7 U/mewWL%m$mkﬁbﬁimt@%ﬁﬁﬁ
PR 72 A O H & W 5 . BEdIA T NPl 2 BARIICIHR L 7e W6, 2 kK 2 O
HDAME AT H (B, BREifS O H), b—5 A T2 OHDARII T4 Ua T g DA
HDOMDIAAIE -FHCTHZE LWV S .

EEABRTEOHD 7 5 X LTYA A R ZSUECH [56) B35, L FoL 31
MR EN5. 526N~ 20tCHE C R3 Z—/1CY 0B E, [E2E WR3W®&/7w%
5%, (227 )VORiEIEER ORS (= R?) @ i %<)%LT£%%W%%&LT#E“&
T BMNCR TV r BIEHIEE Y. CO b &, FRZERNE RMESN, £T2Z2 27 IVUH
I U2 RE BRSO H &%, Tk, kD r-Y A AR ZRVEECH EWVW, 77 (k) L £ T
iz, ~SOTEUH k C R DD A8V TEUH EMHENS T2REUH (T(k) ££T) &, 2—
¥ R 2RV 450U H [3] EMEEND THHTH (T(k) £ £9) 2K 2 5ELHBN TV
MRGEDEMIZENS T 20, MBI THECHDERER 7 AZK LTS

2.2. KU EHORR. 5f%r: R — R3 25 4 BEICRIT 2482 L 95, dthimfsUH FicxL
T, BEESIER OLFEMTOLENT T LI KD, G n(F) FOSUIZIERS, —FA, =FEl,
7‘"7 VFREOWTNINTH S EIRETES. (Figure 1%’5?@“@?&. )

HEASOH F ORI &, B n(F) ICEERZLTOXSICHEA Tt DD L 2igd. %
THR O T, RTINS RO PR EIRTINC D o TEB D RISV T 4 IR
%“né”# 5> TW5. 2T T, NAIKHZMRZYIN L TRAEFRZ ANS. — BRIl

FEOHDOK A, ZHELWNR TR > T E NS DT, WD DORb Y ZHilzkwnway
Aﬁ%ﬁﬁﬁ/—bkE50®%iDT%ﬁéhé B = H O TSRS A D PR A
BBIC D> THED, G LTLEY—F, oy —F, FY—FEeMENS. JiiciE, ©
— MEIPURICYIlE N, Y — METRICYI STV, (Figure 1 Z3#E X )

//\

,

—ER ZER ToVFR

FIGURE 1

2.3. AV RIb. ETHRVES X & THHEF «: X x X — X O (X, %) D A1 R)L 27, 38] T
HBLE, RO=ZDDONHE-TEEICWVS. (LIEUIE, (X, %) ZHIC X £ £l 5. )
Q) EED a e XITRHLUT, axa=ahpDirD.
(Q2) fEED a,b € X IZH LT, cxb=aZililcd XD 7%% c e X BME—DIFET 5.
(Q3) IEED a,b,c € X I LT, (axb)xc=(axc)x(bxc) WEKDILD.

AVERIVX)Y OEOEL f: X — Y B, flaxb) = f(a)* f(b) (Va,b € X) Zifilzd & E, f
EAY RIVERTITH D 0 H. AV RV X ICHUT, LN TERSNSEE

Gx=(7 (reX)|7¥y=7"77y (r,y € X))
AV BV X ISHBES B REC TS
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Bl 1. AR pIcH LT BE R, ={0,1,...,p— 1} BEZ, ixj=2j—i (mod p) T _THHE
ZANB. T2L R IFHY FIVOMEZFF DT LR TES. DAY RV R, %2, ilp D
A YV ROV RS,

24. F/MUBHAY FIVEAY RIVEEE. it UH FORADICHLT, E= {s1,...,8,} &
MDD —FDEGETS. {2 — MIE FOMELE R DAENEFELEINZEHREANT
WaEEZTHEL. il UH FOMBUHAY RV Q(F) [27, 38] &i&, >— FDES B 24K
e U, S E ARSI > TUUTO K S GEIRXZ ANTc A Y FIVORTH 5. 5 _HEih
FRUICIR> T, s, 2 L3 —1b, 8,2 P2 — FDNT s; DIERANT BUISH L TERAICDHSZ T — b,
s R — FDNT s; DIERIANT MUK L THIICH B — 92, O, 20 _HEiilh
FRCID > T BRI 55 x s; = s, THADBNS. (Figure 2 DEMZBIRE K. ) TTT, Q(F) &
HEAS O H F OMXOED HIC K 550WEHE, £z Q(F) IKHBEST 28 Goury & m(RT\ F) &[F
3R 2ERELTHL.

Q(F) DBIRA (Coly(F)IcBIT % T5F+) |
Sy Sy
) > il
S; S;
Si * S5 = Sk c(si) * c(s;) = c(sk)
FIGURE 2

FMOHAY FIVDHBRDKSIC U TR US> TVWRERZIND T &N TE 5. ARA Y
RV XIS UT, A FIVERR ¢ . Q(F) — X 212 FIVEA LMD, /12 RIVEOEROSE
B% Coly(F) L &L . KXDEHETIE,

Colx(F)={c: E={¥— b2k} - X | cld&M « 2l d }

EEVWHIZAZLETES. (G X ICDNTIE, Figure 2 D4AIZ2RE L. ) TDEZE,
Colx (F) 3HEBEATH D, ZONME #Colx (F) 1&4 ¥ FIVEAKEFIEINS.

EE 2.1, ik Y RV R, ICKBEAIR, Fox I K% p-#a 17, 18] DR —83T 5.

2.5. Y FIVREQY -, AV RV RTOY—#GE 4] &, v 7 Reny—HG (13, 14,
15, 16| DZEFEE RIXT T EMNTES. AV RIVXITHRUT, T 78k CR(X) &ZDaRIE
A CP(X) ZRERL L, Z Ok E LTHh Y RIVEHER CO(X) BERINS.

BRn >0 LT, AV RV X OIEh B n X (21, 10, ..., 2,) TERENTZHHT —X
IWEEZ CR(X) &35, (B8n <0l LTI CHX) =0T 5. ) £8En>11cHLT,
BRHERIRL ) - CR(X) — CR (X)) %

(9n(x1,...,xn) == Z?:l(_ly {(Il,...7Ii_1,ZEZ‘+1,...,.I'n)
—($1*%‘;---;%4*$i,$z’+1,-~~75€n>}

TE#£T S, (Bfin <1IcXLTEX, 0,=089%. ) TOLE, AV FIVORE(Q3) MH
0, 100, =0MALL, CR(X) = (CR(X),0,) WHEIR 725 T EWh 5.
NVEEZ CP(X) 895, (BEn <1ICHLTECP(X)=0&8L.) TDOEE, hY FILOR
H(Q1) &Y, 0,(CP(X)) CcCP (X)) £725DT, CP(X) = (CP(X),d,) & CR(X) DI HHE
heixs.

PERE C(X) = CRMX)/CP(X) ZELD , patlk CQ(X) = (CR(X),0,) ZEAZ%. (TTT,0,
MBI N ERUERRE [ Uil S TEWE. ) CRX) Ditz i LT, CYX) TD z DI
87z z|q € CY(X) ELI T LICT S, HHRE CX) D n Rkt Z9(X), n RESSIARE
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Z BY(X) £EKT. Elen REOY—#E HY(X) LR L, n KA Y FIVKETOI—HE [4] &P
7 —=IVEE AR LT, MO EE M A

Ci(X; A) = Homz (CY(X), A), ¢ = Hom(d,,id)
EEORED Y MR EFARICERTS. (TTT, W=R, Dor Q&9%. ) MxH#HEE
CH(X; A) D n TR iAREZ Z5(X; A), n RO AR 2 Bo(X; A) £R9. len X3
REAY—HfZ HY(X;A) ERU n XAV F)VIREODT—FF [4] EFES.

B 2. TR PSR UT HE(Ry; Zy) = 7y WORENTED, ESIERTT 0, DEANGRRE
HH5NTW5 39, £z, COHEBULO, &, EAaY A7)V EEENTWS.

(2~ + 2

p

26. BFELAY FIVAYA 7 IVARE. kT H F O D O=&Eplr iICRWT, E¥—
N, HY—bk, F— FDERRNT 8V o), v, 0 £ 9%, (6 1& top, m IE middle, b I& bottom
DN FTH5B. ) =DM (07, v, 0) DRAIENRIDAET L —HITHEZiCe(r)=1, 1, Bix
HEEICe(r)=—-1&9 5. (Figure 32 XK. )

e, ZHEr IRV ARD R — D5 by — b & B2 — FDOERINT MU LT
BAICDHBHI—F 5, T 5. T, 2DHFL—FD S B E— FDERNT MUK LTS
LB —bNes, by—Fres, &35 CDEE, DOY—EHRICQ(F) Dtk AL,
Q(F) DItD="D%H (sp, 8, s1) 2 C(r) £F< . (Figure 3 2R XK. )

COEE, ZHEr LT, VYT A b+ B(r) e CHQ(F)) %

B(r) = <)) (= (on 5050 )

TEFHT 5. (Figure 32T XK. ) £, RILYSUIITA s B(r) % D ORTO=HEHHICH
LTRELEDEREDZ |D| € CR(Q(F)) £KT. TO& X, LUFMWILT 5.

M/

<=

%’f StZ

— e(r) =+1 € {+1,-1}
S Sp C(7) = (S Sm, st) € Q(F)?

O,(x,y,z) = (x —y) = Z%(Rp;Zp).

FIGURE 3

flied 2.2. (cf. [4, Theorem 5.6]) HIE#SOH F QXX D ISH LT, KD ALD.
(i) [Dl|, € Z3HQ(F)).
(i) F OO D ISH LT, |D']|, — DI, € BHQF)).
COMEE D, filk | D], ORERY—FUE, KADIWD FICHEZNT LGNS, T T,
RSO H F e HY(Q(F)) DEASE [F) ZLURTEFET 3 [6] (cf. [53)).

[F] = |IDl]q) € HHQ(F)).

MRS O H F ORAR [F] € HYQ(F)) ZZDEETRENIC V. 22T, HAED 5
WRITWEZID T HZE RS, ARV FILX, 7—NVEEA, 3-aY 1 7))V 0 e ZE(X; A)
OMZEROEETS. ZTNE D052 5N72T—RICH LT, ROXSICLTT—N)ViEE A

SR DA TR L, [ IKRWTEIHENBEOAZN Lie. iz, RO IRED Y —RE HE(Ry; Z,) D
W L AEBOTORTA [42] TIHBNTH D, HY(R,;Z,) OEHITEORIOZRH 28] THEN TV 5.
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DB Z[A] DI Og(F) ZXE et D%, s CH F O /12 B)Lav A 7)IVAZE [4) &
55,

Oo(F):= Y ({c(F]).160]) €Z[A]
c:Q(F)— X
c e Cle(F)

TTTC, B, HYQ(F)) — HXX) 3H Y RIVEERR ¢ . Q(F) — X IC K> T & Ntk
ARG, [0) 1% 0 O aRET Y —HH,

(5 ) HP(X) @ Ho(X; 4) — A

Boraxw h—ted 5. 58, 12 BV X ONBDERTH5ENS, FORIIARRME LT
well-defined £72%. KIZEFKLD, 00 € B(X; A) 551 Oy(F) = $p (F) WD ILE, £fe
0 € B(X; A) 75518 ©y(F) = #Colx (F) - 04 € Z[A] DD VLD,

3. 1Y RIVEHOWIEAZEOME

AEITE T2 Pz TERE NS MEMOCEAZRIE, EOREIEECHZ XA
ZOM?] VS ISR LT, —JUthE U HBGR L KT 2 LW ENSEST S, G
[54] DNBDERNCTZ> TS, )

3.1. —RTEUEHDIBE. S CHOEE LR, —XeECH E c RPICH LT, U
H7A > RV Q(k) EEAN (k] € HYQ(K)) WEBRENS. (—JUthsE O H DG OEARIZ, 2
RREO Y —RHAEZELD. ) — IOtk O H B U T, —k7Z kD& Ziic LIUTH E L,
E* 7% kOGRS TECHET S, TOLE, RO ENHISENTVS.

e Joyce [27]-Matveev [38] DEM: —JIthiUOH k & K IS LT, A1V FIVFEIBIER ¢
Q(k) — Q(K) PFET 2726, kId K LAMETH 20, S —(K) ERETH 5.
(K& —(K) DMETHHHEEHOES. )

e Eisermann [11] DEM: —JUthiCH k & K ISH LT, 1Y FIVARES ¢ : Q(k) —
QK WFIEL, ¢u[k] = [K] ZHilzd 755613, k & K IX[AfETH 5.

Joyce-Matveev DEHL, Q(k) B “IFIX” TEBALETH S H2EM L TH D, Eisermann D
EME, Q(k) & [k] DD TR AERTHLREZERLTVS.

3.2. FRE. AOHT§83.1 DR 2T A, ik O HISH LT M & UTRE LT

FIRE 3.1. Joyce [27]-Matveev [38] DEHE® Eisermann [11] OERIE, s G HISH L THOT
ERAI2Y AN

RSO H FICRN LU T, —FZ FORE 2 LIAEUCHRE LU, Fr 72 F OF5 2 - T85O
H& 9%, fiOHD Y RIVOEAED S ks O H OB OHRZRS N TE RV,
TCER g > 0 Z[EE L, B g OISO HICH L CRIEZE 2 % 2 &I1cd 5. [z BRI
I B A, MmEFECH F & FIcaUTRURDOZLMT: (1), (i), (i), (i), (i) 25 R 5. EFED
59 QICKH “=" AVt 5. ((iii)’ = (ii) ICBI L Tl [5, Proof of Theorem 9.2] ZZHE XK. )
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[(i) 36 : Q(F) = Q(F) ] 2
ﬂ \\\

(i) 36 : Q(F) = Q(F') | (i) 30 Q(F) = Q(F
s.t. 0 [F] = [F'] € HHQ(F")) st ¢u[F] = £[F] € HHQ(F'))

[@DF%F’GW®$ﬁﬁT@D%5J]%3mYF%FWr—HW* ]

TDEZE, (i) = (iii) ZEET % ED Joyce-Matveev DEHOFLUAHY L, (ii) = (iil) 2%
m@‘%%b‘ Eisermann OEFOFULUCHY T 5.

3.3. FER. FsC [b4] TEOHNIAERIE, (1) & (i), (i) & (i), (i) & (i) DEIcEZENZTNnE
NH3, I75bbH, [Joyce Matveev DEFLS Eisermann OEF, BRSO BT LU THOT L
BN EWVWSEDTHS.

I 3.2. (LEOHALRKN TR LT, RT3 X 5 5 g OISO HD N ffFET %: N
OO ED = DOMEHETHS (1) ZHizdh (i) &l T &0
EE 3.3. (i) Zif7z9h (iil) &7z /R0 K 5 AR g OhEfCHOMMNFET 5. Xz,
ZD X 5 IR EET 5.
3.4. FE 3.2 OFEFHDEIEE. SHAFRp I LT, DD TH F,, & F,, ZRKL, %
NEOWEZFNS. GEBpIcH LT, K, % (2,p) b— 7Xﬁ0§ﬁ%ﬁ%ﬂt2/42%
ZM/%UELF‘%Kf&KOMﬁﬁDEﬂ%Ké:( L) OEERE TS, D E,
Q(F,1) = Q(F,o) TH5 (§7bb, () Zifiled) T Dh 5.

7z, §§2.5 O 2 THIN LIEEH YA IV 0, € Z3(R,; Zy) \CBIT 2 YA V)V R
@@%%ﬁ?é:&hi@,ﬁ@ﬁ%ﬁﬁ%?%a(mwﬂﬁﬁ%%ﬁ%%m%mk)

8 3.4. p=3 (mod 4) BT HREIE, By (F,1) & By (F,0) 1 Z[Z,) DIt LTRED.

COMEXD, THEBpH p=3 (mod 4) Ziili/z 75 5IE, F,1 & F,o DAL S (T
&b&@ﬁ%ﬁké&@ﬂﬂﬁ“%%)L@gg@ﬁﬁ%05%9§<ﬁwéukkﬁﬁf
EM 32 ZAIHT 22 LN TE 5.

3.5. T2 3.3 DIEADEIRR. L g D0 DIGE L, 1 DL EDOGEITH ) TIOR8/ % .

3.5.1. g = 0 D%GHE. Bin,p,q > 57T, p,g AWV L;ﬁfddé%)éi')ﬁ%@%ﬁi% K 7 (p, )
F—F ZRECHD 5 Eﬂht n-y A A ]\7\/\/1’*?:?0@ LU, K% K 75 Gluck Ffi [19] T3
BN O H b 9%, C 0T, K DU E(K) & R O E(R) K) 3FtHTH % FER L
THL. TOHE[20] c:ﬁémf, RO7YETy MMtk 51 T b VKK L&k
IEH LU TERETIAWV (DF D, (i) 2z ER0) FARIN TS, BAEI KL TV
% (DFXD, (i) Zitrzd) F2md ionid, 20N TH 5.

3.5.2. g > 0 DG, JEAWNGE—JICHUH kD BF56NS ARy THHGUH T(k) L 2= R
28 T2AECH T(k) ZHOTERBIR(FS 72, Co X MR LIFIA (i) £ HaA 5
ICREITX B, 7, IERSOH F OA Y AR [37) Z 05 T LT, (i) 2z E 50
(DOF D, EFHUCHLTRAES) T EARRI T ENTEE.
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3.6. BRE. T T, W OhMEEZRITFTEL.

(1) EPE 3.2 ZFEIH S B BRI, B2 O THIZRE R LTz, (EBE 3.3 DFREIA T & —HEks A
ZHWz. ) Tk, #EFERIC T E R0 E S RiEA T HNCHE LT, Joyce-Matveev
DEH DAL Eiserman OEH DI ZEZ R LI HMMNE A B125 5 M7

(2) s O H F O THiZER +al ICBIT B OHR T, #5TCHA Y PV Q(F) Ll TH %
HRZREOT XK. (—JOtUTHICH L TR, ENGZ 5N TV [27, 38]. (cf. [11]))

(3) HhEAS U H F O THHZER +al (CBIT 25O T, B4R [F) & 25l T b 2 1z
WOF &K T, AV RIVKRERY—RE HY(Q(F)) ZPHE L, ZDaIEKE RO =2
HMMCE K. (IOt UTHICH LT, @ENGZ 5N TV [11].)

4. 7 LA Fiafe Otk

AFITE A2 PV TERS NS OCEAZRED S, it THDO ED K S & 1H
Wz A D T EMTEZM?] WS BEICHUT, thfifsUHDO 7 LA R L OBfRZ
N9 %. (G [54] DNEDERNCEZ> TS, )

4.1. BMEIT LA R, Hil 7 LA ROBEAFIHIIOWTEETS. 32 ICRELLBRENT NS,
D? D! 7%=JotftkE U, X, ZintD? D52 m & d 5. iz, pro: D? x D2 — D2 7%
2N LT B, K m D i 7 LA RO& X, D? x D3 YN IEDIAE Nz )
et S T, LLRD DO Eiil-TE DDHES S .
o MR pro|s : S — D23, KEm DU HEERTH 5.
¢ 89S = X,, x OD2 (C D? x OD2).
T, tm7 LA R SITATRES 2 I 8 UG pry|s DA TH 5 &1, 5riy € DKL
T Snpryt(y) =m—1F7Em THEIRHITF S .
D3 IO =R D3 20 M TR b s “20cEkiEiE S2 £ 9%, i 7 LA S o
Bl § &1, D2 x S2 ICHDAE NI BT T, XETETEDDOHETH S,

SN(D?x D) =S, SN (D?x D2) = X,, x D2

EHIT, DY x S Z AWPEREHG O H (R ICHIAICHDIAT N7 ZoehKi) OBIREEE & [
—#HI BT, S %Z R ICHDIAT NP & A9

4.2. HEFEUBED 7 LA FE#ICOWT. i CHICBEL T, —2UthiCHHERRICRIT %
7 LEY A —DEHOELBK DD ENMENTWS. DX D, TEOMEECHE S
L7 LA ROBAGICIEETH 5 T EHARENT WS, ZZ T, timtsUH F 2Bl E LT
Fro X5 i 7 LA ROXBDE/MbEZ F D7 LA R E M, Braid(F) £%£9. T T,
S CHO 7 LA FEBICBIL TN TV A HE2F L HTH L. HL, XHi§64.3 TS
HBRIEIEZTDTVR.

7 LA FIREDMEWIGE SIS T 2868
e Braid(F) =1 < F: HHZ&R S-HUH.
e Braid(F) =2 & F: WA S,-#0H or HWZ 2 iy S?-#8HH.

e Braid(F) =3 = F : VAR VHmE#EHE ([29)) (WF— RIS TH % )
e Braid(7%(31)) = 4. ([31]) (72(31) BIFU RVEITH B.)
o 7 LA R3OV KRy S2AECHMMEREFET 5. ([31])

e 4 < Braid(7°(41)) <5. ([31]) (70(41) BV RVEITH S )

o TLA RIEHA DY Ry 2450 HAMERETET 3. (36)

AL AT, THED S2HASUCHMNER S2ZAEUHKE b OMEEHTETHAHRZ M7 ) IZRMREETH S,
SCCTHELTWVWS M+al &, AVTF s 7 UNEINSERETH 5.
SRR 7 LA REEN3 L8 H 5.
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7 LA FHEED 5 OFHf
—JOth O HICH U TE, FRRICT LA FIEEDERTES. £ T, 7LA FiEEDI m TH
X%tk CHZ k&S5, 2TOEE, LFOFMENAISEN TV S,
e Braid(7%(k)) < 2m — 1. ([32])

e Braid(7"(k)) < (m — 1)(|r] +1) + 1. ([21]) (HLU,r£0&9%.)

e Braid(T'(k)) < 2m. ([32]7) N

e Braid(T'(k)) < 3m. ([21]) (D%, Braid(T (k)) < 2m ICHEEE Nz ([41]). )
HASHIC B S 2 k2 #E L

[ Brald(Fl#FZ) S BI‘ald(Fl) -+ Bl‘ald(FQ) —2 75\&0 ﬁj 7’:712. L, ﬂﬂﬁfﬁ&'?@@ Fl; Fg Ci Q
HH7x SRS H Tl RWET 5. ([36])

e Braid(F#F,) < Braid(F) + Braid(Fy) — 3 Ziii/z 9 & 5 ks O H Fy, F AMEHES
%. ([46))

4.3. T4 FEEBOTHSOFHE. rifiiz s enhd K31, 7L A REEN 5 THS K
5 75 ARG O H 2 BARRNCHERR U, SEBIC 5 £ 752 T L ZatIE K] L WS BT E 2 (2005 4
W) KRR TH o Tz, ZTORKZRBED—DE LT, 7 LA RIgE Fh SRS 2 LA
VENTWEN ST ENETENS. (20104FE 7 HBEHETE, ROME 4.1 NDTFEZIF &
AEHIENTWIRWE BN, ) fw [52] T, 1> RIVEEEZE AW TLLFORHMEZTS 7z

R 4.1. i OH FIZEPLEREEOCH TRVWET S, Bin > 1,5 > 01 L THhiEin O
GIEA Y RIVX DFEL, FO X EZEED s U ETH5E9%. TDEZ, Braid(F) > s+ 1
A RVAS)

Rt 4.1 Z BB U CEHT 5 &, RIS T LA RERZIVE T 55605 5.

M 4.2, B8 p > 3K LT, 28> (2,p) h—F AR H A ¢ MR LTSN 2 RIS
UHZ% F,(0) £5 5 &, Braid(F,(0)) = ( + 2 DD VD,

Proof. Vi#p DRI > FIV R, ICKBEEZZEZ D L, #Colg, (F,(0)) =p™ &755%. &o
T, 0 4.1 X0 Braid(F,(0) > (+2 £75%. —/T, [36] & Y Braid(F,(0)) < (+2 £ %%, O

2R 4.3. THlp > 31K LT, BRIEFEOH F,(0) ICHWR T? #UTHZ g @i LT s ns il
A O H (FEUE g) D7 LA FIEEUE, (+2TH 5.

T, F(0)ZVRITHB LMD, RORMELNS.

RA44. B E>3,9> 00 UT, Ml g TT LA FIEEDETH S K5 7% (VARY) Hiihs o
HMERREFES 5.

4.4. JEVRVEOHERZUBICHT 2EREME. §ifli TH-o 2l THIZY AV ETH -
T, REITIE, IV R RO HICH T 2 EG L MEHZIRNS . BE > 0L T, 2
A AR 2RV ZHHECH & Fy(0) 2SN LRI OCHZ GU) £ %. G(0) 1ZIEY RURIT
H Y, Braid(G(0)) =4 THAHZ LIFHENT NS, BEL > 1ITH LT, IAE AT
R 4.5. HREOICHLTE, BRSO H GO BIEV RV BITH S, £z, DT LA FaE
Fl+3Ml+4DEBLLENTHAS.

FWoRla b, IEVRVERIFHETH G(0) (€ > 1) DT LA RIgERET DI ES T -T2
M, Wi 4.5 ZHOWTRD K S AR 2RI LIdTE 5.
fiE 4.6. (EREOEE L > 31 UT, 7L A FISED k TH 2 K 5 &Ik R ihimki G HAME
19 %.

T LA RISE 3 ORRIEHET HIZ 1 iEY RV TH B HEE, 1A RVHRIFKTHO T L+ > X— Nkt

DHEERINT, 711 RISED 4 DLEE B HRIAEENTVS [36). LA L, COHETE D BUFH%
B EEH L BPND.
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I, JEV AR VRS CHO T LA RIS B2 21T TH <.

PR 4.7. MIEASOH FSIU R M THH LTS, I, BHn > 1.5 > 01K L THEn O
HIRA Y BV X IMAHEL, F O X BOEH 0 U ETHB LT 5.

(1) TOEZE, Braid(F) > s+ 2 DD i2DMN?

(2) (1 )b\ﬁxbitm\i% ICiE, EHICRDOINEZEL: H57—NIVEEA L 3017
Vo e HY(X;A) PFELT, F DI 1 27 JURZER &,(F) & Z[04](C Z[A]) T LT
%. D& E Braid(F) > s+ 2 DK D LD

FIRE 4.8. HAE L > 013 LT, Braid(G(¢)) OffiZe e K8,

1]

[24]
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IEFE DDA E

YASUSHI HIRATA

ABSTRACT. JEFEICRMEFAAHZ ANT22/ &, ZORZRIOAFHPMEIC DWW T
BB 5. RS, IEFED 2 DO ZE MO T D LDHY, 3 DD 2L DOFE
TRV K S BEELH 5 T LIS DN TS,

1. SUBSPACES OF ORDINALS

An ordinal p is identified with the set {ov : o is an ordinal < p}. Each ordinal
is well-ordered by the usual order of ordinal numbers, and we assume that each
ordinal has the linear order topology.

A cardinal number k is identified with the least ordinal of cardinality s, so
k = {a : ais an ordinal, |a| < }. The least infinite ordinal w is identified with
the set of all natural numbers, and it is also the least infinite cardinal. For an
infinite cardinal &, we denote by x* the least cardinal larger than k. Let wy = w
and w,11 = w, " for each n € w. In particular, w; denotes the least uncountable
cardinal.

A topological space X is said to be monotonically normal iff there is
(H(x,U) | U is an open neighbourhood of z € X)

such that H(z,U) N H(y,V) # () implies either x € V or y € U. It is well known
that every linearly ordered space and every metrizable space are monotonically
normal Tj-spaces. And it is trivial that every subspace of a monotonically normal
space is monotonically normal. So we have

Fact 1. every subspace of an ordinal is monotonically normal Ty -space.

A topological space X is said to be orderable iff the topology of X coincides with
the linear order topology for some linear order on X. A topological space X is said
to be suborderable iff the topology of X coincides with the subspace topology of
some linearly ordered space (Y, <) with X C Y. For a subset X of a linear ordered
space (Y, <), the subspace topology on X of (Y, <) may differ from the linear
order topology of (X, <). In fact, suborderability does not imply orderability. For
instance, it is well known that the Sorgenfrey line is suborderable but not orderable
[26]. In case X is a subset of an ordinal p, X is well ordered by the usual order
< of ordinals, so there are unique ordinal otp X, which is called the order type of
X, and an order preserving bijection e : (X, <) — (otp X, <). The linear order
topology of (X, <) is homeomorphic to the linear order topology of (otp X, <), but
not always coincides with the subspace topology on X of (i, <). Even in such case,
we can take another linear order < on X such that the linear order topology of
(X, <) coincides with the subspace topology on X of (u, <).

Theorem 1. [12] Every topological subspace of an ordinal is orderable.
1
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From now on, each set of ordinals is assumed to have the subspace topology of
an ordinal with no mention. For notational convenience, we assume that —1 < «
for every ordinal . Let X be a subspace of an ordinal p, and o € X. Then
{XN(y,0a] v € aU{-1}} is a clopen neighbourhood base of @ in X. Actually,
XN(v,al=XN(y,a+1)=XN[y+1,a] is a clopen set of X.

A space is said to be zero-dimensional iff for each open set U and = € U, there
is a clopen set K with x € K C U. We have

Fact 2. every subspace of an ordinal is zero-dimensional.

Let X be a set of an ordinal. An ordinal o > 0 is called a limit point of X iff
X N (v,a) # 0 for every v < a. And Lim(X) denotes the set of all limit points of
X.

Existence of 1 € Lim(X) \ X refutes compactness of X, actually an open cover
{XNa:a<ppU{X N (g, 00)} of X does not have a finite subcover.

Fact 3. Let X be a subspace of an ordinal.

(1) If « € X \ Lim(X), then « is an isolated point.

(2) Ifa € XNLim(X), then {XN(v,a] : v € XNa} is a clopen neighbourhood
base of a in X.

(3) ForY C X, clx(YV) =Y U (X NLIm(Y)) and |clx(Y)| = |Y| hold.

(4) X is compact iff Lim(X) C X. In particular, an ordinal p is compact iff u
is either 0 or a successor ordinal.

(5) X is second countable iff X is separable iff |X| < w. In particular, every
countable subspace of an ordinal is metrizable.

Let p be an ordinal. C' C p is said to be cofinal in p iff C' N [y, u) # O for every
~v < p. The ordinal ¢f p = min{otp C' : C' C p is cofinal} is called the cofinality of
. An ordinal k with ¢f kK = k > w is called a regular cardinal. The fact below is
well known.

Fact 4. Let p be an ordinal.

(1) cf(cf p) =cf p < |u| < p holds.

(2) cf0=0, cfu=1 for each successor ordinal u, and cf u > w for each limit
ordinal p.

(3) If u is a limit ordinal and (ve | € < p) is a strictly increasing sequence of
ordinals, then cf(sup{ve : £ < p}) = cf p.

(4) If k is an infinite cardinal, then k™ is a regular uncountable cardinal. In
particular, w; = wT is a reqular uncountable cardinal.

Fact 5. Let X be a subspace of an ordinal.

(1) If p € X NLim(X), then cf v is the minimal cardinality of neighbourhood
bases of p in X.

(2) X is first countable iff there is not p € X NLim(X) with cf p > w.

(3) X is Lindelof iff there is not p € Lim(X) \ X such that cf pp > w.

Let u be an ordinal with c¢f u > w. A closed and cofinal subset of u is called a
club set of p. A subset X of y is said to be stationary in p iff X N C # () for any
club set C of u. The basic facts below are well known. Moreover, there are many
studies of stationary sets in set theory, you know. (See for instance [25], [16].)

Fact 6. Let p be an ordinal such that cf p=r > w.

106
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(1) (Completeness of the club filter.) If p < k and (Ce¢ | € < p) is a sequence
of club sets of u, then ﬂ§<p Ce¢ is a club set of p.
(2) If C C p is cofinal, then N Lim(C) is a club set of p.

Fact 7. Let k be a reqular uncountable cardinal.

(1) (Diagonal Intersection Lemma) If (Ce | € < k) is a sequence of club sets of
K, then {a <k :a € (e, Ce} is a club set of k.

(2) (Pressing Down Lemma) If S is a stationary subset of k and e < & holds
for every £ € S, then there are a stationary subset S” of S and v < K such
that ve =~ for every £ € S'.

(3) (Solovay’s theorem) Every stationary subset of k is partitioned into k-many
stationary subsets. lLe. if S is a stationary subset of k, then there is a
pairwise disjoint collection (S¢ | € < k) of stationary subsets of S such that

S=Ue<y Se-

A topological space is said to be (countably) paracompact iff every (countable)
open cover has a locally finite open refinement. A topological space is said to be
(countably) metacompact iff every (countable) open cover has a point finite open

refinement.
For a subspace A of an ordinal, define T'(A) = T'y(A4) UT1(A4) by putting

Io(A) ={p e Lim(A)\ A:cf > w, AN u is stationary in u},

' (A) =Lim(A4) N A.
And for a regular cardinal x and for each i = 0, 1, let
Ti(A k) ={peTli(A):ctp=r},
IN'A, k) ={pel(A):cfpu =k}
To see that a subspace A of an ordinal has a certain topological property in

inductive argument, the lemma below is frequently used .

Lemma 1. Let A be a subspace of an ordinal, and ¢ T(A) an ordinal. Then
AN [0,p] is decomposed as a topological sum @, ; A; such that for each i € I,
either A; = {u} or A; C [0, ;] for some p; < p.

On the other hand, existence of u € T'g(A) refutes metacompactness of A. Ac-
tually, it is seen from Pressing Down Lemma that an open cover

{Ana:a<pu}U{AN(u,00)}
of A does not have a point finite open refinement.

Fact 8. Let X be a subspace of an ordinal.
(1) X is paracompact iff X is metacompact iff To(X) = 0.
(2) X is metrizable iff X is paracompact and first countable.

2. NORMALITY AND COUNTABLE PARACOMPACTNESS

A topological space is said to be shrinking iff for each open cover U, there is a
closed cover F = (F(U) | U € U) such that F'(U) C U for every U € U. A space
is said to be collectionwise normal iff for each discrete collection F of closed sets,
there is a pairwise disjoint collection U = (U(F) | F € F) of open sets such that
F C U(F) for every F € F. A space is said to be normal iff for each disjoint
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pair (Fp, F1) of closed sets, there is a disjoint pair (Up, U;) of open sets such that
Fo g UO and F1 g U1.
It is well known that
e monotonically normal spaces are shrinking and collectionwise normal [1],
e shrinking spaces are normal and countably paracompact,
e collectionwise normal spaces are normal,
e normal space is countably paracompact iff it is countably metacompact.

Hence, every subspace of an ordinal is shrinking and collectionwise normal,
and so normal and countably paracompact. Every normal Tj-space is Tychonoff
(=completely regular). And product spaces and subspaces of Tychonoff (and zero-
dimensional) spaces are also Tychonoff (and zero-dimensional). So we have

Fact 9. subspaces of product spaces of ordinals are zero-dimensional, Tychonoff
Ty -space.

It is well-known that normality of X and Y does not always imply normality of
X xY.

Fact 10. w; X (w1 + 1) is not normal.

A normal space X such that X x I is not normal is called a Dowker space, where
I=[0,1] ={y € R:0 <y <1} is the unit interval in the real line. It is well known
that X is a Dowker space iff X is normal and not countably paracompact [2]. The
problem of the existence of such a space had been a hard problem. Rudin found
the first ZFC example of a Dowker space.

Theorem 2. [27]
X=Aze0icpncw(wn+1):Imewvn(l<n<w—w <cfz(n) <wn,}

is a Dowker space.

The box product [yep X coincides with HAGA X as a set, but [ycp X\ has an
open base {J],c Ux : Ux € X is open for every A € A}.

In 1992, Kemoto, Ohta, and Tamano characterized shrinking property, collec-
tionwise normality, normality, and countable paracompactness of products of two
subspaces of ordinals in terms of stationarity.

If v is an ordinal with cf y > w, then there is a club set C' of p with otp C' = cf p,
and the order preserving bijection ¢ : c¢f p — C' for such club set C' is called a normal
sequence. Note that S C p is stationary in p iff ¢71[S] = {€ < cfp: c(§) € S} is
stationary in cf p for all (some) normal sequence ¢ : cf u — p.

For a collection (A(k) | k € N) of subspaces of ordinals, and (uy | k € N) €
[Iren T(A(K), k) for a regular uncountable cardinal x with [N| < &, we say that
[Tien A(K) is diagonal stationary in [T,y pe i Nyen e ' [A(K)] is stationary in
Kk where cj, : K — uy, is a normal sequence.

Theorem 3. [19] Let A and B be subspaces of ordinals.
(1) The following conditions are equivalent.
(a) A x B is shrinking.
(b) A x B is collectionwise normal.
(¢) A x B is normal.
(d) For each regular uncountable cardinal k,
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° Fo(A,Ii) X Fl(B,K) = Fl(A,KJ) X FQ(B, H) = @,
e Ax B is diagonal stationary in uxv for every (u,v) € To(A, k)X
Fo(B, H) .
(2) The following conditions are equivalent.
(e) A x B is countably paracompact.
(f) A x B is diagonal stationary in p X v for each regular uncountable
cardinal k and for each (u,v) € (Io(A, k) x T'(B,k)) U (T'(4, k) X
FO(Ba K‘))
(3) If A, B C wy, then (a)-(f) are all equivalent with (g) below.
(g) Fither A or B is non-stationary, or AN B is stationary in w,.

Corollary 2. A x B is neither normal nor countably paracompact if A and B are
disjoint stationary subsets of wi.

We can characterize normality of product spaces of arbitrary many subspaces of
ordinals as below.

Theorem 4. Let A(X\) be a subspace of an ordinal with |A(N)| > 2 for each \ € A.
Then the following conditions are equivalent.

(a) TIxen A(N) is shrinking.

(b) TIxen A(A) is collectionwise normal.

(¢) TIxen A(A) is normal.

(d) |Ao] < w holds for

Ao={NeA: {ueLim(AN) \ AN : cf g = w} # 0},

and for each reqular uncountable cardinal k, the following hold:
o T'o(A(No), k) x T1(A(N), k) = 0 holds for every distinct N\g, A1 € A,
o if Kk <|A|, then To(A(N), k) =0 for every X € A,
o if K > |A], then [] e A(N) is diagonal stationary in []yca u(A) for
every A" C A and (u(\) | X € A') € [T en To(A(N), 5).

Let X be a topological space, and R the real line. E C X is called a zero-set
(resp. cozero set) of X iff there is a continuous function f : X — R such that
E={reX: f(r) =0} (resp. E={xz € X : f(z) #0}). A space is said to be
strongly zero-dimensional iff for each disjoint pair (Fy, F}) of zero-sets, there is a
clopen set K such that Fy C K and I}, N K = ().

Theorem 5. The following hold.

(1) Products of arbitrary many ordinals are strongly zero-dimensional [23].

(2) Flinite products of subspaces of ordinals are strongly zero-dimensional [6].

(3) There is a subspace of ¢ which is not strongly zero-dimensional, where
c =|R| [6].

Problem 1. Are product spaces of subspaces of ordinals strongly zero-dimensional?

Theorem 6. [5] Let X be a subspace of a finite product of ordinals. Then the
following conditions are equivalent.

(1) X is shrinking.

(2) X is collectionwise normal.

(3) X is normal.

(4) X is normal and strongly zero-dimensional.
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In particular, normality implies countable paracompactness for a subspace of a
finite product of ordinals. On the other hand, w; x (wy + 1) is countably paracom-
pact, but not normal. Kemoto, Smith, and Szeptycki proved the consistency with
ZFC of the statement that every countable paracompact subspace of w2 is normal.
But it is not known whether such statement is derived from only ZFC.

Theorem 7. [22] Assume {$gss or PMEA. Then every countably paracompact sub-
space of wi? is normal.

Problem 2. [22] Is it derived from only ZFC that every countably paracompact
subspace of w12 is normal?

For countable metacompactness, it is known that

Theorem 8.

(1) Every subspace of a finite product of ordinals is countably metacompact [20],
[4].

(2) There are a sequence (A(k) | k < w) of subspaces of wy such that [, ., A(k)
is not countably metacompact [20].

(3) w*t is not countably metacompact.

3. WEAKENINGS OF NORMALITY

The author and Kemoto found examples of topological property P such that

e A x B has the property P for every subspaces A, B of ordinals (or wy),
e there are subspaces A, B, C of ordinals (or wy) such that P does not hold
for Ax B x C.
A topological space is said to be subnormal iff for each disjoint pair (Fp, Fy)
of closed sets, there is a disjoint pair (Uy,U;) of Gs-sets such that Fy C U and
F CU;.

Theorem 9. The following hold.

(1) Every subspace of wi? is subnormal [18].
(2) There is a subspace of wi® which is not subnormal [9)].
(3) For each n < w, every subspace of

w1« ={x €wi™ rx(i) < x(j) for everyi < j <n}
is subnormal [9].

The closure of an open set is called a reqular closed set. A topological space is
said to be k-normal iff for each disjoint pair (Fy, F1) of regular closed sets, there is
a disjoint pair (Uy, Uy) of open sets such that Fo C Uy and Fy C Uy.

Theorem 10. The following hold.

(1) Products of arbitrary many ordinals are k-normal [15].

(2) There is a subspace of w12 which is not k-normal [14].

(3) A x B is k-normal for each subspaces A and B of ordinals[14].

(4) There are subspaces A, B,C of wy such that A x B x C is not k-normal
[11].

We also characterized subnormality and x-normality of finite products of sub-
spaces of wy in terms of stationarity.

110



111

NE R B D RID AR 7

Theorem 11. [11], [7] Let (A(k) | K € N) be a finite collection of non-empty
subsets of wi. Then the following conditions are equivalent.

(a) [Inen A(K) is subnormal.

(b) Tlien A(k) is k-normal.

(¢) There is an equivalence relation ~ on

No ={k € N : A(k) is stationary in w1}

such that
o for each ko, k1 € No, if A(ko)NA(ky1) is stationary in w, then ko ~ ki,
e for each equivalence class r, [[,.c, A(k) is stationary in w;.

A subset D of a topological space X is said to be a discrete closed setiff ({d} | d €
D) is a discrete collection of closed sets of X. A space X is said to be collectionwise
Hausdorffiff for each discrete closed set D of X, there is a pairwise disjoint collection
(U(d) | d € D) of open sets of X such that d € U(d) for every d € D.

Theorem 12. The following hold.

(1) For each n € w, every subspace of w1™ is collectionwise Hausdorff [10] .

(2) There is a collection (A(k) | k < w) of subspaces of wy such that [], _, A(k)
is not collectionwise Hausdorff [10].

(3) There is a subspace of (w1 + 1)% which is not collectionwise Hausdorff.

(4) For each subspaces A, B of ordinals, A x B is collectionwise Hausdorff [8].

(5) There are subspaces A, B,C of wi + 1 such that A x B x C' is not collec-
tionwise Hausdorff [8].

A space X is said to be o-collectionwise Hausdorff iff for each discrete closed set
D of X, there is a sequence (D,, | n € w) such that D = J, ., Dn, and for each
n € w, there is a pairwise disjoint collection (U(d) | d € D,,) of open sets of X such
that d € U(d) for every d € D,

Theorem 13. [13] Every subspace of a countable product of ordinals is o-collectionwise

Hausdorff.
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1 T—U8
1.1 E&
DR, GERHARE P KA FEGHRET 3.

EE 1.1. POACHRHOZ L Z PO —VRE W, G(P) TRYT. DD, G(P) & G-lAZ
HOEM P — P T K OHEEEBHRORE LT x> T3 DN 555 ZEM T, BAROAKIC
X OEZEED NN TH .

GP)IZ PICBALTHATHS. DED, G f: L — KIZXWIT 25 POGIERL [P
{7 G(P) — G(f'P) 252 %. i, EEOWUEEM « — K IZEHHERR2

G(P) - G

215, U, 1R EDEGHROT—VRE GZANRICH—HTZT LICT 5.
EE 1.2. LOEFERMOKZ P DESNET—IH o0, Go(P) TET .

F—IRED P Ra V=R BB IS RDSEDDENE BNG.

1. P OFEfERZHINS.

2. G(P) DRMEZER B L CHEBNBIHET 7 A T L— 3 Y EHANS.

C OREIE T —VRHCBIT 2D 3 DI DNV T b s,

1. REME—A

2. H (BFTEH O E H LU nTHENE)

3. mod p 73 fi

X9 —IHOREAN TR ONTER I 5.

LRECIE P WD HIRE KUy ZEH D & IR L 7220, I WERFEKIC LERNnT £1IcT 5.
22Nt KW H A KU EZICRHERDD, fihVEFRAICLENT &IcT 5.
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1.2 BEFER

FTWROLKONEELHETS. K FOT 7 AN—=T A4 XM EXEHBR X - K DT RO,
KEFEOT7AN—T AL XZEMX - KHhHY —» K \OESZI#H#HXKE x —=yv TEDS.

)

K=——K
K BEZEEGHRICED K EOT 7 AN=—U A RAZEMERZ LT D2 K LEHL. K DT 7
AN—TAZNMHE/ A RERET 7 AN—T A X% M7 X - K TRZRHIZSTT 7 AN—TA
A X xg X - X, e : K- XW526NkEDZ2 5. TTC,p:A— K, q:B—K
W LT Axg B={(a,b) € Ax B|pla)=q(b)} £3%.

l. po(Ixeom)oA=po(eomrx1l)oA=1

2. po(ux1)=po(lxp)
22U, At X — X xg X IEHAEBR, IR E2HTT T 7AN—TALXEH . X — XD
BZ6NzeE, X 2T 7AN—="T A ZNMEEE NS .

3. po(lxt)oA=po(txl)oA=com

D(X) 2T 7 A=A RZEM X — K QYW EkDOZ T2 ET D X DT 7ANN—T A X
IHHE /A K (#) DL ZT(X) DERIHHHE /A F (BF) £%52 LICHERT 5.

EFE 1.3. POBEfEHR adP £1E Px G/(p,g9) ~ (ph,h~'gh) TEE S K FOT 7 A IN—H_TT 7
AN=—MNGETHHEDZNS.

BEFEIR ad P I

([P, gl I, b)) = [p, ghl, e(x) = [x,1], «lp, g]) = [p,g7"]

WX T 7 AN=T A XML 5D, Ko T, KT, T(adP) EHRICNMEEE 5%, 4, adP
DOYIWiEEH s : P — G Ts(pg) = g lsp)g ZHTzd & D EREYE, T'(adP) DGR
s;t: P — GICHWNUTEXSH (s-t)(p) = s(p)t(p) ICKDEHENS. EDFS 51X G(P) DT
s25(p)=p-s(p)ICXDEDS.

EHE 1.1 (Atiyah-Bott [1]). EOXIGIC XD G(P) & I'(adP) ENitHEFE L TR TH 5.

CNCED, BERDT 7 A IN—=T A X753 AT 7 — VRO e B2 5 X %
e s. LU, HE—MRICIEL KBWETED, Frv T0d 5672 D503 L
Wo L <730,

1.3 4S4EZEM

[ X =Y ZEEZROGHETZEEZ, map(X,Y; ) Z X D5 Y NOBRT [ &I %
72K ERNEY ZREDNETZEME U, mapy(X,Y; f) Z map(X,Y; f) DX TR 2
ROFENSEZE6DETH. iz, VW & G-ZERE 35 L E map®(V, W) &2V DS W A\D
G-HEGBDIRTEMET D, F—IVHONFHZEMOET IV EBBREMTEA XS . HALKE
HDEROKRTH %,
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%8 1.1 (Gottlieb [3]). map®(P, EG) &3 AfETH 5.

% BAROE I E D G(P) & map® (P, EG) I HHIC/EHT 2 DT, ROKE b E—[dft%
5%.
map” (P, EG)/G(P) ~ BG(P)

—Ji,a: K — BG7Z P DRFEHRET S EE, 5 map® (P, EG) — map(K, BG; «) (& [FHH
B map® (P, EG)/G(P) ~ map(K, BG; o) ZiF8d 5. LLEZ2x D3 X255,

EHE 1.2 (Gottlieb [3], Atiyah-Bott [1]). XD PICBE L THRRHRE b E—[FENEIET 5.
BG(P) ~ map(K, BG; «)

FOFRENE—FEIZ PICBELTAHREZDT, AROWUZTEGRN 5ENNSEG BG(P) —
BG &, BEICBI 25H0 B4 w : map(K, BG;a) — map(x, BG) = BGICH)IST 5.

2 1.1 XOXAEREFE—A[#THS.

BGo(P) BG(P)

; -

map, (K, BG; o) — map(K, BG; af— BG

BG

R 1.2. G(P)IZL—T72E# L LT Qmap(K, BG;a) L REME—[ETH 5. Ko T, KT, G(P)
A EASR 6 G — mapy(K, BG;a) DRERME—T 7 A )N—DREFE-RIZED.

2 REMEE
F—IBEG(P) OFE P E—HNC DN TOMZUIRIC I DIFE S 7z

EI 2.1 (Kono [10]). P, Z k € Z =~ my(BSU(2)) THHEENS S* FOESUQ2)_ETH L E,
G(P,) ~ G(P) L2 EBmafd (12,k) = (12,1) £75% 2 £ TH 5. 727120, (p,q) & p,q
DIGTNIN S e

— RURERRAE T B 1 {G (Py) brez DRE P E—RINTeS T2 6 H LD RNC LIFEZTHS. C
DEFZFE T B 72D R7Z V5.

TEIE 2.2 (Whitehead [16], Lang [12]). @i 7 71 7' L—3 3 Y OEFEESR QX — map,(ZA, X; @)
WERDEI—HDE & Samelsontd (a, lox) THABNS. 1220, a: A — QX 1T a DEitEE 4.

[QX, map, (XA, X; k)] =~ [QX, map, (XA, X;0)] = [BAAQX, X]| ~ [AAQX, QX]

EHE 2.1 OFEIHOEIIROMED . R 1.2 K0, G(P) IEE#AEHERR S3 — map,(S?, BS?; k)
DREME=T7AN—=TdH%. TTT,SUQ2) &S EFA—HTS. —F, EH22ickbTD
BA1F Samelson Fi (1gs, 1g3) D k FFIXTINT 5 T EWOMND | (168, 1g3) DV 76(5?) =~ Z/12 DA
ot TH 5T &b, B UDHEREETEMIFEHEINS.
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COXDIIFREZEH FOS—VREORE N E—AEERT 2 FTEM 22 I3IERICENTH
BT NS, RIT—MDOZERICH UTCRHMEESRD T 7 A 7L —2ar2EE NI EMNT
X%, CTNUTOWTREBETIERS.

T—IREORE FERICEET B3 CHIREN TS, BIIAE, [11], [7], [4], [5] %Z
BRI NI,

CTTHOEDOLNBZEMIE, RE N E—ROARMEEHMEZ SNLE S Teh BIREEENTZDT
e ns e TH5. THNICEIL T Crabb & Sutherland (& ROFER 2157

EHE 2.3 (Crabb-Sutherland [2]). K Z##GHEREIARE L, G ZHifia 7 MU —REEd 5.
PO K FOFGHREWRZEDISEEGP) DKy T2EMEE LTORE ME—IHREATH 3.

C T TESICRERNCHE S DiF, EOEMOERIEEZ R Y THEE L WS a0 D50 Fik
EULDEBEZTOHBEOWDSTIRAENASMEVSEDTHS. TlE, RE M E—fmNICHR RO
MIEOMD, DX D, A BIEAATRE FE—BRDOERKIZES ELHDTHAS5. TNICBHLT
FRDFERMEEN TN S.

EIE 2.4 (Tsukuda [14]). P, Z k € Z ~ 7m4(BSU(2)) THHEHEI NS S* LOFESUQ2)HKHET%.
BG(P,) ~ BG(P) L7550 B 053 k=4I TH 5.

FOFEBICKD A BEETEML LS —VBORE NI EEHE 5o TLES C
Wbiolz, T, Ay (R THEE) D AL T T AV R L—2 3 Y A, DABH, EDn
ICH LT A, AR DS — VDR E b E—RINEIED SIBICEDZ01 5 5. Wik, B4
X ZNICB T B ROFERZ1ST-.

EIE 2.5 (Tsutaya [15]). K Z##SAREAE L, G Z#Sa2 7 M —RfEd5. PO K Lk
DFEGCHRERZDIHELEGP)D A, ZEMELTORE FE—RIZHIMETHS.

2.3 LIEM 2.5 DA TIE, FiE, P OBEERD T 7 4 N—T 1 275 A, FHEHST (151E &
FHRT ) ENFLTOS. (LED->T, EEIZEEE D EhE DN C ERIIL TS, 2
DB E BB ) —REOHBYE D ATHRAAEE / 4 B (RE b E—Riic 2 hbl b &
B 726 DI & 752 O TEEOBERD T 7 A 3= 1 ZAABMEA EIRIC 5% 2105
LZATHS.

5%, F— VRO A, 22 e LTORE F E—HIOEED n 1T 220, TREHEE ) T
AL LTBIC ED X SIS —VRED A, 22 & LTDORE k=T pIc X D (LT 0%
BB T LI E ORI E NG, £, BAIE ERICH LT FROS R RS 5 C &
R, WIS — VRENRE R E— Al & 75 B OB B I E N B,

paES

C DFEICIIRADEITE A TR D5E 45

w

1—Go(P)—G(P)—G—1 (3.1)
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D A, 7 E LTORZICLTEZ 3. DE D, R G 2 KB G(P) 05 A,
DEKTIRENEZONRERS. COMOHIE 0] DLDOTHS. T, BWHOBDZL
DB ERIT A, %2R & LT ORHRRED 2 D% 25T 5.

EFE 3.1. (itHEEOERS
1-K—H—-G—1
WA, B E UTRH (A, ) T2 3 RZ2RcT 20D,
1. K x GICT A, BEEMWAD (K & GOEMEDOERME RS %), 83548 K - K x G,
G- KxGMWA,Bi8tix%.

2. Rz REME—A[#1L T2 A, BBRKxG— HMHESS. 72720, KxGIZIZ1D A,
WhEz ANs.

l—K—KxG—G——1

|

1 K H G 1
HH ORHERDYG G LAY ROAMEIEHPZ L DO TR,

i 3.1. fifHEEDEed 1l - K - H— G — 1D A, DT BB S A, BHTH
YW G — H D FEET 5.

FERH (3.1) Y A, DT BEMEREFER adP TROBR LIZWDOTROEEEEZ2 5. Thlk
HEO A, BIROBME It TH 5.

& 3.2. K FOT7AN—TAXNMHE/ A RX,)Y DBEDT 7 AN—TAXEGRf: X =Y
MIT7AN—TA XA, BIETH2 L d Rz Hizd T 7 AN—T A ARERE—DfF{hy : [F x
XF = Yhapen PIFIET BT LS.

1L hy=f
2.
hk(tl, ce ,tk,l,xl, NP ,Ik)
_ hkfl(tl,...,IS,...,tk,1,$1,...,l’j$j+1,...,l'k) thO
hj(tl, NP ,tjfl,l‘l, oo ,.Cl}j)hk,j(t]qu, RPN ,tk,1,$j+1, ce ,Q}k> tj =1

T 7 AN=TA X A, BAGOEARZIEEIIROBD TH 5.

R 3.1. 1. I7AN—"TA XA, BBRICT 7 AIN—=T A ZRE MY IIRERIET 7 A/ —
TJA XA, BE%%.

2. T7AN=TA XA, BIBOEIET 7 A /N—TA XA, 5B TH5.
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3. T7AN=TA XA, GIENT 7 AN—=TA XRERNE—[AMEEMRTHZ L&, ZOKRE
NE—WEHBE T 7 AN—T A XA, GBI TH5.

LIeho T, 77AN—TA XA, BI&TH5T 7 A=A KE b E—[AfHE I FERIR
5%, TNEZT7AN=TA XA, [FHEE NS .

HitHE / 1 FICxd % Dold-Lashof Kz —f{b LT K LD 7 7 A 3—T A4 XfitHE /A
RXICHLUTITH TENTES. CNUTE->TREND n KT 7 AN—T A Y27z PR X
TEY. @HOGG LT 7 A N—"7 A RG22 HNTT 7 A 3N—"T A X A, GAG DR
fPIDAETH BN, TTTEREETS. —DFET BT T 7 A /N—T A ZZE[DOEIC B
THEYRHET 7 A4 T L— a3 VOBESWMFEE LisWizd, v E FE—FH FIFEESZ vz
CTHR/BICIIFEZ RN L THD. T7ANN—T A RZEMOBI @Y7 7 A 7L g v
ZEFET B LWV DIEZNTZT THNL LTS 2H7E R TH 5.

K EDT77A4N="T4 Z0HE/ A R X &ZDOYWOEITNHAE /A RT(X)D A,
RICKOBEfRDITIENS.

fieE 3.2. ARG/ PT(X) — D(PRX) DMFEET S. TT T, PPMIEHiHHE/ A F M Dn
RIRCZEM ET 5.

EE 3.1. 57225 (3.1) D A, nHZ L DD DREA DM, adP WEHHKR K x GIZ 7 74
=T A XA, AfETHB L.

AL DGEDRIAEEZ%. A, DEERZT 7 ANN—TA XA, BIR%ET 7 A I3—"T A XG5
ZEMNC K> TRk U, EOMEDEARIC K 0@ D A, BARICEW S % T & 7% C DatIcHA &
bEsLickDHEABENS.

adP DK x GIZT 7 AN—T A AFRE FE—RHD L X G(P) — G L2 2DIZHS M. il
29, G(P) 2 T'(adP) ER—MHT 2 LB/ G(P) — Gl

w:I'(adP) — G, s+ s(xo)
L%, TTT. 203 KDEELTS. 0:G —T(adP) Zw DY LT3 L ERDEHREE
A%,
0: K xG— adP, (z,9) — 0(g9)(z)

QT 7 AN—T A XEHTHD, 0% 2o x GICHIET S E wolb =1g L%, XoT, Dold D
TEHEXD0IE T 7ANN—T A XRENE—[AEGHRTH 5.

T, R (3.1) WA, nR2 L DDt 2542 K5, fitHE/ A FGICHLTAR
B PrG — PG i, THT.

EE 3.3. ZM XD H(K ) ZEMTH2 L EREHIZTETHS.

PFQX v PIOX 2L X

)

PFQX x PIOX 7= X
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B 3.2. 1. XHWH(1,1)ZEMTHET L e QX BRENE—NHTH ST LIX[EE.
2. H(oo,00) ZEMTH BT & &Ry T2EMTH 5 T LIXFIH.
3. H(k,oo) ZEE Aguadé D T, 25 TH 5 .

LomEIC KD H(k, 1) 22 O)V— TN RE FE—R[#ITH BT DN D. TDOER
RENE—%HZEOLHEEEHOTEMAMCEZ ST EEAEETHZH T T TIIEMT 5.

FE 3.2. BGHWHk)ZEMTK D L-SHTIV—EBPNELUFDEE (3.1) 13 A DHEED.

T T, ROKRZEMHNALTEL . T H(L, k) ZERIORFBT I 7213 Tld 7z < SEASEARM
BHRNICEZ FENTWE T ENEETH S, (WHEEAERIE BG ODRENE—RZED L
IR

EI 3.3. iHii 7 7 A 7 L— 3 YOEKEER 6 : G — mapy (K, BG; a) 1
d(g) = Bad(g) o«

ThHABNS. TTT, Bad(g) : BG — BGlZad(g) : G — G DFETEE5HLT%5. FFiC,
BG Y H(1,k) 25T H 2 0B+ 7551 Bad o iy NERENEY IV THS.

COEHE D EM (2.2) IZAHICHEIT S,

4 Mod p 77

REPE—GRICBOTY —2EZ 5 L ERGEAEGHFEIE mod p #HETHS. DD, U—
REG 258 p ThRAMkd % &
Gﬁ(p) X1 Xoee XXp_l

LS p RFTRRE R E—AEPMET 3. C T C ORI IS 3 57— VBED mod p 4
BRSNS 3. £ 93 Harris [6] 1 &% Y —BED mod p SHRICHIS S 5 ROEEEZANT 5.

FHE 4.1 (K-Kono [8]). G, H,p,d Z2ZRDOEDEO &L, P, Qr ZZTNTNS* LOFEG HHKT
k€Z~m(G)~m(H) THREN60ETS. COLE, §4 EO%EM EIMAEL,

G(Far) 1 = G(Qr)1 x T(E)1
LR,
G H p d
SUG2n+1) SO2n+1) 2 2
SU(2n) Sp(n) 2 1
EG F4 2 1
Spin(8) Go 31
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7t Harris [6] 13V —#F2H ORI X O R LTz. T TRV —ROHE AR SRS
%O H AR GG 2N L, TS K OBEfEE B2 0 LTz, Lieh > T, FEICZ EOEM K
DIRNC EZREIHL T 5.

—/7, Theriault [13] (&R EBROERGBR 2 M9 % C LI K b RZ2R[/T.

FE 4.2 (Theriault [13]). G ZHA) —FTIREQ I —DEBITH 290, 1, -+, Ton, 1 (M1 <
<) THBETBH. pS>y+1DEE

l
G(Py) g [J (57 x Qf8>)
k=1

L7551 L, B3 S FOEGHRTE € Z ~ m(G) THRENZ 0.

[ARRIC Theriault [13] & S* EOFE SU(n) HOT —IHHTDWT, & 5D U/NE BTl
L7z ZD mod p itz 52 CTV05B. 5%, 77— D E SIC—KN7E mod p D RICIST %
FERDARFENS.
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