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Abstract

In this talk, we will discuss a study on symplectic automorphisms on K3
surfaces. The main source of this talk is the article in preparation entitled
“Primitive closure of the lattices associated to symplectic automorphisms
on K3 surfaces (temporary)” by the presenter.
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1 Introduction

A study of K3 surfaces spreads in a wide range of areas in mathematics. We are
interested from the viewpoints of algebraic geometry and singularity theory.

As an example, a K3 surface is obtained as the minimal model of a double covering
of the projective plane branching at a sextic curve with at most ADE singularities.
By identifying “Gorenstein model” and its minimal model up to birational equivalence,
such a surface is regarded as a general anticanonical member of the weighted projective
space with weights 1, 1, 1, 3. This weight system also gives a compactified simple K3
singularity in C3. Thus we may consider the Milnor lattice associated to the hypersur-
face singularity. A K3 surface admits the Picard lattice, which is the group H1(X, O∗

X)
with a natural pairing inherited by H2(X, Z). One of our motivation is to find out
some intrinsic relation between the Milnor lattice of a simple K3 singularity and the
Picard lattice of the associated K3 surface.
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Related to algebraic curves in K3 surfaces, it is quite important to study whether
or not a given semigroup is admitted by a pointed algebraic curve. For a double
covering type, we have technique to investigate this question, while in genral, for an n-
covering, we have no technique. We think we have to study algebro-topological aspects
for the coverings to study the im-/possibility of this admittance, which is our second
motivation.

Finally, what is in common in the above topics is the existence of automorphism on
a K3 surface. Finite automorphism groups acting symplectically on K3 surfaces are
well-studied and all classified by Nikulin [3], Mukai [2] and Xiao [7]. If a K3 surface

X admits a symplectic automorphism group G, then, the minimal model Y := X̃/G
of the quotient X/G is also birationally isomorphic to a K3 surface. It is interesting
to compare the Picard lattice of X and that of Y . The classes of (−2)-curves in the
exceptional divisor of a minimal resolution of the singular locus of X/G live in the
Picard lattice of Y , forming a sublattice, say LG.

By Torelli-type theorem, in order to understand the geometry of Y , it is important
to study the Picard lattice of Y , and in particular, the structure of LG in the Picard
lattice. In fact, it is not necessarily true that LG itself is a primitive sublattice of
the K3 lattice ΛK3, while the Picard lattice of Y is. Our problem is to determine
whether or not it is possible to construct explicitly a primitive sublattice L̃G such that
LG ⊂ L̃G ⊂ ΛK3 holds, and if it is true, to find an explicit generator of the primitive
model. Among such groups G, Nikulin [3] and Whitcher [6] study the problem for all
Abelian cases and non-Abelian with G = [G, G], respectively. Our aim is to consider
the problem for the remaining cases. Here is our main theorem of this talk:

Main Theorem. Suppose that a finite group G acts symplectically on a K3 surface
and neither the commutator subgroup [G, G] nor the abelianization Q := G/[G, G]
of G is trivial. Then, there exists a generator for the quotient L̃G/LG satisfying the
condition (∗). Moreover, if Q is a cyclic group of order 2 or 3, then the existance of
the generator is unique up to isomorphism.

2 Preliminary

2.1 Basic Facts
We start with recalling basic facts on K3 surfaces and symplectic automorphisms

on them.

Definition 2.1. A K3 surface is a compact complex 2-dimensional smooth algebraic
variety with trivial canonical divisor and irregularity zero. !

A lattice is a non-degenerate finitely-generated Z-module. Denote by U the hyper-
bolic lattice of rank 2 and E8 the negative-definite even unimodular lattice of rank 8.
For a K3 surface X, the Hodge decomposition gives

H2(X, C) = H2,0(X)⊕H1,1(X)⊕H0,2(X),

where H2,0(X) = H0,2(X) and H1,1(X) = H1,1(X).

Facts 2.2. Let X be a K3 surface.

• The surface X admits a nowhere-vanishing holomorphic 2-form ωX that is unique
up to constant, and H2,0(X) = CωX .
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• The cohomology group H2(X, Z) is a negative-definite even unimodular lattice
with signature (3, 19): H2(X, Z) % U⊕3 ⊕ E⊕2

8 . We call the even unimodular
lattice U⊕3 ⊕ E⊕2

8 the K3 lattice, which is denoted by ΛK3.

• The Picard lattice of X, denoted by Pic (X) := H1(X, O∗
X), is a torsion-free

primitive sublattice of H2(X, Z) of signature (1, ρ − 1), where ρ is called the
Picard number.

Let g ∈ Aut(X) faithfully act on X. The action of g naturally induces a transfor-
mation on ωX by

g∗ωX = αωX (α ∈ C∗).

Definition 2.3. (1) The action of g on X is called symplectic if α = 1, and lest
non-symplectic.

(2) A finite subgroup G of the automorphism group Aut(X) of a K3 surface X acts
symplectically on X if all g ∈ G acts symplectically on X. !

Facts 2.4. If a finite subgroup G ⊆ Aut(X) acts symplectically onX, then the quotient

space X/G has at most ADE singularities. Thus, the minimal model Y := X̃/G is
again a K3 surface.

Here, we fix the notations as in the list below:
X : K3 surface,
G ⊆ Aut(X) : finite group, symplectically acting on X,
Sing(X/G) : the singular locus of X/G,

π : Y := X̃/G → X : minimal resolution of Sing(X/G),
LG : lattice spanned by all classes of (−2)-curves in the

exceptional divisor of π.
In general, for an even lattice L,
L∗ := HomZ(L, Z) : the dual lattice of L,
AL := L∗/L the discriminant group of L,
qL : AL → Q/2Z : the discriminant quadratic form on AL,
bL : AL × AL → Q/Z : the discriminant bilinear form on AL.

2.2 History
We first present a brief history of the classifications of symplectic automorphism

groups G on a K3 surface, and their fundamental properties.
Denote by Cn the cyclic group of order n.

• Nikulin [3, Theorem 4.5] classifies abelian cases. There are fourteen of them in
all:

Ck
2 (k = 1, . . . , 4), C l

3 (l = 1, 2), Cm
4 (m = 1, 2),

Cn (n = 5, 6, 7, 8), C2 × Ch (h = 4, 6).

• Mukai [2] shows that each G (not necessarily abelian) is a subgroup of the Mathieu
group M23 of order 23.

• Xiao [7] completes the classification of G to conclude that there are 81 classes up
to isomorphism, and the configuration of Sing(X/G) is determined.
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Remark 2.5. The lattice LG is not necessarily a primitive sublattice of the K3 lattice
as in Example 2.6.

Example 2.6 ([3], G = Z2). Suppose G = C2. Then, we have LG = A⊕8
1 , which is not

a primitive sublattice of ΛK3. Indeed,

x =
1

2
(e1 + e2 + e3 + e4)

is a torsion element in ΛK3/LG since x2 = −2, and 2x ∈ LG. !
Our next natural question is the existence and properties of a primitive sublattice

L̃G of LG in the Picard lattice of Y . We summarize a history of the studies concerning
L̃G.

• Nikulin [3, Theorem 7.2] : for all abelian G, L̃G is determined, and uniqueness
of its generator is proved.

• Xiao [7] : LG is determined for each G. Moreover, he proves

Lemma 2.7 ([7]). The quotient L̃G/LG is isomorphic to the dual of the abeliza-
tion group Q := G/[G, G]. "

• Whitcher [6] : for all non-abelian G with G/[G, G] = {1}, determines the non-
/uniqueness of the generators of L̃G.

As an example, we produce a part of Nikulin’s result in [3]. In this context, we
assume that

G ⊆ Aut(X) : abelian group of order m := |G|,
{id} *= Gi ⊂ G : cyclic subgroup of G of order mi := |Gi| (i = 1, . . . , N),
ki : the number of points in X that are stational by Gi.
Then, by an analysis of the Euler characteristic, there is a relation :

24(m− 1) =
N∑

i=1

ki(m
2
i − 1). (%)

By (%), one can determine G.

Theorem 2.8 (Theorem 7.2 [3]). There exists a unique generator for L̃G/LG for abelian
G. "

Note that, in his paper, our L̃G is denoted by M(G). The generator in each case is
explicitly given as in the following table:

# G Additional Element(s) rkM(G) detM(G) AM(G)

1a Z2
∑8

l=1 f
(2)
1l 8 26 Z6

2

1a Z3
∑6

l=1 f
(3)
1l 12 34 Z4

3

1a Z5 f
(5)
11 + f

(5)
12 + 2f

(5)
13 + 2f

(5)
14 16 52 Z2

5

1a Z7 f
(7)
11 + 2f

(7)
12 + 3f

(7)
13 18 7 Z7

1b Z4 f
(2)
11 + f

(2)
12 + f

(4)
21 + f

(4)
22 + f

(4)
23 + f

(4)
24 14 26 Z2

2 × Z2
4

1c Z6 f
(2)
11 + f

(2)
12 + f

(3)
21 + f

(3)
22 + f

(6)
31 + f

(64)
32 16 22 · 32 Z2

6

1d Z8 f
(2)
11 + f

(4)
21 + f

(8)
31 + 3f

(8)
32 18 23 Z2 × Z4

2a Z2
2

1
2

∑
(ε1,ε2),εq=1

∑4
l=1 e(ε1, ε2)l (q = 1, 2) 12 28 Z8

2

2a Z3
2

1
2

∑
(ε1,ε2,ε3),εq=1

∑2
l=1 e(ε1,ε2,ε3)l (q = 1, 2, 3) 14 28 Z8

2

2a Z4
2

1
2

∑
(ε1,ε2,ε3,ε4),εq=1 e(ε1,ε2,ε3,ε4)1 (q = 1, 2, 3, 4) 15 −27 Z7

2

2b Z2
3

f
(3)
11 + f

(3)
12 + f

(3)
21 + f

(3)
22 + f

(3)
31 + f

(3)
32 ,

f
(3)
21 + f

(3)
22 − f

(3)
31 − f

(3)
32 + f

(3)
41 + f

(3)
42

16 34 Z4
3

2c Z2 × Z4
f
(2)
11 + f

(2)
12 + f

(2)
21 + f

(2)
22 + f

(4)
41 + f

(4)
42 ,

f
(2)
11 + f

(2)
12 + f

(4)
31 + f

(4)
32 + f

(4)
41 + f

(4)
42

16 26 Z2
2 × Z2

4

2d Z2
4

f
(4)
11 + f

(4)
21 + f

(4)
31 + f

(4)
41 + f

(4)
61 ,

2f
(4)
21 + f

(4)
31 − f

(4)
41 + f

(4)
51 + f

(4)
61

18 24 Z2
4

2e Z2 × Z6
f
(2)
21 + f

(2)
31 + 3f

(6)
51 + 3f

(6)
61 ,

f
(2)
11 + f

(2)
21 + f

(6)
41 + f

(6)
51 + 2f

(6)
61

18 22 · 3 Z2 × Z6
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In the above list, we mean:

f (mi)
il :=

mi−1∑

r=1

r

mi
eilr,

and eilr’s (resp. e(ε1,...,εk)l’s) are canonical generators of the lattice L̃G (forming appro-
priate trees in accordance with Sing(X/G)).

Example 2.9 ([3], G = Z2, LG = A⊕8
1 ). Suppose G = Z2. Then, one obtains the

primitive sublattice
L̃G = LG + Zg

of ΛK3 with the unique additional element

g :=
1

2
(e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8).

Here, ei is the generator of the i-th copy of A1 in LG.
Note that qLG(ei) = −2, and qLG(g) = −4. !
In general, since LG ⊆ L̃G, we have that L̃∗

G ⊆ L∗
G (the dual-lattice process is

contravariant). It is trivial by definition that LG ⊆ L∗
G, and L̃G ⊆ L̃∗

G. Combining
them, and we get

LG ⊆ L̃G ⊆ L̃∗
G ⊆ L∗

G.

Thus, L̃G/LG ⊆ L∗
G/LG = ALG . Therefore, We may search a generator for L̃G/LG in

the discriminant group of LG.
Motivated by [3], we set the condition (∗) as follows:

(∗)






• qLG(e) ≡ 0 mod 2, and e2 *= −2,

• ∀d ∈ LG, bLG(d, e) ∈ Z (i.e., L̃G is a Z-lattice), and
• if L∗

G/LG % 〈e1〉 % 〈e2〉 with e1 *= e2, then, bLG(e1, e2) ∈ Z
(“compatibility′′).

Problem 2.10. Describe the smallest primitive sublattice L̃G s.t.

LG ⊆ L̃G ⊆ ΛK3.

Equivalently, describe a generator e ∈ L∗
G/LG with

L̃G = LG + Ze

satisfying the condition (∗).

According to the background results, we may proceed to give an answer to Prob-
lem 2.10 for non-abelian G’s with neither [G, G] nor Q is trivial.

3 Main Theorem and a sketch of the proof

We re-produce our main theorem.

Main Theorem 1. Suppose that a finite group G acts symplectically on a K3 surface
and neither the commutator subgroup [G, G] nor the abelianization Q := G/[G, G]
of G is trivial. Then, there exists a generator for the quotient L̃G/LG satisfying the
condition (∗). Moreover, if Q is a cyclic group of order 2 or 3, the existance of the
generator is unique up to isomorphism.

In the following three subsections, we give a sketch of the proof of our main theorem.
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3.1 Existence
Suppose that the abelianization of G contains a factor Cn as

Q := G/[G, G] = · · ·× Cn × · · · .

As we have discussed before, we may search a generator in the discriminant group AKG .
Since we know explicitly a formula for the discriminant quadratic form qLG on ALG ,

we can compute the self-intersection number (norm)

qLG(g) for ord(g) = n

to determine which g ∈ ALG satisfies the conditions

qLG(g) ∈ 2Z and qLG(g) ≤ −4.

In case that there exist two candidates g1, g2 ∈ ALG for the generator, determine
whether or not the intersection number satisfies the condition

bLG(g1, g2) ∈ Z.

Since there is a relation

2bLG(g1, g2) ≡ qLG(g1 + g2)− qLG(g1)− qLG(g2) mod 2,

we may well see if

qLG(g1 + g2) ∈ 2Z

holds true.

Next, we show the uniqueness of the generator in the cases Q = C2, and C3.
Let M be a lattice that is the direct sum of lattices of ADE-type. Occasionally we

use the following well-known facts for such a lattice M .

(i) There exists an induced homomorphism O(M) → O(AM) between the automor-
phism group of the lattice M and that of discriminant group AM [4, §1-4◦].

(ii) If the Dynkin diagram D(M) of M admits a Z2-symmetry due to a reflection,
then, so does the discriminant group AM .

For notations of groups, we refer [7].

3.2 Q = C2 case.
We construct a generator explicitly by a case-by-case analysis for

G = S4(#34), T48(#54),A4,3(#61), 24D6(#65),

42D6(#67),S5(#70),A4,4(#78), F384(#80).

In other cases, we use the following two Lemmas.
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Lemma 3.1 (G = D6(#6), D10(#16),A3,3(#30)). If qLG(g) of an element g ∈ ALG of
order 2 is given by

qLG(g) =
8∑

i=1

[− [ai]22
2

]−2,

then, g contains non-trivial entries as in the table.

Norm Element
−2 (· · · [1]2, [1]2, [1]2, [1]2, [0]2, [0]2, [0]2, [0]2 · · · )
−4 (· · · [1]2, [1]2, [1]2, [1]2, [1]2, [1]2, [1]2, [1]2 · · · )

Therefore, there exists a unique generator of L̃G/LG with the condition (∗) up to
O(AM). "
Lemma 3.2 (G = 24D10(#73), T192(#77)). If qLG(g) of an element g ∈ ALG of order
2 is given by

qLG(g) =
3∑

j=1

[−3[bj]24
4

]−2 +
2∑

k=1

[− [ck]22
2

]−2,

then, g contains non-trivial entries as in the table. Denote by m := #{j ∈ {1, 2, 3} | [bj]4 =
[2]4} and n := #{k ∈ {1, 2} | [ck]4 = [1]4}.

Norm (m,n)
−2 (1, 2), (2, 0)

Norm Element
−4 (· · · [0]5, [0]5, [2]4, [2]4, [2]4, [1]2, [1]2 · · · )

Therefore, there exists a unique generator of L̃G/LG with the condition (∗) up to
O(AM). "
3.3 Q = C3 case.

Similarly we construct explicitly the generator. In particular, we use the following
Lemmas.

Lemma 3.3. Consider a lattice M admitting Z2-summetry. If the self-intersection
number (norm) of an element g of order 3 in AM is given by

g2 =
6∑

i=1

[−2[ai]23
3

]−2,

then, g contains non-trivial entries up to permutation as in the table below.

Norm Conditions
−2 [ai]3 = [0]3 for i = 4, 5, 6, and

#{i ∈ {1, 2, 3} | [ai]3 = [2]3} is odd
−4 [ai]3 *= [0]3∀i, and

#{i ∈ {1, . . . , 6} | [ai]3 = [2]3} is even

Therefore, there exists a unique generator

(· · · , [1]3, [1]3, [1]3, [1]3, [1]3, [1]3, · · · )

(of norm −4) of AM up to O(AM) symmetry with the condition (∗). "
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Lemma 3.4. Consider a lattice M admitting Z2-summetry. If the self-intersection
number (norm) of an element g of order 3 in AM is given by

g2 =
2∑

i=1

[−4[ai]23
3

]−2 +
2∑

j=1

[−2[cj]23
3

]−2,

then, g contains non-trivial entries up to permutation as in the table below.

Norm Conditions
−2 [a1]3 = [c1]3 *= [0]3 and [a2]3 = [c2]3 = [0]3
−4 [ai]3 and [cj]3(∀i, ∀j) are non-zero

Therefore, there exists a unique generator

(· · · , [1]3, [1]3, [1]3, [1]3, · · · )

(of norm −4) of AM up to O(AM) symmetry with the condition (∗). "

4 Summary and Prospect

4.1 Summary
In this talk, by giving an explicit generator, we have described the smallest primitive

closure L̃G of the lattice LG in the K3 lattice ΛK3 in the cases where G ⊆ Aut(X) acts
symplectically on X, neither [G, G] nor Q is trivial.

4.2 Prospects I: Other cases
An idea: general theory of du Val singularities. 2

In some cases, we expect to be able to use techniques of double covering of rational
double points (RDP ’s for short), globally a ramified point. An RDP is a germ of
isolated singularity (X , 0) which is known to be isomorphic to the quotient singularity

(C2/G, 0),

where G is a finite subgroup of SL2(C). It is known that such a group G is up to
isomorphic classified into the following five cases, and the corresponding RDP ’s are
given in the far right column :

Cyclic C2m =

〈(
ζm 0
0 ζ−1

m

)〉
A2m−1

Binary
Dihedral

BDn =

〈(
ζ2n 0
0 ζ−1

2n

)
,

(
0 i
i 0

)〉
Dn

Binary
Tetrahedral

BT24 =

〈(
ζ4 0
0 ζ−1

4

)
,

(
0 i
i 0

)
,

1

1− i

(
1 i
1 −i

)〉
E6

Binary
Octagonal

BO48 =

〈(
ζ8 0
0 ζ−1

8

)
,

(
0 i
i 0

)
,

1

1− i

(
1 i
1 −i

)〉
E7

Binary
Icosahedral

BI120 =

〈(
ζ10 0

0 ζ−1
10

)
, ( 0 i

i 0 ) ,
1√
5

(
ζ5−ζ45 ζ25−ζ35
ζ25−ζ35 −ζ5+ζ45

)〉
E8

2Here, we follow the notations in [1] and refer [5].

68



Since the group C2n is a normal subgroup of BD4n, the group BD4n/C2n gives a
covering transformation of

σ : C2/C2n → C2/BD4n

of order 2. Thus the mapping σ is a ramifying double covering of du Val singularities
from an A2n−1-singularity to a D4n-singularity. Similarly, there is a double covering
D8n → D4n due to the fact that the group BD8n is a normal subgroup of BD4n.

4.3 Prospects II
In future, we are intended

• to compute the invariants of the lattice L̃G:
the rank, the discriminant group, the discriminant form.

• to describe a polarization of the K3 surface Y .

• to reveal an elliptic structure (if any) of Y .

• to study the relations between the Picard lattice of X, that of Y and the lattice
L̃G.
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