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Since the work of Freedman and Donaldson in the early 1980’s, there have been techniques

available for producing closed exotic 4-manifolds, i.e. 4-manifolds which admit more than

one smooth structure. However, these (gauge theoretic) tools are difficult to wield on 4-

manifolds with very little algebraic topology, and cannot be used to demonstrate that S4 is

exotic.

There is an alternate, well-known strategy which a priori can be used to distinguish smooth

structures on very simple closed 4-manifolds; produce a knot K in S3 which is (smoothly)

slice in one smooth filling W of S3 , but not slice in some homeomorphic smooth filling

W ′ . However, this strategy had never actually been used in practice, even to reproduce

known complicated exotica. In this manuscript I will discuss joint work with Manolescu and

Marengon [MMP20] which gives the first application of this strategy. I will also discuss joint

work with Manolescu [MP21] which gives a systematic approach towards using this strategy

to produce candidates for exotic homotopy spheres.

This manuscript only aims to provide an overview, for more detailed exposition and refer-

ences, see the full papers [MMP20, MP21]. All manifolds and embedding are taken to be

smooth unless otherwise specified.

1 Introduction

Definition 1.1 A smooth 4-manifold X is exotic if there exists a smooth 4-manifold Y

such that Y is homeomorphic but not diffeomorphic to X .

The following is a brief survey of the simplest 4-dimensional exotica known: for non-compact

manifolds it can be shown as a consequence of Donaldson’s theorem [Don83] and work of

Freedman [Fre82] that R4 is exotic. In the setting of compact 4-manifolds with boundary,

it is known that there are contractible exotic 4-manifolds, [AR16]. In the closed case, the

smallest (in terms if b2 ) known exotic manifold is CP 2#2CP 2 , [AP10].

In the results above, the diffeomorphism obstruction comes from Gauge theoretic 4-manifold

invariants. Consider instead the following primitive argument showing that some X is not

diffeomorphic to some Y ; find a manifold M such that M embeds in X but M does not

embed in Y . Of course, this argument only gives an advantage over a direct argument
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using diffeomorphism invariants of X and Y if one has techniques for constructing and ob-

structing embeddings which are better developed or easier to use than direct diffeomorphism

invariants.

I will now introduce a certain type of 4-manifold M for which this is the case.

Definition 1.2 A knot trace X(K) is the 4-manifold obtained by attaching a 0-framed

2-handle to B4 along K .

The following lemma comes essentially from [FM66], for proof see [HP19].

Lemma 1.3 For any knot K and closed 4-manifold Y , X(K) ↪→ Y with ι∗(H2(X(K)) =

β ∈ H2(Y ) if and only if K bounds a disk D2 ↪→ Y̊ with [D] = β ∈ H2(Y̊ , ∂).

Throughout, Y̊ is defined to be the complement of an open B4 in Y . There are many

invariants in the literature for obstructing a knot K from bounding such a disk in some

Y̊ , especially when Y̊ ∼= B4 . Thus, knot traces provide a compelling source of W for the

outline above. In particular, it is well known that Rasmussen’s s invariant [Ras10] may be

able to obstruct X(K) embedding in S4 even if X(K) embeds in some homotopy sphere,

see [FGMW10]. Since we are particularly interested in this setting, we will be particularly

interested in the following type of slice disk:

Definition 1.4 A knot K is H-slice in X (or X̊ ) if K bounds a disk D2 ↪→ Y̊ with

[D] = 0 ∈ H2(Y̊ , ∂). A knot K is slice if K bounds a disk D2 ↪→ B4 .

In this language, the smooth 4-dimensional Poincare conjecture implies:

Conjecture 1.5 There does not exist a knot K in S3 which is H-slice in some homotopy

4-ball Y but such that K is not H-slice in B4 .

The main theorem of this manuscript is the following:

Theorem 1.6 ([MMP20]) There exist homeomorphic closed 4-manifolds X and Y and a

knot K which is H-slice is Y but not H-slice in X .

Surprisingly, this provides the first source of exotic closed 4-manifolds which are distinguished

by the embedding outline, and provides a proof-of-concept for this approach on the Poincare

conjecture.

In the second part of the manuscript, I will discuss joint work with Ciprian Manolescu

in which we develop systematic methods for producing knots which are H-slice in some

homotopy B4 but which may not be H-slice in B4 .
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2 Using H-sliceness to produce exotica

The goal of this section is to outline a proof of Theorem 1.6. The main technical result with

powers Theorem 1.6 is the following:

Theorem 2.1 [Theorem 1.4 of [MMP20]] Let X be a closed 4-manifold with b+2 (X) > 1

such that there exists a spinc structure s with Bauer-Furuta invariants BF (X, s) 6= 0. Then

there are no spheres S2 ↪→ X with S · S ≥ 0 and [S] 6= 0.

This adjunction inequality for the Bauer-Furuta invariants is proved identically to the analo-

gous statement for the Sieberg Witten invariants. We are primarily interested in the following

corollary:

Corollary 2.2 [MMP20] For (X, s) a closed 4-manifold and spinc structure such that

BF (X, s) are very nice1, if some knot K bounds D2 ↪→ X̊ with D · D ≥ 0 and [D] 6= 0

then K is not H-slice in X .

Sketch of corollary The “very nice” condition is precisely what is needed to conclude

that BF (X#X, s#s) 6= 02. Now suppose some knot K bounds D2 ↪→ X̊ with D ·D ≥ 0

and [D] 6= 0 and suppose for a contradiction that K is H-slice in X with H-slice disk D′ .

Then D ∪D′ ↪→ X#X is a 2-sphere with S ·S ≥ 0 and [S] 6= 0, violating Theorem 2.1.

The advantage of Corollary 2.2 is that it allows one to prove an obstructive claim with a

constructive method; one simply needs to demonstrate the existence of a certain disk (D)

for K to obstruct the existence of an H-slice disk for K . This is how we prove Theorem 1.6.

The following sketch gives an particularly straightforward example; the reader can modify

this method to produce other examples as an exercise.

Sketch of Theorem 1.6 It is well known that the left hand trefoil bounds a disk D in

K3 (thus in K3#CP 2 ) with D ·D = 0 and [D] 6= 0 (see proof in [MMP20]). Corollary 2.2

then implies that the right hand trefoil is not H-slice in K3#CP 2 .

It is also well known that the right hand trefoil is H-slice in CP 2 (thus in #3CP 2#20CP 2 ).

Further, the intersection forms of K3#CP 2 and #3CP 2#20CP 2 are isomorphic, thus the

manifolds are homeomorphic by work of Freedman. Since the right hand trefoil is H-slice in

one manifold and not the other, the manifolds are not diffeomorphic.

1for precise condition, see [MMP20]
2The reason we work with Bauer-Furuta invariants is precisely because they do not necessarily

vanish under connected sum. This observation has subsequently been used to greater advantage, see

[IMT21]
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We remark that this proof relies on the fact that K3#CP 2 has nice, non-vanishing Bauer-

Furuta invariants, and it is also the case that #3CP 2#20CP 2 does not. Thus there is a more

direct proof, without reference to H-sliceness, that the manifolds are non-diffeomorphic. It

is of considerable interest to produce exotic 4-manifolds distinguished by H-sliceness in the

absence of another proof.

3 Systematically producing knots which are H-slice in a ho-

motopy ball

We now turn our attention to the problem of systematically producing knots K with are

H-slice in some 4-manifold Y which is homeomorphic to B4 but which may not be slice in

B4 . We will be aided by the following folklore lemma.

Lemma 3.1 If knots K and J have ∂(X(K)) ∼= ∂(X(J)) and K slice then J is H-slice in

some Y homeomorphic to B4 .

Remark 3.2 For proof of the lemma, we refer the reader to [MP21], but we note here that

for explicit knots K and J as in the lemma, the proof of the lemma constructs an explicit

Y homeomorphic to B4 .

3.1 Starting with a slice knot

In the most direct attempt to apply Lemma 3.1, one would like to take some slice knot

K and construct a J with ∂(X(K)) ∼= ∂(X(J)). We remind the reader that ∂(X(K)) is

the familiar 3-manifold obtained by 0-framed Dehn surgery along K , denoted S3
0(K). We

develop previous work of the author [Pic19] to give a fully general construction of pairs of

knots which share a 0-surgery. Our construction is called an RBG link ; for details of the

construction, see [MP21]. For this exposition it suffices to know the statement:

Theorem 3.3 Any RBG link has a pair of associated knots KB and KG with S3
0(KB) ∼=

S3
0(KG). Conversely, for any knots K and J with homeomorphism φ : S3

0(K) → S3
0(J)

there exists and RBG link with associated knots KB
∼= K and KG

∼= J .

Theorem 3.3 gives a complete method for understanding 0-surgery homeomorphisms when

they exist, but it does not help the user necessarily find a J for their favorite (in our setting,

slice) knot K . In fact, it is known that there are knots K for with it is not possible to find

a distinct J with S3
0(K) ∼= S3

0(J), for example:

Theorem 3.4 ([Gab83]) The unknot, both trefoils and the figure eight knot are charac-

terized by their 0-surgeries.
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Figure 1: A many parameter family of RBG links

At present, it is technically out of reach to systematically produce a distinct knot J with

S3
0(K) ∼= S3

0(J) for any given slice knot K . However, there are some situations for which

such a J can be readily produced, for example:

Proposition 3.5 [Pic20] If the unknotting number if K is one, there exists an BRG link

with KB = K .

A part of the work in [MP21] consists of, for a handful of slice knots K , the production of

infinite families of knots Ji each with S3
0(K) ∼= S3

0(Ji). Of course, the goal of producing

such Ji (which are H-slice in a homotopy B4 by Lemma 3.1) is to find that s(Ji) 6= 0.

Unfortunately, for all the Ji we build, either s(Ji) = 0 or the knot Ji was too large and s

could not be computed.

While these computations overall result in a failed attempt, we point out that these examples

do contribute a new source of simple 4-manifolds Yi homeomorphic to B4 , see Remark 3.2.

We fail to show these Yi are not diffeomorphic to B4, but we also cannot systematically

standardize them3; we hope the study of these new simple potential counterexamples will

motivate the development of new techniques.

3.2 Starting with a pair

Our attempts at systematizing approach in Subsection 3.1 are hobbled by the technical

difficulties inherent in producing a knot J with S3
0(J) ∼= S3

0(K) for a given slice knot K .

3Since our preprint appeared, a graduate student Kai Nakamura has already developed new

arguments which standardize some of our examples. His work is in progress.
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Figure 2: A many parameter family pairs of knots KB and KG with the same

0-surgery. We only consider elements with small parameters, for details see

[MP21]

Even when it is possible to produce such a J , at present time that J is built by hand, thus

it is impractical to build and compute J and s(J) for large families of slice knots K .

The second part of the work in [MP21] attempts to wield Lemma 3.1 from a different, more

systematic, perspective. We begin with a many parameter family of RBG links, see Figure

1. From this family of links, we get a large (3375 element) family of pairs of knots with

S3
0(KB) ∼= S3

0(KG), see Figure 2. We are interested in whether this family contains a pair

such that one knot is slice and the other has s 6= 0. For ease of exposition, I will refer to

a search for a pair with KB slice and s(KG) 6= 0; of course the search with the roles of B

and G reversed must be performed also.

With help of a computer, we searched the family for pairs that may have this property.

To begin, we searched for pairs with s(KB) = 0 and s(KG) 6= 0. Finding many such

pairs, we are interested in whether any of those KB are actually slice. We computed all

readily computable4 sliceness invariants for these potentially slice KB ; these other sliceness

invariants showed that many of the remaining KB are not slice, but surprisingly, not all.

Thus

Theorem 3.6 ([MP21]) If any of the 5 topologically slice knots in Figure 3 are slice then

the smooth 4-dimensional Poincare conjecture is false.

4After our preprint appeared, Nathan Dunfield and Sherry Gong introduced a new computer

program for computing twisted Alexander polynomials. Computations of the twisted Alexander

polynomials ruled out 16 of our candidates, our Theorem has been updated to include their calcula-

tions.
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Figure 3: Candidates for slice knots.

Recently, in forthcoming work, Kai Nakamura developed a new argument which shows that

the 5 knots from Theorem 3.6 are not slice. However, Kai’s arguments do not show that any

such examples coming from any such search on any family of RBG links are not slice. So

while the particular examples of our paper our now known not to provide counterexamples to

the Poincare conjecture, the process may still provide interesting examples. There is ongoing

work in the community to continue to wield and systematize our work, as well as the work

of Dunfield, Gong, and Nakamura, towards better understanding the examples generated by

the techniques in Subsections 3.1 and 3.2.
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