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1. Introduction

An immersed surface-link is a generically immersed closed oriented surface in
the 4-space R4. When the surface has only one component, it is also called an
immersed surface-knot. When the surface consists of 2-spheres, it is also called an
immersed sphere-link or simply an immersed 2-link. When the immersion is an
embedding, it is also called a surface-link. Two (immersed) surface-links L and
L′ are equivalent if there is an orientation-preserving auto-homeomorphism h of
R4 sending L to L′ orientation-preservingly. An immersed 2-link is studied in [11]
in relation to a cross-sectional link. A normal form of an immersed surface-link
introduced by S. Kamada and K. Kawamura in [5] is used to define a marked graph
diagram of an immersed surface-link. In [6], we extend the method of presenting
surface-links by marked graph diagrams to presenting immersed surface-links. We
also give some local moves on marked graph diagrams that preserve the ambient
isotopy classes of their presenting immersed surface-links, which are extension of
moves given by Yoshikawa [19] for presentation of embedded surface-links. In [13],
with an example described by a marked graph diagram of an immersed 2-knot, it is
shown as the main theorem (Theorem 3.6) that for any positive integer n, there are
infinitely many immersed 2-knots with only n essential double point singularities,
that is, infinitely many immersed 2-knots with n double point singularities which
are not equivalent to the connected sum of any immersed 2-knot and any unknotted
immersed sphere.

2. Marked graph representation of immersed surface-links

In this section, we review (oriented) marked graph diagrams representing im-
mersed surface-links described in [6]. A marked graph is a 4-valent graph in R3

each of whose vertices is a vertex with a marker looks like
❄❄

❄❄
❄❄
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❄
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. Two marked

graphs are said to be equivalent if they are ambient isotopic in R3 with keeping
the rectangular neighborhoods of markers. As usual, a marked graph in R3 can
be described by a link diagram on R2 with some 4-valent vertices equipped with
markers, called a marked graph diagram. An orientation of a marked graph G in R3

is a choice of an orientation for each edge of G. An orientation of a marked graph

G is said to be consistent if every vertex in G looks like
❄❄

❄❄
❄❄
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#
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. A marked graph

G in R3 is said to be orientable if G admits a consistent orientation. Otherwise, it
is said to be non-orientable. By an oriented marked graph we mean an orientable
marked graph in R3 with a fixed consistent orientation. Two oriented marked
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graphs are said to be equivalent if they are ambient isotopic in R3 with keeping
the rectangular neighborhood, marker and consistent orientation. For t ∈ R, we
denote by R3

t the hyperplane of R4 whose fourth coordinate is equal to t ∈ R, i.e.,
R3

t = {(x1, x2, x3, x4) ∈ R4 | x4 = t}. An immersed surface-link L ⊂ R4 = R3 × R
can be described in terms of its cross-sections Lt = L ∩ R3

t , t ∈ R (cf. [3]). It
is shown [5] that any immersed surface-link L, there is an immersed surface-link
L′ ⊂ R3[−2, 2] satisfying the following conditions:

(1) The intersections L′
1 and L′

−1 are H-trivial links;
(2) All saddle points of L′ are in R3[0];
(3) All maximal points of L′ are in R3[2];
(4) All minimal points of L′ are in R3[−2];
(5) The intersections L′ ∩ (R3[1, 2]) and L′ ∩ (R3[−2,−1]) are disjoint unions

of a disjoint system of trivial knot cones and a disjoint system of Hopf link
cones.

We call L′ a normal form of L. Let L be an immersed surface-link in R4, and L′

a normal form of L. Then L′
0 is a spatial 4-valent regular graph in R3

0. We give a
marker at each 4-valent vertex (saddle point) that indicates how the saddle point
opens up above as illustrated in Fig. 1. We choose an orientation for each edge of L′

0

that coincides with the induced orientation on the boundary of L′ ∩ R3 × (−∞, 0]
from the orientation of L′. The resulting oriented marked graph G is called an
oriented marked graph of L. As usual, G is described by a link diagram D with
rigid marked vertices. Such a diagramD is called an oriented marked graph diagram
or an oriented ch-diagram (cf. [17]) of L.

t =

t = −

t = 0

Figure 1. Marking of a vertex

Let D be an oriented marked graph diagram. We obtain two links L−(D) and
L+(D) from D by replacing each marked vertex in D as shown in Fig. 2. Links
L−(D) and L+(D) are also called the negative resolution and the positive resolution
of D, respectively. By replacing a neighborhood of each marked vertex vi (1 ≤ i ≤
n) with an oriented band Bi as illustrated in Fig. 2. Denote the disjoint union
B1 ( · · · (Bn of bands by B(D). A link L is H-trivial if L is a split union of trivial
knots and Hopf links. A marked graph diagram D is said to be H-admissible if
both resolutions L−(D) and L+(D) are H-trivial classical link diagrams as shown
in Fig. 3.

From now on, we recall how to construct an immersed surface-link L in R4 from
a given H-admissible oriented marked graph diagram (cf. [5, 6]). Let D be an
H-admissible oriented marked graph diagram. We define a surface-link F(D) ⊂
R3 × [−1, 1], called the proper surface associated with D, by

76第64回トポロジーシンポジウム



PRESENTATIONS OF (IMMERSED) SURFACE-KNOTS BY MARKED GRAPH DIAGRAMS 3

L
−

(D)

L
+
(D)

L
−

(D)∪{Bi}

vi
Bi

>

>

<

<

>

>
>

>

>

>

Figure 2. Marked vertex resolutions

L+(D)L
−
(D)D

Figure 3. An H-admissible marked graph diagram

(R3
t ,F(D) ∩ R3

t ) =

⎧
⎨

⎩

(R3, L+(D)) for 0 < t ≤ 1,
(R3, L−(D) ∪ B(D)) for t = 0,
(R3, L−(D)) for −1 ≤ t < 0.

It is known that a marked graph diagram D is orientable if and only if the proper
surface F(D) associated with D is an orientable surface. Since D has a consistent
orientation, the resolutions L+(D) and L−(D) have the orientations induced from
the orientation of D. We choose an orientation for the proper surface F(D) so that
the induced orientation of the cross-section L+(D) = F(D)1 = F(D)∩R3

1 at t = 1
matches the orientation of L+(D). Let [a, b] be a closed interval with a < b. For a
link L, let L̂∗ [a, b] (or Ľ∗ [a, b]) be a cone with L[a] (or L[b]) as the base and a point
in R3[b] (or R3[a]), respectively. Let H = (O1 ∪ · · · ∪ Om) ∪ (P1 ∪ · · · ∪ Pn) be an
H-trivial link in R3, where Oi is a trivial knot and Pj is a Hopf link for i = 1, . . . ,m,
j = 1, . . . , n.

• Let H∧[a, b] be a disjoint union of a disjoint system of trivial knot cones
Ôi∗[a, b](i = 1, . . . ,m) and a disjoint system of Hopf link cones P̂j∗[a, b](j =
1, . . . , n) in R3[a, b].

• Let H∨[a, b] be a disjoint union of a disjoint system of trivial knot cones
Ǒi∗[a, b](i = 1, . . . ,m) and a disjoint system of Hopf link cones P̌j∗[a, b](j =
1, . . . , n) in R3[a, b].

By capping off F(D) with L+(D)∧[1, 2] and L−(D)∨[−2,−1], we obtain an oriented
immersed surface-link S(D) in R4. We call the oriented immersed surface-link S(D)
the oriented immersed surface-link associated with D. It is straightforward from the
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construction of S(D) that D is an oriented marked graph diagram of the oriented
immersed surface-link S(D).

Definition 2.1. An immersed surface-link L is presented by an H-admissible marked
graph diagram D if L is ambient isotopic to S(D) constructed from D.

Theorem 2.2. Let L be an immersed surface-link. Then there is an H-admissible
marked graph diagram D such that L is presented by D.

We discuss moves on marked graph diagrams which preserve the ambient isotopy
classes of the immersed surface-links presented by the diagrams.
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Figure 4. Moves of Type I

The moves depicted in Fig. 4 on marked graph diagrams are called moves of type
I, which do not change the equivalence classes of marked graphs in R3.

The moves depicted in Fig. 5 on marked graph diagrams are called moves of type
II, which change the equivalence classes of marked graphs in R3. When a marked
graph diagramD isH-admissible (or admissible) then the result obtained fromD by
any move of type II is also H-admissible (or admissible) and the immersed surface-
link (or surface-link) presented by the diagrams are ambient isotopic, respectively.

It is known that two admissible marked graph diagrams present ambinet isitopic
surface-links if and only if they are related by the moves of type I and II (cf.
[14, 18, 19]). These moves are called Yoshikawa moves.

Let D be a link diagram of an H-trivial link L. A crossing point p of D is an
unlinking crossing point if it is a crossing between two components of the same Hopf
link of L and if the crossing change at p makes the Hopf link into a trivial link.
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Figure 5. Moves of Type II

Definition 2.3. Let D be an H-admissible marked graph diagram and let D−
and D+ be the diagrams of the lower resolution L−(D) and the upper resolution
L+(D), respectively. A crossing point p of D is an lower singular point (or an upper
singular point, respectively) if p is an unlinking crossing point of D− (or D+).

We introduce new moves for H-admissible marked graph diagrams. They are
the moves Γ9, Γ′

9 and Γ9 in Fig. 6, which we call moves of type III. For the moves
(a) of Γ9 and Γ′

9 in Fig. 6 we require a condition that the components l+ (in the
resolution L+(D)) and l− (in the resolution L−(D)) are trivial, respectively. For
the moves (b) of Γ9 and Γ′

9, we require a condition that p is an upper singular point
and a lower singular point, respectively.
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Figure 6. Moves of Type III
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The generalized Yoshikawa moves for marked graph diagrams are the moves
Γ1, . . . ,Γ5 (Type I), Γ6, . . . ,Γ8 (Type II), and Γ9,Γ′

9,Γ10 (Type III) as shown in
Fig. 4, Fig. 5, and Fig. 6, respectively.

Definition 2.4. Let D and D′ be marked graph diagrams. Marked graph diagrams
D and D′ are stably equivalent if they are related by a finite sequence of generalized
Yoshikawa moves.

Theorem 2.5. ([6]) Let L and L′ be immersed surface-links, and D and D′ their
marked graph diagrams, respectively. If D and D′ are stably equivalent, then L
and L′ are ambient isotopic.

Definition 2.6 (cf. [5]). A positive (or negative) standard singular 2-knot, denoted
by S(+) (or S(−)) is the immersed 2-knot of the marked graph diagram D (or D′)
in Fig. 7, respectively. An unknotted immersed sphere is defined to be the connected
sum mS(+)#nS(−) for any non-negative integers m,n with m+ n > 0.

A double point singularity p of an immersed 2-knot S is inessential if S is the
connected sum of an immersed 2-knot and an unknotted immersed sphere such that
p belongs to the unknotted immersed sphere. Otherwise, p is essential.

D D
′

Figure 7. Standard singular 2-knot

3. Confirming immersed 2-knots with essential singularity

In this section, the main theorem will be shown with an example of infinitely
many immersed 2-knots with essential singularity. For an immersed 2-knot K, let
E(K) = Cl(S4 \N(K)). Let Ẽ(K) be the infinite cyclic covering of E(K). Then the
homology H(K) = H1(Ẽ(K)) is a finitely generated Λ-module, where Λ = Z[t, t−1].
This module is called the first Alexander module of K (cf. [15]). Let

DH(K) = {x ∈ H(K)| ∃{λi}1≤i≤m : coprime (m ≥ 2) with λix = 0, ∀i},

called the annihilator Λ-submodule, which is known to be equal to the integral
torsion part of the Alexander module H(K) (cf. [9, Section 3]). Let ϵ(K) be the
first elementary ideal of DH(K). A Λ-ideal is symmetric if the ideal is unchanged by
replacing t by t−1. Let DH(K)∗ = hom(DH(K),Q/Z) have the induced Λ-module
structure, called the dual Λ-module of DH(K). The following lemma is used in our
argument.

Lemma 3.1. IfK is a 2-knot such that the dual Λ-moduleDH(K)∗ is Λ-isomorphic
to DH(K), then the first elementary ideal ϵ(K) is symmetric.
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For any marked graph diagram D of K, the fundamental group π(K) of K is
generated by the connected components of D, namely, the connected components
obtained fromD by cutting the under-crossing points and the relations s3 = s−1

2 s1s2
for all crossings as in (a) or (b) in Fig. 8.
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Figure 8. Labels at a crossing or a vertex

A computation of the Alexander module H(K) and the ideal ϵ(K) is shown in
a concrete example as follows:

Example 3.2. Let K be the immersed 2-knot of D in Fig. 9. The immersed 2-knot
K has only one double point. The fundamental group π(K) is computed as follows:
π(K) =< x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15|x1 = x−1

2 x3x2, x2 =

x−1
3 x5x3, x1 = x−1

3 x4x3, x2 = x−1
1 x3x1, x6 = x−1

2 x1x2, x6 = x−1
1 x7x1, x1 = x−1

7 x8x7, x2 =

x−1
7 x9x7, x10 = x−1

2 x7x2, x10 = x−1
1 x11x1, x1 = x−1

11 x12x11, x2 = x−1
11 x13x11, x14 =

x−1
2 x11x2, x14 = x−1

1 x2x1, x1 = x−1
2 x15x2 > .

This group π(K) is isomorphic to the group < x1, x2| r1, r2 >, where

r1 : x2x1x
−1
2 = x1x2x

−1
1 , r2 : (x1x

−1
2 )3x1(x1x

−1
2 )−3 = x2.

Then the following Λ-semi-exact sequence

Λ[r∗1 , r
∗
2 ]

d2→ Λ[x∗
1, x

∗
2]

d1→ Λ
ε→ Z→ 0

of the group presentation of π(K) is obtained by using the fundamental formula of
the Fox differential calculus in [1], where Λ[r∗1 , r

∗
2 ] and Λ[x∗

1, x
∗
2] are free Λ-modules

with bases r∗i (i = 1, 2) and x∗
j (j = 1, 2), respectively, and the Λ-homomorphisms

ε, d1 and d2 are given as follows:

ε(t) = 1, d1(x
∗
j ) = t− 1 (j = 1, 2), d2(r

∗
i ) =

u∑

j=1

∂ri
∂xj

x∗
j (i = 1, 2)

for the Fox differential calculus ∂ri
∂xj

regarded as an element of Λ by letting xj to t.

The Alexander moduleH(K) is identified with the quotient Λ-module Ker(d1)/Im(d2)
(see [10, Theorem 7.1.5]). The Alexander matrix MK = (mij) defined by mij =

∂ri
∂xj

is a presentation matrix of the Λ-homomorphism d2 and calculated as follows:

MK =

[
2t− 1 1− 2t
4− 3t 3t− 4

]
.

Hence we have

H(K) ∼= Λ/(2t− 1, 4− 3t),
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which is equal to DH(K). Thus, the first elementary ideal ϵ(K) of K is

ϵ(K) =< 2t− 1, 4− 3t >

=< 2t− 1, 4− 3t, 3(2t− 1) + 2(4− 3t) >

=< 2t− 1, 5 > .

D

Figure 9. An H-admissible marked graph diagram D

The following lemma is useful in a computation for a symmetric ideal.

Lemma 3.3. ([13]) The following statements are equivalent:

(1) The ideal < 2t− 1,m > is symmetric.
(2) An integer m is ±2r or ±2r3 for any integer r ≥ 0.

Lemma 3.4. ([13]) There are infinitely many immersed 2-knots with one essential
double point singularity.

Let J be one of the immersed 2-knots Kn,K ′
n(n = 1, 2, 3, . . . ) such that the first

elementary ideal ϵ(J) is asymmetric. Then the following corollary is obtained.

Corollary 3.5. The connected sum J#U of J and any immersed 2-knot U such
that the group orders |DH(J)| and |DH(U)| are coprime is an immersed 2-knot
with at least one essential double point singularity.

Finally, the ideal (2t− 1, 5) is known to be the first elementary ideal of a ribbon
torus-knot in [4].

By using an immersed 2-knot in Lemma 3.4, the following main theorem is
proved.
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Figure 10. H-admissible marked graph diagrams Dn and D′
n

Theorem 3.6. ([13]) Let K = nK∗
m be the connected sum of n copies of an

immersed 2-knot K∗
m with one essential double point singularity whose first ele-

mentary ideal is < 2t−1,m > for any integer m ≥ 5 without factors 2 and 3. Then
K gives infinitely many immersed 2-knots with n double point singularities every
of which is essential.
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	abstract.Takahashi
	kabataSP
	torii
	ichiki
	abstract(Horiguchi)


