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1. Introduction and statement of main results
A symplectic structure on a manifold M is given by ω a closed 2-form maximally
non-degenerate. The first fundamental result for symplectic structures is the existence
around any point of Darboux coordinates x1, y1, . . . , xn, yn for ω:

ω =
n∑

i1

dxi ∧ dyi

Therefore symplectic structures on a fixed (even) dimension have no local invariants;
this is also reflected in having an infinite dimensional group of symmetries: infinitesimal
symmetries are vector fields X ∈ X(M) satisfying: LXω = 0. In particular, any
function f ∈ C∞(M) produces any such infinitesimal symmetry via its Hamiltonian
vector field Xf characterized by: df = iXf

ω.
Not unexpectedly, topology plays a major role in the study of symplectic structures,

as illustrated by the following fundamental results:

• Surgery is central to the construction of closed symplectic manifolds, the key fact
being the existence of normal forms in plenty of situations, a consequence of the
so-called Moser’s method [11, 7].

• Closed symplectic manifolds have symplectic submanifolds, which are very care-
fully chosen Poincaré duals of multiples of the (rational) class of the symplectic
form [3].

• The existence of symplectic structures on open manifolds boils down to a homo-
topical obstruction [8].

Symplectic structures are a particular instance of Poisson structures: these are
given by a bracket operation on smooth functions such that (C∞(M), {·, ·}) is a Lie
algebra over R, and the Lie bracket is linked to the geometry of M by requiring {f, ·}
to be a derivation, the so-called Hamiltonian vector field of f .

Poisson structures abound: any Lie algebra (g, [·, ·]) has an associated Poisson struc-
ture on its dual g∗; any symplectic manifold (M,ω) is a Poisson manifold with bracket
{f, g} := ω(Xf , Xg); more generally, any foliated manifold with a leafwise symplectic
form (M,F ,ωF) is a Poisson manifold. In fact, a Poisson structure formalizes the
notion of a possibly singular foliation by symplectic leaves; this foliation is the one
integrating the distribution spanned by the Hamiltonian vector fields. For example,
for the dual of a Lie algebra the symplectic foliation has as leaves the coadjoint orbits.
Symplectic manifolds are exactly those Poisson manifolds whose (symplectic) foliation
has just one leaf (the whole manifold).
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It is natural to investigate which techniques from symplectic geometry go through
to Poisson geometry. Unfortunately, the answer is almost none. The reason is that
Poisson structures are far too general (for example, having singular foliation forces the
appearance of local invariants). Still, one would like to describe families of Poisson
structures which behave as much as possible as symplectic structures. The purpose of
this presentation is to discuss joint work with P. Frejlich and E. Miranda [6] in which
we describe one such family.

Another way to recast the definition of a Poisson structure on M is a as a bivector
π ∈ X2(M) which obeys the P.D.E. [π, π] = 0, where [·, ·] is the Schouten bracket of
multivector fields. If ω is a symplectic form, its associated Poisson structure is the one
with bundle map π! := ω!−1

(the Poisson structure in the ‘inverse’ of the symplectic
form). Conversely, Poisson structure π on M2n is symplectic exactly when the section
∧nπ of the line bundle

∧2n TM does not meet the zero section. Hence, it is natural to
relax the symplectic condition as follows:

Definition 1 [10] A Poisson manifold (M2n, π) is of b-symplectic type if
∧n π is

transverse to the zero section M ⊂
∧2n TM .

Such structures were first defined, in the case of dimension two, by Radko [18], who
called them topologically stable Poisson structures. Poisson structures of b-symplectic
type have also appeared under the names log symplectic [9], [2], [13].

Poisson structures of b-symplectic type –also referred to as b-symplectic structures–
do not stay too far from being symplectic. One can think of them as symplectic struc-
tures which blow up to infinity along hypersurfaces in a controlled way. Indeed, The
transversality condition

∧n π ! M ensures that the singular locus Z = Z(π) =∧n π−10 is a codimension-one submanifold of M , which by the Poisson condition is
itself foliated in codimension one by symplectic leaves of π.

1.1. Statement of the main results

We shall start by describing a link between b-symplectic manifolds and cobordisms in
the symplectic category with appropriate boundary behavior.

Definition 2 A cosymplectic structure on a manifold Z2n−1 consists of a pair of
closed forms (θ, η) ∈ Ω1(Z)× Ω2(Z), such that θ ∧ ηn−1 is a volume form.

The prototype of a cosymplectic structure is a symplectic mapping torus, i.e. the
suspension of a symplectomorphism of a symplectic manifold. It turns out that the
singular locus a b-symplectic manifold is not a just Poisson submanifold. An addi-
tional choice of data makes a cosymplectic structure appear [10]. Also, cosymplectic
structures appear naturally on boundaries (or hypersurfaces) of symplectic manifolds
endowed with a symplectic vector field transverse to the boundary (what one may call
a ‘flat end’ in symplectic geometry).

Definition 3 A cosymplectic cobordism (M,ω, θ) is a compact symplectic mani-
fold (M,ω) together with θ ∈ Ω1(∂M) making (∂M, θ,ω|∂M) a cosymplectic manifold.

Our first result makes a direct link between b-symplectic manifolds and cosymplectic
cobordisms:

Proposition 1 [6] A b-symplectic manifold (M, π) can be canonically factored into a
composition of (connected) cosymplectic cobordisms. The cobordisms are obtained as
the result of cutting M open along its singular locus.
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A main concern for us is the construction of ‘enough interesting examples’ of closed
b-symplectic manifolds. More precisely, it is natural to ask if a cosymplectic structure
(Z, θ, η) may appear of singular locus of a closed b-symplectic manifold. Proposition
1 implies that this problem is equivalent to finding a cosymplectic cobordism from
(Z, θ, η) to the empty set, i.e, to finding a symplectic filling for it:

Proposition 2 [6] A compact cosymplectic manifold (Z, η, θ) is the singular locus of
a compact, orientable b-symplectic manifold (M, π) without boundary, if and only if
(Z, η, θ) is symplectically fillable.

Symplectic fillings of contact manifolds –and more generally symplectic cobordisms
with concave/convex boundaries– are central to Symplectic Topology, whereas the case
of cosymplectic (or flat) boundaries has received comparatively little attention. In this
respect Eliashberg has shown that when Z is a 3-dimensional symplectic mapping torus
then it is symplectically fillable [4].

Our second result follows from observing that symplectic fillability of all cosym-
plectic 3-manifolds would be a consequence of symplectic fillability of all symplectic
mapping tori, hence solving the cosymplectic existence problem in dimension 3:

Theorem 1 [6] Any compact cosymplectic manifold of dimension 3 is the singular
locus of a compact b-symplectic 4-manifold without boundary.

Our third result describes a class of symplectomorphisms ϕ which yield symplecti-
cally fillable symplectic mapping tori in arbitrary dimensions; namely, Dehn twists τl
around parametrized Lagrangian spheres l ⊂ (F, σ) and their inverses τ−1

l :

Theorem 2 [6] Let Z be a compact symplectic mapping torus. Assume that ϕ is
Hamiltonian isotopic to

τl1 · · · τlmτ−1
lm+1

· · · τ−1
lm′ ,

where li : Sn−1 ↪→ (F, σ), i = 1, . . . ,m′ are parametrized Lagrangian spheres.
Then there exists a compact b-symplectic manifold without boundary, whose cosym-

plectic singular locus is Z.

Another important question we address in the construction b-symplectic submani-
folds. These are, roughly speaking, submanifolds of M transverse to the singular locus
Z(π) and such that π induces on them a b-symplectic structure. Any such submanifold,
upon factoring (M, π) into cosymplectic cobordisms, would give rise to a symplectic
submanifold on each connected cobordism with appropriate boundary behavior. Hence,
it is natural to try to construct b-symplectic submanifolds by reversing the previous
procedure. Our fourth result shows that this is possible under a mild cohomological
assumption.

Theorem 3 [6] Every (M, π) rational compact b-symplectic manifold without bound-
ary has closed b-symplectic submanifolds W ↪→ (M, π) of any dimension intersecting
every connected component of Z(π). If M has dimension four, then the rationality
assumption can be dropped.

The final issue we address is the existence of symplectic structures on open mani-
folds:

Theorem 4 [6] Let M be an orientable, open manifold. Then M is b-symplectic if
and only if M × C is almost-complex.
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In fact, the story here is completely analogous to the symplectic case: supporting a
b-symplectic structure imposes restrictions on the de Rham cohomology of a compact
manifold without boundary [2, 12], but these do not apply to open manifolds. There,
the existence of b-symplectic structures becomes a purely homotopical question, and
we show that they abide by a version of the h-principle of Gromov [8].

2. The b-tangent bundle and Moser’s method
In this section we briefly describe how the reformulation of the b-symplectic condition
as a closed non-degenerate section of a suitable bundle, allows for an analog of Moser’s
method for b-symplectic manifolds. In particular, it produces (semilocal) normal forms
around the singular locus.

The category of b-manifolds has as objects pairs (M,Z), where Z ⊂ M is a closed
submanifold of codimension one with empty boundary, and as morphisms f : (M,Z) →
(M ′, Z ′) those maps f : M → M ′ transverse to Z ′, and pulling back Z ′ to Z.

The Lie subalgebra X(M,Z) ⊂ X(M) consisting of those vector fields v which
are tangent to Z can be identified with the space of smooth sections of the b-tangent
bundle T (M,Z)b → M . There is a bundle map T (M,Z)b → TM which is the identity
outside Z. Its restriction to Z defines an epimorphism T (M,Z)b|Z → TZ, whose kernel
N(M,Z)b has a canonical trivialization ν: if one expresses Z locally as x1 = 0 in a
coordinate chart (x1, ..., xn), then x1

∂
∂x1

is independent of choices along Z.

One defines b-forms as sections of
∧p

(
T ∗(M,Z)b

)
, and denotes them by Ω∗(M,Z)b.

They form a complex with a differential db given by a Koszul type formula, and which
matches the de Rham differential outside Z. In fact, there is a short exact sequence of
chain complexes:

0 → (Ω•(M), d) → (Ω•(M,Z)b, db)
#→ (Ω•−1(Z), d) → 0, (1)

where + maps a b-form ω to its contraction with the canonical ν.
A b-map f : (M,Z) → (M ′, Z ′) induces a maps of b-complexes by pulling back

sections in the usual fashion.
A b-form ω ∈ Ω2(M,Z)b will be called non-degenerate if ωn is nowhere vanishing,

and symplectic if it is non-degenerate and closed, dbω = 0.

Example 1 Let x1, y1, . . . , xn, yn be coordinates in R2n, and consider the b-manifold
(R2n, x1 = 0). Then

ω =
dx1

x1
∧ y1 +

n∑

j=2

dxj ∧ dyj

is a b-symplectic form on (R2n, x1 = 0)

Example 2 In the unit sphere S2 ⊂ R3, consider h the height function and θ the
polar coordinates associated to rotations around the z-axis. Then

ω =
dh

h
∧ dθ

is a b-symplectic form on (S2, h = 0).
This b-symplectic form is invariant under the antipodal map, hence descending to

a b-symplectic form on (RP2,RP1).

The first important result is:
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Proposition 3 [10] There is a bijective correspondence between symplectic forms on
(M,Z), and Poisson structures of b-symplectic type with singular locus Z.

The Poisson structures of b-symplectic type corresponding to examples 1 and 2 are:

x1
∂

∂y1
∧ ∂

x1
+

n∑

j=2

∂

∂yj
∧ ∂

xj
, h

∂

∂θ
∧ ∂

∂h

It is not surprising then that Moser’s method carries through to b-symplectic mani-
folds. At the local level, there is a Darboux theorem [17] that says that around a point
in the singular locus Z there exists coordinates so that a b-symplectic form ω writes
as in example 1. At a global level, on a compact b-manifold a path of deformations
of b-symplectic forms which are cohomologous (for the cohomology of the b-complex)
corresponds to an isotopy [13].

Let us discuss the seminormal form around Z and the appearance of a cosymplectic
structure on Z. Firstly, the contraction with the canonical section θ := iνω|Z = +ω|Z is
a closed 1-form, and it is nowhere vanishing since both ω and ν are nowhere vanishing.
Of course, the foliation defined by θ is the symplectic foliation induced on Z by the
Poisson structure that corresponds to ω. Assuming for simplicity that M is orientable,
we can always find t ∈ C∞(M) a function vanishing linearly exactly at Z(ω). Then
its Hamiltonian vector field Xt is tangent to the singular locus, so it is a section of
T (M,Z)b which again does not vanish near Z. Mimicking the construction in the
symplectic category, is not difficult to see that w becomes independent of the local
coordinate t. In fact, the difference

η := ω − dt

t
∧ θ

becomes an honest 2-form independent of the local ‘time’ coordinate t ∈ [−ε, ε], so one
can write around Z [10]:

ω =
dt

t
∧ θ + η, η ∈ Ω2

cl(Z)

The closed 2-form η is symplectic on the codimension 1-leaves of the foliation defined
for θ, so (Z, θ, η) becomes a cosymplectic manifold.

3. Cobordisms and b-symplectic manifolds
Let (M,ω) be an oriented closed b-symplectic manifold. Upon the choice of a local
time coordinate t around the singular locus Z, we have the normal form in Z × [−ε, ε]:

ω =
dt

t
∧ θ + η, η ∈ Ω2

cl(Z)

If we denote M c = M\[− ε
2 ,

ε
2 ], then we obtain:

• An oriented compact symplectic manifold with boundary.

• A cosymplectic structure in the boundary (∂M c, θ, η).

• A cosymplectic involution ι : (∂M c, θ, η) → (∂M c, θ, η) exchanging boundary
components.
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(M,ω) can be recovered from (M c, θ, η, ι) by gluing the product neighborhood of
Z using ι. Conversely, if (X, θ, η, ι) is an oriented compact cosymplectic cobordism
with an involution in the boundary exchanging components, one may ask whether
there is a structure naturally obtained in M , the result of gluing ∂X using ι. Each
boundary component of ∂X can be labeled as an inward or an outward one: The
component is outward if the orientation in the component inherited by the orientation
of M 2n (outward normal first) is the one corresponding to the volume form θ ∧ ωn−1

|∂X ;
otherwise it is inward. It follows from standard results in symplectic geometry, that if
ι identifies and inward and an outward boundary component, then the symplectic form
is compatible with the gluing. If both components ∂Xj, ι∂Xj, are inward or outward,
then the symplectic form will never extend to the gluing, but rather, we can insert a
tube:

(∂Xj × [− ε
2 ,

ε
2 ],±

dt
t ∧ θj + ω|∂Xj),

the sign corresponding to the inward or outward case. The previous discussion sum-
marizes as follows:

Proposition 4 [6]

1. Any closed oriented b-symplectic manifold (M,ω) can be factored as a composition
of b-symplectic cobordisms.

2. If (X, θ, η, ι) is an oriented compact cosymplectic cobordism with an involution
in the boundary exchanging components, then the result of gluing the boundaries
using ι is a closed manifold with a canonical b-symplectic structure; the singu-
lar locus corresponds to pairs of identified boundary components which are both
inward or outward.

The previous proposition offers an interesting justification for b-symplectic struc-
tures: they appear naturally when composing cosymplectic cobordisms.

Corollary 1 Let (X,ω, θ) be a cosymplectic cobordism. Then its double has a canon-
ical b-symplectic structure.

Example 2 is the double of a disk with any symplectic form.

4. Realizing cosymplectic structures
It is natural to ask which cosymplectic structures appear as the singular locus of a closed
b-symplectic manifold. The relation with cobordisms readily implies that (Z, θ, η) can
be realized as one such symplectic locus if it is cosymplectically cobordant to the
empty set (by taking its double!), i.e., if it is what we call symplectically fillable (the
flat boundary of a closed symplectic manifold).

Among cosymplectic structures the simplest ones are those for which θ has rational
periods, for these are exactly the symplectic mapping tori. It is not difficult to see that
using cosymplectic cobordisms which are topologically trivial (products) one can:

1. Reduce the symplectic fillability question for general cosymplectic structures to
symplectic mapping tori.

2. Check that the symplectic fillability question for symplectic mapping tori only
depends on the Hamiltonian isotopy class of the monodromy.
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For the first point simply observe that for (Z, θ, η) a cosymplectic structure on Z closed,

(Z × [0, 1], dt ∧ θ + η + dt ∧ θ′)

is a cosymplectic cobordism from (Z, θ, η) (inward side) to (Z, θ+θ′, η) (outward side),
as long as θ′ has small enough C0-norm. But we can always use such deformations to
ensure that θ + θ′ has rational periods.

In dimension three one can use cosymplectic cobordisms which are topologically
non-trivial to modify the monodromy of any surface mapping torus. This is based on
the following well-known facts:

1. The mapping class group is generated by (positive) Dehn twists around (oriented)
curves.

2. Attaching a 2-handle to one such curve with framing -1 produces a cobordism
whose new end has the monodromy of the latter surface bundle composed with
the corresponding positive Dehn twist.

3. The construction is symplectic, in the sense that the elementary cobordism admit
a symplectic form and a cosymplectic structure in the boundary corresponding
to the prescribed surface bundles.

This reduces the filling question to filling surface bundles with monodromy isotopic
to the identity. Here arises a subtle point. Dehn twists are defined up to symplectic
isotopy and not to Hamiltonian isotopy. So our problem is not quite reduced to the
trivial one of filling the cosymplectic manifold (Σ×S1, θ, η) (filled by Σ×D2 with the
obvious product symplectic structure), but filling the ‘twisted’ (Σ × S1, θ, η + α ∧ θ),
α ∈ Ω1

cl(Σ). Fortunately, there is a rather non-trivial result by Eliashberg [4] that
grants the existence of such a symplectic filling, this completing the proof of Theorem
1

In higher dimensions, the problem of filling arbitrary symplectic tori is much harder,
because little is known of the structure of the group of Hamiltonian isotopy classes of
symplectomorphisms beyond the case of surfaces.

Still, one has:

1. A notion of generalized Dehn twist around a Lagrangian sphere (defined up to
Hamiltonian isotopy).

2. A result saying that attaching a middle handle to such a sphere with an appro-
priate framing produces a cobordism whose new end has the monodromy of the
latter surface bundle composed with the corresponding generalized Dehn twist
[15], and so that the construction is symplectic, in the sense that the elemen-
tary cobordism admits a symplectic form and a cosymplectic structure in the
boundary with the corresponding to the prescribed symplectic mapping tori.

This allows to fill symplectic mapping tori whose monodromy are certain words in such
generalized Dehn twists, as asserted in Theorem 2.

第６２回トポロジーシンポジウム講演集　２０１５年８月　於　名古屋工業大学

45



5. b-symplectic submanifolds
A fundamental result in symplectic topology says that any compact symplectic manifold
has symplectic submanifolds [3]. It is natural to ask the same question in the b-
symplectic setting. For a b-symplectic (M,ω), a b-symplectic submanifold W is a
submanifold intersecting the singular locus Z transversely, and so that ω pull backs to
a b-symplectic form on (W,Z ∩W ).

If W is such a submanifold, upon factoring M we will see W c as a submanifold of
(M c,ω, θ, ι) with the following properties:

• W c is a symplectic submanifold.

• W c intersects ∂M c transversely and θ pullbacks to a no-where vanishing 1-form
in the boundary of W c.

• ∂W c is stable under the involution ι.

Donaldson’s results has been refined for cosymplectic cobordisms with involution
[14]: if (X,ω, θ, ι) is one such cobordism so that [ω] is a rational class, then there exists
Y ⊂ X submanifolds with the aforementioned properties.

To try to construct a b-symplectic submanifold, one starts with Y a submanifold
of (M c,ω, θ, ι) as above, and the difficulty is that upon gluing back (M c,ω, θ, ι) into
(M,ω), we will generically get a non-smooth submanifold. This is because if we start
with W ⊂ (M,ω) a b-symplectic submanifold, additionally, we may choose the local
transverse coordinate t so thatW also inherits a product structure (i.e. the Hamiltonian
vector field Xt is tangent to W ).

So one either needs to build submanifolds Y of (M c,ω, θ, ι) compatible with a given
product structure in the boundary, or to analyze when for such a given Y one can find
a product structure near the boundary compatible with Y . If there is such a structure,
then one easily checks that at points x ∈ ∂Y , the symplectic orthogonal TxY ω must be
tangent to ∂X at x. In fact, it is not difficult to prove that that infinitesimal tangency
condition suffices to construct a product structure compatible with Y .

In any case, one can analyze if for a given Y as above, one can isotope it near
the boundary (and fixing the boundary) through symplectic submanifolds so that the
tangency condition is achieved. Note that this is by no means straightforward, be-
cause this is a ‘large deformation’, and one cannot use the openness of the symplectic
condition.

At the linear level –and in the lowest possible dimension 2n = 4– we have two points
in SympGr+(2, 4) the Grassmannian of oriented two planes in R4, corresponding to the
tangent plane TxY and the tangency we have to achieve. Any non-linear solution should
be based upon choosing ‘geodesics’ in this linear setting. Fortunately, the submanifolds
Y coming from Donaldson theory have the additional property of being ‘almost’ J-
complex w.r.t. any fixed compatible almost complex structure. At the linear level,
this fixes a core of the Grassmannian associated to the fixed Cartan decomposition
of Sp(4) = SU(2)P , and TxY belongs to this core. The Cartan decomposition itself
provides a ‘geodesic’ joining our two points.

Based on the above ideas, it is possible to perturb Y into Y t a symplectic subman-
ifold with the appropriate tangency condition.

To summarize the proof of Theorem 3, we start with (M,ω) a closed rational b-
symplectic manifold. The rationality assumption means that (M c,ω, θ, ι) is a rational
symplectic manifold. Then we construct Y the fist symplectic submanifold, and finally
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we perturb it into Y t another symplectic submanifold which upon gluing (M c,ω, θ, ι)
into (M,ω) becomes a (smooth) b-symplectic submanifold.

The rationality assumption does not appear in the symplectic setting. This is due
to the fact that any symplectic class can be approximated by rational ones, and the
symplectic submanifolds constructed by Donaldson’s methods are well-behaved w.r.t.
this approximation. Unfortunately, our deformation/smoothing process is not well-
behaved in this respect. The exception is dimension 4, the reason being that symplectic
classes can be approximated by rational ones so that no perturbation occurs near the
boundary (this because degree 2 cohomology in dimension 4 is isomorphic to compactly
supported degree 2 cohomology).

6. An h-principle for b-symplectic structures
A necessary condition for a manifold M2n to be symplectic is that it carry a non-
degenerate two-form, or, equivalently, an almost-complex structure. If M is compact,
we have a further necessary condition, namely, that there be a degree-two cohomology
class τ ∈ H2(M) with τn (= 0.

For open manifolds M – that is, those manifolds, none of whose connected compo-
nents is compact without boundary – a classical theorem of Gromov [8] states that the
sole obstruction to the existence of a symplectic structure is thatM be almost-complex.
More precisely, given any non-degenerate two-form ω0 ∈ Ω2(M) and any degree-two
cohomology class τ ∈ H2(M), there is a path ω : [0, 1] → Ω2(M) of non-degenerate
two-forms connecting ω0 to ω1, dω1 = 0, [ω1] = τ .

We consider now the case of b-symplectic structures. Recall that b-symplectic man-
ifolds need not be oriented as usual manifolds, so in particular they may fail to be
almost-complex. However:

Lemma 1 If an orientable M admits a b-symplectic structure ω, then M × C is
almost-complex.

The proof follows an essentially an argument in linear algebra that can be traced back
to [1]: the difficulty is around the singular locus. Using the Darboux normal form

ω =
dx1

x1
∧ y1 +

n∑

j=2

dxj ∧ dyj,

there is an obvious choice of almost complex structure for t (= 0, the difference being
that for t < 0 it is i in the x1, y1 plane, and for t > 0 it is −i on that plane. By
adding an extra complex dimension, it is easy to write down a path of almost complex
structures Js in R4 such that R2 × {0} is complex for J0, J1, the first one being i and
the second one −i.

In order to prove that if M open is orientable and M ×C is almost complex, there
exists a b-symplectic structure, we need to introduce the analogs of non-degenerate
two-forms:

Definition 4 A bivector π ∈ X2(M2n) is almost b-symplectic if its top exterior power∧n π is transverse to the zero section, and along the zero locus Z = Z(π) we have
π!(T ∗M|Z) ⊂ TZ

Theorem 5 On an open manifold M , an almost b-symplectic bivector π0 is homotopic
through almost b-symplectic bivectors to a Poisson bivector π1. Moreover, one can
arrange that Z(π1) be non-empty if Z(π0) is non-empty.
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This statement is a result of checking that 1-jets of Poisson bivectors of b-symplectic
type forms a microflexible differential relation, invariant under the pseudogroup of local
diffeomorphisms of M , cf. [8]. Alternatively, one may follow the more visual scheme
of proof of [5].

Let π0 be an almost b-symplectic bivector, so it can be interpreted as a non-
degenerate b-form ω0 in (M,Z(π0)).

• The b-differential db : Ωp(M,Z(π0))
b → Ωp+1(M,Z(π0))

b can be factored as a
composition d̃b ◦ j1, where j1 denotes the 1-jet map

j1 : Γ(M,
p∧
T ∗(M,Z(π0))

b) → Γ(M,J1

p∧
T ∗(M,Z(π0)

b)

and

d̃b : Γ(M,J1

p∧
T ∗(M,Z(π0)

b) → Γ(M,
p+1∧

T ∗(M,Z(π0)
b)

is induced by a bundle map

ďb : J1

p∧
T ∗(M,Z(π0))

b →
p+1∧

T ∗(M,Z(π0))
b

• One checks that ďb is an epimorphism with contractible fibres; in particular, we

can lift ω0 to ω̃0 ∈ Γ(M,J1
p∧
T ∗(M,Z(π0))b).

• Since M is an open manifold, there exists a a subcomplex K of a smooth trian-
gulation of M , of positive codimension, with the property that, for an arbitrar-
ily small open U ⊂ M around K, there exists an isotopy of open embeddings
gt : M ↪→ M , h0 = idM , with g1(M) ⊂ U and gt|K = idK . We will refer to K as
a core of M , and say that gt compresses M into U . Note in passing that one can
always find a core K of M meeting Z(π0).

• Fix then a core K of M , and a compression of M into an open U around K. The
Holonomic Approximation theorem of [5] then says that we can find

– an isotopy ht of M mapping K into U ;

– an open V ⊂ U around h1(K);

– a section α ∈ Γ(V, T ∗(M,Z(π0))
b)

such that j1α is so C0-close to ω̃0 that we can find a homotopy

ω̃(t) ∈ Γ(V, J1T
∗(M,Z(π0))

b),

connecting ω̃0|V to j1α, and with d̃bω̃t non-degenerate b-forms on V .

• Now regard the compression gt as a smooth family of b-maps

gt : (M,Zt)) → (M,Z(π0)), Zt := g−1
t Z(π0),

and set ω1 := db(g∗1α) ∈ Ω2(M,Z1)
b.
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• Observe that ω̂1
t := g∗t ω̃0 connects ω̃0 to g∗1(ω̃0|V ), and ω̂2

t := g∗1ω̃(t) connects
g∗1(ω̃0|V ) to a lift of ω1. Let ω̂t denote the concatenation of ω̂1

t and ω̂2
t :

ω̂t :=

{
ω̂1
2t 0 " t " 1/2,

ω̂2
2t−1 1/2 " t " 1.

Then t *→ πt := ω̂−1
t ∈ X2(M,Zt)b defines a homotopy of almost b-symplectic

bivectors between π0 and a Poisson π1.

The proof of theorem 4 results from observing the the presence of an almost com-
plex structure on M × C, grants the existence of almost b-symplectic bivectors on M
orientable (constructed out of the almost symplectic structure on M × C).
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