Spectral Projection for Barrier Top Resonances and Applications

Setsuro Fujiié (University of Hyogo)

This report is concerned with a joint work with Jean-François Bony (Bordeaux I), Thierry Ramond (Paris XI) and Maher Zerzeri (Paris XIII).

We consider the semiclassical Schrödinger equation in \mathbb{R}^n

 $Pu = zu, \quad P := -h^2 \Delta + V(x),$

where $\Delta := \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}, h > 0$ is a semiclassical parameter, $z \in \mathbb{C}$ is a spectral parameter and V(x) is a short-range real-valued analytic potential with a positive non-degenerate maximum E_0 at the origin x = 0. More precisely, we assume the following conditions (A1)-(A3) on the potential V.

(A1) V(x) is real on \mathbb{R}^n , and analytic in a domain $\mathcal{D} := \{x \in \mathbb{C}^n; |\operatorname{Im} x| \le \delta \langle \operatorname{Re} x \rangle \}$ for $\delta > 0$, and verifies $V(x) = \mathcal{O}(|x|^{-\rho})$ for $\rho > 1$ as $|x| \to \infty$ in \mathcal{D} .

To the self-adjoint operator P on $L^2(\mathbb{R}^n)$ with $\sigma_{ess}(P) = \mathbb{R}_+$, we associate a distorted operator $P_{\mu} = U_{\mu}PU_{-\mu}$, where $(U_{\mu}f)(x) := (\det(\mathrm{Id} + \mu dF))^{-1/2}f(x + \mu F(x))$ for small $|\mu|$, and $F \in C^{\infty}(\mathbb{R}^n; \mathbb{R}^n)$ with F = 0 on |x| < R, F = x on |x| > R + 1 for large R. The complex eigenvalues of $P_{i\theta}$ for $\theta > 0$ are independent of θ , and called resonances of P (Hunziker '86).

(A2)
$$V(0) = E_0 > 0, V'(0) = 0, V''(0) < 0$$
, i.e. for suitable coordinates, $V(x) = E_0 - \sum_{j=1}^n \frac{\lambda_j^2}{4} x_j^2 + \mathcal{O}(|x|^3)$ as $x \to 0$, for some $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$.

Let us also consider the corresponding classical dynamics in the phase space $\mathbb{R}^{2n}_{(x,\mathcal{E})}$, i.e. the vector field $H_p = \nabla_{\xi} p \cdot \nabla_x - \nabla_{\xi} p \cdot \nabla_x$ of the Hamitonian $p(x,\xi) = \xi^2 + V(x)$. The assumption (A2) implies that the origin $(x, \xi) = (0, 0)$ is a hyperbolic fixed point of H_p , and there exist outgoing and incoming stable manifolds

$$\Lambda_{\pm} = \{ (x,\xi) \in \mathbb{R}^{2n}; \exp tH_p(x,\xi) \to (0,0) \text{ as } t \to \mp \infty \}$$

which are tangent to the eigenspaces associated respectively with the positive and negative eigenvalues $\{\lambda_j\}_{j=1}^n$ and $\{-\lambda_j\}_{j=1}^n$ of the fundamental matrix of H_p . They are Lagrangian manifolds, and, near the origin, they have generating functions $\phi_{\pm}(x) =$ $\pm \sum_{j=1}^{\lambda_j} \frac{\lambda_j}{4} x_j^2 + O(|x|^3); \ \Lambda_{\pm} = \{(x,\xi) \in \mathbb{R}^{2n}; \xi = \nabla_x \phi_{\pm}(x)\}.$

(A3) The origin $(x,\xi) = (0,0)$ is the unique trapped set in $p^{-1}(E_0)$, i.e. if $(x,\xi) \in$ $p^{-1}(E_0)\setminus(0,0)$, then $|\exp tH_p(x,\xi)|\to\infty$ as $t\to+\infty$ or as $t\to-\infty$.

The assumption (A3) implies that V reaches its global maximum E_0 only at x = 0.

Under the assumptions (A1)-(A3), the semiclassical distribution of resonances are known near the barrier top energy E_0 (Sjöstrand '87, Briet-Combes-Duclos '87): In a complex disc centered at E_0 of radius Ch, there exists a bijection b(h) between the set $\{z_{\alpha}^{n}\}_{\alpha \in \mathbb{N}^{n}}$ and the set of resonances such that b(h)z - z = o(h), where $z_{\alpha}^{0} = E_{0} - ih \sum_{j=1}^{n} \lambda_{j}(\alpha_{j} + \frac{1}{2})$. Let us fix $\alpha \in \mathbb{N}^{n}$ satisfying the condition

(A4) If $z_{\alpha}^0 = z_{\alpha'}^0$, then $\alpha = \alpha'$.

We denote by $z_{\alpha} = b(h)z_{\alpha}^{0}$ the corresponding resonance, and by Π_{α} the corresponding spectral projection; $\Pi_{\alpha} = \frac{1}{2i\pi} \int_{|z-z_{\alpha}|=\epsilon} (P_{\theta} - z)^{-1} dz$.

Theorem 1 (Spectral projection). Assume (A1)-(A4). Then, for any $\chi \in C_0^{\infty}(\mathbb{R}^n)$,

$$\chi \Pi_{\alpha} \chi = c(h)(\cdot, \overline{\chi f}) \chi f, \quad c(h) = \left(\frac{h}{i}\right)^{n/2 - |\alpha|} \prod_{j=1}^{n} \lambda_j^{\alpha_j + \frac{1}{2}}$$

where f = f(x, h) is a solution to $Pf = z_{\alpha}f$, locally L^2 uniformly in h, 0 in the incoming region (in the microlocal sense) and has an asymptotic expansion

$$f = d(x,h)e^{i\phi_+(x)/h}, \quad d(x,h) \sim \sum d_j(x)h^j, \quad d_0(x) = x^{\alpha} + \mathcal{O}(|x|^{|\alpha|+1})$$

near the origin.

The point consists in the calculus of $(P_{\theta} - z)^{-1}u$ for non-resonant z and for a certain u that we choose to have its microsupport near a point on the incoming stable manifold Λ_{-} . Our recent work (BFRZ '07) enables to represent $(P_{\theta} - z)^{-1}u$ near the fixed point (0,0) as superposition of WKB solutions to the time-dependent Schrödinger equation. The microlocal argument is based on the resolvent estimate:

Theorem 2 (Resolvent estimate). Assume (A1)-(A3). For any C > 0 and $z \in D(E_0, Ch) = \{z \in \mathbb{C}; |z - E_0| < Ch\}$, there exists K > 0 such that

$$||(P_{\theta} - z)^{-1}|| \le h^{-K} \prod_{z_{\beta} \in D(E_0, 2Ch)} (z - z_{\beta})^{-1}$$

As applications, we obtain the following Theorem 3 and Theorem 4:

Let Λ_{ω} , $\Lambda_{\omega'}$ be the set of Hamiltonian curves with asymptotic direction $\omega, \omega' \in S^{n-1}$ as $t \to +\infty, t \to -\infty$ respectively. We assume

(A5) Λ_+ and Λ_{ω} [resp. Λ_- and $\Lambda_{\omega'}$] intersect transversally along a Hamiltonian curve γ_+ [resp. γ_-].

Let $x_{\pm}(t)$ be x-projections of γ_{\pm} . Then $x_{\pm}(t)^{\alpha} = \sum_{\lambda \cdot \beta < N} g_{\beta}^{\pm}(t) e^{-\lambda \cdot \beta t} + \mathcal{O}(e^{-Nt})$ as $t \to \mp \infty$ for every $N \in \mathbb{N}$. $g_{\beta}^{\pm}(t)$ are at most polynomials and g_{α}^{\pm} are constants.

Theorem 3 (Residu of the scattering amplitude). Assume (A1)-(A5). Let $\mathcal{A}(z; \omega, \omega')$ be the scattering amplitude with outgoing and incoming directions ω, ω' respectively. Then its residu at $z = z_{\alpha}$ is given by

$$Res_{z_{\alpha}}\mathcal{A}(z;\omega,\omega') = a_{\alpha}(\omega,\omega')g_{\alpha}^{-}g_{\alpha}^{+}h^{\frac{3n}{2}+1-|\alpha|} + \mathcal{O}(h^{\frac{3n}{2}+2-|\alpha|}),$$

where $a_{\alpha}(\omega, \omega')$ is a non-zero constant independent of h.

Theorem 4 (Long time asymptotic of the Schrödinger group). Assume (A1)-(A3) and that $\{\lambda_j\}_{j=1}^n$ is \mathbb{Z} -independent (i.e. every resonance is simple). Then, for any $C > 0, \ \chi \in C_0^{\infty}(\mathbb{R}^n), \ \psi \in C_0^{\infty}(\mathbb{R})$ supported near E_0 , there exists $\epsilon > 0$ and K > 0such that

$$\chi e^{-itP/h} \chi \psi(P) = \sum_{z_{\beta} \in D(E_0, Ch)} e^{-itz_{\beta}/h} \chi \Pi_{\beta} \chi \psi(P) + \mathcal{O}(h^{\infty}) + \mathcal{O}(e^{-(C+\epsilon)t}h^{-K}).$$

This is a consequence of Theorem 2. Thanks to Theorem 1, the error is smaller than the first term in RHS when t is larger than $A|\log h|$ for large enough A.