Propagation of the homogeneous wavefront set for Schrödinger equations

Kenichi ITO (Graduate School of Mathematical Sciences, University of Tokyo)

• Some wavefront sets

Definition (S. Nakamura [2]) Let $u \in \mathcal{S}'(\mathbb{R}^n)$ and $(z_0, \zeta_0) \in \mathbb{R}^{2n} \setminus \{0\}$. Then $(z_0, \zeta_0) \notin HWF(u)$

 $\stackrel{\text{def}}{\longleftrightarrow} \exists \varphi \in C_0^{\infty} \left(\mathbb{R}^{2n} \right) \text{ s.t. } \varphi(z_0, \zeta_0) \neq 0, \text{ and } \|a^w(hz, hD_z)u\|_{L^2} \leq C_N h^N \; (\forall N > 0).$

Remark If we delete h in front of z in the above definition, this gets to be a characterization of the wavefront set.

Definition (J. Wunsch [3]) For an operator

 $A = a^{w}(x, D) \in \operatorname{Op} S\left(1, \langle z \rangle^{-2} dz^{2} + \langle \zeta \rangle^{-2} d\zeta^{2}\right)$

we can consider well-defined characteristic set also for the spatial direction:

$$\Sigma_{\rm sc}(A) = \left\{ (z,\zeta) \in S^{n-1} \times \mathbb{R}^n; \liminf_{t \to +\infty} |a(tz,\zeta)| = 0 \right\}$$

$$\bigsqcup \{ (z,\zeta) \in \mathbb{R}^n \times S^{n-1}; \liminf_{t \to +\infty} |a(z,t\zeta)| = 0 \right\}.$$
 (disjoint union)

Then we define the scattering and the quadratic scattering wavefront set by

$$WF_{sc}(u) = \bigcap \left\{ \Sigma_{sc}(A); A \in \operatorname{Op} S\left(1, \langle z \rangle^{-2} dz^2 + \langle \zeta \rangle^{-2} d\zeta^2\right), Au \in \mathcal{S}(\mathbb{R}^n) \right\},$$

$$WF_{qsc}(u) = WF_{sc}\left(\tilde{u}\right), \quad \tilde{u}(q) = u((1 + \langle q \rangle)^{-\frac{1}{2}}q).$$

Remark Since $\mathcal{F}a^{w}(z, D_{z}) \mathcal{F}^{-1} = a^{w}(-D_{\zeta}, \zeta)$, we have a correspondence

$$WF_{sc}(u) \cap (\mathbb{R}^n \times S^{n-1}) \longleftrightarrow WF(u), \quad WF_{sc}(u) \cap (S^{n-1} \times \mathbb{R}^n) \longleftrightarrow WF(\mathcal{F}u).$$

Put $z = (1 + \langle q \rangle)^{-\frac{1}{2}}q$, then $\langle z \rangle^{-2} = \langle q \rangle^{-1}$. If we embed \mathbb{R}^n into S^n_+ through the stereographic projection:

SP:
$$\mathbb{R}^n \to S^n_+ = \left\{ w \in \mathbb{R}^{n+1} \mid |w| = 1, w_n \ge 0 \right\}, \ z \mapsto \left(\frac{z}{\sqrt{1+|z|^2}}, \frac{1}{\sqrt{1+|z|^2}} \right),$$

then the qsc-wf set is the sc-wf set of u on $\mathbb{R}^n \subset S^n_+$ that has a new C^{∞} structure whose boundary defining function is the square of the original one. The qsc-wf set is nothing but the coordinate-changed sc-wf set, so there is a correspondence

$$WF_{qsc}(u) \cap (\mathbb{R}^n \times S^{n-1}) \longleftrightarrow WF_{sc}(u) \cap (\mathbb{R}^n \times S^{n-1}) \longleftrightarrow WF(u).$$

For $WF_{qsc}(u) \cap (S^{n-1} \times \mathbb{R}^n)$ we have another kind of correspondence.

Theorem 1 Let $\Psi : \mathbb{R}^n \setminus \{0\} \to \operatorname{GL}(n; \mathbb{R}), z \mapsto \Psi(z) = \left(\delta_{ij} + z^i z^j |z|^{-2}\right)_{ij}$, then $\begin{cases} (tz, t\zeta) \in \mathbb{R}^{2n} | (z, \zeta) \in \operatorname{WF}_{qsc}(u) \cap \left(S^{n-1} \times \mathbb{R}^n\right), t > 0 \\ = \{(z, \Psi(z)\zeta) \in \mathbb{R}^{2n} | (z, \zeta) \in \operatorname{HWF}(u) \setminus (\{0\} \times \mathbb{R}^n) \}. \end{cases}$

• Propagation of singularities

Let (\mathbb{R}^n, g) be a Riemannian manifold and consider the Schrödinger equation:

$$(i\partial_t + \Delta_g - V(z))u_t(z) = 0, \quad \Delta_g = \frac{1}{2}\partial_i g^{ij}(z)\partial_j$$

Suppose that g is of the form

$$g = \frac{dx^2}{x^4} + \frac{h(x, y, dx, dy)}{x^2}, \quad x = |z|^{-1}, \quad y: \text{ local coordinates of } S^{n-1}$$

for $z \in \mathbb{R}^n$ far from the origin, where h is a 2-cotensor on \mathbb{R}^n that approaches some Riemannian metric on S^{n-1} as $x \to 0$. In other words, g is asymptotically conic.

V is assumed to be in $C^{\infty}(\mathbb{R}^n;\mathbb{R})$ and satisfies for some $\nu < 2$

$$|\partial_z^{\alpha} u(z)| \le C_{\alpha} \langle z \rangle^{\nu - |\alpha|} \quad \forall \alpha \in \mathbb{Z}_+^n.$$

Under these assumptions the potential term can be completely ignored as a small perturbation to the Laplacian.

Theorem 2 Let $u_0 \in L^2$, $\omega_- \in S^{n-1}$, and $t_0 > 0$, and assume that $(-t_0\omega_-, \omega_-) \notin HWF(u_0)$. Then, if $\gamma(t) = (z(t), \zeta(t))$ is a free backward nontrapped classical trajectory with limiting direction ω_- , i.e., if

$$\dot{\gamma}(t) = \left(\partial_{\zeta} p(\gamma(t)), -\partial_{z} p(\gamma(t))\right), \quad p(z,\zeta) = \frac{1}{2} \sum_{i,j=1}^{n} g^{ij}(z) \zeta_{i} \zeta_{j},$$
$$\lim_{t \to -\infty} |z(t)| = \infty, \quad \omega_{-} = \lim_{t \to -\infty} \zeta(t) / |\zeta(t)| = -\lim_{t \to -\infty} z(t) / |z(t)|,$$

then we have

$$WF(u_{t_0}) \cap \{\gamma(t); t \in \mathbb{R}\} = \emptyset$$

Remark For our metric, if a trajectory γ is backward nontrapped, there always exists a limiting direction $\omega_{-} \in S^{n-1}$.

Professor S. Nakamura has proved Theorem 2 for asymptotically flat g.

A part of results by Wunsch [3] on the Euclidean space with an optimally weak assumption on potential follows from Theorems 1 and 2, since for any t > 0 we have the equivalence

$$(-t\omega_{-},\omega_{-}) \in \mathrm{HWF}(u) \iff (-\omega_{-},\omega_{-}/2t) \in \mathrm{WF}_{\mathrm{qsc}}(u).$$

References

- K. Ito, Propagation of singularities for Schrödinger equations on the Euclidean space with a scattering metric, Comm. Partial Differential Equations, 31, 1735-1777, (2006)
- [2] S. Nakamura, Propagation of the Homogeneous Wave Front Set for Schrödinger Equations, Duke Math. J. 126(2), 349-367, (2005).
- [3] J. Wunsch, Propagation of singularities and growth for Schrödinger operators, Duke Math. J. 98, 137-186 (1999).