Blowup Rate of Type II and the Braid Group Theory

Noriko Mizoguchi Department of Mathematics, Tokyo Gakugei University,

We are concerned with blowup rate of solutions to a Cauchy problem for a semilinear heat equation

(1)
$$\begin{cases} u_t = \Delta u + u^p & \text{in } \mathbf{R}^N \times (0, T), \\ u(x, 0) = u_0(x) \ge 0 & \text{in } \mathbf{R}^N. \end{cases}$$

It was shown in [1] that if p is subcritical in the Sobolev sense, then any solution of (1) blowing up at t = T fulfills

(2)
$$|u(t)|_{\infty} \le C(T-t)^{-\frac{1}{p-1}}$$
 for $t \in [0,T)$

with some constant C > 0. The blowup satisfying (2) is called of type I and of type II otherwise. Let p_{JL} and p_L be the exponent of Joseph-Lundgren and of Lepin, respectively, i.e.,

$$p_{_{JL}} = \begin{cases} \infty & \text{if } N \le 10, \\ 1 + \frac{4}{N - 4 - 2\sqrt{N - 1}} & \text{if } N \ge 11; \end{cases}$$
$$p_{_{L}} = \begin{cases} \infty & \text{if } N \le 10, \\ 1 + \frac{6}{N - 10} & (> p_{_{JL}}) & \text{if } N \ge 11. \end{cases}$$

If $p > p_{_{JL}}$, then there exist radial solutions of (1) which undergo type II blowup by [2] and [3].

Put

$$w(r,s) = (T-t)^{\frac{1}{p-1}}u(|x|,t), \ r = (T-t)^{-1/2}|x|, \ s = -\log(T-t)$$

for a radial solution u of (1). Then w satisfies

(3)
$$\begin{cases} w_s = w_{rr} + \frac{N-1}{r} w_r - \frac{r}{2} w_r - \frac{1}{p-1} w + w^p & \text{in } (0,\infty) \times (s^T,\infty), \\ w(r,s^T) = T^{1/(p-1)} u_0(T^{1/2}r) & \text{in } [0,\infty), \end{cases}$$

where $s^T = -\log T$. Let φ_{∞} be the radial singular steady state of (1) defined by

$$\varphi_{\infty}(\xi) = \left\{ \frac{2}{p-1} \left(N - 2 - \frac{2}{p-1} \right) \right\}^{\frac{1}{p-1}} \xi^{-\frac{2}{p-1}} \quad \text{for } \xi = |x|.$$

It is immediate that φ_{∞} is also a singular steady state of (3). If $p > p_{JL}$, then the spectrum of the linearized operator of (3) at φ_{∞} consists of countable eigenvalues $\{\lambda_j : j = 0, 1, 2, \dots\}$.

For a function f on $[0, \infty)$ with $f \neq 0$, let z(f) be the supremum over all k such that there exist $0 \leq r_1 < r_2 < \cdots < r_{k+1} < \infty$ with $f(r_i) \cdot f(r_{i+1}) < 0$ for $i = 1, 2, \cdots, k$. The following was obtained in [4].

Theorem 1 Let $p > p_L$. Let u be a radial solution of (1) with $z(u_0 - \varphi_\infty) < \infty$ which undergoes type II blowup at t = T. Denote by $\xi_i(t)$ the *i*th zero of $u(t) - \varphi_\infty$ for positive integer i. Let $\ell = \max\{i : \liminf_{t \neq T} (T-t)^{-1/2}\xi_i(t) < \infty\}$. Then there exist constants $C_1, C_2 > 0$ such that

$$C_1(T-t)^{-\gamma_\ell - \frac{1}{p-1}} \le |u(t)|_{\infty} \le C_2(T-t)^{-\gamma_\ell - \frac{1}{p-1}} \quad for \ t \in [0,T),$$

where

$$\gamma_j = \frac{2\lambda_j}{(p-1)|\alpha| - 2}$$
 for $j = 0, 1, 2, \cdots$

and

$$\alpha = \frac{1}{2} \left\{ -(N-2) + \sqrt{\left(N-2 - \frac{4}{p-1}\right)^2 - 4(p-1)c_{\infty}^{p-1}} \right\}$$

Our purpose is to weaken the assumption on p.

Theorem 2 Let $p > p_{JL}$ and $\lambda_j \neq 0$ for any j. Let u be a radial solution of (1) with $z(u_0 - \varphi_{\infty}) < \infty$ which undergoes type II blowup at t = T. Denote by $\xi_i(t)$ the *i*th zero of $u(t) - \varphi_{\infty}$ for positive integer i. Let $m = \max\{i : \liminf_{t \neq T} \xi_i(t) = 0\}$. Then there exists a constant $\overline{C} > 0$ such that

$$u(t)|_{\infty} \leq \overline{C}(T-t)^{-\gamma_m - \frac{1}{p-1}} \quad for \ t \in [0,T).$$

Theorem 3 Suppose the same conditions as in Theorem 2. If m is even, then there exists $\underline{C} > 0$ such that

(4)
$$|u(t)|_{\infty} \ge \underline{C}(T-t)^{-\gamma_m - \frac{1}{p-1}} \quad for \ t \in [0,T),$$

When m is odd, we need a technical assumption to prove (4). The above results are also valid for the Cauchy-Dirichlet problem.

References

- Y. Giga and R. V. Kohn, Characterizing blow-up using selfsimilarity variables, Indiana Univ. Math. J. 36 (1987), 1-40.
- [2] M. A. Herrero and J. J. L. Velázquez, Explosion de solutions des équations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Paris 319 (1994), 141-145.
- [3] N. Mizoguchi, Boundedness of global solutions for a supercritical semilinear heat equation and its application, Indiana Univ. Math. J. 54 (2005), 1047-1059.
- [4] _____, Rate of type II blowup for a semilinear heat equation, Math. Ann. (to appear).