On the long-time behavior of viscosity solutions to Hamilton-Jacobi equations^{*}

Naoyuki Ichihara[†]

This talk is concerned with the long-time behavior of the viscosity solution to the Cauchy problem

$$\begin{cases} u_t + H(x, Du) = 0 & \text{in } \mathbb{R}^n \times (0, +\infty), \\ u(\cdot, 0) = u_0 & \text{on } \mathbb{R}^n. \end{cases}$$
(1)

We are particularly interested in the asymptotic behavior of the form

$$u(x,t) - (\phi(x) - at) \longrightarrow 0$$
 in $C(\mathbb{R}^n)$ as $t \to \infty$ (2)

for some $a \in \mathbb{R}$ and $\phi \in C(\mathbb{R}^n)$. The function $\phi(x) - at$, called the asymptotic solution of (1), enjoys the time-independent Hamilton-Jacobi equation

$$H(x, D\phi) = a \qquad \text{in } \mathbb{R}^n. \tag{3}$$

Thus, (2) claims that the solution u(x, t) converges to a "steady" state as the time tends to infinity.

The standing assumptions on H are the following:

(A1)
$$H \in BUC(\mathbb{R}^n \times B(0, R))$$
 for all $R > 0$, where $B(0, R) := \{x \in \mathbb{R}^n \mid |x| \le R\}$,
(A2) $\inf\{H(x, p) \mid x \in \mathbb{R}^n, |p| \ge R\} \longrightarrow +\infty \text{ as } R \to +\infty$,

(A3) H(x,p) is strictly convex with respect to p for every $x \in \mathbb{R}^n$,

(A4) there exist $a \in \mathbb{R}$, $\phi_0 \in \mathcal{S}^-_{H-a}$ and $\psi_0 \in \mathcal{S}^+_{H-a}$ such that $\phi_0 \leq \psi_0$ in \mathbb{R}^n ,

where S_{H-a}^{-} (resp. S_{H-a}^{+} and S_{H-a}) stands for the set of continuous viscosity subsolutions (resp. supersolutions and solutions) of (3). As a class of initial functions, we set

$$\Phi_0 := \{ u_0 \in \mathrm{UC}(\mathbb{R}^n) \, | \, \phi_0 - C \le u_0 \le \psi_0 + C \text{ in } \mathbb{R}^n \text{ for some } C > 0 \}.$$

The study on asymptotic problems of this kind has been developed in the last decade. As a typical case in the development, it has been proved that if H satisfies (A1)-(A3) and

^{*}Joint work with Hitoshi Ishii (Waseda University).

[†]Graduate School of Natural Science and Technology, Okayama University.

H(x,p) is \mathbb{Z}^n -periodic with respect to x for every $p \in \mathbb{R}^n$,

then there exists a unique $a \in \mathbb{R}$ such that (A4) holds for some \mathbb{Z}^n -periodic $\phi_0 \in \mathcal{S}^-_{H-a}$ and $\psi_0 \in \mathcal{S}^+_{H-a}$ and the convergence (2) is valid for every \mathbb{Z}^n -periodic $u_0 \in \Phi_0$.

It has also been of interest in recent years on the long-time behavior of viscosity solutions to (1) that are not necessarily spatially periodic. As far as non-periodic solutions are concerned, the above (A1)-(A4) are insufficient to obtain the convergence (2) for every $u_0 \in \Phi_0$. The aim of this talk is, therefore, to present some sufficient conditions on H and u_0 so that (2) holds in general situations.

Our approach is based on the following classical variational formula:

$$u(x,t) = \inf \left\{ \int_{-t}^{0} L(\eta(s), \dot{\eta}(s)) \, ds + u_0(\eta(-t)) \, \big| \, \eta \in \mathcal{C}([-t,0];x) \right\}, \tag{4}$$

where $L(x,\xi) := \sup_{x \in \mathbb{R}^n} (p \cdot \xi - H(x,p))$ and

$$\mathcal{C}([-t,0];x) := \{ \eta \in AC([-t,0],\mathbb{R}^n) \, | \, \eta(0) = x \}$$

The rough idea of showing (2) is to construct, for each $(x,t) \in \mathbb{R}^n \times (0,\infty)$, a curve $\mu_t \in \mathcal{C}([-t,0];x)$ which attains the minimum of the right-hand side of (4) and to investigate the asymptotic behavior of μ_t as $t \to \infty$. The motion of $s \mapsto \mu_t(s)$ depends obviously on the value of $\int_{-t}^0 L(\mu_t(s), \dot{\mu}_t(s)) ds$ (running cost) and $u_0(\mu_t(-t))$ (initial cost). In this talk, we show that if μ_t has a "good" behavior when t is large, then one has the required convergence (2). We also give some typical examples of such motions.

References

- Ichihara, N., Ishii, H. Asymptotic solutions of Hamilton-Jacobi equations with semi-periodic Hamiltonians. To appear in Comm. Partial Differential Equations.
- [2] Ichihara, N., Ishii, H. Notes on the dynamical approach to asymptotic solutions of Hamilton-Jacobi equations. In preparation.