| 國府 寛司 | 京都大学 大学院理学研究科 | 基盤(A) 力学系:理論と応用の新展開 |
| 平岡 裕章 | 京都大学 高等研究院 | 基盤(A) パーシステントホモロジーのランダム化とシューベルト計算のインタラクション |
| 齊藤 宣一 | 東京大学 数理科学研究科 | 基盤(A) 時空間変分法に基づく数値解析理論の新展開 |
| 坂上 貴之 | 京都大学 理学研究科 | 基盤(A) 多様な複雑現象の記述に向けた複素特異点解析の深化 |
| 米田 剛 | 一橋大学 経済学研究科 | 基盤(B) 物理と数学の協働によるNavier-Stokes乱流のエネルギーカスケードの解明 |
| 小林 健太 | 一橋大学大学院 経営管理研究科 | 基盤(B) 新たな段階に入った有限要素法基盤の精度保証付き数値計算の進展 |
| 降籏 大介 | 大阪大学 サイバーメディアセンター | 基盤(B) 深層学習に対する数値解析的アプローチ基盤の創出 |
| 藤原 宏志 | 京都大学 情報学研究科 | 基盤(B) 多重散乱情報をもちいる次世代イメージング手法の数理解析 |
| 李 聖林 | 京都大学 高等研究院 | 基盤(B) 非対称細胞分裂の統合的解明及び大域的数理モデリング手法の開発 |
| 村川 秀樹 | 龍谷大学 理工学部 | 基盤(B) 細胞接着に関する数理的研究の深化と新展開 |
| 松尾 宇泰 | 東京大学 情報理工学研究科 | 基盤(B) 構造保存的数値計算法の概念に基づく最適化・深層学習手法の新展開 |
| 渡部 善隆 | 九州大学 情報基盤研究開発センター | 基盤(B) 精度保証付き数値計算の前進---有限と無限をつなぐもの--- |
| 松江 要 | 九州大学 マス・フォア・インダストリ研究所 | 基盤(B) 有限時間特異性の包括的記述に向けた数学解析・計算機援用解析の展開 |
| 磯 祐介 | 京都大学 情報学研究科 | 基盤(B) 特異性・非適切性が本質的な微分方程式の数値計算における多倍長数値計算環境の活用 |
| 劉 雪峰 | 新潟大学 自然科学研究科 | 基盤(B) 3次元領域におけるレイノルズ数の大きい流れの計算機援用証明 |
| 長山 雅晴 | 北海道大学 電子科学研究所 | 基盤(B) 自己駆動体の集団運動に対する数理モデリングと数理解析 |
| 矢ヶ崎 一幸 | 京都大学 情報学研究科 | 基盤(B) 力学系の可積分性に関する革新的理論の確立とその応用 |
| 時弘 哲治 | 武蔵野大学 工学部 | 基盤(B) 内皮細胞動態に基づく血管網構築の数理モデル |
| 村重 淳 | 茨城大学 理工学研究科 | 基盤(B) 海洋波の強非線形・非定常現象に対する数理モデルとその検証 |
| 水藤 寛 | 東北大学 AIMR | 基盤(B) 呼吸器疾患診断に関わる解析の必要性に基づく数理的手法群の総合構築 |
| 宮路 智行 | 京都大学 理学研究科 | 基盤(B) 力学系に対する相空間全構造解析と分岐解析の統合による新たなアプローチ |
| 國府 寛司 | 京都大学 理学研究科 | 基盤(B) ダイナミクスの機械学習の数理解析 - リザバー計算を中心に - |
| 柴山 允瑠 | 京都大学 情報学研究科 | 基盤(B) 変分法と位相幾何学によるハミルトン系の新たな理論の構築と展開 |
| 原田 昌晃 | 東北大学 大学院情報科学研究科 | 基盤(B) 組合せ論的符号理論の展開 |
| 城本 啓介 | 熊本大学 大学院先端科学研究部 | 基盤(B) マトロイドの臨界問題の新展開と解決への複合的アプローチ |
| 栗原 大武 | 山口大学 大学院創成科学研究科 | 基盤(C) グラフ構造を通じて見る対称空間の研究 |
| 丸田 辰哉 | 大阪公立大学 大学院理学研究科 | 基盤(C) 線形符号の拡張可能性と誤り訂正限界に関する幾何学的研究 |
| 藤沢 潤 | 慶応義塾大学 商学部 | 基盤(C) グラフの距離拡張性を用いた因子問題の研究 |
| 千葉 周也 | 熊本大学 大学院先端科学研究部 | 基盤(C) 有向グラフ上の詰込み・分割問題に対する新手法の開発とその応用 |
| 松田 晴英 | 芝浦工業大学 工学部 | 基盤(C) グラフの部分構造と特定の性質を満たす木の研究 |
| 谷口 哲至 | 広島工業大学 工学部 | 基盤(C) 整化可能な代数構造の代数的グラフ理論による特徴付け及び分類 |
| 中本 敦浩 | 横浜国立大学 大学院環境情報研究院 | 基盤(C) 曲面上の局所4-彩色可能グラフの構造について |
| 齋藤 正顕 | 工学院大学 教育推進機構 | 基盤(C) グラフの増大列に関する量子カオス現象の解析 |
| 八森 正泰 | 筑波大学 システム情報工学研究科(系) | 基盤(C) Nonpure複体の分割構造を軸とした単体的複体の組合せ構造の探求 |
| 佐久間 雅 | 山形大学 理学部 | 基盤(C) ハイパーグラフ上の詰め込み,被覆,配置に関する組合せ構造の研究 |
| 篠原 雅史 | 滋賀大学 教育学部 | 基盤(C) 点配置の距離構造に着目した極値組合せ論の研究 |
| 太田 克弘 | 慶應義塾大学 理工学部 | 基盤(C) グラフの大域構造に着目した極値問題の研究 |
| 三枝崎 剛 | 早稲田大学 理工学術院 | 基盤(C) 離散構造における不変量と対称性 |
| 藤田 慎也 | 横浜市立大学 国際総合科学群 | 基盤(C) 辺着色されたグラフの連結構造に関する研究 |
| 佐野 良夫 | 筑波大学 システム情報系 | 基盤(C) グラフ・マトロイド・凸幾何の組合せ構造と関連する離散最適化の研究 |
| 鈴木 有祐 | 新潟大学 自然科学系 | 基盤(C) 代数的不変量に着目した閉曲面上のオイラーグラフの良い辺向き付けに関する研究 |
| 小関 健太 | 横浜国立大学大学院 環境情報研究院 | 基盤(C) グラフの彩色手法の発展と高次元超多面体グラフの彩色 |
| 福田 亜希子 | 芝浦工業大学 システム理工学部 | 基盤(C) Max-plus方程式で記述される離散力学系の解析とその応用 |