離散系セッション

1号館6階,619会議室 講演時間25分(含討論時間)

12月15日(木) 10:00~18:00

第 1 セッション 10:00 ~ 11:40
D01-1
四元数重み付きグラフのゼータ関数と四元数行列式2 三橋秀生(宇都宮大学教育学部)今野紀雄(横浜国立大学理工学部)佐藤巖(小 山工業高等専門学校一般科)
D01-2
Szegedy walk と staggered QW の時間発展行列の固有値
D01-3
1 次元スプリット・ステップ量子ウォークの固有値について
301-4 多次元量子ウォークの固有値と局在化
布田徹(北海道大学) 船川大樹(北海道大学)鈴木章斗(信州大学工学部)
第 2 セッション 12:55 ~ 14:35
D02-1
* スペクトル散乱理論を用いた量子ウォークの弱収束定理の証明
D02-2
* 無限ツリー上の Grover walk の固有空間の構成
D02-3
* 格子上の逆散乱問題とネットワークの逆問題34 安藤和典(愛媛大学工学部)磯崎洋(筑波大学名誉教授) 森岡悠(同志社大学 理工学部)
* 二分木の分岐解析と分岐比に対する中心極限定理38 山本健(琉球大学理学部)

第 3 セッション 14:50 ~ 16:30	
D03-1	
* 関数選択を用いた暗号化の乱数性の評価4 西島奈津季(お茶の水女子大学大学院)萩田真理子(お茶の水女子大学)	6
D03-2	
* ペアの円順列での同要素の最短距離について5 野月麻衣(お茶の水女子大学大学院)萩田真理子(お茶の水女子大学)	60
D03-3	
*3-連結平面的グラフのトーラスへの埋め込み5 永並健吾(横浜国立大学大学院環境情報学府)	i 4
D03-4	
* マイナー関係に着目した球面上の最小次数 3 以上の四角形分割の生成定理5 川崎有一郎(横浜国立大学大学院環境情報学府)	i8
第 4 セッション 16:45 ~ 18:00	
D04-1	
*Asymmetry number of tournaments	52
D04-2	
*claw-free と同値な禁止グラフ条件について6 古谷倫貴 (北里大学一般教育部) 横田真秀 (東京理科大学博士課程)	6
D04-3	
*Graph grabbing game on some Cartesian products of graphs	'0
12月16日(金) 9:00 ~ 17:40	
第 5 セッション 9:00 ~ 10:15	
D05-1	
On 3-rainbow domination in graphs with minimum degree 2	' 4
D05-2	
Some bounds on the domination number of digraphs	' 6
D05-3	
グラフの安全集合に関する研究の進展7 藤田慎也(横浜市立大学国際総合科学群)	'8

第 6 セッション 10:30 ~ 11:45
D06-1
Forbidden triples involving the path of order 9
D06-2
Spanning trails with maximum degree at most 4 in $2K_2$ -free graphs 82 斎藤明(日本大学文理学部) Chen, Guantao (Georgia State University) Ellingham, Mark (Vanderbilt University) Shan, Songling (Vanderbilt University)
D06-3
コードダイアグラムの展開と Tutte 多項式86 中上川友樹(湘南工科大工)佐久間雅(山形大地域教育文化)
第7セッション 13:00 ~ 14:40
D07-1
有限フーリエ変換と有限高速フーリエ変換
D07-2 "Digital" entropy defined on a set of bimodal but almost unimodal cyclic
permutations
D07-3
*On Traceability Schemes
Gu, Yujie (筑波大学) Miao, Ying (筑波大学)
D07-4
*Lower bound graph に関する lattice の生成について
第 8 セッション 14:55 ~ 16:10
D08-1
* グラフ彩色を用いた写真選出手法
D08-2
*On Ramsey (P ₄ , P ₄)-minimal Graphs
Mathematics, Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung, Indonesia)

D08-3
* 次数制約マッチングの Dulmage-Mendelsohn 分解
第 9 セッション 16:25 ~ 17:40
D09-1
* 二部グラフ上の完全マッチングを含む 2-因子と有向グラフ上の有向 2-因子 122 千葉周也(熊本大学大学院先端科学研究部)山下登茂紀(近畿大学理工学部)
D09-2
* [a, b]-factors of graphs on surfaces
*Highly edge-connected factors using given lists on degrees
Saieed Akbari (Sharif University of Technology) Morteza Hasanvand (Sharif University of Technology) 小関健太 (National Institute of Informatics/JST, ERATO, Kawarabayashi Large Graph Project)
12月17日(土) 9:00 ~ 16:10
第 10 セッション 9:00 ~ 10:15
D10-1
2 要素の交換と多重集合のある分割問題について
D10-2
On the extendability of quaternary linear codes
D10-3
多重ベルヌーイ数の零化公式とその応用 148
大野泰生(東北大学理学研究科) 佐々木義卓(大阪体育大学)
第 11 セッション 10:30 ~ 11:45
D11-1
Countable Köhler graph, Steiner quadruple systems, and projective planes 152
澤正憲(神戸大学大学院システム情報学研究科)
D11-2
超八面体の辺の等分点を用いたデザインの構成と等長埋め込み 158 平尾将剛(愛知県立大学情報科学部)澤正憲(神戸大学大学院システム情報学 研究科)山本裕貴(ダイフク (株))

D11-3
Conference matrices with maximum excess and two-intersection sets 160
第 12 セッション 13:00 ~ 14:40
D12-1
*Improving the existence bounds for grid-block difference families 162 盧暁南 (名古屋大学情報科学研究科)
D12-2
* メルセンヌツイスタ擬似乱数発生法の連結について 168 原瀬晋 (立命館大学理工学部)
D12-3
* 系統学の基本定理の一般化
D12-4
* ナビゲーションシステムの代数構造について176 松本ディオゴけんじ (芝浦工業大学教育イノベーション推進センター)
第 13 セッション 14:55 ~ 16:10
D13-1
ルービックキューブの FULRD 問題
D13-2
Edge-hyper-Hamiltonian laceable なグラフのカーテジアンプロダクトについて 182 中川篤 (慶應義塾大学理工学研究科)
D13-3
ある閉曲面を四角形分割する最適 1-平面グラフ184 野口健太(東京電機大学)

解析系セッション

6号館1階, プレゼンテーション室 講演時間25分(含討論時間)

12月15日(木) 9:30~18:35

第1セッション 9:30 ~ 10:45	
A01-1	
力学系のホモクリニック点の探索と整関数の零点分布 松岡千博(大阪市立大学工学研究科)平出耕一(愛媛大学理工学研究科)	186
A01-2	
The number of infection events per cell during cell-free HIV-1 infection ob	
negative-binomial distribution	
A01-3	
骨髄球バイパスを含む造血システムの数理モデル 〇岩波翔也(九州大学)山本玲(スタンフォード大学)岩見真吾(九州大学)波 江野洋(九州大学)	
第 2 セッション 11:00 ~ 12:15	
A02-1	
B型肝炎ウイルスの細胞侵入に関する数理モデリング	
HCV 感染のマルチスケールモデルの ODE 化	204
北川耕咲(九州大学)中岡慎治(東京大学)岩見真吾(九州大学)	204
A02-3	
非対称細胞分裂におけるパターン形成と数理的問題李聖林(広島大学大学院理学研究科・JST さきがけ)	208
第 3 セッション 13:30 ~ 15:10	
A03-1	
* 流れ場の形状最適化問題による安定性制御 中澤嵩(東北大学大学院情報科学研究科)	210
A03-2	
* 非線形拡散問題に対する簡便な数値解法 村川秀樹(九州大学大学院数理学研究院)	218

A03-3	224
* 波動方程式の反応拡散近似 山本宏子(明治大学研究・知財戦略機構)	226
A03-4	
* 双極子法による等角写像の数値計算 〇榊原航也(東京大学大学院数理科学研究科)桂田祐史(明治大学総合数理学部)	230
第 4 セッション 15:25 ~ 17:05	
A04-1	
* 細胞極性と細胞移動の数理モデル	238
A04-2	
* 円形領域内に閉じ込められた樟脳粒の運動 〇小谷野由紀(千葉大学大学院理学研究科)北畑裕之(千葉大学大学院理学研 究科)	246
A04-3	
* 時間遅れフィードバックによる細菌叢個体群制御モデルの数理解析 董岳平(九州大学工学部)竹内康博(青山学院大学理工学部)〇中岡慎治(東京 大学生産技術研究所)	254
A04-4	
* マランゴニ流の影響を含む, 円環水路における樟脳円盤の自律運動の数理モデル 〇岡本守(北海道大学大学院理学院数学専攻)秋山正和(北海道大学電子科学研究所)長山雅晴(北海道大学電子科学研究所)	258
第 5 セッション 17:20 ~ 18:35	
A05-1	
* 擬ポアンカレコンパクト化と爆発解 松江要(九州大学マス・フォア・インダストリ研究所 / カーボンニュートラル・ エネルギー国際研究所)	262
A05-2	
* 精度保証による Lyapunov 関数の構成とその拡張	270
A05-3	
* 時間発展問題の精度保証付き数値計算に現れる誤差伝搬の縮小技術 〇高安亮紀(筑波大学システム情報系)水口信(早稲田大学基幹理工学研究科) 久保隆徹(筑波大学数理物質系)大石進一(早稲田大学理工学術院)	

12月16日(金) 9:00~17:40

第 6 セッション 9:00 ~ 10:40	
A06-1	
コンパクト作用素のレゾルベントに対する下側評価	
A06-2	
複素磁場下のBCSモデルにおける超伝導 鹿島洋平(東京大学大学院数理科学研究科)	286
A06-3	
An Inverse Problem Arising from Financial Markets 大田靖 (岡山理科大学総合情報学部)	290
A06-4	
粘菌の移動と状況判断の数理モデル	296
第7セッション 10:55 ~ 11:45	
A07-1	
*表皮幹細胞ダイナミクスと真皮形状変形の数理モデル	
A07-2 * 拡散を伴う空間異質的な感染症モデルに対する Lyapunov 関数の構築 ○國谷紀良(神戸大学大学院システム情報学研究科)王金良(黒竜江大学数学科 学院)	308
第8セッション 13:00 ~ 14:40	
A08-1	
*Regularity and singularity of the blow-up curve for a nonlinear wave eq	ıua-
tion with a derivative nonlinearity	-
A08-2	
* 特異な周回積分の形状微分を用いた定常渦斑の数値計算 宇田智紀(京都大学数学教室)	318
A08-3	
*Vortex dynamics on a toroidal surface ○清水雄貴(京都大学理学研究科数学教室)坂上貴之(京都大学理学研究科)	322
A08-4	
*Numerical simulations of two vortex sheets by the point-vortex approximation in the same of the same	ma-

tion	
第 9 セッション 14:55 ~ 16:35	
$\overline{ ext{A09-1}}$	
*振動場 Oregonator model の大域的制御 ○大野航太(明治大学大学院先端数理科学研究科)小川知之(明治大学総合数理学部)末松 J. 信彦(明治大学総合数理学部)	
A09-2 * ※日本中ポーヤオス海粉の伊左見を再用する美ハスキー /	0.40
* 発展方程式に対する複数の保存量を再現する差分スキーム	
A09-3	
* 周期境界条件における固有値の集積現象とその応用 関坂歩幹(明治大学研究・知財戦略機構)	346
A09-4	
* 滑らかな領域における放物型問題の有限要素近似に対する L^{∞} 誤差評価 \dots 〇剱持智哉(東京大学大学院数理科学研究科)柏原崇人(東京大学大学院数理科学研究科)	
第 10 セッション 16:50 ~ 17:40	
A10-1	
Delay-induced blow-up in some limit-cycle oscillation model: mathemat and numerical analyses	
石渡恵美子(東京理科大学) 石渡哲哉(芝浦工業大学)中田行彦(島根大学) 三木勝博(芝浦工業大学大学院修了生)	
A10-2 自発的なパラメータ変化による同期現象の維持	364
上田肇一(富山大学大学院理工学研究部)	304
12月17日(土) 9:00 ~ 18:45	
第 11 セッション 9:00 ~ 10:15	
A11-1	
*HIV-1 侵入過程の定量化 〇柿添友輔(九州大学大学院システム生命科学府)中岡慎治(東京大学 生産技術 研究所)岩見真吾(九州大学理学研究院)	368
A11-2 * 中野体体に乗れたまる海流の物理をデリ	0.70
* 自励往復運動をする液滴の数理モデル	372

A11-3	
* 多相環境における界面の近似計算法	378
〇片山渉(北海道大学理学院)Elliott Ginder(北海道大学電子科学研究所)	
第 12 セッション 10:30 ~ 11:45	
A12-1	
* ある質量保存を持つ細胞極性モデルの定常解の大域的構造 〇森竜樹(華東師範大学)久藤衡介(電気通信大学)辻川亨(宮崎大学)四ツ谷 晶二(龍谷大学)	
A12-2	
*パーシステントホモロジーと機械学習を活用した材料科学に関するデータ解析 大林一平(東北大学原子分子材料科学高等研究機構)	390
A12-3	
*統計的位相的データ解析と安定性定理 〇草野元紀(東北大学理学研究科)福水健次(統計数理研究所)平岡裕章(東北大学原子分子材料科学高等研究機構)	
第 13 セッション 13:00 ~ 14:15	
A13-1	
*Traveling pulse solutions in a point mass model of diffusing particles Elliott Ginder (北海道大学電子科学研究所) 簑毛崇章 (北海道大学) 長山雅晴 (北海道大学電子科学研究所)	
A13-2	
*Complex dynamics in the presence of 0:1:2 resonance	
A13-3	
* ダイナミクスにおける時間遅れの構造をどのように理解するべきか? 西口純矢(京都大学理学研究科数学教室)	422
第 14 セッション 14:30 ~ 15:45	
A14-1	
フェーズフィールドき裂進展モデルの拡張について 高石武史(広島国際学院大学)田中良巳(横浜国立大学)木村正人(金沢大学)	428
A14-2	
Correlation between malaria cases and rainfall	432
A14-3	
Orr-Sommerfeld 方程式の臨界 Reynolds 数に対する精度保証付き数値計算 (下) 渡部善隆 (九州大学情報基盤研究開発センター)	436

第 15 セッション 16:00 ~ 17:15	
A15-1	
EGFR,ERBB の重合に関する数理モデルと解析 板野景子 (大阪大学基礎工学研究科)	438
A15-2 境界入力に無駄時間要素を含む熱拡散系の安定化について 佐野英樹 (神戸大学システム情報学研究科)	440
A15-3 非圧縮性制約条件を持つ有限要素法剛性行列の部分構造反復法 鈴木厚(大阪大学サイバーメディアセンター)	446
第 16 セッション 17:30 ~ 18:45	
A16-1	
対数螺旋格子の円板充填 山岸義和(龍谷大学)須志田隆道(北海道大学)	450
A16-2 単一粒子の懸濁液の数学解析に向けて:衝撃波・希薄波と双曲性 松江要(九州大学マス・フォア・インダストリ研究所 / カーボンニュートラル・エネルギー国際研究所)〇友枝恭子(摂南大学理工学部) A16-3	452
A10-3 乱流カスケード現象を実現する1次元流体モデル方程式 ○坂上貴之(京都大学大学院理学研究科)松本剛(京都大学大学院理学研究科)	456