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単項多元環上のゴレンシュタイン射影加群のなす安定圏
の三角圏構造
臼井 智 ∗

1 背景
本稿では，多元環は体K 上の有限次元多元環を意味するものとする。特に断りがない限

り，加群は右加群とし，また常に有限生成であると仮定する。
ゴレンシュタイン射影加群の研究の起源は，Auslander-Bridger [3]によるゴレンシュタ

イン次元が 0の加群の研究にまで遡る。その後，Enochs-Jenda [15]によって，ゴレンシュ
タイン次元が 0 の加群を一般化する形でゴレンシュタイン射影加群が導入された。この名
称は，ゴレンシュタイン射影加群がゴレンシュタインホモロジー代数において射影対象と
しての役割を担っていることに由来している。ゴレンシュタイン射影加群は，全反射加群
[4]とよばれることもあり，特に，多元環が岩永–ゴレンシュタインである場合には，極大
Cohen-Macaulay加群 [6]に一致する。
さて，多元環 Λ上のゴレンシュタイン射影加群のなす圏Gproj Λは，射影 Λ-加群を射影

対象とするようなフロベニウス圏の構造をもつ。したがって，その安定圏 Gproj Λには三
角圏の構造が自然に入る。このとき，安定圏 Gproj Λ から Λ の特異圏 Dsg(Λ) への忠実充
満な三角圏関手が存在し，この関手が三角圏同値になることと，Λ が岩永–ゴレンシュタイ
ンであることが同値であることが知られている [5]。現代の多元環の表現論における主要な
目標の一つに，多元環に付随する種々の圏（加群圏，導来圏，特異圏など）の構造解明があ
る。したがって，安定圏 Gproj Λ の三角圏構造の解明は，多元環の表現論における重要な
課題の一つといえる。
これまでに，[7, 8, 10, 12, 22, 26, 29–31, 33, 34, 36, 38, 40, 41] などの数多くの研究者に

よって，Gproj Λの三角圏構造が決定されてきたが，その多くが岩永–ゴレンシュタイン多元
環を対象としている。これに対して近年では，岩永–ゴレンシュタインとは限らない多元環
の中でも，現象解析のテストケースとして多用される単項多元環に注目が集まっている。実
際，Ringel [35]は，最も基本的な環のクラスの一つである中山多元環Λに対して，Gproj Λ

がある特定の自己入射中山多元環の安定加群圏として実現可能であることを示している。ま
た，(i) Λが gentle多元環の場合 [23], (ii) Λが overlapを持たない単項多元環の場合 [13]，
(iii) Λが入射次元が高々１の岩永–ゴレンシュタイン単項多元環の場合 [32]においても研究
が進んでおり，いずれの場合も，Gproj Λ がある自己入射中山多元環の安定加群圏として実
現可能であることが示されている。
本稿では，次章において本稿で必要となる概念およびその基本事項を紹介したのち，本間

孝拓氏 (弓削商船高等専門学校)との共同研究によって得られた成果 [20] を概説する。注意
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4.2で述べるように，我々の結果は，上述の先行結果を任意の単項多元環の場合に統一的に
拡張するものとなっている。

2 準備
本章では，本稿で必要となる概念を紹介する。まず，記号を準備する。
多元環 Λ に対して，Λ の反転環を Λop，Λの k個のコピーの直積を Λ(k)で表す。Λ-加群

の圏をmodΛ，射影 Λ-加群からなるmodΛの充満部分圏を proj Λで表す。Λ-加群M の入
射次元を idΛM で表す。
本稿では，次数付き多元環は正次数付き多元環を意味するものとする。次数付きArtin多

元環の表現論については，[16, 17]を参照されたい。次数付き多元環Λ =
⊕

i≥0 Λiに対して，
次数付き Λ-加群の圏modZΛを次で定める。

• 対象は次数付き Λ-加群M =
⊕

i∈ZMiとする。

• 次数付き Λ-加群M,N に対して，M からN への射集合を次で定める：

HomZ
Λ(M,N) := {f ∈ HomΛ(M,N) | f(Mi) ⊆ Ni (∀i ∈ Z)}

次数付き射影加群からなるmodZΛの充満部分圏を projZΛと表す。次数付きΛ-加群M の次
数付き入射次元を gr.idΛM で表す。次数付き Λ-加群M と整数 iに対して，M(i)j :=Mi+j

により，M の次数 iシフトM(i) ∈ modZΛを定める。これにより，次数シフト関手 (i) :

modZΛ→ modZΛが定まる。次数シフト関手は，完全かつK-線形なmodZΛの自己圏同型
である。
集合X に対して，X の濃度を |X|で表す。また，X の元で張られるK-ベクトル空間を

KX で表す。特に，X = {x}が一元集合である場合には，KX を単にKxと書く。
圏 C の k 個のコピーの直積圏を C(k) で表す。加法圏 C 上の複体のなすホモトピー圏を
K(C)，有界複体のなすホモトピー圏をKb(C)で表す。アーベル圏Aの有界導来圏をDb(A)
で表す。Krull-Schmidt圏 Cに対して，Cの直既約対象の同型類全体の集合を ind Cで表す。
例えば，多元環Λに対する proj Λ, modΛや次数付き多元環Λに対する projZΛ, modZΛは
Krull-Schmidt圏である。ホモトピー圏や導来圏については [28, 42] を，Krull-Schmidt圏
については [27, 37]を参照されたい。

2.1 ゴレンシュタイン射影加群
本節では，ゴレンシュタイン射影加群に関する基本事項のうち，本稿に関連のあるものに

ついて説明する。詳細については，[9] を参照されたい。
ゴレンシュタイン射影加群の定義から始める。

定義 2.1 ([15]). (1) 射影 Λ-加群からなる非輪状複体

P• : · · · → P1
d1−→ P0

d0−→ P−1
d−1−−→ P−2 → · · ·

が totally acyclic であるとは，射影左 Λ-加群からなる複体 HomΛ(P•,Λ)が非輪状
になるときをいう。



(2) Λ-加群M がゴレンシュタイン射影的であるとは，ある totally acyclic複体 P•が存在
してM が 0次微分 d0 : P0 → P−1の核Ker d0と同型になるときをいう。

注意 2.2. ゴレンシュタイン射影Λ-加群M に対して，M ∼= Ker d0をみたす totally acyclic

複体 P•はM の complete resolutionとよばれる。この complete resolutionは，ホモト
ピー圏K(proj Λ)において，同型を除いて一意的に定まる [14]。

Λが岩永–ゴレンシュタイン [6, 21]であるとは，Λの片側加群としての入射次元 idΛ Λ, idΛop Λ

がともに有限であるときをいう。このとき，等式 idΛ Λ = idΛop Λが成り立つ [39]。例えば，
大域次元が有限であるような多元環は岩永–ゴレンシュタイン多元環である。また，自己入
射多元環は idΛ Λ = 0の岩永–ゴレンシュタイン多元環 Λに他ならない。
ゴレンシュタイン射影 Λ-加群のなすmodΛの充満部分圏をGproj Λと表す。Gproj Λは

K-線形な Krull-Schmidt圏である。また，任意の射影加群はゴレンシュタイン射影的であ
ることがわかる。実際，射影加群 P に対して，次の非輪状複体は totally acyclicである：

P• : · · · → 0
0−→ P

idP−−→ P
0−→ 0 → · · ·

したがって，次の包含関係が成り立つ：

proj Λ ⊆ Gproj Λ ⊆ modΛ

ここで，Gproj Λ = modΛが成り立つことと，Λが自己入射多元環であることは同値であ
る。一方，proj Λ = Gproj Λが成り立つとき，ΛはCM-freeであるという。例えば，大域
次元が有限であるような多元環は CM-freeである。直既約なゴレンシュタイン射影 Λ-加群
の同型類の個数が有限であるとき，ΛはCM-finiteであるという。直既約射影 Λ-加群の同
型類の個数は常に有限であるから，CM-free多元環は CM-finieである。
加群圏modΛの安定圏modΛを次で定める：

• 対象は Λ-加群とする。

• Λ-加群M,N に対して，M からN への射集合を次で定める：

HomΛ(M,N) := HomΛ(M,N)/{射影加群を通過する射 }

ゴレンシュタイン射影 Λ-加群からなる modΛの充満部分圏を Gproj Λと表す。このとき，
modΛ, Gproj ΛはK-線形なKrull-Schmidt圏であり，

indmodΛ = indmodΛ \ ind proj Λ, indGproj Λ = indGproj Λ \ ind proj Λ

が成り立つ。
Gproj Λは，射影対象全体が射影加群全体に一致するようなフロベニウス圏である。した

がって，Happel [19] の定理より，その安定圏Gproj Λには三角圏の構造が自然に入る。Λの
特異圏，すなわち，modΛの有界導来圏Db(modΛ)の完全導来圏Kb(proj Λ)によるVerdier

商Db(modΛ)/Kb(proj Λ)をDsg(modΛ)で表す。前章で述べたように，安定圏Gproj Λか
ら特異圏Dsg(modΛ)への三角圏としての埋め込みが常に存在し，この埋め込みが三角圏同
値であることと，Λが岩永–ゴレンシュタイン多元環であることが同値である [5]。Λが岩永–

ゴレンシュタインであるとき，得られる三角圏同値Gproj Λ ∼= Dsg(modΛ)は Buchweitz が
[6] において構成したそれに他ならない。



2.2 G-被覆関手
本節では，[1] に従ってG-被覆関手の定義を述べるとともに，本稿で用いる基本事項を紹

介する。なお，本節を通して，圏はすべてK-線形圏，関手はすべてK-線形関手とする。
圏 Cと群準同型 A : G→ Aut(C)の組 (C, A)をG-作用をもつ圏，あるいはG-圏とよぶ。

G-圏 Cと元 α ∈ Gに対して，αx := A(α)(x) とおく。Gの単位元を 1，Cの恒等関手を 1C

で表すと，A(1) = 1C が成り立つ。G-作用A : G→ Aut(C)が自由であるとは，単位元でな
い各 α ∈ Gと各 x ∈ Cに対して，αx 6= xが成り立つときをいう。さらに，A : G→ Aut(C)
が局所有界であるとは，各 x, y ∈ Cに対して，{α ∈ G | HomC(αx, y) 6= 0 }が有限集合であ
るときをいう。
F : C → C′をG-圏 C = (C, A) から圏 C′への関手とする。F の invariance adjusterと

は，次の 2つの条件を満たすような自然同型の族 ϕ = (ϕα : F → FA(α))α∈Gである：

(1) ϕ1 : F → F は F の恒等自然変換 1F である。

(2) 各 α, β ∈ Gに対して，次の関手の図式は可換になる：

F
ϕα

//

ϕβα

��

FA(α)

ϕβA(α)

��

FA(βα) FA(β)A(α).

このとき，組 (F, ϕ)をG-不変関手とよぶ。条件 (1)は条件 (2)から直ちに従う [1, Remark

1.2]。また，[1, Lemma 1.4]より，G-不変関手 F = (F, ϕ) : C → C′と関手H : C′ → C′′に対
して，Hϕ := (Hϕα)α∈Gとおくと，(HF,Hϕ)はG-不変関手になる。
F = (F, ϕ) : C → C′をG-不変関手とする。各 x, y ∈ Cに対して，次の 2つのK-線形写像

を考える：

F (1)
x,y :

⊕
α∈G

HomC(αx, y)→ HomC′(F (x), F (y)), (fα)α∈G 7→
∑
α∈G

F (fα) · ϕα(x);

F (2)
x,y :

⊕
β∈G

HomC(x, βy)→ HomC′(F (x), F (y)), (fβ)β∈G 7→
∑
β∈G

ϕβ−1(βy) · F (fβ)

ここで，

F (fα) · ϕα(x) : F (x)→ F (y)

は ϕα(x) : F (x)→ FA(α)(x)と F (fα) : F (αx)→ F (y)の合成であり，

ϕβ−1(βy) · F (fβ) : F (x)→ F (y)

は F (fβ) : F (x)→ F (βy)と ϕβ−1(βy) : F (βy)→ FA(β−1)(βy) = F (y)の合成である。[1,

Proposition 1.6]より，F (1)
x,y が同型であることと，F (2)

x,y が同型であることは同値である。
関手 F : C → C′ が稠密であるとは，任意の x′ ∈ C′ に対してある x ∈ C が存在して

F (x) ∼= x′であるときをいう。

定義 2.3. F : C → C′をG-不変関手とする。

(1) F がG-前被覆であるとは，各 x, y ∈ Cに対して F
(1)
x,y が同型であるときをいう。



(2) F がG-被覆であるとは，F がG-前被覆かつ稠密であるときをいう。

定義 2.4. C = (C, A) をG-圏とする。

(1) C のGによる軌道圏 C/Gを次で定義する：

• 対象は Cの対象とする。
• x, y ∈ Cに対して，xから yへの射集合を次で定める：

HomC/G(x, y) :=
⊕
α∈G

HomC(αx, y)

• 射 f : x→ y, g : y → zに対して，f と gの合成を次で定める：

fg :=

 ∑
α,β∈G
βα=γ

gβ ·A(β)(fα)


α∈G

ここで，gβ ·A(β)(fα)はA(β)(fα) : βαx = A(β)(αx)→ A(β)(y)と gβ : βy → z

の合成を表す。

(2) 標準関手 P : C → C/Gを次で定める：

• 対象 xに対して，P (x) := xとする。
• 射 f に対して，P (f) := (δα,1)α∈Gとする。

G-圏 C = (C, A)が与えられたとき，各 α ∈ Gに対して，次で定まる自然同型を ϕα =

(ϕα,x)x∈C : P → PA(α)で表す：

ϕα,x := (δβ,α idαx)β∈G ∈ HomC/G(P (x), PA(α)(x)) =
⊕
β∈G

HomC(βx, αx)

このとき，ϕ := (ϕα)α∈G は P の invariance adjusterとなる。[1, Proposition 2.6]により，
P = (P, ϕ) : C → C/GはG-被覆関手である。また，[1, Theorem 2.9]から，P は CからのG-

不変関手のなかで普遍的であること，すなわち，任意のG-不変関手E = (E,ψ) : C → C′に
対して (E,ψ) = (HP,Hϕ)を満たす関手H : C/G→ C′がただ一つ存在することがわかる。
最後に，G-圏 C に対して，Gが自己圏同型 φ : C → C によって生成される巡回群である

とき，軌道圏 C/Gを C/φで表す。

2.3 次数付きゴレンシュタイン射影加群
本節では，本稿で用いる次数付きゴレンシュタイン射影加群の基本事項を確認する。本節

では，Λ =
⊕

i≥0 Λi を次数付き多元環とする。
定義 2.1 において，射影 Λ-加群を次数付き射影 Λ-加群に置き換えることで，次数付きゴ

レンシュタイン射影Λ-加群 [11] を定義できる。次数付きゴレンシュタイン射影Λ-加群のな
す圏をGprojZΛで表すと，第 2.1節と同様に，GprojZΛはK-線形なKrull-Schmidt圏であ
り，包含関係 projZΛ ⊆ GprojZΛ ⊆ modZΛが得られる。



Λが次数付き岩永–ゴレンシュタインであるとは，Λの片側加群としての次数付き入射次
元 gr.idΛΛ, gr.idΛopΛがともに有限であるときをいう。Λが次数付き岩永–ゴレンシュタイ
ンであることと，(通常の多元環として) Λが岩永–ゴレンシュタインであることは同値であ
る [32, Section 2.1]。このことから本稿では，次数付き岩永–ゴレンシュタインであること
と，岩永–ゴレンシュタインであることを区別しない。
さて，GprojZΛ = modZΛが成り立つことと，Λが自己入射多元環であることが同値であ

る。また，projZΛ = GprojZΛが成り立つとき，Λを graded CM-freeであるという。任意
の整数 i ∈ Zに対して，次数シフト関手 (i) : modZΛ→ modZΛは，次数付き射影 Λ-加群を
保存するような自己圏同型 (i) : GprojZΛ→ GprojZΛを誘導する。Λが graded CM-finite

であるとは，直既約な次数付きゴレンシュタイン射影 Λ-加群の同型類の個数が次数シフト
を除いて有限であるときをいう。Λ =

⊕
i≥0 Λiは正次数付きであるから，[38, Propositions

2.16 and 2.18]により，次の等式が成り立つ：

ind projZΛ = {P (i) | P ∈ ind proj Λ, i ∈ Z}

したがって，graded CM-freeな次数付き多元環は graded CM-finiteである。
次数付き加群圏 modZΛの安定圏 modZΛを，安定加群圏 modΛと同様に定義し，次数
付きゴレンシュタイン射影加群のなすmodZΛの充満部分圏をGprojZΛで表す。このとき，
modZΛ, GprojZΛはともにK-線形なKrull-Schmidt圏であり，

indmodZΛ = indmodZΛ \ ind projZΛ, indGprojZΛ = indGprojZΛ \ ind projZΛ

が成り立つ。
GprojZΛは，次数付き射影加群を射影対象とするようなフロベニウス圏であり，したがって，

その安定圏GprojZΛには三角圏の構造が入る。本稿では，GprojZΛをΛの次数付き安定圏と
呼ぶことにする。このとき，次数付き安定圏GprojZΛから次数付き特異圏Dsg(modZΛ) :=

Db(modZΛ)/Kb(projZΛ)への三角圏としての埋め込みが常に存在し，この関手が三角圏同
値であることと，Λが岩永–ゴレンシュタインであることが同値になる。
F : modZΛ→ modΛを忘却関手とする。F は完全かつK-線形な関手である。[17, Propo-

sition 1.3]より，次数付き Λ-加群M に対して，M ∈ projZΛであることと，FM ∈ proj Λ

であることは同値である。さらに，[11, Lemma 4.5]より，M ∈ GprojZΛであることと，
FM ∈ Gproj Λであることも同値である。以上の事実により，F : modZΛ → modΛはK-

線形関手

FG : GprojZΛ→ Gproj Λ および F̃G : GprojZΛ→ Gproj Λ

を誘導する。F : modZΛ→ modΛは完全なので，F̃Gは三角圏関手になる。
任意の整数 i ∈ Zに対して，次数シフト関手 (i) : GprojZΛ → GprojZΛは射影 Λ-加群を

保存する。このことから，安定圏レベルの次数シフト関手 (i) : GprojZΛ → GprojZΛ も定
義される。次数シフト関手 (1)によって生成される巡回群を Gとすると，GprojZΛおよび
GprojZΛはともにG-圏となる。いずれの場合においても，このG-作用は自由かつ局所有限
である。局所有限性については，次数付きΛ加群M,N に対して成り立つ次の 2つの等式か
ら導かれる:

HomΛ(FM,FN) =
⊕
i∈Z

HomZ
Λ(M,N(i)), HomΛ(FM,FN) =

⊕
i∈Z

HomZ
Λ(M,N(i))



これらについては，例えば，[20, Lemma 1.1]を参照されたい。
さて，F : modZΛ → modΛは F = F ◦ (i)を満たす。このとき，F を FG, F̃Gに置き換

えて得られる等式を invariance adjusterに採用することで，FGおよび F̃GがG-不変関手で
あることがわかる。上記の 2つの等式から，これらがG-前被覆関手であることも従う。[16,

Corollary 3.4]より，射影 Λ-加群はすべて gradableであるから，次の補題を得る。

補題 2.5. 次の 3つの条件は同値である。

(1) FG : GprojZΛ→ Gproj Λは稠密である。

(2) FG : GprojZΛ→ Gproj ΛはG-被覆関手である。

(3) F̃G : GprojZΛ→ Gproj ΛはG-被覆関手である。

F̃G : GprojZΛ → Gproj Λ が G-被覆関手であると仮定する。このとき，標準関手 P :

GprojZΛ→ GprojZΛ/(1) を用いて，（G-不変関手として）F̃G = HP を満たすようなただ 1

つの圏同値H : GprojZΛ/(1)
∼−→ Gproj Λが存在する：

GprojZΛ
F̃G //

P %%KK
KKK

K
Gproj Λ

GprojZΛ/(1)

∃!H
∼ 99tttttt

Gproj Λは三角圏であるから，圏同値H : GprojZΛ/(1)
∼−→ Gproj Λを経由することで，軌

道圏GprojZΛ/(1)に三角圏の構造を入れることができる。このとき，H : GprojZΛ/(1)
∼−→

Gproj Λは三角圏関手，したがって三角圏同値となる。F̃G : GprojZΛ→ Gproj Λは三角圏
関手であるから，標準関手 P : GprojZΛ→ GprojZΛ/(1)も三角圏関手となる。

2.4 単項多元環
単項多元環は特別な bound quiver algebra である。[2]に従って bound quiver algebraの

定義を述べる。
Quiverとは，2つの集合Q0, Q1と2つの写像 s, t : Q1 → Q0からなる組Q = (Q0, Q1, s, t)

のことである。Q0の元をQの頂点，Q1の元をQの矢とよぶ。矢 a ∈ Q1に対して s(a) ∈ Q0

を aの始点，t(a) ∈ Q0 を aの終点という。矢 a ∈ Q1 を矢印 s(a)
a−−→ t(a)で表すことに

よって，Qを有向グラフとして図示できる。また，Q0, Q1 がともに有限であるとき，Qを
有限 quiverとよぶ。本稿では，quiverは有限 quiverを意味するものとする。
Q を quiverとする。整数 n ≥ 1 に対して，t(ai) = s(ai+1) (1 ≤ i ≤ n) をみたす矢の列

p = a1 · · · anを長さ nのpathという。path pの長さ nを l(p)で表し，始点を s(p) := s(a1)，
終点を t(p) := t(an)と定める。各頂点 i ∈ Q0に対して，長さ 0の trivial path eiを導入
し，s(ei) = i = t(ei)と定める。長さ 1以上の pathを nontrivial pathとよぶ。path全体
の集合を B，長さ nの path全体の集合を Bn，長さ n以上の path全体の集合を B≥n と表
す。長さ 1の pathは矢に他ならず，B1 = Q1が成り立つ。始点と終点が一致する nontrivial

pathを cycleとよぶ。cyclecがmultiplicity-freeであるとは，(c′)m = cをみたすような
cycle c′と整数m ≥ 2が存在しないことをいう。
体K と quiver Qに対して，path algebra KQを次のように定義する：



• ベクトル空間として，KQ := KBと定める。

• 2つの path p = a1 · · · an, q = b1 · · · bm の積 pqを次のように定める：t(an) = s(b1)の
とき pq := a1 · · · anb1 · · · bm とし，t(an) 6= s(b1) のとき pq := 0とする。

このとき，1KQ =
∑

i∈Q0
ei が成り立つ。Q1の元で生成されるKQの両側イデアルを J で

表す。正の整数N ≥ 1に対して，両側イデアル JN は BN の元で生成される。KQの両側
イデアル I が admissibleであるとは，JN ⊆ I ⊆ J2 をみたすような N ≥ 2が存在する
ときをいう。admissibleイデアルは両側イデアルとして有限生成である。path algebra KQ

の admissibleイデアル Iによる剰余多元環KQ/Iを bound quiver algebraという。path

algebraはK 上有限次元であるとは限らないが，bound quiver algebraは常にK 上有限次
元である。補足であるが，基礎体K が代数的閉体である場合には，任意の多元環は，ある
bound quiver algebraに森田同値になることが知られている。さて，bound quiver algebra

KQ/I が単項多元環であるとは，I が pathで生成されているときをいう。
Chen-Shen-Zhou [13] が与えた単項多元環上の直既約ゴレンシュタイン射影加群の構造定

理を紹介しよう。
以下，本節では Λ = KQ/I を単項多元環とする。paht pが nonzeroであるとは，p 6∈ I

が成り立つとき，すなわち，自然な全射環準同型 KQ→ KQ/I = Λによる pの像 p+ Iが 0

でないときをいう。nonzero path全体は ΛのK-基底をなす。混乱の恐れがない限り，Λの
元 p+ I を単に pと書く。さて，上述の構造定理において重要な役割を果たす perfect path

の定義を述べる。

定義 2.6 ([13]). (1) nonzero pathの組 (p, q)が perfectであるとは，次の 3つの条件が
満たされるときをいう：

(i) p, qはともに nontrivialであり，t(p) = s(q)および pq ∈ I が成り立つ。
(ii) t(p) = s(q′)かつ pq′ ∈ I を満たす nonzero path q′に対して，q′ = qq′′を満たす

path q′′が存在する。
(iii) t(p′) = s(q)かつ p′q ∈ I を満たす nonzero path p′に対して，p′ = p′′pを満たす

path p′′が存在する。

(2) nonzero path の列 (p1, . . . , pn, pn+1 = p1)が perfect path sequenceであるとは，
1 ≤ i ≤ nに対して，組 (pi, pi+1)が perfect pairであるときという。

(3) perfect path sequenceに現れる nonzero pathを prefect pathとよぶ。

(4) perfect path sequence (p1, . . . , pn, pn+1 = p1)が極小であるとは，pi 6= pj (1 ≤ i 6=
j ≤ n)が成り立つときをいう。

perfect path全体の集合を PΛと表す。nonzero pathの個数は有限であるため，PΛは有限
集合である。

定理 2.7 ([13]). p ∈ PΛを pΛ ∈ indGproj Λに対応させるような全単射 PΛ → indGproj Λ

が存在する。

この定理から，Λが CM-finiteであることが従う。また，PΛ = ∅であることと，Λが
CM-freeであることが同値であることもわかる。



矢 a ∈ Q1 に対して deg a = 1と定めることで，Λに次数付き多元環の構造を入れる。こ
のとき，Λ =

⊕
i≥0 Λiは Λi = KBi (i ≥ 0)を満たす。nonzero path pは次数 l(p)の Λの斉

次元であるから，pが生成する巡回加群 pΛは次数付き Λ-加群であり，次を満たす：

pΛ =
⊕
i∈Z

pΛi, pΛi =

0 (i < l(p))

K{ pq | q ∈ Bi−l(p), pq 6∈ I } (i ≥ l(p))

[32, Section 4.2] において，次の等式が得られている：

indGprojZΛ = { pΛ(i) | p ∈ PΛ, i ∈ Z }

これは，Λが graded CM-finiteであることだけでなく，前節で登場した安定圏レベルの忘却
関手 F̃G : GprojZΛ→ Gproj ΛがG-被覆関手であることも示している。ただし，GprojZΛに
作用している群Gは, 次数シフト関手 (1) : GprojZΛ→ GprojZΛによって生成される巡回群
である。この事実を踏まえ，第 3章および第 4章では，それぞれ次数付き安定圏GprojZΛお
よびその軌道圏GprojZΛ/(1)の三角圏構造を調べる。これにより，(通常の)安定圏Gproj Λ

の三角圏構造を決定する。

3 単項多元環上の次数付きゴレンシュタイン射影加群の安定圏
以下，本稿では，Λ = KQ/Iを単項多元環とする。矢の次数を 1と定めることで，Λに次

数付き多元環の構造を入れていたことを思い出そう。本章では，傾理論を用いて，次数付き
安定圏GprojZΛの三角圏構造を決定する。
T を三角圏とし，Σを T のシフト関手とする。T の直和因子で閉じた三角部分圏を thick

部分圏という。T ∈ T に対して，Xを含む最小の thick部分圏 thickT と表す。T ∈ T が傾
対象であるとは，次の 2つの条件が成り立つときをいう：

(i) HomT (T,Σ
iT ) = 0 (i 6= 0)

(ii) thickT = T

T が代数的であるとは，T がフロベニウス圏の安定圏に三角圏同値になるときをいう。代数
的な Krull-Schmidt三角圏 T が傾対象 T ∈ T をもつとき，T と自己準同型環 EndT (T )の
完全導来圏Kb(proj EndT (T ))の間に三角圏同値が存在する [11, 24, 38]。
本節の主結果を述べるために必要な概念を導入する。
perfect path p ∈ PΛに対して，pから始まるperfect path sequence (p1 := p, . . . , pn, pn+1 =

p1)を取ると，積 p1 · · · pn は cycle になる。このとき，p1 · · · pn = cm (∃m ≥ 1)を満たす
multiplicity-free cycle cを，pに付随する underlying cycleと呼び，cp で表す。この cp

は perfect path sequenceの取り方によらず一意的に定まる。巡回置換によって誘導される
underlying cycleの同値類全体の集合を C(Λ)で表す。
2つの perfect path p, qに対して，p = qrをみたす path r ∈ Bが存在するとき，p � q

とかく。このとき，(PΛ,�)は半順序集合であり，付随するHasse quiver H(PΛ,�)は linear

quiverの和となる。ここで，linear quiverは次の形をした quiverである：

1 −→ 2 −→ · · · −→ n− 1 −→ n



したがって，Hasse quiver H(PΛ,�)には sinkすなわち矢の始点にはならない頂点が存在す
る。Hasse quiver H(PΛ,�) の sinkに対応する perfect pathを co-elementary pathとい
う。co-elementary path全体の集合を Eco

Λ で表す。
次の２つの命題が成り立つ。

命題 3.1 ([20, Theorem 2.11]). (1) 任意のperfect path p ∈ PΛに対して，あるco-elementary

path r1, . . . , rn ∈ Eco
Λ が存在し，p = r1 · · · rnが成り立つ。このような分解は一意的で

ある。

(2) r1, . . . , rn ∈ Eco
Λ を，任意の 1 ≤ i, j ≤ nに対して C(Λ)の元として cri = crj が成り

立つような co-elementary pathとする。このとき，積 r1 · · · rn が nonzeroであれば，
r1 · · · rnは perfect pathである。

命題-定義 3.2 ([20, Proposition-Definition 2.12]). 任意の underlying cycle c ∈ C(Λ)に対し
て，ある co-elementary path r1, . . . , rn ∈ Eco

Λ が存在し，c = r1 · · · rnが成り立つ。このよ
うな分解は一意的であり，|c| := nと表す。

注意 3.3. 上の 2つの命題より，c ∈ C(Λ)が perfect pathであることと，cが nonzeroであ
ることは同値である。

c = r1 · · · rn ∈ C(Λ)を underlying cycleとする。ただし，各 riは co-elementary pathで
ある。このとき，集合 PΛ(c)を

PΛ(c) := { p ∈ PΛ | p � r1 }，

対象 Tc ∈ GprojZΛを

Tc :=
⊕

p∈PΛ(c)

pΛ，

対象 T ∈ GprojZΛを

T :=
⊕
c∈C(Λ)

⊕
0≤i<l(c)

Tc(i) (1)

と定める。定義より，T は C(Λ)の完全代表系の取り方に依存することがわかる。また，[20,

Lemma 3.4] の証明により，2つの underlying cycle c1, c2 ∈ C(Λ)に対して，C(Λ) の元とし
て c1 = c2であるならば，|PΛ(c1)| = |PΛ(c2)|となることがわかる。
[20, Theorem 3.8]の証明，および [20, Lemma 3.7]により，次の補題が得られる。

補題 3.4. (1) で定義された T ∈ GprojZΛは傾対象であり，次の多元環としての同型

EndZΛ(T )
∼=

∏
c∈C(Λ)

(KAc)(l(c))

が存在する。ただし，Acは次の linear quiverである：

Ac : 1→ 2→ · · · → |PΛ(c)|

GprojZΛは代数的なKrull-Schmidt三角圏であり，自己準同型環 EndZΛ(T )は大域次元有
限であるから，次の定理を得る。これが本節の主結果である。



定理 3.5 ([20, Theorem 3.8]). 単項多元環 Λに対して，次の三角圏同値が存在する：

GprojZΛ ∼=
∏

c∈C(Λ)

Db(modKAc)(l(c))

注意 3.6. 定理 3.5は，岩永–ゴレンシュタイン単項多元環に対するLu-Zhuの結果 [32, Propo-

sition 4.3.4]を任意の単項多元環に拡張するものである。補足すると，[32, Proposition 4.3.4]

では，岩永–ゴレンシュタイン単項多元環Λに対して，ある有限表現型遺伝多元環Hが存在
して三角圏同値 GprojZΛ ∼= Db(modH)が存在することが示されている。さらに，基礎体
Kが代数的閉体である場合には，この三角圏同値は埴原による結果 [18, Theorem 7.3]の帰
結として得られることも付記しておく。

例 3.7. Qを次の quiverとする：

Q : 1
a1 // 2

b2 / /

a2
��

4
a4 // 5
a5

oo

3

a3

^^>>>>>>>>

このとき，a1231, a23123, a45, a54によって生成されるKQの admissibleイデアルを Iとする。
ここで，a1231は path a1a2a3a1を表す。他の a23123, a45, a54についても同様である。まず，
以下に挙げる nonzero pathの列が（巡回置換によって一致するものを除いた）極小 perfect

path sequenceのすべてである：

(a1, a231, a23, a123, a1), (a4, a5, a4)

したがって，PΛ = {a1, a231, a23, a123, a4, a5}が成り立つ。また，

ca1 = ca123 = a123, ca231 = ca23 = a231, ca4 = a45, ca5 = a54

であるから，C(Λ) = {a123, a45}とわかる。さらに，

H(PΛ,�) : a123 // a1 a231 // a23 a4 a5

であるから，|PΛ(a123)| = 2, |PΛ(a45)| = 1となる。したがって，定理 3.5により，三角圏
同値

GprojZΛ ∼= Db (modK(1→ 2))(3) × Db (modK)(2)

を得る。

4 単項多元環上のゴレンシュタイン射影加群の安定圏
第 2.4節の末尾で述べたように，本章では，軌道圏GprojZΛ/(1)の三角圏構造の解析を通

じて，安定圏Gproj Λの三角圏構造を決定する。
補題 3.4より，

T =
⊕
c∈C(Λ)

⊕
0≤i<l(c)

Tc(i) ∈ GprojZΛ



はGprojZΛ = thickT を満たし，[20, Theorem 3.8]の証明より，

HomZ
Λ(Tc(i), Tc(j)) = 0 (0 ≤ i 6= j < l(c))

であるから，次の等式を得る：

GprojZΛ =
∏

c∈C(Λ)

∏
0≤i<l(c)

thickTc(i)

ただし，各 thickTc(i)は有界導来圏Db(modKAc)に三角圏同値である。
各 c ∈ C(Λ)と i ∈ Z に対して，次数シフト関手 (i) : GprojZΛ → GprojZΛを thickTcに

制限することで，圏同型 (i) : thickTc → (thickTc)(i)を得る。ここで，(thickTc)(i)は次で
定まるGprojZΛの充満部分圏である：

(thickTc)(i) := {X(i) | X ∈ thickTc, i ∈ Z}

このとき，(thickTc)(i) = thickTc(i)が成り立つ。[20, Lemma 3.9]より，整数 i, j ∈ Zに対
して，thickTc(i) = thickTc(j)であることと，i ≡ j (mod l(c))であることが同値である。
特に，自己圏同型 (l(c)) : thickTc → thickTcを得る。ここで，thickTcのAuslander-Reiten

translationを τcで表すと，[20, Proposition 3.11]より，thickTcの自己圏同値としての同型
(l(c)) ∼= τ

−|c|
c が存在することを補足しておく。

GprojZΛの対象のクラスX に対して，次で与えられる軌道圏GprojZΛ/(1)の充満部分圏
を P (X )で表す：

P (X ) := {P (X) | X ∈ X}

各 c ∈ C(Λ)と i ∈ Zに対して，次数シフト関手 (i) : GprojZΛ → GprojZΛが誘導する自己
圏同型 (i) : GprojZΛ/(1)→ GprojZΛ/(1)は恒等関手であるから，次の等式を得る：

P (thickTc(i)) = P ((thickTc)(i)) = P (thickTc)(i) = P (thickTc)

[20, Lemma 4.1]より，P (thickTc) = thickP (Tc)であるから，次の三角圏としての分解が
存在する：

GprojZΛ/(1) =
∏

c∈C(Λ)

P (thickTc) (2)

さて，各 P (thickTc)について，次数シフト関手 (l(c)) : thickTc → thickTcが生成する巡
回群をGcとする。このとき，標準関手 P : GprojZΛ→ GprojZΛ/(1)が誘導する関手

Pc : thickTc → P (thickTc)

はGc-不変関手になる。さらに，[20, Lemma 4.2]の証明から，Pc : thickTc → P (thickTc)

はGc-被覆関手であることがわかる。したがって，次の三角圏同値が存在する：

P (thickTc) ∼= thickTc/(l(c)) ∼= Db(modKAc)/τ |c| (3)

ここで，Db(modKAc)/τ |c|は Keller [25] の意味での三角軌道圏である。(2)と (3)を組み
合わせることで，三角圏同値

Gproj Λ ∼= GprojZΛ/(1) ∼=
∏

c∈C(Λ)

Db(modKAc)/τ |c| (4)



が得られる。
各 c ∈ C(Λ)に対して，次で定まる連結な自己入射中山多元環を Λcで表す：

Λc := K
(
1 // 2 // · · · // |c|hh

)/
J |PΛ(c)|+1

このとき，PΛcはnonzero path全体の集合に一致し，C(Λc)は一元集合となり，さらにEco
Λc

=

Q1が成り立つ。C(Λc) = {c′}とすると，|c′| = |c|かつ |PΛc(c
′)| = |PΛ(c)|であるから，Λc

に対して (4)を適用することで，次の三角圏同値が得られる：

modΛc = Gproj Λc ∼= Db(modKAc)/τ |c|

以上をまとめることで，次の定理が得られる。これが本節の主結果である。

定理 4.1 ([20, Theorem 4.3]). 単項多元環 Λに対して，次の三角圏同値が存在する：

Gproj Λ ∼=
∏

c∈C(Λ)

modΛc

注意 4.2. (1) 定理 4.1より，単項多元環 Λ上のゴレンシュタイン射影加群のなす安定圏
Gproj Λは，自己入射中山多元環 Γ :=

∏
c∈C(Λ) Λcの安定加群圏modΓに三角圏同値

であることがわかる。

(2) 定理 4.1は，中山多元環に対するRingel [35]の結果，gentle多元環に対するKalck [23]

の結果，overlapを持たない単項多元環に対するChen-Shen-Zhou [13]の結果，入射次
元が高々1の岩永–ゴレンシュタイン単項多元環に対する Lu-Zhu [32]の結果を，任意
の単項多元環の場合に統一的に拡張するものとなっている。また，我々の結果は，任
意の入射次元をもつ岩永–ゴレンシュタイン単項多元環の特異圏の三角圏構造を決定
するものであることも付記しておく。

例 4.3. Λ = KQ/Iを例 3.7と同じ単項多元環とする。このとき，C(Λ)の完全代表系として
{a123, a45}を取ると，|a123| = |a45| = 2かつ |PΛ(a123)| = 2, |PΛ(a45)| = 1であるから，定
理 4.1より，次の三角圏同値を得る：

Gproj Λ ∼= modK
(
1

//
2oo

)/
J3 × modK

(
1

//
2oo

)/
J2
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Fano重みつき超曲面の K-安定性
佐野 太郎 ∗

1 Intro

滑らかな射影多様体 X で反標準束 −KX が豊富となるものを Fano多様体という. 代数多様体
の分類において, Fano多様体は核となる対象であり, 長く研究されてきた.

一方で, 複素微分幾何学では Kähler–Einstein 計量を持つコンパクト複素多様体の研究が長く
なされてきた. そのような多様体は標準束が豊富な場合, 自明になる場合と, Fano の場合の 3 つ
の場合があるが, 前半の 2 つは Aubin, Yau により存在が保証された. 残る Fano の場合には,

Kähler–Einstein計量を持つ Fano多様体は, K-ポリ安定性と呼ばれる代数幾何学的な概念で特徴
づけられる, ということが最終的に Chen–Donaldson–Sun[CDS15], Tian[Tia15] らにより証明さ
れた. また, この対応は klt 特異点を持つ Fano 多様体 (Q-Fano 多様体) にも拡張された ([Li19],

[LXZ22]). これにより, 与えられた Fano 多様体が Kähler–Einstein 計量を持つか決定する, とい
う問題が代数的に取り組める問題となった.

代数的な定式化はできたが, K-ポリ安定性の定義は, test配位と呼ばれる Fano多様体の退化を
全て考えてその上で Donaldson–二木不変量と呼ばれる不変量を使ってなされていた. 定義そのも
のから K-安定性を判定することは困難に思えたが, その後の様々な人の貢献により, 現在では δ-不
変量と呼ばれる, Fano多様体上の因子的付値から定まる不変量で K-安定性は特徴づけられた. こ
の不変量も計算は困難であるが, 当初と比べると状況は大きく改善され, 具体的な Fano 多様体の
K-安定性の決定が大きく進んできている. 例えば, 次の問題は有名である:

予想 1.1. [Xu25] Xd ⊂ Pn+1
C を次数 dの非特異超曲面で 3 ≤ d ≤ n+1とする. このとき, Xd は

K-安定となる.

この問題は Donaldsonやその周辺にも認識されていたようだが, 例えば [Xu25]には明示的に書
かれている. 先行研究としては, Xn+1 ⊂ Pn+1 の K-安定性は α-不変量というものの評価を使って
示された [Che01], [Fuj19a]. また, Xn ⊂ Pn+1 が K-安定であることは [AZ22]により, δ-不変量と
いうもの評価を “Abban–Zhuang の方法” と呼ばれる技術を駆使して示された. また, Fermat 超
曲面Xd = (zd0 + · · ·+ zdn+1 = 0) ⊂ Pn+1 の K-安定性は [Zhu21]により示された.これと “K-安定
性の openness”[BLX22]から, 一般の Xd は K-安定であることも従う.
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本稿では具体的な Fano多様体の一つである, 重み付き Fano超曲面と呼ばれるものについて, 筆
者が共著者と得てきた結果 ([ST24], [LST25], [ST25])について述べる. 方法としては, 上の通常の
超曲面 Xn+1 や Xn, および Fermat超曲面の K-安定性を示す際に使われた技術を踏襲するが, 重
み付きの場合の困難もあるので, それの説明も述べる.

2 重み付き超曲面について
まずは設定のためにも, 重み付き超曲面について導入しよう.

定義 2.1. a0, . . . , an ∈ Z>0 であって, gcd(a0, . . . , âi, . . . , an) = 1(i = 0, . . . , r)となるものを考
える. このとき,

P(a0, . . . , an) := ProjC[z0, . . . , zn] (但し deg zi = ai (∀i))

とおいて, これを重み付き射影空間と呼ぶ.

これは (a0, . . . , an) = (1, . . . , 1) の時には通常の射影空間 Pn となるが, それ以外の時には特異
点を持つ. 実際, 開集合 (zi 6= 0) ⊂ P(a0, . . . , an) (i = 0, . . . , n)に対して

(zi 6= 0) ' Cn/µai
(a0, . . . , âi, . . . , an)

が成り立つ (ここで右辺は µai
' Z/aiZ の Cn への重み (a0, . . . , âi, . . . , an) から定まる作用に

よる巡回商特異点 ( 1
ai
(a0, . . . , âi, . . . , an)-特異点) である). Pi := [0, . . . ,

i
1, . . . , 0] ∈ P のことを

1
ai
(a0, . . . , âi, . . . , an)-特異点とも呼ぶ. Sing P ⊂ P を P の特異点集合とすると, 以下のような記

述ができる [DD85, Proposition 7]:

SingP =
∪

J,aJ>1

{zj = 0 | j ∈ n̄ \ J},

ただし J は ∅ 6= J ⊂ n̄ := {0, . . . , n}で aJ := gcd{aj | j ∈ J}となるものを動く.

また, C× の作用 C× ↷ Cn+1 \ {0}に対して, P(a0, . . . , an) ' Cn+1 \ {0}/C× なる表示もある
ことに注意する. これより, 射影 π : Cn+1 \ {0} → Pが定まる. この作用が自由でないところで特
異点が生じる.

例 2.2. (i) P(1, 1, 2, 3)は特異点 P2 := [0 : 0 : 1 : 0]と P3 := [0 : 0 : 0 : 1]を持つ. 実際, P2 は
1
2 (1, 1, 1)-特異点で, P3 は 1

3 (1, 1, 2)-特異点である.

(ii) P(1, 1, 1, 2, 2) の特異点集合は (z0 = z1 = z2 = 0) ' P1 となる. 実際, P3 と P4 は
1
2 (1, 1, 1, 0)-特異点で非孤立特異点である.

さて, 重み付き超曲面は次のようなものである.

定義 2.3. a0, . . . , an ∈ Z>0 を定義 2.1の条件を満たすものとし, d ∈ Z>0 とする. このとき, d次
の斉次式 Fd ∈ C[z0, . . . , zn](ただし deg zi = di)から因子

Xd := (Fd = 0) ⊂ P(a0, . . . , an) =: P



が定まる. これを重み付き超曲面 (WHS)という.

以下の仮定を置いたWHSを考えることが多い.

仮定 2.4. (i) Xd ⊂ Pは quasi-smooth, つまり π−1(Xd) ⊂ Cn+1 \ {0}が非特異.

(ii) Xd ⊂ Pは well-formed, つまり Xd ∩ SingP ↪→ Xd の余次元は 2以上.

この仮定を満たすWHS Xd は以下の良い性質を満たす.

命題 2.5. (i) Xdは商特異点のみを持ち, SingXd = Sing P∩Xdとなる. 特に, SingP∩Xd = ∅
であることと Xd が非特異になることは同値.

(ii) 反標準因子−KXd
に対し, OX(−KXd

) = OX(
∑n

i=0 ai−d)が成り立つ. 特に, Xd が Fano

であることと, IXd
:=
∑n

i=0 ai − d > 0となることは同値. (IXd
を Xd の Fano指数と呼

ぶ.)

(iii) dimXd ≥ 3なら, ClXd = Z · OXd
(1) ' Z.

(iv) OXd
(1)n =

d∏n
i=0 ai

.

例 2.6. (i) 一般の X6 ⊂ P(1, 1, 2, 3) は次数 1 非特異 del Pezzo 曲面となる. 実際,

[0, 0, 1, 0], [0, 0, 0, 1] /∈ X6 と取れるので, X6 は非特異となる. また, −KX = OX(7− 6) =

OX(1)が従い, OX(1)2 = 6
2·3 = 1も従う.

(ii) (一般の)X10 ⊂ P(1, 1, 1, 1, 2, 5)は Fano指数 1非特異 Fano 4-foldとなる.

(iii) (一般の)X6 ⊂ P(1, 1, 1, 2, 2) は Q-Fano 3-fold となり, 3 点の 1
2 (1, 1, 1)-特異点をもつ. 実

際, Sing P ∩X6 = SingX6 ⊂ P(2, 2) ' P1: 3点からなる.

事実 2.7. [IF00], [CCC09] ちょうど 95種の (d; a0, . . . , a4)で Xd ⊂ P(a0, . . . , a4)が末端特異点
のみ持つ quasi-smooth Q-Fano 3-fold WHSで IXd

= 1となるものが存在する.

このように, WHSを考えることで多くの Fano多様体の例が構成できる.

3 K-安定性に関する不変量
K-(ポリ, 半)安定性は, test配位と呼ばれる X の退化を考えて, それから定まる Donaldson–二
木不変量と呼ばれる数を使って定義される. ここではその定義には触れない. 簡単に “対の特異点”

について復習する. (詳細やより一般の場合は [Xu25], [KM98]などを参照.)

定義 3.1. X を非特異代数多様体とし, D =
∑
diDi を効果的 Q-因子 (di ∈ Q≥0) とする.

µ : X̃ → X を (X,D) の “log resolution”, つまり µ は射影的双有理射で, X̃ が非特異かつ
µ−1(SuppD)∪Excµ =

∪
Ei(ただし Excµ ⊂ X̃ は µの例外集合)が単純正規交差 (SNC)因子と

なるものとする. このとき, 分岐公式

KX̃ = µ∗(KX +D) +
∑

aiEi (∃ai ∈ Q)



が成り立つ. 組 (X,D)が lc (resp. klt, canonical, terminal)であるとは, 任意の µと iに対し
ai ≥ −1 (resp. ai > −1, ai ≥ 0, ai > 0)となることとする.

例 3.2. (i) C1 ⊂ P2 を nodal cubic curveとすると, (P2, C1)は lc.

(ii) C2 ⊂ P2 を cuspidal cubic curveとすると, (P2, C2)は not lcだが, (P2, 56C2)は lc.

注意 3.3. X を正規代数多様体, D を X 上の効果的 Q-因子で KX +D: Q-Cartierとなるものと
すると, (X,D): lc/kltという概念が同様に log resolution µ : X̃ → X と分岐公式を使って定義で
きる.

K-安定性に関する有名な不変量として, 以下の α-不変量がある.

定義 3.4. X を非特異射影多様体 (または正規射影多様体で klt特異点のみ持つもの)とする.

(i) D を X 上の効果的 Q-(Cartier)因子とする.

lct(X,D) := sup{λ ≥ 0 | (X,λD) : lc}

とおき, これを X の D に関する lc thresholdという.

(ii) Lを X 上の豊富因子とする.

α(X,L) := inf{lct(X,D) | 0 ≤ ∀D ∼Q L}

とおき, (X,L)の α-不変量と呼ぶ.

以下の定理から α-不変量は K-安定性と関連する.

定理 3.5. ([Tia87], [OS12], [Fuj19a]) X を Q-Fano多様体とし, α(X) := α(X,−KX)とおく.

(i) α(X) >
dimX

dimX + 1
なら XはK-安定.

(ii) さらに X が非特異なら α(X) =
dimX

dimX + 1
でも X はK-安定.

例 3.6. (i) Xn+1 ⊂ Pn+1 を非特異な (n+ 1)-次超曲面とすると, α(Xn+1) ≥ n
n+1 が [Che01]

により示された. よって上の定理 (ii)から Xn+1 は K-安定となる.

(ii) n ≥ 2で α(Pn) = 1
n+1 <

n
n+1 だが, Pn は K-ポリ安定 (特に K-半安定)である.

以下の δ-不変量により, Q-Fano多様体の K-安定性が特徴づけられる.

定義 3.7. ([FO18], [BJ20]) X を非特異射影多様体 (または正規 klt射影多様体)とし, Lを X 上
の豊富因子とする.

(i) m ∈ Z>0 で Nm := dimCH
0(X,mL) > 0なるものを考える. Dがm-basis type Q-因子

とは, 以下の形の Q-因子のこと:

D =
1

mNm

Nm∑
i=1

(si = 0),



但し, s1, . . . , sNm
∈ H0(X,mL)は C-基底とする. (このとき, Q-線形同値 0 ≤ D ∼Q Lが

成り立つことに注意.)

(ii) δm(X,L) := inf{lct(X,D) | 0 ≤ ∀D ∼Q L : m-basis type}とおくと, 数列 {δm(X,L)}m
は収束することが [BJ20]により示された. そこで

δ(X,L) := lim
m→∞

δm(X,L)

と定め, δ(X,L)を (X,L)の δ-不変量と呼ぶ.

注意 3.8. m ∈ Z>0 に対し, δ(X,mL) = 1
mδ(X,L)が定義より従う.

以下の性質により, δ-不変量は K-安定性を特徴づける.

定理 3.9. ([Fuj19b], [Li17], [FO18], [BJ20]) X を Q-Fano多様体とし, δ(X) := δ(X,−KX)と
おく.

このとき, X が K-安定 (resp. K-半安定)であることと, δ(X) > 1 (resp. ≥ 1)は同値である.

4 Fano WHSの K-安定性
このセクションでは断らない限り, P(a0, . . . , an+1) を定義 2.1 のような重み付き射影空間
とし, Xd ⊂ P(a0, . . . , an+1) を quasi-smooth well-formed Fano WHS とする. 簡単のため,

a0 ≤ . . . ≤ an+1 としておく. 主に Fano指数 IXd
が 1の場合を考えることにする.

先行研究としては, 次のようなものがあった:

(i) dimXd = 2のとき: Xd が非特異かつ IXd
= 1の時は, Xd は次数が 1, 2, 3の del Pezzo曲

面である. Tianが KE計量の存在を示していた. Xd: kltかつ IXd
= 1のときは, [JK01]が

リストを与え, 数種類以外の場合には KE 計量の存在を示した. 最終的に [CPS21] により,

IXd
= 1の場合は Xd は K-安定であることが示された. 一方で, IXd

= 2の場合には K-不
安定な例が [KW21]により見つかっている.

(ii) dimXd = 3のとき: Xd が非特異の場合, WHSとなる Fano 3-foldは多くはないが, 4次超
曲面 [Cheltsov, 藤田], 3次超曲面 [LX19]や X6 ⊂ P(1, 1, 1, 1, 3)[AGP06]などの K-安定性
はわかっていた. Xd が terminal 特異点のみ持ち, IXd

= 1 の場合, Xd が “一般” の時は
[Che09], birationally superrigid の場合は [KOW23], そして残った場合は [CO24] により
K-安定性が示された.

(iii) dimXd ≥ 4のとき: [JK01]は以下の結果を示した: IXd
= 1かつ n+1

n a0a1 > dならば, Xd

は K-安定. しかし, この場合は Xd は非特異にはならない.

注意 4.1. Xd が非特異 Fanoならば, a0 = a1 = 1かつ ai|d(∀i)かつ gcd(ai, aj) = 1 (∀i 6= j).

よって, 非特異な Fano WHS で IXd
= 1 の場合の K-安定性が筆者が Fano WHS の K-安定性

に取り組み始めたときの問題となった. Tasin 氏との共同研究 [ST24] で技術的な仮定を置いた場



合の K-安定性を α-不変量を用いて示していた.

まず, 今回の主結果として以下の一般的な設定 (Fanoは仮定しない)での結果を得た.

定理 4.2. [ST25] X = Xd ⊂ P(a0, . . . , an+1)を quasi-smoothかつ well-formedなWHSとする.

ある 0 ≤ r ≤ n+ 1が存在し ar > 1かつ ar|dを満たすとすると, 次が成立.

(i) δ(Xd,OXd
(1)) ≥ (n+ 1)ar

d
.

(ii) さらに 0 < IXd
≤ (n+ 1)ar

d
かつ n ≥ 3ならば, Xd は K-安定な Q-Fano多様体となる.

(i)を認めると, (ii)はその帰結である. 実際, OX(−KX) = OX(IX)であり,

δ(X,−KX) =
1

IX
δ(X,OX(1)) ≥ 1

が (i)と仮定から従う. 等号成立の場合はないことも [AZ22]での議論などよりわかるので, Xd の
K-安定性が従う. (i)の証明は後で説明する.

定理 4.2の帰結として, 非特異 Fano WHSに対しては次の結果を得た.

系 4.3. [ST25] Xd ⊂ P(a0, . . . , an+1)を非特異 Fano WHSで IXd
= 1, 2を満たすものとすると,

Xd は K-安定である.

この結果は, (d; a0, . . . , an+1)が IX = 1, 2の時に不等式 IXd
≤ (n+1)ar

d を満たすことを注意 4.1

も使って初等的に確認することで, 定理 4.2から従う.

また, terminal Fano 3-fold WHSに関しても, 次が定理 4.2の帰結として得られる.

系 4.4. [ST25] Xd ⊂ P(a0, . . . , a4) が terminal quasi-smooth Q-Fano 3-fold WHS で IXd
= 1

となるような 95種の (a0, . . . , a4; d)のうち 82種に対し, ある 0 ≤ r ≤ 4が存在し 1 < ar|dかつ
4ar
d
≥ 1が成立. (これより, 82種の Xd の K-安定性が従う.)

この系から例えば次が従う:

例 4.5. (i) X6 ⊂ P(1, 1, 1, 2, 2)は K-安定. 実際, 2|6かつ 4·2
6 = 4

3 > 1である.

(ii) X5 ⊂ P(1, 1, 1, 1, 2) の K-安定性は系 4.4 からは従わないが, [CO24] により K-安定性が確
認された. これを含む残っていた 13 個 (以下) の場合も [CO24] により K-安定性が確認さ
れた.

5 Abban–Zhuangの方法
定理の証明において重要な役割を果たす, Abban–Zhuangの方法 [AZ22]について説明する. こ
の方法は大まかには, adjunctionを使って δ-不変量の評価を低次元の場合に帰着する, というもの
である. まず局所 δ-不変量を以下のように定義する.



定義 5.1. X を非特異射影多様体 (または klt射影多様体)とし, Lを X 上の豊富因子, x ∈ X と
する. m ∈ Z>0 で |mL| 6= ∅となるものに対し,

δm,x(X,L) := sup{λ ≥ 0 | (X,λD) : “lc at x”(∀D : m-basis type)}

とおく. このとき, 数列 {δm,x(L)}m は収束し (cf.[BJ20]),

δx(X,L) := lim
m→∞

δm,x(X,L)

とおいて (X,L)の xにおける局所 δ-不変量と呼ぶ.

δ-不変量は因子や付値を使って記述することもできる
注意 5.2 (δ-不変量の因子/付値による記述). (X,L)および x ∈ X を定義 5.1でのものとする.

(i)

δ(X,L) = inf
E: 因子/X

AX(E)

S(L;E)

が成立,ただしEはX上空の素因子 (つまりある正規多様体 X̃からの射影双有理射 µ : X̃ →
X があって E ⊂ X̃ が素因子となるもの)を動く. また, AX(E) := 1+ ordE(KX̃ − µ∗KX)

は “log discrepancy”であり, “S-不変量”S(L;E)は以下で定まる

S(L;E) :=
1

vol(L)

∫ ∞

0

vol(µ∗L− xE)dx.

(volは (R-)因子の体積である.)

(ii) δx(X,L)に関しては,

δx(X,L) = inf
E: 因子/X,x∈cX(E)

AX(E)

S(L;E)

が成立, 但し E は X 上空の因子で cX(E) := µ(E) ⊂ X が xを含むものを動く.

(iii) 上の (i), (ii)はEがX 上空の因子を動いたときの下限であるが,これを “log discrepancyが
有限となる付値 ν”を動かした時の下限にもなり,実は付値 νで最小値を実現するものがある
[BJ20]. よって, δ(X,L) = min

x∈X
δx(X,L)が成り立つ. また, δ(X,L) > 1 ⇔ δx(X,L) > 1

(∀x ∈ X)であることも従う.

以下の基盤的な不等式により, δ-不変量の評価を低次元の場合に帰着できる.

定理 5.3. [AZ22] X を klt 射影多様体とし, L を X 上の豊富因子, x ∈ X とする. ある
x ∈ H ∈ |L|で klt特異点のみもち “well-formed”(H ∩ SingX ⊂ H の余次元 ≥ 2)なものが取れ
るとする. このとき以下が成立 (但し n := dimX):

δx(X,L) ≥ min

{
n+ 1,

n+ 1

n
δx(H,L|H)

}
.

例えば, Pn の K-半安定性が以下のように直ちに得られる.



例 5.4. x ∈ Pn とし, x ∈ Hj ∈ |OPn(1)|(j = 1, . . . , n− 1)を一般の元とする.

すると, Pn ⊃ H1 ⊃ · · · ⊃ H1 ∩ · · · ∩Hn−1 3 xという線形部分多様体の列ができる.これと定理
5.3より,

δx(Pn,OPn(1)) ≥ n+ 1

n
δx(OPn−1(1)) ≥ · · · ≥ n+ 1

2
δx(OP1(1)) = n+ 1

が得られる. よって, δ(Pn,−KPn) ≥ 1となり, Pn の K-半安定性が得られる.

系 5.5. [AZ22] X を非特異射影多様体 (または klt射影多様体)とし, LをX 上の豊富因子, x ∈ X
とする. また, j = 1, . . . n− 1に対し, ある x ∈ Hj ∈ |mjL|であって,

H1 ⊋ H1 ∩H2 ⊋ · · · ⊋ H1 ∩ · · · ∩Hn−1 = C

が全て正規かつ “well-formed”(特に C は非特異曲線)となるものが取れるとする.

このとき, 以下が成立:

δx(X,L) ≥
n+ 1

m1 · · ·mn−1 · Ln
.

注意 5.6. [AZ22]は, X 上の因子だけでなく, X 上空の因子に対しても δ-不変量を比較する不等式
を確立した. ただ, その場合には “次数付き線形系”の δ-不変量を考える必要がある.

6 定理 4.2(i)の証明
簡単のため, Xd ⊂ P(a0, . . . , an+1)を非特異 Fano WHSとし, a0 ≤ . . . ≤ an+1 としておく. こ
のとき a0 = a1 = · · · = ac1−1 = 1となる c1 ∈ Z>1 がとれて, ai|d (∀i)が成り立っていた (注意
4.1). 示したいのは, 任意の x ∈ X に対し δx(X,OX(1)) ≥ (n+ 1)an+1

d
となることであるが, 2

つの場合分けをして証明する.

(Case 1) x /∈ Bs |OX(1)| = (z0 = · · · = zc1−1 = 0) ⊂ X のとき:

このときは以下の主張が成り立つ.

主張 6.1. j = n, n− 1, . . . , 2に対し, x ∈ Hj ∈ |OX(aj)|であって, 部分多様体たち

Hn ⊋ · · · ⊋ Hn ∩ · · · ∩H2 = C

が全て正規になるものが存在する (特に C は非特異曲線).

(j = n+ 1は使わず, j = nから始まっていることに注意されたい.) これと系 5.5より, 以下の得
たかった不等式を得る:

δx(X,OX(1)) ≥ n+ 1

a2 · · · an · OX(1)n
=

(n+ 1)an+1

d
.

(Case 2) x ∈ Bs |OX(1)|のとき:



まず, ある k ≥ c1 で xの k番目の座標 xk 6= 0なるものが存在. すると, あるHk ∈ |OX(ak)|で
x /∈ Hk かつ SingHk が 0次元となるものが取れる. これより, π : W → Xd を Hk で分岐する分
岐被覆とする. W は具体的には, Hk の方程式から定まるWHS

W ⊂ P(a0, . . . , 1, . . . , an+1) (ak が 1になったもの)

として構成できる. y ∈W で π(y) = xとなるものを取ると, 次が成立:

主張 6.2. δx(X,OX(1)) ≥ δy(W,OW (1)).

(∵ これは δ-不変量と分岐被覆に関する標準的な議論から従う. 実際, X 上空の因子 E で
x ∈ cX(E) となるものに対し, ある W 上空の因子 E′ で y ∈ cW (E′) となるものが存在し,

AX(E)

S(OX(1);E)
≥ AW (E′)

S(OW (1);E′)
が満たされる.)

これより, δy(OW (1))を上から評価できれば十分. そして, y /∈ Bs |OW (1)|とできることに注意.

すると, 主張 6.1がこの時も成立し,

W ⊋ ∃H ′
1 ⊋ · · · ⊋ ∃H ′

1 ∩ · · · ∩H ′
n−1 =: C ′ 3 y

なる正規多様体の列が作れる (C ′ は非特異曲線). すると, 系 5.5から以下が示せる:

δy(W,OW (1)) ≥ (n+ 1)

a2 · · · âk · · · an · OW (1)n
=

(n+ 1)an+1

d
.

7 その他の話題
まず, Brieskorn–Pham型の Fano WHSの K-安定性が以下のように言える.

定理 7.1. [ST24] ai|dかつ gcd(ai, aj) = 1 (∀i 6= j)なる (d; a0, . . . , an+1) ∈ Zn+2
>0 がある時に,

X = Xd := (zd0
0 + · · ·+ z

dn+1

n+1 = 0) ⊂ P(a0, . . . , an+1)

を考える. ただし dj := d/aj, d 6= 1, 2とし, IXd
=
∑
ai − d > 0とする.

このとき, Xd は K-安定となる.

証明のスケッチ. 次の図式のように, 分岐被覆を

π : P(a0, . . . , an+1)→ P(d, . . . , d) ' Pn+1; [z0 : · · · : zn+1] 7→ [zd0
0 : · · · : zdn+1

n+1 ]

から誘導する:

P(a0, . . . , an+1)
π // P(d, . . . , d) ' Pn+1 3 [w0 : · · · : wn+1]

Xd

?�

OO

πX

// L = (w0 + · · ·+ wn+1 = 0)
?�

OO

⊃ Li = (wi = 0)

.



すると, Li たちが πX := π|X : X → Lの分岐因子となり, 次の分岐公式が成立:

KXd
= π∗(KL +∆L), (ただし ∆L :=

n+1∑
i=0

(1− 1

di
)Li).

ここで,「Xd がK-ポリ安定⇔ (L,∆L)がK-ポリ安定」なる関係が [LZ22], [Zhu21]により従うの
で, (L,∆L)の K-ポリ安定性に問題が帰着する. (L,∆L)は “log Fano超平面配置”と呼ばれる対
象になり, [Fuj21]を使って K-ポリ安定性が初等的な計算で判定できる. すると, X は非特異 Fano

で Pn と 2 次超曲面以外のものであるので, IX < (n + 1)a0 = n + 1 であることから X の K-ポ
リ安定性が従う. これとは別に, 自己同型群 Aut(Xd) が有限であることも示せて, K-安定性が従
う.

これより, 以下も従う:

系 7.2. Xd ⊂ P(a0, . . . , an+1)を一般の非特異 Fano WHSとし, Xd は Pn および 2次超曲面でな
いとする. このとき, Xd は K-安定となる.

似たような (well-formedとは限らない)Brieskorn-Pham型の Fano WHSの K-ポリ安定性の応
用として, 5次元以上の奇数次元の球面 (および Brieskorn球面と呼ばれるエキゾチック球面)が無
限個の族の Einstein計量を許容することも筆者と Liu, Tasinとの共同研究 [LST25]で示された.

今後の課題の一つとしては, 次がある.

予想 7.3. [ST25] Xd ⊂ P(a0, . . . , an+1)を quasi-smooth well-formed Fano WHSで IXd
= 1な

るものとする. このとき, Xd は K-安定.

部分的な結果として, 次がある (つまり, 2つ以外の重みが全て 1の場合).

定理 7.4. [CFST] Xd ⊂ P(1, . . . , 1, a, b)を quasi-smooth well-formed Fano WHSで IX = 1な
るものとする. このとき, Xd は K-安定.

例えば, X7 ⊂ P(1, 1, 1, 2, 3)の K-安定性はここからも従う. ただ, 3つ以上の重みが 1でない場
合は未だ不透明である.
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1. 導入
本稿を通して, kを標数が 0である代数的閉体とし,代数とは次数 1の元で有限生成されてい

るk上の連結次数付き代数を意味するものとする. すなわち,代数は全て自由代数k⟨x1, . . . , xn⟩
の剰余として表されるものとする. 次数付き代数Aに対して, 次数付き右A加群のなす圏を
GrModAと表す. AとA′が次数付き森田同値であるとは, GrModAとGrModA′が圏同値と
なるときをいう. AとA′が次数付き代数であるとき, A ∼= A′と表し, 次数付き森田同値であ
るとき, GrModA ∼= GrModA′と表すものとする. k上の n− 1次元射影空間を Pn−1と表す.
非可換代数幾何学とは代数幾何学のアイデアや手法を用いて非可換代数を研究する分野で

あり, 1987年にArtin-Schelterによって非可換な正則代数の概念が導入され, 3次元の場合を
分類することを試みたことに端を発する.

定義 1 ([1]). 次数付き代数A が d次元Artin-Schelter 正則代数 (以下, 単にAS 正則代数と
記す)とは, 次の条件を満たすときをいう:

(i) gldimA = d <∞ (Aの大域次元),
(ii) GKdimA := inf{α ∈ R | dimk(

∑n
i=0Ai) ≤ nα ∀n≫ 0} <∞,

(iii) ExtiA(k,A) =

{
k (i = d),
0 (i ̸= d).

(Gorenstein 条件)

大雑把な言い方をすれば, AS正則代数は多項式代数の非可換類似である. 実際, 可換なAS
正則代数は多項式代数と次数付き代数同型である. しかし, 非可換なAS正則代数は多くあり
この分類は盛んに行われている. Artin-Schelterは 3次元AS正則代数を分類することを試み
たが, 残念ながら分類は未完成であった. 本稿では, 3次元AS正則代数の分類とは, 3次元AS
正則代数の関係式を決定し, それらを次数付き代数同型及び次数付き森田同値を除いて分類
することを意味するものとする. 一方, Artin-Schelterは次の重要な結果を与えた.

定理 2. ([1, Theorem 1.5]) 任意の 3次元AS正則代数は次のいずれかと次数付き代数同型と
なる:

k⟨x, y, z⟩/(f1, f2, f3), k⟨x, y⟩/(g1, g2).
ここで, fi ∈ k⟨x, y, z⟩2, gj ∈ k⟨x, y⟩3である.

関係式が 3本の 2次斉次元からなるものを 3次元 2次AS正則代数とよび, 関係式が 2本の
3次斉次元からなるものを 3次元 3次AS正則代数とよぶ.

Artin-Tate-Van den Bergh [2]は 3次元AS正則代数を代数幾何学の言葉を用いて次のよう
に特徴付けた.

1
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定理 3 ([2]). 任意の 3次元AS正則代数は,射影スキームEとその自己同型写像 σ ∈ AutEか
らなる組 (E, σ)との 1対 1対応がある.

(1) 3次元 2次AS正則代数のとき, Eの候補は射影平面 P2自身または P2内の 3次曲線の
いずれかである:

(2) 3次元 3次AS正則代数のとき, Eの候補は射影直線の直積P1×P1自身またはP1×P1

内の双次数 (2, 2)曲線のいずれかである:

· · ·

定理 3に関して, 3次元 2次AS正則代数の場合と 3次元 3次AS正則代数の場合とで大き
く異なる点がある. 3次元 2次AS正則代数の場合, Eが P2自身または P2内の 3次曲線のい
ずれかのとき, 少なくとも一つは 3次元 2次 Calabi-Yau AS正則代数に対応する自己同型写
像 σ ∈ Autk Eが存在する. 一方, 3次元 3次 AS正則代数の場合, P1 × P1内の双次数 (2, 2)
曲線の中には, Calabi-Yauどころか, 3次元 3次AS正則代数と対応する組 (E, σ)が存在しな
い場合がある. Artin-Tate-Van den Berghによって与えられた特徴付けは, 代数幾何学が非
可換代数を研究する際にも有効な研究手法となり得ることを示唆する点で非常に重要な結果
である. しかしながら, 3次元AS正則代数に対応する組 (E, σ)のリストは与えられておらず,
Artin-Schletrが試みた分類は依然として未完成であった.

定義 4 ([5]). 代数 S が d次元Calabi-Yau代数 (以下, 単にCY代数と記す)とは, 次の条件
を満たすときをいう:

(i) pdSe S = d <∞,

(ii) ExtiSe(S, S
e) =

{
S (i = d),
0 (i ̸= d).

(右 Se加群として)

ここで, Se = Sop ⊗k Sとする.

3次元AS正則代数の分類問題について, CY代数である場合にはすでに分類が完成してい
る ([13], [14]). 本稿の目的は, 3次元AS正則代数の分類について, 現在までに得られた結果を
紹介することである. 本稿の内容は, 板場綾子氏との共同研究 [7], [8], 齋藤由宇氏との共同研
究 [11], 板場綾子氏と齋藤由宇氏との共同研究 [9], 及び [12]で得られた結果に基づいている.

2. 幾何的代数と 3次元AS正則代数
この章では, 幾何的代数の概念を紹介し, 3次元AS正則代数の分類問題への応用について

説明する. 幾何的代数は与えられた次数付き代数の関係式の次数に応じて, 幾何的 2次代数と
幾何的 3次代数の二つの場合に分かれる. A = k⟨x1, . . . , xn⟩/(R)がm次代数であるとき,

ΓA := {(p1, . . . , pm) ∈ (Pn−1)×m | g(p1, . . . , pm) = 0 ∀g ∈ R}

と定める.
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2.1. 幾何的 2次代数と 3次元 2次AS正則代数.

定義 5 ([12, Definition 4.3]). A = k⟨x1, . . . , xn⟩/(R)を 2次代数とする. 射影多様体E ⊂ Pn−1

とその自己同型写像 σ ∈ Autk Eからなる組 (E, σ)を幾何的組とよぶ.

(1) Aが (G1)を満たすとは, ある幾何的組 (E, σ)が存在して
ΓA = {(p, σ(p)) ∈ Pn−1 × Pn−1 | p ∈ E}

が成り立つときをいう. このとき, P(A) = (E, σ)と書く.
(2) Aが (G2)を満たすとは, ある幾何的組 (E, σ)が存在して

R = {f ∈ k⟨x1, . . . , xn⟩2 | f(p, σ(p)) = 0 ∀p ∈ E}

が成り立つときをいう. このとき, A = A(E, σ)と書く.
(3) Aが幾何的 2次代数であるとは, Aが (G1), (G2)を満たしA = A(P(A))が成り立つ
ときをいう.

大雑把な言い方をすると, 幾何的 2次代数とは幾何的組 (E, σ)と一対一に対応する 2次代
数である. 定理 3より, 任意の 3次元 2次AS正則代数は幾何的 2次代数である. よって, 射影
平面内の 3次曲線Eに対し, その自己同型群Autk Eを決定することができれば, 幾何的 2次
代数の条件 (G2)を用いて 3次元 2次AS正則代数の関係式を直接計算することが可能となる.

定理 6 ([12, Theorem 4.7]). A = A(E, σ), A′ = A(E ′, σ′)を幾何的 2次代数とする. ここで,
E,E ′ ⊂ Pn−1, σ ∈ Autk E, σ

′ ∈ Autk E
′とする.

(1) A ∼= A′である必要十分条件は, Pn−1の自己同型写像を制限して得られるEからE ′へ
の同型写像 τ が存在して, 図式

E
τ //

σ
��

E ′

σ′

��
E τ

// E ′

が可換となることである.
(2) GrMod A ∼= GrMod A′である必要十分条件は, Pn−1の自己同型写像を制限して得ら
れるEからE ′への同型写像の列 {τn}n∈Zが存在して, 任意の i ∈ Zについて図式

E
τi //

σ
��

E ′

σ′

��
E τi+1

// E ′

が可換となることである.

A = A(E, σ)を幾何的 2次代数とし, EとE ′は射影同値である, すなわち Pn−1の自己同型
写像を制限して得られるEからE ′への同型写像 τ が存在するとする. このとき, σ′ = τστ−1

とおくと, A′ = A(E ′, σ′)は幾何的 2次代数であり, 図式
E

τ //

σ
��

E ′

σ′

��
E τ

// E ′
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が可換となる. よって, 定理 6 (1)よりA ∼= A′となる. これは幾何的 2次代数を次数付き
代数同型を除いて分類するときには, 射影同値であるEとE ′を同一視してよいことを意味す
る. 特に射影平面内の 3次曲線は楕円曲線の場合を除いて唯一通りに定まる. したがって, 3
次元 2次AS正則代数を分類するための手順は以下の通りである.

Step 0 Eの定義方程式を一つ固定する.
Step 1 Eの自己同型群Autk Eを決定する.
Step 2 各自己同型写像 σ ∈ Autk Eに対して, 条件 (G2)を用いて幾何的 2次代数A(E, σ)の

関係式を決定する.
Step 3 定理 6 (1) を用いて, 次数付き代数同型となるための必要十分条件を求める.
Step 4 定理 6 (2) を用いて, 次数付き森田同値となるための必要十分条件を求める.

板場綾子氏との共同研究 [7], [8], 及び [10]において, 3次元 2次AS正則代数の関係式の完
全なリストを与え, 次数付き代数同型及び次数付き森田同値となる必要十分条件を与えた. 分
類結果の詳細は [7, Theorem 3.1, Theorem 3.2]を参照されたい. また 3章ではEが射影平面
内の楕円曲線である場合について詳しく説明をする.

2.2. 幾何的 3次代数と 3次元 3次AS正則代数. 3次元 2次AS正則代数の分類では, 毛利出
氏によって導入された幾何的 2次代数の概念が重要な役割を果たした. 3次元 3次AS正則代
数の場合にも幾何的手法を用いるために, 幾何的 3次代数の概念を導入する.
E ⊂ Pn−1 × Pn−1を射影多様体とし, πi : Pn−1 × Pn−1 → Pn−1を第 i成分への射影とする

(i = 1, 2). Eの自己同型群Autk Eの部分集合AutGk Eを次のように定める:

AutGk E = {σ ∈ Autk E | (π1σ)(p, q) = π2(p, q) ∀(p, q) ∈ E}.
一般に, AutGk EはAutk Eの部分群となるとは限らない.

例 7. E = P1 × P1 とする. (p, q) ∈ E とし, (r, s) = σ ∈ AutGk E とする. このとき,
r = (π1σ)(p, q) = π2(p, q) = qが成り立つ. ここで,自己同型写像ν ∈ Autk Eをν(p, q) = (q, p)
と定めると,

AutGk E = {(idP1 × µ)ν | µ ∈ Autk P1}
となる. よって, idE /∈ AutGk Eであるため, AutGk EはAutk Eの部分群でない.

定義 8 ([11, Definition 3.3]). A = k⟨x1, . . . , xn⟩/(R)を 3次代数とする.

(0) 組 (E, σ)が幾何的組であるとは, E ⊂ Pn−1 × Pn−1が射影多様体であり, σ ∈ AutGk E
であるときをいう.

(1) Aが (G1)を満たすとは, ある幾何的組 (E, σ)が存在して
ΓA = {(p, q, (π2σ)(p, q)) ∈ Pn−1 × Pn−1 × Pn−1 | (p, q) ∈ E}

が成り立つときをいう. このとき, P(A) = (E, σ)と書く.
(2) Aが (G2)を満たすとは, ある幾何的組 (E, σ)が存在して

R = {f ∈ k⟨x1, . . . , xn⟩3 | f(p, q, (π2σ)(p, q)) = 0 ∀(p, q) ∈ E}
が成り立つときをいう. このとき, A = A(E, σ)と書く.

(3) Aが幾何的 3次代数であるとは, Aが (G1), (G2)を満たしA = A(P(A))が成り立つ
ときをいう.

用語と記号の乱用ではあるが幾何的 2次代数と同じ用語と記号を用いることに注意する.
幾何的 2次代数と大きく異なる点は, 幾何的組となる σを制限している所である. 本研究で
は, 3次元 3次AS正則代数の分類へ応用することを念頭に置いているためこのような定義と
している. 定理 3より, 任意の 3次元 3次AS正則代数は幾何的 3次代数である.



THE CLASSIFICATIONS OF NONCOMM. PROJECTIVE PLANES AND QUADRICS 5

定理 9 ([11, Theorem 3.5, Theorem 3.6]). A = A(E, σ), A′ = A(E ′, σ′)を幾何的 3次代数と
する. ここで, E,E ′ ⊂ Pn−1 × Pn−1, σ ∈ AutGk E, σ

′ ∈ AutGk E
′とする.

(1) A ∼= A′である必要十分条件は,あるPn−1の自己同型写像τが存在して, (τ×τ)(E) = E ′

を満たし, 図式
E

τ×τ //

σ
��

E ′

σ′

��
E

τ×τ
// E ′

が可換となることである.
(2) GrMod A ∼= GrMod A′である必要十分条件は, Pn−1の自己同型写像の列 {τn}n∈Zが
存在して, 任意の i ∈ Zについて (τi × τi+1)(E) = E ′を満たし, 図式

E
τi×τi+1 //

σ
��

E ′

σ′

��
E

τi+1×τi+2

// E ′

が可換となることである.

A = A(E, σ)を幾何的3次代数とし,あるPn−1の自己同型写像τが存在して, (τ×τ)(E) = E ′

を満たすとする. このとき, σ′ = (τ × τ)σ(τ−1 × τ−1)とおくと, A′ = A(E ′, σ′)は幾何的 3次
代数であり, 図式

E
τ×τ //

σ
��

E ′

σ′

��
E

τ×τ
// E ′

が可換となる. よって, 定理 9 (1)よりA ∼= A′となる.

定義 10 ([11, Definition 3.7]). E,E ′ ⊂ Pn−1 × Pn−1を射影多様体とする.

(1) EとE ′が同値であるとは, あるPn−1の自己同型写像 τ1, τ2が存在して, (τ1× τ2)(E) =
E ′が成り立つときをいう.

(2) EとE ′が 2-同値であるとは, あるPn−1の自己同型写像 τが存在して, (τ×τ)(E) = E ′

が成り立つときをいう.

したがって, 3次元 3次AS正則代数を分類するための手順は以下の通りである.

Step 0 Eを 2-同値を除いて分類する.
Step 1 各EごとにAutGk Eを決定する.
Step 2 各自己同型写像 σ ∈ AutGk Eに対して, 条件 (G2)を用いて幾何的 3次代数A(E, σ)の

関係式を決定する.
Step 3 定理 9 (1) を用いて, 次数付き代数同型となるための必要十分条件を求める.
Step 4 定理 9 (2) を用いて, 次数付き森田同値となるための必要十分条件を求める.

Eが P1 × P1自身または P1 × P1内の双次数 (2, 2)曲線の中で可約である場合に対応する 3
次元 3次AS正則代数の分類は完成している.

定理 11 ([11, Theorem 4.9, Theorem 4.10], [9, Theorem 4.2, Theorem 4.3]). A = A(E, σ)を
3次元 3次AS正則代数とする. ここで, Eは P1 × P1自身または P1 × P1内の双次数 (2, 2)曲
線の中で以下のいずれかとする:
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このとき,

(1) Aの関係式の完全なリストを与え,
(2) 次数付き代数同型となる必要十分条件, 及び
(3) 次数付き森田同値となる必要十分条件を与えた.

3. 楕円曲線に対応する 3次元 2次AS正則代数
本稿の最後に, Eが P2内の楕円曲線である場合の 3次元 2次AS正則代数の分類結果を紹

介する. ここでは, E = V(f), f = x3 + y3 + z3 − 3λxyz (λ3 ̸= 1) という Hesse形式を採用
する. P2内の楕円曲線は射影同値を除いてこの形式で表記できる. 楕円曲線 E には零元を
o := (1,−1, 0)として加法群の構造が入る. 任意のEの点 p = (a, b, c)に対して, Eの加法を
用いて pを足すという translation σp ∈ AutE が得られる. Eの j-不変量とは

j(E) :=
27λ3(λ3 + 8)3

(λ3 − 1)3

のことである. P2内の楕円曲線EとE ′が射影同値である必要十分条件は j(E) = j(E ′)とな
ることである ([6, Theorem IV 4.1 (b)]).
幾何的組全体を決定するために, j(E)ごとにEの自己同型群Autk Eを決定する. ここで

translationの全体のなす集合を T := {σp ∈ AutE | p ∈ E}とおき, Eの零元 o = (1,−1, 0)
に対して,

Autk(E, o) := {σ ∈ AutE | σ(o) = o}
とする. T と Autk(E, o)は Autk E の部分群であり, Autk(E, o)は位数有限の巡回群となる
([6, Corollary IV 4.7]).

定理 12 ([7, Theorem 4.6]). Autk(E, o)の生成元 τ は次のように与えられる:
τ(a, b, c) = (b, a, c) (j(E) ̸= 0, 123の場合),
τ(a, b, c) = (b, a, cε) (λ = 0の場合),

τ(a, b, c) = (aε2 + bε+ c, aε+ bε2 + c, a+ b+ c) (λ = 1 +
√
3の場合).

ただし, εは 1の原始 3乗根とする.

j(E) = 0, 123の場合は, それぞれ λ = 0, 1 +
√
3のように λを固定していることに注意す

る. いずれの場合も生成元 τ は P2のある自己同型写像をE上に制限することで得られる. こ
こで,

Autk(P2, E) := {ϕ ∈ Autk P2 | ϕ|E ∈ Autk E}
と定める. Eが P2内の楕円曲線の場合, ある自己同型写像 σ ∈ Autk Eが P2の自己同型写像
へ延長可能ならば, その延長の仕方は唯一通りに定まるので, Autk(P2, E)を Autk E の部分
群とみなすことができる. 特に, Autk(E, o)はAutk(P2, E)の部分群である. Eの自己同型群
Autk Eは T とAutk(E, o)の半直積に同型となる:

Autk E ∼= T ⋊ Autk(E, o).

したがって, 自己同型写像 σ ∈ Autk Eは
σ = σpτ

i

と表される. ただし, p ∈ Eであり, i ∈ Z|τ |である.
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σ ∈ Autk Eが translation σpに一致している場合, A = A(E, σp)は 3次元 Sklyanin代数と
よばれるものであり, 関係式がすでに分かっている:

A = A(E, σp) = k⟨x, y, z⟩/

 ayz + bzy + cx2

azx+ bxz + cy2

axy + byx+ cz2

 .

ただし, p = (a, b, c)は abc ̸= 0かつ (a3 + b3 + c3)3 ̸= (3abc)3を満たすとする. 幾何的 2次代
数A(E, σpτ i)の関係式は, 3次元 Sklyanin代数の関係式を twistすることで得られる.

定理 13 ([7, Theorem 4.9]). Eを P2内の楕円曲線とし, σ = σpτ
i ∈ Autk Eとする. ただし,

p = (a, b, c)は abc ̸= 0かつ (a3 + b3 + c3)3 ̸= (3abc)3を満たすとし, i ∈ Z|τ |とする. このとき,
幾何的 2次代数A(E, σpτ i)は

k⟨x, y, z⟩/

 aτ i(y)z + bτ i(z)y + cτ i(x)x
aτ i(z)x+ bτ i(x)z + cτ i(y)y
aτ i(x)y + bτ i(y)x+ cτ i(z)z


に次数付き代数同型となる.

例 14. j(E) ̸= 0, 123のとき, Autk(E, o)の生成元 τ は, τ(a, b, c) = (b, a, c)によって与えられ
る. ゆえに, τ の位数は 2である. 定理 13より, 幾何的 2次代数A(E, σpτ)は

k⟨x, y, z⟩/

 axz + bzy + cyx
azx+ byz + cxy
ay2 + bx2 + cz2


に次数付き代数同型となる.

Eの点 pにおいて, np = p + · · · + p = oを満たすものを n-トーションとよぶ. n-トーショ
ン全体のなす集合をE[n]と表し, T [n] := {σp ∈ Autk E | p ∈ E[n]} とする. 定理 13におい
て p = (a, b, c)が abc ̸= 0を満たすとしていたが, これは p /∈ E[3]と同値である.

補題 15 ([12, Lemma 5.3]). Eを P2内の楕円曲線とする. このとき,

Autk(P2, E) ∩ T = T [3]

が成り立つ.

p = (a, b, c)が abc = 0を満たす, すなわち p ∈ E[3]である場合, 補題 15より translation σp
は P2の自己同型写像に延長することができる. このとき, 幾何的組 (E, σp)から条件 (G2)を
用いて得られるA(E, σp)は幾何的組 (P2, σp)に対応する幾何的 2次代数となる. したがって,
P2内の楕円曲線Eとその自己同型写像 σ = σpτ

iからなる幾何的組 (E, σ)に対応する幾何的
2次代数を調べるときには, p /∈ E[3]とする必要がある. 補題 15より, 次の結果を得る.

定理 16 ([7, Theorem 4.12]). Eを P2内の楕円曲線とする. このとき,

Autk(P2, E) = T [3]⋊ Autk(E, o)

が成り立つ.

定理 6 (1)と定理 16より, 次数付き代数同型であるための判定条件が得られる.

定理 17 ([7, Theorem 4.16]). Eを P2内の楕円曲線とし, p, q ∈ E \ E[3], i, j ∈ Z|τ |とする.
このとき, A(E, σpτ i) ∼= A(E, σqτ j)である必要十分条件は, i = j かつ, ある 3-トーション
r ∈ E[3]と l ∈ Z|τ |が存在して q = τ l(p) + r − τ i(r)が成り立つことである.
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例 18. Eを射影平面内の楕円曲線とし, j(E) ̸= 0, 123とする. p = (a, b, c) ∈ E \E[3]とする.
このとき, 次の三つの次数付き代数を考える.

A = k⟨x, y, z⟩/

 ayz + bzy + cx2

azx+ bxz + cy2

axy + byx+ cz2

 ,

A′ = k⟨x, y, z⟩/

 byz + azy + cx2

bzx+ axz + cy2

bxy + ayx+ cz2

 ,

A′′ = k⟨x, y, z⟩/

 axz + bzy + cyx
azx+ byz + cxy
ay2 + bx2 + cz2

 .

A,A′, A′′のように非可換代数が生成元と関係式を用いて表されているとき, 次数付き代数同
型であるかどうかを判定することは難しい問題である. 一方, A,A′, A′′は全て幾何的 2次代
数であり, それぞれA = A(E, σp), A′ = A(E, στ(p)), A′′ = A(E, σpτ)と表される. よって, 定
理 17の判定条件を用いると, A ∼= A′であることが示される. また, τ の指数が異なることか
ら AとA′′及びA′とA′′は次数付き代数同型でないことも直ちに示される.

定理 6 (2)と定理 16より, 次数付き森田同値であるための判定条件が得られる.

定理 19 ([7, Theorem 4.20]). Eを P2内の楕円曲線とし, p, q ∈ E \ E[3], i, j ∈ Z|τ |とする.
このとき, GrModA(E, σpτ i) ∼= GrModA(E, σqτ j)である必要十分条件は, p− τ j−i(p) ∈ E[3]
かつ, ある 3-トーション r ∈ E[3]と l ∈ Z|τ |が存在して q = τ l(p) + rが成り立つことである.

例 20. Eを射影平面内の楕円曲線とし, j(E) ̸= 0, 123とする. p = (a, b, c) ∈ E \E[3]とする.
このとき, 次の三つの次数付き代数を考える.

A = A(E, σp) = k⟨x, y, z⟩/

 ayz + bzy + cx2

azx+ bxz + cy2

axy + byx+ cz2

 ,

A′ = A(E, στ(p)) = k⟨x, y, z⟩/

 byz + azy + cx2

bzx+ axz + cy2

bxy + ayx+ cz2

 ,

A′′ = A(E, σpτ) = k⟨x, y, z⟩/

 axz + bzy + cyx
azx+ byz + cxy
ay2 + bx2 + cz2

 .

生成元と関係式によって与えられた次数付き代数が次数付き森田同値となるかどうかを判定
することは非常に難しい問題である.

(1) AとA′について: A = A(E, σp), A′ = A(E, στ(p))より, i = j = 0であるので, 定理
19の条件を満たす. ゆえに, GrModA ∼= GrModA′となる.

(2) AとA′′について: A′′ = A(E, σpτ)より, GrModA ∼= GrModA′′となる必要十分条件
は p− τ(p) ∈ E[3]である. τ の位数が 2であることから, p− τ(p) ∈ E[3]は 2p ∈ E[3]
に同値である. したがって, p ∈ E[6] \ E[3]のとき, GrModA ∼= GrModA′′となる.

一般に幾何的 2代数はAS正則代数であるとは限らない. 次の結果は射影平面内の楕円曲
線Eと自己同型写像 σからなる幾何的組 (E, σ)に対応する幾何的 2次代数A(E, σ)がAS正
則代数であるための判定条件を与える.
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定理 21 ([8, Theorem 4.3]). E を P2 内の楕円曲線とし, p ∈ E \ E[3], i ∈ Z|τ | とする.
A = A(E, σpτ i)を幾何的 2次代数とする. このとき, 次は同値である.

(1) Aは 3次元 2次AS正則代数である.
(2) p− τ i(p) ∈ E[3].
(3) GrModA ∼= GrModA(E, σp).

定理 21より, 3次元 Sklyanin代数は 3次元 2次AS正則代数である. さらに 3次元 Sklyanin
代数は Calabi-Yau代数でもある. よって, 定理 19と定理 21より, 射影平面内の楕円曲線 E
と自己同型写像 σ = σpτ

iからなる幾何的組 (E, σ)に対応する幾何的 2次代数A(E, σ)が 3次
元 2次AS正則代数であるならば, 3次元 2次Calabi-Yau AS正則代数A(E, σp)と次数付き森
田同値となる. より一般に, 次の結果が得られる.

定理 22 ([8, Theorem 4.4]). 任意の 3次元 2次AS正則代数Aに対して, ある 3次元 2次CY
AS正則代数 Sが存在して, GrModA ∼= GrModSが成り立つ.

Artin-Zhang [4]によって非可換射影スキームProjncAの概念が導入され,その基礎理論が確
立された. AがネーターAS正則代数である非可換射影スキームProjncAは非可換射影空間や
量子射影空間と呼ばれ, 非可換代数幾何学における重要な研究対象の一つである. 特に, Aが 3
次元 2次AS正則代数のとき, ProjncAは非可換射影平面 (noncommutative projective plane)
と呼ばれ, Aが 3次元 3次 AS正則代数のとき, ProjncAは非可換 P1 × P1(noncommutative
quadric)と呼ばれる. 定理 22より, 任意の非可換射影平面 ProjncAは, ある 3次元 2次 CY
AS正則代数に付随する非可換射影平面 Projnc Sと非可換射影スキームとして同型となる.
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ON ENDOMORPHISMS OF AFFINE SURFACES

柴田崇広

1. イントロダクション
本稿では共著論文 [JSXZ24]の結果のうち，アフィン曲面の川口–Silverman予想につい

てのものを紹介したい．なお，本稿では断りのない限りQ上で議論するものとする．
準射影代数多様体X上の自己有理写像f : X 99K Xを考える．反復合成fn = f◦f◦· · ·◦f

（n個の f の合成）の，nを大きくしていった時の複雑さの増大度を測る不変量として力
学次数と算術次数という二つの不変量が定義される．前者は交点数を用いた幾何的な不
変量であり，後者は高さ関数を用いた数論的な不変量である．それぞれの定義を見てい
こう．

定義 1.1. X を射影多様体とし，f : X 99K X を支配的自己有理写像とする．HをX の
豊富因子とする．Xの (第一)力学次数を

δf := lim
n→∞

((fn)∗H ·HdimX−1)
1
n

と定める．この極限は常に収束し，さらにHの取り方に依らない．
Xが一般の準射影多様体である場合は射影多様体 Y からの双有理写像 µ : Y 99K Y を

用いて δf := δµ−1◦f◦µと定める．この定義は µの取り方に依らない．

定義 1.2. X を射影多様体とし，f : X 99K X を支配的自己有理写像とする．HをX の
豊富因子とし，hH : X(Q) → RをH から定まる対数的高さ関数とする．x ∈ X(Q)で
Of (x) = {x, f(x), f 2(x), . . .}が定義できるものに対し，f の xでの算術次数を

αf (x) := lim
n→∞

h+H(f
n(x))

1
n

と定める．ここで h+H = max{hH , 1}と定めている．この極限が常に存在するかは分かっ
ていないがHの取り方には依らない．
Xが一般の準射影多様体である場合は射影多様体 Y からの双有理写像 µ : Y 99K Y を

用いて αf (x) := αµ−1◦f◦µ(µ
−1(x))と定める．この定義は µの取り方に依らない．

力学次数と算術次数の間の基本的な関係について述べたものが以下の予想である．

予想 1.3 (川口–Silverman予想 (KSC), cf. [KS16]). X をQ上の準射影多様体とし，f :

X 99K Xを支配的自己有理写像とする．XのQ有理点 xについて，xの f 軌道Of (x) =

{x, f(x), f 2(x), . . .}が定義可能でありX 内で稠密であるとする．このとき極限 αf (x)は
収束し，さらに d1(f) = αf (x)が成り立つ．

1
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KSCは未解決の問題だが，多くの場合について成り立つことが知られている．KSCに
ついての知られた結果について，本稿で紹介する結果と関わりの深いものを挙げておく．
より詳しい情報については [Mat23]を参照されたい．

• 射影曲面上の自己射 ([MSS18], [MZ19]).
• 半アーベル多様体上の自己射 ([KS14], [MS20]).
• A2の自己同型 ([Kaw06]).

本稿ではアフィン曲面上の自己有限射に対するKSCを取り上げる．このようなアフィ
ン曲面の構造については [GZ08]で詳しく調べられている．その研究を援用することで
[JSXZ24]において以下が示された．

定理 1.4. X を対数的小平次元が非負の非特異アフィン曲面とし，f : X → X を有限射
とする．このような f に対しKSCが成り立つ．

以下，この定理の証明の概要を見ていこう．

2. アフィン多様体のコンパクト化
アフィン多様体のコンパクト化について簡単におさらいしておこう．

定義 2.1. Xをアフィン多様体とする．
(1) Xを開集合として含む射影多様体XをXのコンパクト化と言う．
(2) Xのコンパクト化Xが非特異であるとき，これを滑らかなコンパクト化という．
(3) Xのコンパクト化Xが非特異であり，X \Xが単純正規交差因子であるとき，こ
れをログ滑らかなコンパクト化と言う．

コンパクト化を用いて，開代数多様体の重要な不変量である対数的小平次元が定義さ
れる．

定義 2.2. Xを滑らかな準射影多様体とする．Xのログ滑らかなコンパクト化Xを取り，
D = X smXとする．

κ(X) := κ(KX +D)

をXの対数的小平次元と言う．これはXのコンパクト化の取り方に依らない．

次の命題は後で用いる．

命題 2.3 ([JSXZ24, Lemma 2.2]). Xを非特異アフィン曲面としXをXのログ滑らかな
コンパクト化とする．このときD = X \Xは豊富因子の台である．

3. Gmファイブレーション
対数的小平次元が非負の非特異アフィン曲面に対してはGmファイブレーションの構

造が重要である．ここではGmファイブレーションおよびGm束について成り立つ事柄を
見ていこう．
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命題 3.1 (Suzuki’s formula, cf. [Suz77],[Gur97]). π : X → Bを非特異アフィン曲面から
非特異曲線への全射で，一般ファイバーが既約なものとする．

(1) e(X) = e(B)e(F ) +
∑

s(e(Fs)− e(F ))および e(Fs) ≥ e(F )が成り立つ．ここでF

は πの一般ファイバー，{Fs}sは πの特異ファイバーの全体とする．
(2) 各 sで e(Fs) = e(F )が成り立つとする．この時 F ∼= A1またはG1

mであり，各 s

で suppFs ∼= F が成り立つ．
命題 3.2 ([JSXZ24, Proposition 2.10]). π : X → Bを非特異アフィン曲面から非特異ア
フィン曲線への全射とする．πの各ファイバーの台はGmに同型であるとし，{π−1(bi) =

miFi}ri=1を πの重複ファイバーの全体とする．このとき非特異曲線からの有限射B′ → B

で，B0 := B \ {b1, . . . , br}上エタールでX ×B B′の正規化X ′を考えるとX ′ → X がエ
タール射であり，X ′ → B′がGm束となるものが取れる．
定義 3.3. π : X → Bを非特異アフィン曲面から非特異曲線へのGm束とする．X のロ
グ滑らかなコンパクト化XとBの滑らかなコンパクト化B ⊂ Bで πが P1ファイブレー
ション π : X → Bに延長するものを取ったとき，X \Xの水平部分がちょうど二つの π

の切断となるとき，πは untwistedであると言う．
命題 3.4 ([JSXZ24, Lemma 2.7]). π : X → Bを非特異アフィン曲面から非特異曲線への
Gm束とする．このとき非特異曲線B′からのエタール射B′ → Bがあって，X ′ = X×BB′

とするとX ′ → B′は untwistedなGm束となる．
命題 3.5 ([JSXZ24, Lemma 2.7]). π : X → Bを非特異アフィン曲面から非特異曲線への
Gm束とする．

(1) κ(X) = κ(B).
(2) πは untwistedでBは非特異アフィン有理曲線とする．このとき πは自明なGm束
である．

命題 3.6 ([JSXZ24, Corollary 2.8]). π : X → Bを非特異アフィン曲面から非特異曲線へ
のGm束とする．この時Bはアフィン曲線である．

4. Qトーラス
ここでQトーラスの概念を定義しておく．これは射影多様体におけるQアーベル多様

体のアフィン多様体における analogueである．
定義 4.1. 非特異アフィン多様体Xが代数トーラスからの有限エタール射を持つとき，X
をQトーラスという．
命題 4.2 ([JSXZ24, Lemma 2.21]). XをQトーラスとする．このとき代数トーラスから
の有限エタールガロア射 π : T → Xであり次を満たすものが存在する：
任意の代数トーラスからの有限エタール射 π′ : T ′ → X に対しエタール射 τ : T ′ → T

で π′ = π ◦ τ を満たすものが存在する．
このような π : T → XをXの代数トーラス閉包と呼ぶ．
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5. アフィン曲面の自己有限射の構造
以下の定理により，対数的小平次元が非負の非特異アフィン曲面の自己有限射をより

簡単な形に帰着することができる．

定理 5.1 ([JSXZ24, Theorem 1.9]). Xを非特異アフィン曲面とし，f : X → Xをdeg(f) ≥
2を満たす有限射とする．

(1) κ(X) = 2とする．このとき f は有限位数の自己同型である．
(2) κ(X) = 1とする．この時XはG1ファイブレーション π : X → Bの構造を持ち，

Bの有限位数の自己同型 gがあって g ◦ π = π ◦ f が成り立つ．
(3) κ(X) = 0とする．このときエタール射 π : G2

m → X および有限射 g : G2
m → G2

m

があって π ◦ g = f ◦ πが成り立つ．

証明の概略. (1)は [Iit82, Theorem 11.6, Theorem 11.12]の特別な場合である．
(2)Xをログ滑らかなXのコンパクト化とし，D = X\Xとすると仮定よりκ(KX+D) =

1である．KX + D = P + N を Zariski分解とすると P は半豊富である．よって充分大
きい sに対し |sP |はファイブレーション π : X → BでB は非特異射影曲線で κ(B) = 1

であるようなものを誘導する．さらに f は g : B → Bを誘導する．B = π(X)とすると
B上の自己射 g = g|B : B → Bを得る．ここで，πのファイバー F は κ(F ) = 0を満た
す．よって π : X → Bの一般ファイバーはGmに同型であり，e(X) = 0となる．Suzuki’s
formulaにより πの全てのファイバーの台はGmに同型である．
{π−1(bi) = miFi}ri=1 (r ≥ 0)を π : X → B の重複ファイバーの全体とする．B0 =

B \ {b1, . . . , br}, X0 = π−1(B0)とする．このとき特異ファイバー全体の合併集合が f−1不
変であることから g(B0) ⊂ B0である．ここでX0 → B0がGm束であることから命題 3.5
より κ(B0) = κ(X0) ≥ κ(X) = 1となり，κ(B0) = 1を得る．ゆえに g|B0 (そして g)は有
限位数の自己同型である．

(3)一旦，基礎体がCであると仮定する．今，e(X) = 0かつ j > 2についてHj(X,C) = 0

が成り立っているので b1(X) ≥ 1である．X をログ滑らかな X のコンパクト化とし，
D = X \Xとする．対数的Hodge to de Rhamスペクトル系列

Ep,q
1 = Hq(X,Ω1

X
(logD))⇒ Hp+q(X,C)

のE1退化を考えると

1 ≤ b1(X) = h0(X,Ω1
X
(logD)) + h1(X,OX) = h0(X,Ω1

X
(logD)) + h0(X,Ω1

X
) ≤ 2q(X).

よって q(X) ̸= 0であり，quasi-Albanese map a : X → Sは非自明である．
0→ T → S → A→ 0を半アーベル多様体 Sの代数トーラス T とアーベル多様体Aへ

の分解とする．
S = Aかつ dimA = 2であると仮定する．するとX を適切に取り直して双有理射 a :

X → Aが得られるのでThen κ(KX) = κ(X) = 0となる．しかし，κ(KX+D) = κ(X) = 0

かつDは命題 2.3より豊富因子であり，矛盾である．よってこのケースは起こらない．
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次に dimS = 1，dimA = 1または dimS = dimT = 2であると仮定する．それぞれの
場合に応じて B = S, Aまたは T/T0（T0 ⊂ T は 1次元部分トーラス）と定める．F を
π : X → Bの一般ファイバーとする．飯高不等式より κ(F ) = 0となるので πはGmファ
イブレーションである．Suzuki’s formulaから πの任意のファイバーの台はGmに同型で
ある．

X ′′

π′′

��

// X ′

π′

��

// X

π
��

B′′
ψ

// B′
φ

// B

命題3.2より有限射φ : B′ → BがあってX×BB′の正規化をX ′とするとX ′ → Xはエター
ルかつX ′ := (X×BB′)ν → B′はGm束となる．命題 3.5よりκ(B′) = κ(X ′) = κ(X ′) = 0

である．よってB′ = Gmかつ φはエタールである．命題 3.4および命題 3.5より有限射
ψ : B′′ → B′があってX ′′ = X ×B′ B′とするとX ′′ → X ′はエタールかつX ′′ → B′′は自
明なGm束となる．このときX ′′ ∼= G2

mなのでG2
mからXへのエタール射が得られた．こ

こからQにおいてもG2
mからX へのエタール射を構成することができる．つまりX は

Qトーラスである．
π : G2

m → Xを代数トーラス閉包とする (cf. 命題 4.2). すると命題 4.2により g : G2
m →

G2
mで π ◦ g = f ◦ πとなるものが存在する． �

定理 1.4の証明. κ(X) = 1または 2の場合は稠密軌道が存在しないのでOK．κ(X) = 0

の場合は次の可換図式が得られる．

G2
m

π

��

g
// G2

m

π

��

X
f

// X

ここで gは有限射，πはエタール射である．このとき一般論により δg = δf かつ任意の
x ∈ G2

m(Q)に対しαg(x) = αf (π(x))が成り立つ．よって証明はX = G2
mの場合に帰着さ

れるが，より一般に半アーベル多様体に対してKSCが証明されている (cf. [MS20])ので
これで証明が終わる． �
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グラフ超平面配置の q-変形
辻栄 周平 （北海道教育大学旭川校）

概要
組紐超平面配置と位数 q の有限体上の全超平面配置にはいくつかの類似がみられる．たとえば，有限体
上の全超平面配置の特性多項式に現れる q の冪 qk を形式的に k に置き換えることで，組紐配置の特性多
項式が得られる．このような類似は，定義多項式や対数的ベクトル場の加群の基底にも現れる．
また，組紐配置の任意の部分配置は単純グラフに対応し，この対応を通じて単純グラフに基づく有限体上
の超平面配置が得られる．これらの配置の特性多項式は，グラフの彩色多項式の q-変形とみなされる性質
を有すると期待される．本講演では，これらの q-変形に関する未解決問題を紹介し，この方向における部
分的な結果を報告する．本研究は，年通宇氏，内海凌氏，吉永正彦氏との共同研究に基づく．

1 超平面配置
体 K 上の ℓ 次元ベクトル空間 Kℓ の有限個の超平面（余次元 1 の部分ベクトル空間）の集まり A を（中
心的）超平面配置という．超平面配置の研究において，特に重要なものは以下で定義される交叉半順序集合
L(A)と特性多項式 χ(A, t)である．

L(A) :=

{ ⋂
H∈B

H

∣∣∣∣∣ B ⊆ A
}
,

χ(A, t) :=
∑

X∈L(A)

µ(X)tdimX ∈ Z[t].

L(A)は逆包含順序により，全空間 0̂ = Kℓ を最小元とする半順序集合となる．また，特性多項式の定義式に
おける関数 µ(X)は以下のように帰納的に定義される L(A)上の関数であり，メビウス関数と呼ばれる．

µ(X) :=

1 (if X = 0̂);

−
∑
Y <X

µ(Y ) (otherwise).

超平面配置 Aの特性多項式は，Aの補空間M(A) := Kℓ \
⋃

H∈AH の性質を反映した多項式不変量である．

Example 1.1. K = Rのとき，補空間M(A)の各連結成分を部屋という．部屋の個数は (−1)ℓχ(A,−1)に
一致する（Zaslavsky [8]）．

Example 1.2. K = Cのとき，補空間M(A)のポアンカレ多項式は，(−t)ℓχ(A,−t−1)に一致する（Orlik-

Solomon [5]）．

Example 1.3. K = Fq のとき，補空間M(A)の元の個数は χ(A, q)に一致する．

次に超平面配置の自由性の定義について説明する．S := K[x1, . . . , xℓ]とおき，Der(S)で K線形な S 導分
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のなす集合を表す．超平面配置 Aの対数的ベクトル場のなす加群 D(A)を以下のように定義する．

D(A) := { θ ∈ Der(S) | θ(αH) ∈ SαH (∀H ∈ A) } .

ただし，αH は KerαH = H となるような斉次 1次式である．D(A)は次数付き S 加群の構造をもつ．D(A)
が S 加群として自由であるとき，Aを自由超平面配置という．このように，超平面配置の自由性の定義は代
数的であるが，実は超平面配置の交叉の組合せ構造と密接な関係がある．

Theorem 1.4 (寺尾の分解定理 [7]). Aを自由超平面配置とする．このとき，特性多項式 χ(A, t)は Z[t]に
おいて，以下のように 1次式の積に分解する．

χ(A, t) = (t− d1) · · · (t− dℓ).

ただし，d1, . . . , dℓ は D(A)の斉次基底の次数である．

2 組紐配置と有限体上の全超平面配置の類似性
Rℓ の xi = xj で定義される超平面全体からなる配置を組紐配置といい，Bℓ で表す．また，Fℓ

q のすべての
超平面からなる配置を全超平面配置といい，Aall(Fℓ

q)で表す．一見関係なさそうであるが，Bℓ と Aall(Fℓ
q)の

間にはいくつかの観点で類似性がみられるということをみていく．
まず，定義多項式（超平面の定義 1次式の積）に注目する．組紐配置 Bℓの定義多項式Q(Bℓ) ∈ R[x1, . . . , xℓ]
は，よく知られている Vandermonde の行列式である．

Q(Bℓ) =
∏

1≤i<j≤ℓ

(xj − xi) =

∣∣∣∣∣∣∣∣∣
1 x1 x21 . . . xℓ−1

1

1 x2 x22 . . . xℓ−1
2

...
...

...
...

1 xℓ x2ℓ . . . xℓ−1
ℓ

∣∣∣∣∣∣∣∣∣ .
全超平面配置 Aall(Fℓ

q)の定義多項式 Q
(
Aall(Fℓ

q)
)
∈ Fq[x1, . . . , xℓ]は Moore 行列の行列式である．

Q
(
Aall(Fℓ

q)
)
=

ℓ∏
i=1

∏
c1,...,ci−1∈Fq

(c1x1 + · · ·+ ci−1xi−1 + xi) =

∣∣∣∣∣∣∣∣∣∣
x1 xq1 xq

2

1 . . . xq
ℓ−1

1

x2 xq2 xq
2

2 . . . xq
ℓ−1

2
...

...
...

...

xℓ xqℓ xq
2

ℓ . . . xq
ℓ−1

ℓ

∣∣∣∣∣∣∣∣∣∣
.

両者共に行列式を用いて綺麗に表すことができる上，行列自体の形も似ている．定義体の標数が異なるのでめ
ちゃくちゃな操作であると思うが，Moore 行列の qk を形式的に k に置き換えると，Vandermonde 行列が得
られることに注意しておく．
次に特性多項式に注目すると

χ(Bℓ, t) = t(t− 1) · · · (t− ℓ+ 1).

χ(Aall(Fℓ
q), t) = (t− 1)(t− q) · · · (t− qℓ−1).

となっていて，ここでも qk を形式的に k に置き換えると χ(Aall(Fℓ
q), t)から χ(Bℓ, t)が得られる．さらに，

χ(AKℓ
, ℓ) = ℓ(ℓ− 1) · · · 1 = #Sℓ.

χ(Aall(Fℓ
q), q

ℓ) = (qℓ − 1)(qℓ − q) · · · (qℓ − qℓ−1) = #GLℓ(Fq)
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となっていて，特性多項式の値として，Bℓ と Aall(Fℓ
q)の対称性を表す群の位数が登場するのは，気になると

ころである．
Bℓ と Aall(Fℓ

q)は共に自由配置であり，基底としてそれぞれ{
ℓ∑

i=1

xki ∂k

∣∣∣∣∣ k ∈ {0, 1, . . . , ℓ− 1}

}
,

{
ℓ∑

i=1

xq
k

i ∂k

∣∣∣∣∣ k ∈ {0, 1, . . . , ℓ− 1}

}
が取れる．この場合も Aall(Fℓ

q)の基底の qk を形式的に k に置き換えると，Bℓ の基底が得られるという関係
が成り立っていて，とても不思議である．

3 グラフ配置とその q-変形
組紐配置 Bℓ の部分配置はすべて [ℓ] = {1, . . . , ℓ}を頂点集合とする単純グラフ G = ([ℓ], EG)を用いて，

AG :=
{
{xi − xj = 0} ⊆ Rℓ

∣∣ {i, j} ∈ EG

}
の形で表すことができる．AG をグラフ配置という．グラフ配置 AG の性質は，グラフ Gの組合せ論的性質
と関係している．たとえば，AG の特性多項式 χ(AG, t)は Gの彩色多項式 χ(G, t)に一致する．また，AG が
自由であることと，Gがコーダルグラフであることは同値である．
全超平面配置 Aall(Fℓ

q)の部分配置で，グラフ Gと自然に対応するようなものは考えられないだろうか．グ
ラフとして ℓ頂点の完全グラフ Kℓ を考えると，AKℓ

= Bℓ となっているので，完全グラフ Kℓ には Aall(Fℓ
q)

を対応させるのが自然である．そこで，グラフ Gのクリーク {i1, . . . , ir}に xi1 , . . . , xir からなる全超平面を
対応させることにして，グラフ配置の q-変形 Aq

G を以下のように定義する．

Aq
G :=

⋃
{i1,...,ir} : G のクリーク

{
{ai1xi1 + · · ·+ airxir = 0} ⊆ Fℓ

q

∣∣ (ai1 , . . . , air ) ∈ Fr
q \ {0}

}
.

Aq
G の性質は，グラフ Gの性質と関係していることが期待される．実際，グラフ配置 AG の自由性の証明

と全く同様にして，Aq
G が自由であることと Gがコーダルグラフであることが同値であることが証明できる．

では，Aq
G の特性多項式と Gの彩色多項式には何か関係はあるだろうか．彩色多項式の定義を思い出してみ

ると，任意の k ∈ Z≥0 に対し，

χ(G, k) = #
{
(u1, . . . , uℓ) ∈ {1, . . . , k}ℓ

∣∣ ij が Gの辺 =⇒ ui ̸= uj
}

が成り立っている．この条件は Gのクリークの言葉で以下のように言い換えることができる．

χ(G, k) = #

{
(u1, . . . , uℓ) ∈ {1, . . . , k}ℓ

∣∣∣∣ {i1, . . . , ip}が Gのクリーク
=⇒ ui1 , . . . , uip は互いに相異なる

}
.

Aq
G の特性多項式についても，似たような解釈が可能である．

χ(Aq
G, q

k)

(q − 1)ℓ
= #

{
(u1, . . . , uℓ) ∈ P(Fk

q )
ℓ

∣∣∣∣ {i1, . . . , ip}が Gのクリーク
=⇒ ui1 , . . . , uip は Fq 上 1次独立

}
.

GがK3 と同型な誘導部分グラフを含まない (triangle-free) ときは，もっと強いことが言える．

Proposition 3.1. Gが triangle-free のとき，

χ(Aq
G, q

k)

(q − 1)ℓ
= #

{
(u1, . . . , uℓ) ∈ P(Fk

q )
ℓ
∣∣ ij が Gの辺 =⇒ ui ̸= uj

}
.
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よって，

χ(Aq
G, q

k)

(q − 1)ℓ
= χ(G, [k]q).

ただし，[k]q = #P(Fk
q ) =

qk−1
q−1 は q-整数である．とくに，

χ(Aq
G, t) = (q − 1)ℓχ

(
G,

t− 1

q − 1

)
.

Example 3.2. 閉路グラフ Cℓ の彩色多項式は

χ(Cℓ, t) = (t− 1)ℓ + (−1)ℓ(t− 1)

である．ℓ ≥ 4のとき，Cℓ は triangle-free なので，

χ(Aq
Cℓ
, t) = (q − 1)ℓχ

(
Cℓ,

t− 1

q − 1

)
= (t− q)ℓ + (−1)ℓ(q − 1)ℓ−1(t− q).

Remark 3.3. G が triangle-free でないときは，Proposition 3.1 は成立しない．たとえば，G = K3 のと
き，χ(K3, t) = t(t− 1)(t− 2)なので，

(q − 1)3χ

(
K3,

t− 1

q − 1

)
= (t− 1)(t− q)(t− 2q + 1)

となっていて，これは

χ(Aq
K3
, t) = (t− 1)(t− q)(t− q2)

とは異なる．

q-整数 [k]q は整数の q-類似である．つまり，limq→1[k]q = k が成り立っている．G が triangle-free のと
き，q が素数冪であることは忘れて q を 1に近づける極限を考えてみると，

lim
q→1

χ(Aq
G, q

k)

(q − 1)ℓ
= lim

q→1
χ(G, [k]q) = χ(G, k)

となっている．Gが完全グラフKℓ のときは，Proposition 3.1は適用できないが，

χ(Aq
Kℓ
, qk)

(q − 1)ℓ
=

(qk − 1)(qk − q) · · · (qk − qℓ−1)

(q − 1)ℓ
= [k]q([k]q − [1]q) · · · ([k]q − [ℓ− 1]q)

となっているから，

lim
q→1

χ(Aq
Kℓ , q

k)

(q − 1)ℓ
= k(k − 1) · · · (k − ℓ+ 1) = χ(Kℓ, k)

が成り立っている．

Question 3.4.
χ(Aq

G, q
k)

(q − 1)ℓ
は q に関する多項式だろうか．また，もしそうなら

lim
q→1

χ(Aq
G, q

k)

(q − 1)ℓ
= χ(G, k)

は成り立つだろうか．
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Question 3.4に答えるのは難しいと思われるが，以下の弱めた形であれば成り立つことが証明できる．

Theorem 3.5 ([4]). k ∈ Z>0 に対し，

χ(Aq
G, q

k)

(q − 1)ℓ
≡ χ(G, k) (mod q − 1).

[4]では，対数的ベクトル場のなす加群の基底の類似性などについても触れているので，ぜひご覧いただき
たい．

4 対数凹性に関連する疑問
グラフ G = ([ℓ], EG)の彩色多項式を

χ(G, t) =

ℓ∑
i=0

(−1)ℓ−iait
i

と表すと，ai > 0 (0 ≤ i ≤ ℓ)が成り立つ．Read [6] は係数列 a0, a1, . . . , aℓ は単峰的である，つまり，ある i

が存在して，a0 ≤ · · · ≤ ai ≥ · · · ≥ aℓ と予想した．係数列 a0, a1, . . . , aℓ が単峰的であることを示すには，対
数凹であること，すなわち

a2i ≥ ai−1ai+1 (1 ≤ i ≤ ℓ− 1)

となることを示せばよい．June Huh [2]は彩色多項式の係数列の対数凹性を超平面配置の代数幾何学的手法
を用いて証明した．超平面配置（あるいはより一般にマトロイド）の特性多項式は対数凹であることが示され
た [1, 2, 3]ので，

χ(Aq
G, t) =

ℓ∑
i=0

(−1)ℓ−iai(q)t
i

と表したとき，任意の素数冪 qに対して，ai(q) > 0 (0 ≤ i ≤ ℓ)，かつ，係数列 a0(q), a1(q), . . . , aℓ(q)は対数
凹である．

Example 4.1. G = C4 の場合を考える．

χ(Aq
C4
, t) = (t− q)4 + (q − 1)3(t− q)

= t4 − 4qt3 + 6q2t2 + (−3q3 − 3q2 + 3q − 1)t+ 3q3 − 3q2 + q.

係数は q に関する多項式になっている．各係数を q = 1でテイラー展開してみると，

a4(q) = 1

a3(q) = 4 + 4(q − 1)

a2(q) = 6 + 12(q − 1) + 6(q − 1)2

a1(q) = 4 + 12(q − 1) + 12(q − 1)2 + 3(q − 1)3

a0(q) = 1 + 4(q − 1) + 6(q − 1)2 + 3(q − 1)3
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となっていて，係数はすべて正である．これは任意の素数冪 q に対して ai(q) > 0となることよりも強い条件
である．さらに，ai(q)2 − ai−1(q)ai+1(q)も計算してみると，

a1(q)
2 − a0(q)a2(q) = 10 + 60(q − 1) + 150(q − 1)2 + 198(q − 1)3 + 144(q − 1)4 + 54(q − 1)5 + 9(q − 1)6

a2(q)
2 − a1(q)a3(q) = 20 + 80(q − 1) + 120(q − 1)2 + 84(q − 1)3 + 24(q − 1)4

a3(q)
2 − a2(q)a4(q) = 10 + 20(q − 1) + 10(q − 1)2

のように係数はすべて正であり，これは任意の素数冪 q に対して，a0(q), . . . , a4(q)が対数凹であるという条
件より強い条件である．

Question 4.2. ai(q) は q に関する多項式だろうか．また，もしそうなら ai(q) や ai(q)
2 − ai−1(q)ai+1(q)

を q = 1でテイラー展開したときの係数はすべて正だろうか．
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Quasi-F-splitting and singularities in mixed characteristic
（吉川翔・東京科学大学）

1 はじめに

本講演では,Bhatt–Ma–Patakfalvi–Schwede–Tucker–Waldron–Witaszek によって導入された per-
fectoid purity（[1]）を背景に, 混標数における新たな特異点の概念である quasi-F -splitting を紹介
した. 特に,quasi-F -splitting と perfectoid purity との関係, およびそれを用いた perfectoid purity
の新たな判定法に焦点を当てた. 本稿では, この枠組みの中心となる quasi-F -splitting の基本的
性質と, その “height” の具体的な計算例について述べる.

2 混標数における特異点

以下では素数 p を固定する. (R,m) を Noether 局所環とし,p ∈ m を仮定する. また,R/pR 上の
Frobenius 写像が有限射であるとする. 文献 [1] では, 正標数における F -pure の混標数類似とし
て perfectoid pure が導入された.

2.1 perfectoid pure の定義

定義 2.1. R が perfectoid pure であるとは,perfectoid への環の純拡大 R → B が存在することを
いう. さらに,R が Gorenstein である場合, 誘導される top local cohomology への写像

HdimR
m (R)→ HdimR

m (B)

が単射であることと同値である.

R が正標数の場合, 完全化 Rperf は perfectoid R-algebra の圏の始対象となる. したがって,R
が perfectoid pure であることと R → Rperf が純拡大であることは同値であり, これはさらに
Frobenius 写像の純性と同値となる. よって正標数の場合,perfectoid pure であることと F -pure で
あることは一致する.

2.2 特徴づけについて

k を標数 p の体とし, その Witt 環上の形式的冪級数環

A :=W (k)[[x1, . . . , xN ]]

を考える.I ⊂ A をイデアルとし R = A/I とする. このとき

A∞ := A[p1/p
∞
, x

1/p∞

1 , . . . , x
1/p∞

N ]

は A 上の典型的な perfectoid である. さらに A∞/IA∞ の perfectoid 化 (A∞/IA∞)perfd が存在
し, R∞ := (A∞/IA∞)perfd と書くと, これは R 上の perfectoid である. また,R が perfectoid pure
であることと R→ R∞ が純拡大であることが同値であることが知られている.
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しかし (A∞/IA∞)perfd の構造を明示的に理解するのは極めて難しく, I = (x1 + x2) のような
単純な場合であっても計算は困難である. このため perfectoid purity を実際に判定することは難
しいと考えられてきた. そこで, この困難を回避するために混標数版の quasi-F -splitting を導入
した.

3 Quasi-F-splitting
3.1 Witt ベクトルと準分裂

quasi-F -splitting を定義するには R 上の Witt 環が重要である. 正標数とは限らない環の Witt 環
を考えることはあまり一般的ではないが, 本研究ではそこが重要な役割を担う.

環 A に対し,Witt 環 Wn(A) は以下の性質を満たす:

1. Wn(A) は集合として An である.

2. ghost component と呼ばれる環準同型

φ :Wn(A)→ An, (a0, . . . , an−1) 7→ (a0, a
p
0 + pa1, . . .)

を備え,A が p-torsion free ならば φ は単射になる.

3. 環準同型 f : A→ B から誘導される

Wn(f) :Wn(A)→Wn(B) (a0, . . . , an−1) 7→ (f(a0), . . . , f(an−1))

は環準同型になる.

さらに, 準同型 F :Wn+1(R)→Wn(R) が存在し, これによって次の pushout 図式を得る:

Wn+1(R) F∗Wn(R)

R F∗Wn(R)/pWn(R) =: QR,n

R := R/pR.

res

F

ΦR,n

この図式により R→ QR,n が得られ, これを ΦR,n と書く.
定義 3.1. • R が n-quasi-F -split とは ΦR,n が分裂 R-加群準同型であることをいう.

• R が quasi-F -split とは, ある n ≥ 1 で R が n-quasi-F -split となることをいう.

• quasi-F -splitting height を

ht(R) := inf{n ≥ 1 | R is n-qFS},

と定める（存在しなければ ht(R) =∞）.
いくつかの関連する事実を紹介する：

• R が 1-quasi-F -split であることと R の F -pure 性は同値.

• 正標数の場合, これは呼子氏 [2] による F -splitting height の一般化.

• Witt 環の関手性により ht(R) ≥ ht(R).

• 例 R = Zp[x]/(xp − p) は p ≥ 3 で quasi-F -split でない.
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4 主定理

定理 4.1. R を完全交叉かつ p-torsion free とする. もし R が quasi-F -split ならば,R は perfectoid
pure である. 特に,R が quasi-F -split ならば R は perfectoid pure である.

n = 1 の場合は [1] による結果であり, この定理はその一般化になっている.
以下では, 本定理により perfectoid pure であることが初めて確認された例を示す.

4.1 主定理に関連する例

例 4.1.
R = Zp[x, y, z]/(x3 + y3 + z3).

• p ≡ 1 (mod 3)：R は F -pure. よって 1-qFS, したがって perfectoid pure（[1]）.

• p ≡ 2 (mod 3)：R は 2-quasi-F -split. よって perfectoid pure.

• p = 3：quasi-F -split でない. perfectoid purity は講演時点では未解決であったが, 最近
perfectoid pure であることが示された [3].

例 4.2.
R = Z2[x, y, z, w]/(w

2 + xyz(x+ y + z)).

このとき R は 2-quasi-F -split であり, したがって perfectoid pure である. 一方で R は quasi-F -
split ではない点に注意が必要である.
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環の表現論におけるスペクトラム理論

神田 遼 ∗

概要

環の表現論におけるスペクトラム理論について概説する．本稿では部分圏の分類を主たる問題
と位置付け，可換ネーター環の素イデアルの集合の類似である Gabriel スペクトラムと Ziegler
スペクトラムが果たす役割に焦点を絞って解説する．中村 力 氏との共同研究 [KN22] で得られ
たネーター代数上の平坦純移入加群の分類にも触れる．

1 はじめに
環論において，可換環の Zariskiスペクトラムの一般化や類似として得られる位相空間はしばしば

スペクトラムと呼ばれる．スペクトラムの定義はその用途に応じて複数存在するが，可換ネーター環
においては多くの定義が Zariskiスペクトラムに一致するため，最も理論がうまくいくモデルケース
と言える．一方で，スペクトラムの概念を加群圏の一般化・類似であるアーベル圏に拡張すること
で，非可換環上の加群圏やスキーム上の連接層の圏などにも適用できるようになり，さらに加群圏上
の関手圏のスペクトラムを考えることで，加群のモデル理論とも密接に関係する．本稿では Gabriel
スペクトラムと Zieglerスペクトラム，およびそれらに直接関係するスペクトラムに焦点を絞り，定
義や古典的な結果を紹介し，中村 力 氏との共同研究の内容 [KN22] で得られたネーター代数上の平
坦純移入加群の分類に触れる．

謝辞

第 70 回代数学シンポジウムで講演の機会を与えてくださった世話人の皆様に感謝申し上げます．
本研究は，JSPS科研費 JP21H04994，JP24K06693，および文部科学省特色ある共同研究拠点の整
備の推進事業 JPMXP0723833165の助成を受けたものです．

2 可換ネーター環の Zariskiスペクトラム
可換環 Rに対して，その素イデアル全体の集合である Zariskiスペクトラムを SpecRで表す．こ

の集合に Zariski位相と構造層を付加して幾何的な対象と見なすことはスキーム論において基本的な
考え方であるが，一方で，素イデアルの集合の部分集合と，種々の部分圏の間に 1対 1対応があるこ
とが知られている．このような対応の源流と言える結果が以下に述べる Gabrielの定理である．まず

∗ 所属：大阪公立大学大学院理学研究科数学専攻
メールアドレス：ryo.kanda.math@gmail.com
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は必要な記号・用語を準備する．
一般に，可換とは限らない環 Rに対して，右 R加群全体のなす圏（射は R準同型）をModRで

表す．有限表示 R加群全体のなす圏（射は R準同型）をmodRで表す．ここで加群M が有限表示
（finitely presented）であるとは，Rm → Rn →M → 0（m,nは非負整数）という完全列を持つこ
とであり，Rが右ネーター環の場合には有限生成であることと同値である．

ModRは加法圏であり，任意の射が kernelと cokernelを持ち，準同型定理が成り立つので，アー
ベル圏である．Rが右ネーター環のとき，あるいはより一般に右連接環のとき，有限表示加群のなす
圏 modRもアーベル圏となる．*1

アーベル圏 Aに対して，M ∈ Aで，M が Aの対象であることを表す．X ⊂ Aで，X が Aの充
満部分圏であることを表す．これは X が Aの対象の集まりであると言っても同じことである．本稿
においては充満部分圏を単に部分圏とよぶことにする．
一般に，アーベル圏の対象M ∈ A に対して，M の部分対象（subobject）・剰余対象（quotient

object）の概念が定義される．環 Rに対するModR，および右ネーター環 Rに対する modRにお
いては，これらは部分加群・剰余加群の概念に一致する．

定義 2.1. Aをアーベル圏とし，∅ 6= X ⊂ Aとする．

(1) X が部分対象（resp. 剰余対象）で閉じているとは，任意のM ∈ X に対して，M の任意の部
分対象（resp. 剰余対象）が X に属することをいう．

(2) X が拡大（extension）で閉じているとは，Aにおける任意の短完全列 0→ L→M → N → 0
に対して，L,N ∈ X ならばM ∈ X が成り立つことをいう．

(3) X が Aの Serre部分圏であるとは，X が Aにおいて部分対象，剰余対象，拡大で閉じているこ
とをいう．

可換環 Rに対して，部分集合 Φ ⊂ SpecRが特殊化（specialization）で閉じている，あるいは特
殊化閉集合であるとは，Φが素イデアルの包含関係という半順序に関して upper setとなっているこ
と，つまり，任意の素イデアルの列 p ⊂ qに対して，p ∈ Φならば q ∈ Φが成り立つことをいう．

定理 2.2 (Gabriel [Gab62]). Rを可換ネーター環とするとき，次のような包含関係を保つ全単射が
ある：

{modRの Serre部分圏 } ∼−→ { SpecRの特殊化閉集合 }

∈ ∈

X 7→
⋃
M∈X SuppM

逆写像は Φ 7→ {M ∈ modR | SuppM ⊂ Φ }で与えられる．

この定理はこれまでに研究されている種々の部分圏の分類の源流（の 1つ）と言えるものであり，
現在までに次のような一般化が考えられてきた：

(1) 可換ネーター環でない場合を考える．

*1 環 Rが右連接（right coherent）であるとは，Rの任意の有限生成右イデアルが（右加群として）有限表示であること
をいう．R が右連接であることは，mod R がMod R のアーベル部分圏となることと同値であり，さらに mod R が
（内在的に）アーベル圏となることとも同値である．例えば [Her97, §1.3]を参照．
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(2) Serre部分圏以外の部分圏を考える．

(3) より広く，modR以外の圏の様々な部分圏を考える．

いずれの方向性でも多岐に渡る結果があるが，ここでは代表的かつ本稿の趣旨に近いものに限定し
て言及する．まず (1)の方向性では，Gabriel [Gab62] 自身が，定理 2.2の結果がネータースキーム
X の連接層の圏 cohX の Serre部分圏に対しても成り立つことを示している（この場合，SpecRの
代わりとなるのはスキーム X の底集合である）．また，次の章で説明する非可換環への一般化も (1)
の例である．
次に，定理 2.2と同じ可換ネーター環Rに対するmodRについて (2)の方向性を考察する．定理 2.2

の対応を観察すると，Serre部分圏とは限らない部分圏 X ⊂ modRに対しても，
⋃
M∈X SuppM は

特殊化閉集合である．逆に，特殊化閉集合とは限らない部分集合 Φ ⊂ SpecRに対しても，対応する
部分圏は Serre部分圏となっているので，この意味で安直な一般化はない．しかし実は対応の仕方を
変えることで，次のように一般化できる：

定理 2.3 (Takahashi [Tak08]). Rを可換ネーター環とするとき，次のような包含関係を保つ全単射
がある：

{modRの torsionfree class } ∼−→ { SpecRの部分集合 }

∈ ∈
X 7→

⋃
M∈X AssM

逆写像は Φ 7→ {M ∈ modR | AssM ⊂ Φ }で与えられる．

ここで X ⊂ modR が torsionfree class であるとは，X が部分加群と拡大で閉じていることをい
う．（ある torsion pair (T ,F)に現れる F を torsionfree classとよぶことも多いが，ここでの定義
とは異なる．）X ⊂ modR が Serre部分圏であるときは，

⋃
M∈X AssM =

⋃
M∈X SuppM は特殊

化閉集合となるため，定理 2.3の全単射の制限として定理 2.2の全単射が得られる．
双対的に，torsion classは剰余対象と拡大で閉じたクラスとして定義されるが，modRにおいては

必ずしも torsion classと torsionfree classは 1対 1に対応せず，実際，modRの torsion classはす
べて Serre部分圏になることが知られている．（この事実は [SW11, Theorem 2]で明示的に述べられ
ているが，それ以前にも知られていたようである．）

Saito [Sai25, Theorem A] は広いクラスのネータースキーム X に対して 定理 2.3 を一般化した
が，この場合は cohX の torsionfree classで line bundleをテンソルする操作で閉じているものと，
X の底集合の部分集合が 1対 1に対応する．Iyama-Kimura [IK24] では非可換なネーター代数（定
義は後述）に対して，torsion classおよび torsionfree classを考察している．

(3)の方向性として，導来圏の部分圏の分類は環の表現論における主要な問題の 1つである．代表
的な結果として，次の Hopkins-Neemanの定理が有名である．

定理 2.4 (Hopkins [Hop87], Neeman [Nee92]). R を可換ネーター環とするとき，次のような包含
関係を保つ全単射がある：

{Kb(projR)の thick部分圏 } ∼−→ { SpecRの特殊化閉集合 }

ここで Kb(projR) は有限生成射影加群のなすホモトピー圏であり，これは三角圏の構造を持つ．
thick部分圏とは（三角圏の意味での）拡大，シフト関手 [n]（n ∈ Z），直和因子で閉じた部分圏であ
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る．この結果は Thomason [Tho97] によって，quasi-compact quasi-separatedスキームに一般化さ
れている．
有界導来圏Db(modR)および特異圏Dsg(R)の thick部分圏の分類はより難しく，可換環の表現論

における主要な問題の 1つである．例えば Stevenson [Ste14] による hypersurfaceおよび complete
intersectionについての結果が有名であるが，本稿では詳細には立ち入らない．
以上に述べた結果は主に有限生成加群のなす圏，およびそれに付随する導来圏などの部分圏の分類

であるが，有限生成とは限らない加群の圏ModRに関する部分圏の分類もある．例えば定理 2.2に
ついては，Gabriel自身が，ModRの局所化部分圏（Serre部分圏であって有限個とは限らない直和
で閉じたもの）と SpecRの特殊化閉集合が 1対 1に対応することを示している．

3 非可換環のスペクトラム
この章では，可換ネーター環についての Serre部分圏の分類（定理 2.2）を，非可換環に一般化す

ることを考える．定理 2.2では R の素イデアルを用いて分類したので，非可換環においても素イデ
アルを用いようとするのは自然な発想であろう．
可換とは限らない環 Rに対して，イデアル I ⊂ Rは，両側イデアル（RIR ⊂ I を満たす加法部分

群）を意味するものとする．

定義 3.1. Rを環とする．イデアル P ( Rが素イデアル（prime ideal）であるとは，任意のイデア
ル I, J ⊂ Rに対して，IJ ⊂ P ならば I ⊂ P または J ⊂ P が成り立つことをいう．これは，任意の
a, b ∈ Rに対して，aRb ⊂ P ならば a ∈ P または b ∈ P が成り立つことと同値である．
Rの素イデアル全体のなす集合を SpecRで表す．

素朴には「ab ∈ P ならば a ∈ P または b ∈ P」という条件も考えられる．この条件は上記の素
イデアルの定義より真に強く，この条件を満たすイデアル P ( R は完全素イデアル（completely
prime ideal）とよばれる．素イデアルと完全素イデアルはいずれも重要な概念であるが，素イデアル
には次のような利点がある：

(1) 任意の環 R 6= 0は少なくとも 1つの素イデアルを持つ．実際，Zornの補題より極大イデアルが
存在し，それは素イデアルである．一方，完全素イデアルは存在しないことがある．例えば，体
K 上の n次正方行列環Mn(K)は，n ≥ 2のとき，完全素イデアルを持たない．（イデアルは 0
とMn(K)のみであり，いずれも完全素イデアルではない．n = 1のときは体 K そのものなの
で，0が完全素イデアルである．）

(2) 素イデアルの概念は森田不変である．すなわち，環 R,S が森田同値（ModRとModS が圏と
して同値）であるならば，Rのイデアルと S のイデアルは自然に 1対 1に対応し，この対応は
包含関係およびイデアルの積を保つので，SpecRと SpecS は自然に 1対 1に対応する．一方，
完全素イデアルの概念は森田不変ではない．実際，任意の n ≥ 2に対して，体K とMn(K)は
森田同値であるが，K が完全素イデアル 0を持つ一方，Mn(K)は完全素イデアルを持たない．

なお，片側イデアル（右イデアル・左イデアル）に対して，素イデアルの概念を考える試みもある
が（例えば [Rey10]），定義にいくつかバリエーションがあり，上記の素イデアルの概念と比べると扱
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いづらい点が多い．
さて，今は加群圏の部分圏の分類を念頭においているので，数が比較的多く，森田不変な概念であ

る素イデアル（定義 3.1）が妥当な選択肢であるように思われる．しかし実際には，Rがネーター環
であっても，素イデアルは十分たくさんあるとは限らない：

例 3.2. K を標数 0 の体とし，Weyl 代数 R = A1(K) = K〈x, y〉/(xy − yx − 1) を考える．R は
ネーター環（左ネーター環かつ右ネーター環）であり，単純環（0と R以外の非自明なイデアルを持
たない）である．0が唯一の素イデアルであり，完全素イデアルでもある．一方，Rは左アルティン
環でも右アルティン環でもない．R の大域次元と Gabriel-Rentschlerの意味での Krull次元はとも
に 1であり，Rの Gelfand-Kirillov次元は 2である．（[MR01, §1.3.5, §7.5.8, §8.1.15]を参照．）

Krull次元が 0の可換ネーター環はアルティン環であった．この非可換ネーター環 Rにおいては，
素イデアルの意味での Krull次元は 0であるにも関わらず，Rはアルティン環ではない．よって，長
さ有限な加群全体のなす Serre部分圏は Rを含まない．このことから，SpecR = {0}の部分集合で
は，modR の Serre部分圏を分類することはできないことが分かる．（SpecR の部分集合は 2つだ
けだが，modRの Serre部分圏は 3つ以上存在する．）

よって非可換の場合，modRの部分圏を分類するという観点からは，素イデアルの集合 SpecRは
適切なスペクトラムとは言えない．ここで可換ネーター環における次の基本的な事実に注目しよう．

定理 3.3 (Matlis [Mat58]). Rを可換ネーター環とするとき，次の全単射がある：

SpecR ∼−→ {直既約移入 R加群の同型類 }

∈ ∈

p 7→ ER(R/p)

ここで ER(M)は R加群M の移入包絡である．逆写像は，直既約移入加群 I に対して，Ass I = {p}
となる p ∈ SpecRを対応させることで与えられる．

実は非可換ネーター環においては定理 3.3は必ずしも成り立たず，先の例 3.2がその反例となって
いる．そこで発想を変えて，素イデアルの集合ではなく，直既約移入加群の同型類の集合をスペクト
ラムと見なすことにしよう．後の議論のためにより一般的な定義をしておく．
アーベル圏であって，任意の対象の族の直和（余積）を持ち，順極限が完全*2であり，生成対象を

持つようなものを Grothendieck圏とよぶ．任意の環 Rに対して，ModRが Grothendieck圏である
ことは容易に分かる．任意のスキーム X に対して，準連接層の圏 QCohX は Grothendieck圏であ
るが，生成対象の存在が非自明であり，これは 2000年頃に Gabberによって証明された（[Con00,
Lemma 2.1.7]，[Bra18, Appendix]を参照）．Grothendieck圏において，任意の対象M は移入包絡
M ⊂ E(M)を持ち，その同型類は一意に定まる．

*2 ここで圏 C における順極限（direct limit）とは，C における順系（有向集合から C への関手）の余極限のことを指
す．アーベル圏 C において順極限が完全とは，任意の有向集合 I（を圏と見なしたもの）に対して，順極限をとる関手
lim−→ : CI → C が完全であることをいう．順極限より一般の余極限として，フィルター圏からの関手の余極限であるフィ
ルター余極限（filtered colimit）があるが，任意のフィルター圏は，ある順系からの final functorを持つので，順極
限が完全であることはフィルター余極限が完全であることと同値である．（[AR94, Theorem 1.5] および [AN82] を
参照．）
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定義 3.4. G を Grothendieck圏とする．

SpG := { G における直既約移入対象の同型類 }

と定め，これを G の Gabrielスペクトラムとよぶ．*3

可換ネーター環 Rに対しては，定理 3.3より，Sp(ModR)と SpecRの間に自然な全単射がある．
部分圏の分類には SuppM や AssM などの操作が必要になるが，次のように定義すると可換ネー
ター環上の加群に対する SuppM および AssM の一般化が得られる：

定義 3.5. G を Grothendieck圏とする．M ∈ G に対して，次のように定義する：

(1) SuppM := { I ∈ SpG | Hom(M, I) 6= 0 }．

(2) AssM := { I ∈ SpG | I は E(M)の直和因子 }．

Gabrielによる Serre部分圏の分類（定理 2.2）では SpecRの特殊化閉集合を用いたが，非可換の
場合はその定義に注意が必要である．I, J ∈ SpG に対して

I ≤ J :⇐⇒ 任意のM ∈ G に対して，I ∈ SuppM ならば J ∈ SuppM

と定めると，これは可換ネーター環 Rに対する SpecRの包含関係の一般化となっている．この関係
≤は一般に前順序（partial preorder）であるが，G が局所ネーター的*4であれば≤は半順序（partial
order）となる．しかし，この順序に関する upper setは必ずしも Serre部分圏と 1対 1に対応しな
い．（[Pap02, Example 4.7]および [Kan15, Example 3.4]で挙げられている例では，半順序は自明
だが，以下に述べる Ziegler位相は離散位相ではないので，これが反例となる．）
代わりに考えるべき部分集合は次の意味の開集合である：

定義 3.6. G を局所連接 Grothendieck圏とし，cohG を連接対象のなす部分圏とする．*5このとき，
SpG には

{SuppM |M ∈ cohG }

を開集合の基底とする位相が定まる．この位相を Ziegler位相とよび，その開集合を，Ziegler開集合
とよぶ．*6

この位相は，可換ネーター環 R に対する SpecR の Zariki位相の一般化ではない．実際，全単射
SpecR ∼= Sp(ModR) によって，Sp(ModR) の Ziegler 開集合は，SpecR の特殊化閉集合と一致
する．したがってこの場合，Ziegler 開集合の無限個の共通部分も Ziegler 開集合となるが，一般の
Grothendieck圏においては，それが局所ネーターであっても，Ziegler開集合の無限個の共通部分は
Ziegler開集合とは限らない（[Pap02, Example 4.7]，[Kan15, Example 3.4]）．

*3 ここでは単なる集合として定義しているが，可換環の Zariskiスペクトラムの一般化となる位相を入れた場合に限って
Gabrielスペクトラムとよぶ流儀もある．

*4 Grothendieck圏 G が局所ネーター（locally noetherian）であるとは，ネーター対象（部分対象に関する昇鎖条件を
満たす対象）からなる対象の族で，G を生成するものが存在することをいう．

*5 Grothendieck圏 G が局所連接（locally coherent）であるとは，G の任意の対象が連接対象の順極限（あるいはフィ
ルター余極限）と同型であることをいう．連接対象は連接加群の自然な一般化だが，定義は [Her97, §1]を参照．例え
ば Rが右連接環のとき，Mod Rは局所連接である．

*6 [Her97]では，本稿における Gabrielスペクトラムにこの位相を入れたものを Zieglerスペクトラムとよんでいる．
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定理 3.7 (Herzog [Her97], Krause [Kra97]). G を局所連接 Grothendieck圏とするとき，次のよう
な包含関係を保つ全単射がある：

{ cohG の Serre部分圏 } ∼−→ { SpG の Ziegler開集合 }

∈ ∈

X 7→
⋃
M∈X SuppM

逆写像は Φ 7→ {M ∈ cohG | SuppM ⊂ Φ }で与えられる．

さて，定理 3.3 の後に述べたように，右ネーター環 R に対して，素イデアルの集合 SpecR と
Gabrielスペクトラム Sp(ModR)は必ずしも 1対 1に対応しない．しかし，次のように一方から他方
への自然な写像を作ることができる：任意の P ∈ SpecRに対して，ただ 1つの IR(P ) ∈ Sp(ModR)
（直既約移入右 R加群の同型類）と，ただ 1つの正整数 nP が存在して，ER(R/P ) ∼= I(P )nP とな
る．逆に，任意の I ∈ Sp(ModR)に対して，Ass I（両側素イデアルの意味での随伴素イデアル）は
1点集合となるので，その 1点を対応させることができる．
R が右ネーター環なので，定義 3.5の後に定義した関係 ≤により Sp(ModR)は半順序集合とな

る．一方，SpecRは素イデアルの包含関係により半順序集合である．

定理 3.8. 右ネーター環 Rに対して，上記の方法で定義される写像を

Sp(ModR) SpecR
ϕ

ψ

とおくと，次が成り立つ：

(1) ϕと ψ は半順序集合の準同型である．（I ≤ J ならば ϕ(I) ⊂ ϕ(J)．ψ も同様．）

(2) ϕ ◦ ψ = id．特に，ϕは全射であり，ψ は単射である．

(3) 任意の I ∈ Sp(ModR)と P ∈ SpecRに対して，ψ(P ) ≤ I は P ⊂ ϕ(I)と同値である．

(4) ϕおよび ψ を制限することで，極小元の集合の間の全単射

Min(Sp(ModR)) Min(SpecR)
ϕ

ψ

が得られる．

定理 3.8 (4)より，Sp(ModR)の極小元の個数は SpecRの極小元の個数と一致し，Rのネーター
性からこれらは有限である．これらが 1点集合であるという性質は，可換ネーター環に対するアファ
インスキームの既約性を一般化した概念となる．一方，部分圏を用いることで，Rが Sp(ModR)の
意味で被約（reduced）であることと，SpecRの意味で被約であることをそれぞれ定義することがで
き，両者の概念が（非自明な議論により）一致する．定理 3.8およびそれを用いた既約性・被約性に
関する議論は，ある種のネーター性と直積の完全性を満たす Grothendieck圏に対して行うことがで
きる（[Kan22, Theorem 1.1]）．
定理 3.8の ϕと ψが互いに逆写像であることは，Rが右 FBN環（right fully bounded noetherian

ring）であることと同値であることが知られているが，応用上重要な例が次のネーター代数である：
Rを可換ネーター環とし，Aを R代数（環 Aと，Rから Aの中心への環準同型の組）とする．Aが

7



R加群として有限生成であるとき，Aをネーター R代数（Noether R-algebra）とよぶ．これは単に
Aが R代数であってネーター環であることよりも，はるかに強い性質である．

命題 3.9. ネーター R代数 Aに対して，

Sp(ModA) SpecA
ϕ

ψ

は互いに逆写像である．（つまり，Aは右 FBN環である．ネーター代数の定義の左右対称性より，A
は左 FBN環でもある．）

定理 3.7より，ネーター R 代数 Aに対して，modAの Serre部分圏は Sp(ModA)の Ziegler開
集合と 1 対 1 に対応するが，これは命題 3.9 によって，SpecA の特殊化閉集合（SpecA の upper
set）と 1対 1に対応する．
さて，可換環の Zariskiスペクトラムが持つ重要な性質に関手性がある．すなわち，可換環の間の

環準同型 R→ S は写像 SpecS → SpecRを誘導し，Specは可換環全体のなす圏から集合全体のな
す圏（あるいはスキーム全体のなす圏）への反変関手となる．このような関手性を非可換環に対して
も期待することは自然な発想だが，残念ながら，素イデアルの集合 SpecRと Gabrielスペクトラム
Sp(ModR)はいずれも関手性を満たさない．このことは次の例から分かる：

例 3.10. K を体として，環準同型

f : K ×K ∼=
[
K 0
0 K

]
↪→
[
K K
K K

]
= M2(K)

を考える．Spec(K ×K) = (SpecK)t (SpecK) = {P1, P2}は 2点集合であり，M2(K)はK と森
田同値なので，SpecM2(K)は 1点集合である．よって写像 SpecM2(K) → Spec(K ×K)は 1点
集合から 2点集合への写像となるが，Spec(K ×K)の 2点の役割は対等なので，少なくとも自然な
方法では行き先を定めることはできない．
実際，Specが集合の圏への反変関手であると仮定すると次のように矛盾が生じる．K ×K の成分

を入れ替える自己環準同型 (a, b) 7→ (b, a)と，M2(K)の自己環準同型[
a b
c d

]
7→
[
d c
b a

]
を考えると，可換図式

K ×K M2(K)

K ×K M2(K)

f

f

が得られる．ここに関手（と仮定した）Specを適用すると，

{P1, P2} {∗}

{P1, P2} {∗}

Spec f

Spec f
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となるが，左下から左上への写像は 2点を入れ替える写像なので，Spec f をどのように定義しても
矛盾である．K ×K とM2(K)はいずれもネーター代数なので，以上の議論は Specを Gabrielスペ
クトラムに置き換えても成立する．

以上の議論では，スペクトラムが森田不変であることを本質的に用いているが，これを仮定しない
場合でも，次のような結果がある：

定理 3.11 (Reyes’s No-Go Theorem [Rey12, Theorem 1.1]). F が環全体のなす圏から集合全体の
なす圏への反変関手であり，これを可換環全体のなす圏に制限したものが Zariskiスペクトラムに一
致すると仮定する．このとき，任意の n ≥ 3に対して，F (Mn(C)) = ∅が成り立つ．

Mn(C)は非常に基本的な非可換環（Cと森田同値）であるため，そのスペクトラムが空集合とな
るものは用途が限定的になる．実は，完全素イデアル（ab ∈ P ならば a ∈ P または b ∈ P）全体の
なす集合をスペクトラムと考えたものが関手的なスペクトラムの例になっているが，n ≥ 2に対して
Mn(C) = ∅である．

注意 3.12. 完全素イデアルの代わりに素イデアルを使うべきという発想は，テンソル三角圏のスペ
クトラムにおいても有効である．Balmer [Bal05] は対称テンソル三角圏に対するスペクトラムを定
義し，いくつかのテンソル thick 部分圏の分類を統一する見方を与えた．このスペクトラムは現在
では Balmerスペクトラムとよばれており，このスペクトラムを用いた理論は tt-geometry（tensor
trinagular geometry）とよばれている（Balmer自身による概説 [Bal20] がある）．
対称テンソル三角圏 T に対して，thick部分圏 I ⊂ T であって，T ⊗ I ⊂ I を満たすものを thick

テンソルイデアルとよぶ．thickテンソルイデアル P ( T が素（prime）であるとは，X ⊗ Y ∈ P
ならば X ∈ P または Y ∈ P を満たすことをいう．T の素 thickテンソルイデアル全体の集合を T
の Balmerスペクトラムとよぶ．すなわち，可換環に対する加法部分群，イデアル，素イデアルの概
念が，対称テンソル三角圏における thick部分圏，イデアル，素イデアルに対応している．
一方，finite tensor category のように，対称とは限らない重要なテンソル三角圏もある．この場

合に上記の Balmerスペクトラムの定義をそのまま用いる（ただしイデアルは両側イデアルにする）
と完全素イデアルの概念に対応するが，Nakano-Vashaw-Yakimov [NVY22] は，素 thickテンソル
イデアルの条件を X ⊗ T ⊗ Y ∈ P ならば X ∈ P または Y ∈ P に変更した非可換 Balmerスペク
トラムを考え，その後 [NVY24] において，finite tensor category のコホモロジー環の圏論的中心
（categorical center）との関係を考察している．
なお，可換環 R に対する有界導来圏 Db(modR) や特異圏 Dsg(R)，非可換環の導来圏のように，

テンソル構造を持つとは限らない重要な三角圏もある．この場合のスペクトラムは Matsui [Mat21]
によって，素 thick部分圏を用いて定義されており，Matsuiスペクトラムとよばれている．テンソル
構造を持つ三角圏に対しても，一般にMatsuiスペクトラムは Balmerスペクトラムよりも複雑な構
造を持つ．Hirano-Ouchi [HO22] は楕円曲線 E に対して，Db(cohE)のMatsuiスペクトラムを決
定している．
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4 関手圏のスペクトラム
Rを環とする．ここでは，有限表示右加群全体のなす圏modRからアーベル群全体のなす圏Abへ

の加法的関手全体のなす圏 (modR,Ab)を考え（これを本稿では単に関手圏とよぶ），その Gabriel
スペクトラムについて考察する．modRは一般に無限直和を持たない「小さい」圏だが，Abが無限
直和を持つ「大きい」圏であるため，(modR,Ab)も「大きい」圏であることに注意する．
関手 F ∈ (modR,Ab)が有限表示であるとは，

Hom(M1,−)→ Hom(M0,−)→ F → 0

（M0,M1 ∈ modR）という完全列を持つことをいう．有限表示関手全体のなす (modR,Ab)の部分
圏を fp(modR,Ab)と表す．

注意 4.1. 任意の環 R に対して，(modR,Ab) は局所連接 Grothendieck 圏である（Auslander
[Aus66]）．その連接対象全体のなす部分圏は fp(modR,Ab)である．
したがって定理 3.7より，fp(modR,Ab)の Serre部分圏は Sp(modR,Ab)の Ziegler開集合と 1

対 1に対応する．

有限表示右 R加群の圏 modRの関手圏と，有限表示左 R加群の圏 modRop の関手圏*7には，次
のような Auslander-Gruson-Jensen双対がある．

定理 4.2 (Auslander [Aus86], Gruson-Jensen [GJ81]). 環 Rに対して，反変同値

d : fp(modR,Ab) ∼−→ fp(modRop,Ab)

が次のように定まる：F ∈ fp(modR,Ab)に対して，dF ∈ fp(modRop,Ab)を，任意の L ∈ modRop

に対して
(dF )(L) := Hom(F,−⊗R L)

とおくことで定める．dの擬逆関手も同様の形で定義される．

この反変同値は，次のようにテンソル関手と Hom関手を入れ替える：

• 任意の N ∈ modRop に対して，d(−⊗R N) ∼= HomR(N,−)．
• 任意のM ∈ modRに対して，d(HomR(M,−)) ∼= M ⊗R −．

反変同値によって Serre部分圏は Serre部分圏に写るので，定理 3.7と定理 4.2を組み合わせるこ
とで次が得られる：

系 4.3. Sp(modR,Ab)の Ziegler開集合と，Sp(modRop,Ab)の Ziegler開集合は，1対 1に対応
する．

このことから，Sp(modR,Ab) と Sp(modRop,Ab) の間に同相写像があるのではないかと期待
したくなるが，これは筆者の知る限り未解決である．もし Sp(modR,Ab) が Ziegler 位相に関し

*7 Rop は，R の積を逆にして定義される反転環（opposite ring）を表す．右 Rop 加群を考えることと左 R 加群を考え
ることは同じである．
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て T0 空間（任意の 2 点が位相的に識別可能）であるならば，このことは容易に従うが，一般に
Sp(modR,Ab)は T0 空間ではないことが知られている．詳細は [Pre09, §5.4] を参照されたい．

注意 4.4. 定理 4.2は関手圏に関する定理だが，加群のモデル理論における双対性の帰結でもある．
環 R に対して，pp-formulaとよばれる，R 加群の元の組を自由変数とする論理式 φを考えると，

任意の加群 M に対して，φ を満たすような加群の元の組の集合 Fφ(M) ⊂ Mn が定まり，これは
Mn の加法部分群となる．同じ個数の自由変数を持つ 2 つの pp-formula φ, ψ が，任意の R 加群
M に対して Fψ(M) ⊂ Fφ(M) を満たすとき，組 φ/ψ を pp-pair とよぶ．任意の pp-pair φ/ψ に
対して，対応M 7→ Fφ(M)/Fψ(M)は有限表示関手 modR → Abを定め，すべての有限表示関手
modR→ Abは同型を除いてこの形で表せる．
各 pp-formula φに対して，その elementary dualとよばれる pp-formula Dφが定まる．pp-pair

φ/ψ に対しては，その dualとしてDψ/Dφを考えることができ，この対応が定理 4.2の反変同値を
導く．詳細については [Pre09]を参照されたい．（[KN22, §8]に簡潔なまとめがある．）

一般に，加群圏のスペクトラム Sp(ModR) よりも関手圏のスペクトラム Sp(modR,Ab) の方が
はるかに大きいが，純移入加群の概念を用いると，関手圏のスペクトラムを加群の言葉で記述するこ
とができる．

定義 4.5. Rを環とする．

(1) 右 R加群の短完全列
0→ L→M → N → 0

が純完全列（pure exact sequence）であるとは，任意の左 R加群W に対して，誘導される列

0→ L⊗RW →M ⊗RW → N ⊗RW → 0

が（アーベル群の）完全列であることをいう．

(2) 右 R加群 Qが純移入加群（pure-injective module）であるとは，任意の右 R加群の純完全列

0→ L→M → N → 0

に対して，誘導される列

0→ HomR(N,Q)→ HomR(M,Q)→ HomR(L,Q)→ 0

が（アーベル群の）完全列であることをいう．

定義より自明に，任意の移入加群は純移入加群である．

例 4.6. Rを可換環とし，Aを（可換ともネーターとも限らない）R代数とし，E を移入 R加群と
する．任意の右 A加群M に対して，

M∗ := HomR(M,E) ∈ ModAop

は純移入左 A加群である（[Pre09, Proposition 4.3.29]を参照）．
特に，K が体，Aが有限次元K 代数であるとき，K-dualを (−)∗ = HomK(−,K)で表すと，任

意のM ∈ modA（有限次元加群）に対して，同型M ∼−→M∗∗ が存在するので，M は純移入加群で
ある．
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考察 4.7. 任意のM ∈ ModRに対して，関手M ⊗R − : modRop → Abを与える対応は，忠実充
満関手ModR → (modRop,Ab)を定める．これを制限することで，純移入右 R加群のなす部分圏
と，移入対象からなる (modRop,Ab)の部分圏の間の同値が得られる（[Pre09, §12.1.1]を参照）．
したがって，直既約純移入右 R 加群の同型類と，(modRop,Ab) の直既約移入対象の同型類は 1

対 1に対応する．後者のなす集合は関手圏のスペクトラム Sp(modRop,Ab)に他ならない．

直既約純移入 R加群の同型類の集合を，Rの Zieglerスペクトラムとよぶ．*8

例 4.6からも分かるように，与えられた環 Rに対して，一般に，純移入加群は非常に多く存在する
ので，Rの Zieglerスペクトラム全体を描写することは容易ではない．一方で，移入加群は純移入加
群の特別な場合なので，Matlisの対応（定理 3.3）は可換ネーター環 Rに対して，Zieglerスペクトラ
ムの一部を素イデアルを用いて描写したものと見なせる．この直既約移入加群の全体に，定理 4.2の
反変同値を用いて得られる部分は，直既約純移入加群であって平坦（flat）であるものの全体である：

定理 4.8 (Herzog [Her93, Corollary 9.6]). Rを右ネーター環とする．*9このとき，直既約移入右 R

加群の同型類と，直既約平坦純移入左 R加群の同型類は 1対 1に対応する．

Auslander-Gruson-Jensen双対（定理 4.2）は Sp(modR,Ab)と Sp(modRop,Ab)の間の全単射
を誘導するわけではないが，Herzogは，直既約移入加群がなす前者の部分集合と，直既約平坦純移
入加群がなす後者の部分集合の間には全単射が誘導されることを示し，定理 4.8を得た．ところがこ
の対応は具体的ではなかったため，直既約平坦純移入加群が具体的にどのような形であるかという問
題が残った．
平坦純移入加群の分類に関する先行結果はそれほど多くないが，可換ネーター環の場合には，以下

のように記述できることが知られていた．

定理 4.9 (Enochs [Eno84]). Rを可換ネーター環とするとき，

M =
∏

p∈SpecR
HomR(ER(p), ER(p)⊕Bp)

の形の加群が，平坦純移入 R加群の同型類のすべてである．ここで各 Bp は集合であり，その濃度は
M の同型類によって一意に定まる．（ER(p)⊕Bp は，ER(p)のコピーを Bp の濃度だけ直和したもの
を表す．）
したがって，直既約平坦純移入 R加群の同型類は

HomR(ER(p), ER(p)) = R̂p

（p ∈ SpecR）という形である．ここで R̂p は Rp の p進完備化を表す．

Kanda-Nakamura [KN22] ではこの結果を非可換なネーター代数に一般化した．主張を述べるた
めの準備をしよう．Rを可換ネーター環，Aをネーター R代数とし，f : R → Aを代数構造を与え

*8 もともとは Ziegler [Zie84] が加群のモデル理論の文脈で導入した概念である．Herzog [Her97] は局所連接
Grothendieck 圏 C の直既約移入対象の同型類全体のなす位相空間を C の Ziegler スペクトラムとよんでいる
が，これは考察 4.7を踏まえたものである．すなわち，（Herzogの意味での）(mod Rop, Ab)は，（Zieglerの意味で
の）Rの Zieglerスペクトラムと同一視できる．これらはMod Rの Zieglerスペクトラムではないことに注意．

*9 [Her93]ではより一般的な状況で述べている．また，右連接環（特に右ネーター環およびネーター代数）に対しては，平
坦純移入左加群と平坦余ねじれ左加群（flat cotorsion module）は同じ概念となる（[KN22, §2.1]を参照）．

12



る環準同型とするとき，任意の素イデアル P ⊂ Aに対して，P ∩ R := f−1(P )は Rの素イデアル
となる．また，命題 3.9より Aは右 FBN環であり，P に対応する直既約移入右 A加群 IA(P )で表
される．

定理 4.10 (Kanda-Nakamura [KN22, Theorem 1.1, Proposition 5.4]). Rを可換ネーター環，Aを
ネーター R代数とするとき，

M =
∏

P∈SpecA
HomR(IA(P ), ER(R/(P ∩R))⊕BP )

の形の加群が，平坦純移入左 A加群の同型類のすべてである．ここで各 BP は集合であり，その濃
度はM の同型類によって一意に定まる．
したがって，直既約平坦純移入左 A加群の同型類は

TAop(P ) := HomR(IA(P ), ER(P ∩R))

（P ∈ SpecA）という形である．

直既約移入加群 IA(P )と直既約平坦純移入加群 TAop(P )の対応が，Herzogの対応（定理 4.8）の
具体的な記述を与えることも分かる．また，可換ネーター環の場合の類似として，完備化を用いて直
既約平坦純移入左 A加群を計算することもできる：

命題 4.11 (Kanda-Nakamura [KN22, Proposition 5.2]). Rを可換ネーター環，Aをネーター R代
数とする．任意の p ∈ SpecRに対して，左 A加群の直既約分解

Âp
∼=

⊕
P∈SpecA
P∩R=p

TAop(P )nP

が存在する．ここで，Âp は Ap の p進完備化であり，正整数 nP は EA(A/P ) ∼= IA(P )nP によって
決定される．

例 4.12. Rを可換ネーター環とし，下三角行列環 A =
(
R 0
R R

)
を考えると，Aはネーター R代数

である．各 p ∈ SpecRに対して，

Âp
∼=
(
R̂p

R̂p

)
⊕
(

0
R̂p

)
が左 A加群としての直既約分解を与えるので，直既約平坦純移入左 A加群の同型類は(

R̂p

R̂p

)
,

(
0
R̂p

)
（p ∈ SpecR）で，すべて与えられる．
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一般型超曲面の部分多様体に関する
いくつかの結果

阿部　健　（同志社大学　理工学部）

1 はじめに
本稿は第 70回代数学シンポジウム（2025年 8月 26-29日，九州大学西
新プラザ）において行った講演の内容をまとめたものである．
1960年代に小林昭七は双曲性という概念を導入した．Langは，複素微
分幾何的概念である双曲性が代数的に言い換えられる，という予想を提示
した．この予想は未解決であるが，Langの予想を通じて，双曲性に関す
る問題の代数類似を考えることが出来るようになる．小林は双曲性を導
入した際，いくつもの興味深い問題を提示した．そのうちの一つが超曲面
予想と呼ばれるもので，その主張は，射影空間内の次数が大きい generic

な超曲面は双曲的であろう，というものである．これの代数的類似をEin

は 90年頃に証明した．この報告書の内容は，Einの結果のその後の発展
に関するものである．

2 序
複素多様体X上には小林擬距離と呼ばれる擬距離が定義され，これが
距離になるときXは小林双曲的であるといわれる．複素平面CからXへ
の正則写像が定値写像しかないとき，XはBrody双曲的であるといわれ
る．小林双曲的ならBrody双曲的である．Xがコンパクトのときは逆も
成り立ち，二つの双曲性は同値になる (cf. [Kob98])．以下コンパクトな
場合を主に扱うので，「小林」と「Brody」を区別せず単に双曲的という．

例. 種数 gのコンパクトリーマン面が双曲的⇐⇒ g ≥ 2.

1



1次元の場合は複素微分幾何的概念である双曲性と代数幾何的概念であ
る一般型が一致するが，高次元の場合は一致しない．実際，次元が 2以
上の非特異複素射影多様体Xの 1点 blow-upX̃を考えると，X̃はP1を含
むので双曲的でない．
Langは次の予想をした [Lang]．複素微分幾何的性質である双曲性が代
数的に言い換えられるであろう，という予想である．

予想 2.1 (Lang予想). 非特異複素射影多様体Xが双曲的⇐⇒ Xの全て
の subvarietyは一般型．

この予想 2.1は未解決である．知られている結果として，Xが曲面のと
き「⇒」は成り立つ（cf. [Lang, p190]）．また，X がアーベル多様体の
部分多様体であるとき，予想 2.1は成り立つ（cf. [Kaw]).

小林は [Kob70]で次の予想をした（正確には問題として提示した）．

予想 2.2. 複素射影空間Pn内の次数が大きい genericな超曲面は双曲的か？

予想2.2が現れたのは1970年だが，解決には時間を要し，ようやく2010

年代に Siu [Siu], Brotbek [Brot]によって肯定的に解決された．
予想 2.2内の「双曲的」という部分を，予想 2.1の双曲的性質の代数的
言い換えで置き換えることによって，予想 2.2の代数版を考えることがで
きるが，この代数版は 1990年ごろにEinによって証明されている．ここ
ではVoisinによる改良された形で定理を紹介する．

定理 2.1 ([Ein], [V96], [V98]). X ⊂ Pnを very general な d次超曲面と
し，Y ⊂ XをXの k次元 subvarietyとする．

(1) d ≥ 2n− kなら Y は一般型である．

(2) d ≥ 2n − k − 1なら Y の幾何種数は正である．すなわち，Ỹ → Y

が特異点解消のときH0(Ỹ , KỸ ) ̸= 0である．

定理 2.1(1)が予想 2.2の代数版に相当する部分である．定理 2.1(2)より
特に，次数 d ≥ 2n−2の very generalな超曲面X ⊂ Pnは有理曲線を持た
ないことが分かる．これは best possibleである．実際，次数 d ≤ 2n− 3

の超曲面は lineを含む．
次節以降では定理 2.1のその後の展開を見ていく．



3 Green-Griffiths-Lang予想とその代数版
超曲面の双曲性のみに考察を限定してしまうと，前節までで話は終わっ
てしまうのであるが，代数幾何的には，定理 2.1で次数 dが小さくなると
どうなるか，というのは興味ある問題である．この方向性の見通しを得
るためにGreen-Griffiths-Lang予想を思い出しておく．
予想 3.1 (Green-Griffiths-Lang予想). 非特異複素射影多様体Xが一般型
のとき，Zariski閉な真部分集合 Z ⊊ X が存在し，任意の非定値正則写
像 f : C→ Xの像 f(C)はZに含まれる．
予想 3.1はX \ Z が Brody双曲的と言っている．X \ Z はコンパクト
ではないから，X \Zに対して予想 2.1を当てはめることは出来ないので
あるが，X \Zに対して形式的に予想 2.1を当てはめて得られる次の主張
が予想されている（ように筆者には思われる）．
予想♣. 非特異複素射影多様体Xが一般型のとき，Zariski閉な真部分集
合 Z ⊊ X が存在し，Zに含まれない任意の subvariety Y ⊂ X は一般型
である．
上の二つの予想は，Xがアーベル多様体Aの部分多様体の場合は，Z =

(Xに含まれる部分アーベル多様体の平行移動の和集合) としてして成立
する（cf. [Kaw])．
定理 2.1(1)より，次数 d ≥ 2n− 1の very general な超曲面X ⊂ Pnに
対しては，予想♣はZ = ∅として成立することが分かる．次数 dに関す
る条件を緩くして d ≥ 3n+3

2
の場合も，次のClemens-Ranによる定理によ

り予想♣が成り立つことが分かる．
定理 3.1 ([CR]). X ⊂ Pn を very general な d 次超曲面とし，Z :=

(Xに含まれる lineの和集合)とおく．Y ⊂ Xを k次元 subvarietyとする．
(1) d ≥ 3n−k

2
+ 2で Y が一般型でないなら，Y ⊂ Zである．

(2) d ≥ 3n−k
2

+ 1で Y の幾何種数が 0なら，Y ⊂ Zである．
定理 3.1(2)より，次数d ≥ 3n+1

2
のvery generalな超曲面X ⊂ Pn内の有

理曲線CはZ := (Xに含まれる lineの和集合)に含まれることが分かる．
これだけでは，C自身が lineかどうかは分からないが，Riedl-Yang [RY]

は C 自身が lineであることを示した．Coskun-Riedl [CR22] は少し不等
式の評価を改善して，d ≥ 3n

2
のときに very general な d次超曲面X ⊂ Pn



内の有理曲線は lineであることを示した．この評価はほぼ best possible

である．実際，次数 d ≤ 3n
2
− 1の超曲面X ⊂ Pnは conicを含む．超曲

面内の有理曲線については次のVoisinによる予想があることに注意して
おく．

予想 3.2 ([V03]). 次数 d ≥ n+2の very general な超曲面X ⊂ Pn内の有
理曲線の次数は有界である．

次の節では，定理 3.1を二つの方向に発展させた結果を紹介する．

4 いくつかの結果
まず，定理 3.1で次数 dが更に小さくなる場合について考えてみる．次
の定理は定理 3.1(2)の一般化である．

定理 4.1 ([A23]). d > 7n
5
+ 18−2k

5
とする．X ⊂ Pnを very general な d次

超曲面，Y ⊂ Xを k次元の subvarietyとする．このとき，Y の幾何種数
が 0なら，Y は lineや conicの和集合である．

系 4.2. 次数 d > 7n+16
5
の very general な超曲面X ⊂ Pn 内の有理曲線は

lineまたは conicである．

注意. 定理 3.1(1)の一般化はまだ無い．

定理 4.1の dに関する不等式が best possibleかどうかは分からない．
conicの次に「簡単な」有理曲線は twisted cubicであるように思えて，次
元を勘定すると，次数 d < 4n

3
の超曲面は twisted cubicを含むと期待され

る．そこで次のことが気になる．

問題 4.3. 7n+16
5
≥ d ≥ 4n

3
のとき，very general な超曲面X ⊂ Pn内に，

lineや conic以外の有理曲線が存在するか？

また，定理 4.1では結論が，Y ⊂ (Xに含まれる lineや conicの和集合)

ではなく，Y 自身が lineや conicの和集合であると主張されている．そこ
で次の疑問も生じてくる．

問題 4.4. 次数 d ≥ n + 2の very general な超曲面内の幾何種数 0の
subvarietyは uniruledか？



次に定理 3.1の対数版について紹介する．まずは予想♣の対数版から
始める．
予想♣log. Xを非特異複素射影多様体，D ⊂ Xを単純正規交差因子とし，
KX+Dがbigであるとする．このとき，Zariski閉な真部分集合Z ⊊ Xが
存在し，D∪Zに含まれない任意の subvariety Y ⊂ Xに対し，対 (Y, Y ∩D)

は対数的一般型である．
ここで「対数的一般型」とは，g : Ỹ → Y が対 (Y, Y ∩D)の log resolution

のとき，KỸ + g−1(Y ∩D)が bigということである．
X = Pnの場合に，まず次のことが知られている．
定理 4.5 ([PR]). D ⊂ Pnを very general な d次超曲面とする．d ≥ 2n+

2 − kのとき，k次元 subvariety Y ⊂ Pnが Dに含まれないならば，対
(Y, Y ∩D)は対数的一般型である．
すなわち，この場合は Z = ∅で予想♣logが成り立っている．Z = ∅と
取れる場合に限定すると，上の定理はbest possibleである．実際，d = 2n

のとき，line l ⊂ Pnで |l ∩D| ≤ 2となるものが存在することが知られて
いる．
Chen-Riedl-Yeongは d = 2nの場合を調べた．
定理 4.6 ([CRY]). d = 2nとし，D ⊂ Pnを very general な d次超曲面と
する．このとき，Zariski閉な真部分集合 Z ⊊ Pnが存在し，D ∪ Zに含
まれない任意の曲線C ⊂ Pnに対して，不等式

2g(C̃)− 2 +
∣∣µ−1(C ∩D)

∣∣ ≥ a degC

が成り立つ．ここで µ : C̃ → C は正規化で，

a =

{
1 n ≥ 3

1
2

n = 2,

である．また，n = 2のときは，Z = (union of bitangent and flex lines to D)

と取れる．
次が定理 3.1の対数版である．
定理 4.7 ([A24]). D ⊂ Pnを very general な d次超曲面，Y ⊂ PnをD

に含まれない k次元 subvarietyとし，g : Ỹ → Y を対 (Y, Y ∩ D)の log

resolutionとする．



(1) d ≥ 3n−k
2

+ 2のとき，もしKỸ + g−1(Y ∩D)が bigでないなら，Y
は |l∩D| ≤ 2 または l ⊂ Dとなる直線 l ⊂ Pnたちの和集合である．

(2) d ≥ 3n−k
2

+1のとき，もしH0
(
Ỹ ,O(KỸ + g−1(Y ∩D))

)
= 0なら，

Y は |l ∩ D| ≤ 1 または l ⊂ Dとなる直線 l ⊂ Pnたちの和集合で
ある．

これより，D ⊂ Pn = X が very general な次数 d ≥ 3n+1
2
の超曲面の

とき，

Z = (union of lines that intersect D in at most 2 points)

として，予想♣logが成り立つことが分かる．

5 証明の概略
この節では，定理 4.1と定理 4.7の証明のポイントを述べる．いずれの
証明も定理 3.1の証明が下地になっている．そして，定理 3.1の証明はEin

の定理（定理 2.1の仮定の不等式が 1だけ強くなっているもの）を発展さ
せたものである．そこでまずは，Einの定理の証明の筋道を思い出すこと
にする．

Einの定理� �
X ⊂ Pnが very general な次数 d ≥ 2n+ 1− kの超曲面のとき，Xの
任意の k次元 subvariety Y ⊂ Xは一般型である．� �

Einの定理の証明の概略. 証明のアイデアは normal bundleの正値性を示
すことである．S ⊂ H0(Pn,O(d)) \ {0} を Zariski開集合とする（Sは以
下の議論で必要に応じて小さく取り直す）．X ⊂ Pn × Sを次数 dの非特
異超曲面の universal familyとする．Y ⊂ X を k次元 subvarietyの family

とする． Y ⊂ X ⊂

""F
FF

FF
FF

FF
Pn × S

��

// Pn

S

という状況である．簡単のため，YはS上 smoothとする．また，X やY
は Pn上 smoothと仮定する．我々は Ys ⊂ Xs (s ∈ S) が一般型であるこ



とを示したい．そのために
H0(Ys, KYs(−1)) ̸= 0 (1)

を示す．短完全列
0→ TYs → TXs |Ys → NYs/Xs → 0,

より
KYs = KXs |Ys ⊗ detNYs/Xs = OYs(d− n− 1)⊗ detNYs/Xs

を得る．(1)を示すには detNYs/Xs ⊗ OYs(d − n − 2) ≥ 0を示せばよい．
NYs/Xs ≃ NY/X

∣∣
Ys
であることに注意する．短完全列

0→ TY → TX |Y → NY/X → 0,

があるが，いまX と Yは Pn上 smoothと仮定しているので，
0→ TY/Pn → TX/Pn |Y → NY/X → 0,

を得る．正整数 kに対して，Pn上のベクトル束Mk
Pnを完全列

0→Mk
Pn → H0(Pn,O(k))⊗OPn → OPn(k)→ 0.

によって定義する．すると，TX/Pn ≃ q∗Md
Pn となる．ただし， q : X ⊂

Pn × S → Pnである．よって，我々は全射
q∗Md

Pn
∣∣
Y → NY/X (2)

を得る．この全射を通じてMd
Pnが有している正値性からNY/X の正値性

を導こうというわけである．Pn上に全射
H0(Pn,O(d− 1))⊗M1

Pn →Md
Pn . (3)

があるので，(2)と (3)より（ファイバー Ysに制限して）全射
H0(Pn,O(d− 1))⊗M1

Pn
∣∣
Ys
↠ NYs/Xs . (4)

を得る．M1
Pn ⊗ OPn(1)は globally generated なので，上の全射性より

NYs/Xs⊗O(1)もglobally generatedとなる．外積を取って，(detNYs/Xs

)
⊗

O(n−1−k)も globally generatedとなる．いま n−1−k ≤ d−n−2 (∵
d ≥ 2n+ 1− k)なので，(

detNYs/Xs

)
⊗OYs(d− n− 2) ≥ 0

となる．これが示したかったことである．



Clemens-RanはEinの議論を発展させて定理 3.1を証明した．証明の流
れは次の様である．

• もしXs ⊃ Ysが一般型ではないとすると，generalな点 y ∈ Ysに対し
て，canonicalに定まる (n−2)次元の線形系Ly ⊂ |Iy(1)| ⊂ |OPn(1)|
（それは yを通る line lyに対応する）を見つけることができる．さ
らに，|ly ∩Xy| ≤ 2 または ly ⊂ Xsが成り立つことも示せる．

• 3つ組のモジュライ空間{
(X, p, l)

∣∣∣∣X ⊂ Pn は d次超曲面，lは line，pは点
ただし， p ∈ l ∩X かつ |l ∩X| = 2 (or 1)

}
,

を考えることにより ly ⊂ Xs であることを示す．

最後に定理 4.1と定理 4.7の証明のポイントを簡単に述べる．いずれの
定理の証明も基本的には，上で述べたClemens-Ranの定理の証明を踏襲
するので，証明において新たに必要となる議論についてだけ言及する．
定理 4.1の証明ではXs ⊃ Ys の幾何種数が 0とのき，general な点 y ∈

Ys に対して，canonicalに定まる点 y を通る 2次超曲面の線形系 Ly ⊂
|Iy(2)| ⊂ |OPn(2)| を見つける．点 yを通る超平面の線形系は点 yを含む
射影部分空間と対応するが，一般には点 yを通る 2次超曲面の線形系が y

を含む図形と対応するとは期待できない．ところが今の場合は，線形系
Lyの固定点集合Bs(Ly)を調べることで，点 yを通る conicを見つけるこ
とができる．
定理 4.7の証明では，まず図式

D ⊂ Pn × S

��

// Pn

Y ∩ D ⊂ Y ) 	
66mmmmm

S

を考える．(Ys, Ys∩Ds)が対数的一般型ではないとき，generalな点 y ∈ Ys
に対して，canonical に定まる line y ∈ ly ⊂ Pnを見つけることができる．
ここまではClemens-Ranの議論と同じなのであるが，Clemens-Ranの証
明と異なり，定理 4.7ではアプリオリには |ly ∩Ds|の評価が得られないの
である．
Chen-Riedl-Yeong [CRY]は次のことを観察した．



Chen-Riedl-Yeongの観察： general な点 y, y′ ∈ Ysに対し，点付き直
線 (ly, y) and (ly′ , y

′)上の次数 dの因子 ly ∩Ds, ly′ ∩Dsは同値である：
y ↔ y′

∈ ∈

ly ≃ ly′

∪ ∪
ly ∩Ds ↔ ly′ ∩Ds.

そこで定理 4.7の証明では点付き直線 (l0, p0)とその上の次数 dの因子
E0 ⊂ l0 を固定して，3つ組のモジュライ空間{

(D, p, l)

∣∣∣∣D ⊂ Pnは d次超曲面, lは line, pは lの点で，
(l, p)上の因子 l ∩Dは (l0, p0)上の因子E0と同値

}
,

を考えることにより |ly ∩Ds| ≤ 2を導くことになる．論文 [A24]ではこの
モジュライ空間のコンパクト化とその標準因子の計算が主要部分である．
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Gauss超幾何モチーフとそのアデール的実現
大坪 紀之 ∗

1 超幾何関数と数論
「超幾何」という用語は 17世紀にWallisによって使われ始めた．幾何級数

(1− x)−1 =

∞∑
n=0

xn

を一般化し, べき級数∑∞
n=0 anx

n で係数比 an+1/an が n の有理式であるものを超幾何級数と呼
ぶ. 例えば, べき関数 (1− x)−a, 多重対数関数 Lik(x) =

∑∞
n=1

xn

nk (k ∈ N), 指数関数 ex, 三角
関数 sinx などは超幾何級数で表せる.

超幾何関数は最もよく知られた特殊関数の族であり, 数学のさまざまな局面で現れるのみならず,

物理学や計算数学 (π の高速計算など) でも重要な役割を果たしている. 超幾何関数論の発展には
Euler, Gauss, Kummer, Ramanujanらが大きな貢献をしており, 超幾何関数論と数論との関わり
は深い.

1.1 Gauss超幾何関数
複素数 a, b, c (c 6∈ Z≤0) をパラメータとするGauss超幾何級数は次で定義される:

F (a, b; c;x) = 2F1

(
a, b

c
;x

)
=

∞∑
n=0

(a)n(b)n
(1)n(c)n

xn,

ここで, Pochhammer記号 (上昇階乗べき)

(a)n :=
Γ(a+ n)

Γ(a)
=

n−1∏
i=0

(a+ i).

この級数は |x| < 1 で収束してGauss超幾何関数を定める. 同様に, p個 (q 個) の分子 (分母) パ
ラメータをもつ一般超幾何関数 pFq

(
a1,...,ap

b1,...,bq
;x
)
が定義される (p = q+1の場合が正則型である).

超幾何関数は

• 代数的: 級数表示

∗ 千葉大学大学院理学研究院 otsubo@math.s.chiba-u.ac.jp
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• 解析的: 微分方程式の解
• 幾何的: 積分表示

という「三位一体」をもち, これが超幾何関数論を非常に豊かなものにしている. 超幾何関数の諸
公式については, 例えば [9, Chapters 15, 16]を参照とする.

1.2 超幾何微分方程式
Gauss超幾何関数 F (a, b; c;x) は 2階の常微分方程式

[
D(D + c− 1)− x(D + a)(D + b)

]
y = 0, D := x

d

dx

の解である. これは次のようにも書ける:[
d2

dx2
+

(
c

x
− a+ b+ 1− c

1− x

)
d

dx
− ab

x(1− x)

]
y = 0.

よって, x = 0, 1,∞ が正則特異点であり, もう一つの独立解は

F (a, b; a+ b+ 1− c; 1− x)

で与えられる. また, 関数 F (a, b; c;x) は P1 − {0, 1,∞} 上の多価関数に解析接続される.

微分方程式の比較により, 非常に多くの変換公式や積公式が示される. 例えば:

F (2a, 2b; a+ b+ 1;x) = F
(
a, b; a+ b+ 1; 1− (1− 2x)2

)
. (Gauss)

(1 + 8x)3aF

(
4a, 4a+ 1;

4a+ 5

2
;x

)
= F

(
a, a+ 1;

2a+ 5

2
; 64x

(
1− x
1 + 8x

)3
)
. (Goursat)

他の諸公式やそれらの証明については, [11]を参照とする.

1.3 超幾何関数の積分表示
ガンマ関数とベータ関数は Re(s),Re(si) > 0 のとき次で定義される:

Γ(s) :=

∫ ∞

0

e−tts
dt

t
, B(s1, s2) :=

∫ 1

0

ts1(1− t)s2 dt

t(1− t)
.

ベータ関数はガンマ関数に分解する:

B(s1, s2) =
Γ(s1)Γ(s2)

Γ(s1 + s2)

Gauss超幾何関数は次の Euler型の積分表示をもつ: Re(c) > Re(b) > 0 のとき,

B(b, c− b)F (a, b; c;x) =
∫ 1

0

(1− xt)−atb(1− t)c−b dt

t(1− t)
.
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ここで, (1− x)−a = 1F0(a;x) であることに注意する. 上と同様に, 1F0(x)にベータ積分を累次的
に施して, q+1Fq(x)を得る.

上の積分表示で x = 1 としてベータ関数をガンマ関数に分解することで, Euler-Gaussの和公
式 (特殊値公式) を得る: Re(c− a− b) > 0 のとき,

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.

ほかにも, 多くの特殊値公式が知られている. 例えば:

F (2a, b; 2a− b+ 1;−1) = Γ(2a− b+ 1)Γ(a+ 1)

Γ(2a+ 1)Γ(a− b+ 1)
(Re(b) < 1). (Kummer)

π = 4F

(
1,

1

8
;
9

8
;
1

16

)
− 1

2
F

(
1,

1

2
;
3

2
;
1

16

)
− 1

5
F

(
1,

5

8
;
13

8
;
1

16

)
− 1

6
F

(
1,

3

4
;
7

4
;
1

16

)
.

(Bailey-Borwein-Plouffe 1995)

後者は π を 100兆桁まで計算するのに用いられた (Iwao, 2022).

1.4 数論幾何学における基本的な予想
代数体上の代数多様体 (またはモチーフ) の L 関数は数論における中心的な対象の一つである.

とくにその整数点における特殊値について, Birch-Swinnerton-Dyer, Deligne, Beilinson, Bloch-

Kato らによる予想があるが, 部分的にでも示されている例は少なく, 一般的なアプローチは知られ
ていない. これらの予想は, L関数の特殊値という解析的な対象を周期やレギュレーターなどの幾
何的不変量で記述するものであり, Dirichletの解析的類数公式を一般化するものである.

L関数の特殊値や周期, レギュレーター (またはMahler測度, Abel-Jacobi写像) が超幾何関数
を用いて記述される例がいくつか知られている.

• Riemannゼータ関数 :

ζ(k) =

∞∑
n=1

1

nk
= k+1Fk

(
1, 1, . . . , 1

2, . . . , 2
; 1

)
(k ∈ Z≥2).

• Dirichlet L関数 : 指標 χ : (Z/NZ)× → C× に対して

L(χ, k) =

∞∑
n=1

χ(n)

nk
=

∑
0<a<N

χ(a)

ak
k+1Fk

(
1, a

N , . . . ,
a
N

a
N + 1, . . . , a

N + 1
; 1

)
.

• Fermat曲線の L関数の特殊値やレギュレーターの一部は 3F2(1) で記述できる ([13]参照).

• Q上の楕円曲線 E : y2 = x3 + 4x を考える (4次 Fermat曲線の商であり, Z[
√
−1]に虚数

乗法をもつ). E の (正確には h1(E) の) L関数は次の Euler積で定義される:

L(E, s) =
∏

p ̸= 2: 素数

(
1− app−s + p1−2s

)−1
; ap := 1 + p−#E(Fp).
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このとき, 次が知られている:

L(E, 1) =
1

8
B

(
1

4
,
1

2

)
=

1

2
2F1

(
1
4 ,

1
2

5
4

; 1

)
. (Damerell 1970)

L(E, 2) =
π

32

(
B

(
1

2
,
1

4

)
3F2

(
1
2 ,

1
2 , 1

3
2 ,

3
4

; 1

)
−B

(
1

2
,
3

4

)
3F2

(
1
2 ,

1
2 , 1

3
2 ,

5
4

; 1

))
.

(O. 2011 [10], Ito 2018 [5])

L(E, 3) =
π2

768
√
2

(
3B

(
1

4
,
1

4

)
4F3

(
1
2 , 1, 1, 1
3
2 ,

3
2 ,

3
4

; 1

)
+ 12B

(
3

4
,
3

4

)
4F3

(
1
2 , 1, 1, 1
3
2 ,

3
2 ,

5
4

; 1

)

+B

(
1

4
,
1

4

)
4F3

(
1
2 , 1, 1, 1
3
2 ,

3
2 ,

7
4

; 1

))
. (Zudilin 2013 [16])

以上の例などから, また虚数乗法をもつモチーフの周期をガンマ関数で記述する Gross-Deligne

予想との類似からも, 超幾何関数論は上記の予想への一つのアプローチを与えるのではないかと期
待することができる.

2 有限体上の超幾何関数
2.1 背景
有限体上の超幾何関数は 1980年代から研究されてきた. 国内では小池正夫氏などの研究があっ
た. 有限体上の超幾何関数にはいくつかの定義がある: Koblitz (’83), Greene (’87), Katz (’90),

McCarthy (’12), O. (’24) など (これらの間の関係については [12, Remark 2.13]を参照).

最新の定義 [12]の利点として以下が挙げられる:

• 定義および性質において, C上の超幾何関数との類似が明らかである.

• 一般超幾何関数 pFq で p 6= q+1 の場合のような非正則型 (合流型) のものも同様に扱える.

それまでは, Kummerの合流型超幾何関数 1F1 の研究すらなかった.

• 非常に広いクラスの多変数超幾何関数の有限体類似 (非正則型を含む) も同様に扱える:

Nakagawa [7], [8], Ito-Kumabe-Nakagawa-Nemoto [6] など.

有限体上の超幾何関数は,

• 変換公式, 積公式,

• 積分表示の類似となる和表示,

• 特殊値公式,

の全てにおいて, C上の超幾何関数と類似の性質をもつ. 以下では, 定義を述べた後にその一部を紹
介する.
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2.2 Gauss和と Jacobi和
有限体上の超幾何関数は, ガンマ関数・ベータ関数と Gauss和・Jacobi和との類似に基づいてい
る. 以下では, Fを位数 q の有限体とし, 非自明な加法指標 ψ : F→ C× を固定する (指数関数の類
似).

乗法指標 φ, φi ∈ F̂× = Hom(F×,C×) に対して, Gauss和, Jacobi和を次で定義する:

g(φ) = −
∑
t∈F

ψ(t)φ(t), j(φ1, φ2) = −
∑
t∈F

φ1(t)φ2(1− t) ∈ C

(便宜上 φ(0) = φi(0) = 0 と定める). ガンマ関数・ベータ関数の定義

Γ(s) =

∫ ∞

0

e−tts
dt

t
, B(s1, s2) =

∫ 1

0

ts2(1− t)s2 dt

t(1− t)

との類似に注意しよう. また, ◦つきGauss和を

g◦(φ) = g(φ) (φ 6= 1), g◦(1) = q

と定める (g(1) = 1に注意). このとき次が成り立つ (φ = φ−1) :

g(φ)g◦(φ) = φ(−1)q, j(φ1, φ2) =
g(φ1)g(φ2)

g◦(φ1φ2)
((φ1, φ2) 6= (1, 1)).

よく知られた以下の公式との類似に注意しよう:

Γ(s)Γ(1− s) = π

sinπs
, B(s1, s2) =

Γ(s1)Γ(s2)

Γ(s1 + s2)
.

2.3 有限体上の Gauss超幾何関数
パラメータ α, β, γ ∈ F̂×, 変数 λ ∈ F をもつ F上のGauss超幾何関数を次で定義する:

F (α, β; γ;λ) =
1

1− q
∑
ν∈F̂×

(α)ν(β)ν
(1)◦ν(γ)

◦
ν

ν(λ) (λ ∈ F).

ここで, (◦つき) Pochhammer記号は

(α)ν :=
g(αν)

g(α)
, (α)◦ν :=

g◦(αν)

g◦(α)
.

注意 2.1.

• これは Fから Cへの関数だが, 実際は円分体 Q(µq−1)に値をとる.

• パラメータは有理数の類似である: F̂× ' Z/(q − 1)Z ' 1
q−1Z/Z ⊂ Q/Z.
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• C上の超幾何関数において, １つのパラメータの ±1シフトは 1階の微分作用素に対応する.

例えば, (D+ a)F (a, b; c;x) = aF (a+ 1, b; c;x). 有限体上の超幾何関数において, このシフ
トに対応するものはない —「微分が消えている」.

より簡単な公式に帰着する例外的な場合を除いて, 例えば以下が成り立つ.

• Gaussの変換公式の類似:

F (α2, β2;αβ;λ) = F
(
α, β;αβ; 1− (1− 2λ)2

)
.

(注意: Goursatの変換公式の類似はまだない.)

• Euler型積分表示の類似:

−j(β, βγ)F (α, β; γ;λ) =
∑
t∈F

α(1− λt)β(t)βγ(1− t).

注意: α(1− λ) = 1F0(α;λ).

• Euler-Gauss和公式の類似:

F (α, β; γ; 1) =
g◦(γ)g(αβγ)

g◦(αγ)g◦(βγ)
.

以上のような類似は, 非正則型の超幾何関数や多変数の超幾何関数に対しても数多く示されてい
る. このことは, これらの定義の正当性を示すとともに, 「共通のモチーフ」の存在を期待させる.

3 超幾何モチーフ
3.1 モチーフとは
体 k 上の非特異射影代数多様体の圏から次数つき K ベクトル空間 (charK = 0) の圏へのコホ
モロジー関手を考える:

H : SmProj(k)op → Vect(K).

ベクトル空間 V が射影子 e ∈ End(V ), e2 = e を持つとき, 分解 V = eV ⊕ (1− e)V を得る.

一方で, k 上のK 係数 (Chow) モチーフの圏 Mot(k,K) へのモチーフ関手が存在する:

h : SmProj(k)→Mot(k,K),

h(f : X → Y ) = Graph(f) ∈ Hom(h(X), h(Y )) := CHdimX(X × Y )⊗Z K.

ここで, CHd(X) は X 上の d 次元代数的サイクル (modulo 有理同値) のなす群である. 圏
Mot(k,K) の一般の対象は三つ組

M =
(
X ∈ SmProj(k), e ∈ CHdimX(X ×X)⊗Z K (e2 = e), n ∈ Z

)
である (合成 e2 は交点理論による).
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「よい」コホモロジー理論 H は, 実現関手を経由する:

Mot(k,K)op → Vect(K).

基礎体 k が代数体のときに, Betti実現 (位相幾何学的), de Rham実現 (微分幾何学的), エター
ル実現 (Galois理論的) などを考える. モチーフM の周期はM の Betti-de Rham実現から, L関
数はM のエタール実現から定まる.

3.2 モチーフの例
多様体 X ∈ SmProj(k) に有限アーベル群 Gが作用しているとする. 群環 K[G] (K は十分大)

において,

1 =
∑
χ∈Ĝ

eχ, eχeχ
′
= δ(χ, χ′)eχ, eχ :=

1

|G|
∑
g∈G

χ−1(g)g (Ĝ := Hom(G,K×)).

環準同形 Graph: K[G]→ CHdimX(X ×X)⊗Z K により, モチーフの分解を得る:

h(X) =
⊕
χ∈Ĝ

h(X)χ, h(X)χ := (X, eχ, 0).

例 3.1 (Artinモチーフ). k = Q, X = SpecQ(µN ) (円分体), G = Gal(Q(µN )/Q) ' (Z/NZ)×

のとき, 分解
h (SpecQ(µN )) =

⊕
χ∈Ĝ

h (SpecQ(µN ))
χ
.

は, Dedekindゼータ関数の Dirichlet L関数への分解と対応する:

ζQ(µN ) =
∏

χ : (Z/NZ)×→C×

L(χ, s).

例 3.2 (Fermat モチーフ). N 円分体 k = Q(µN ) 上の N 次 Fermat 曲線 XN : xN + yN = 1

(種数は (N − 1)(N − 2)/2 である) には, 群 G = µ2
N が自然に作用する. このモチーフは, 指標

χa,b
N (ξ, η) = ξaηb (a, b ∈ Z/NZ) によって分解する:

h(XN ) = h0(XN )⊕ h1(XN )⊕ h2(XN ), h1(XN ) =
⊕

a,b∈Z/NZ,a,b,a+b ̸=0

Xa,b
N .

さらに, a, b, a+ b 6= 0 のとき:

• de Rham コホモロジー HdR(X
a,b
N ) は 1次元で, 微分 1形式 ωa,b

N = xayb dxN

xNyN の類が生成
する.

• 周期の本質的な部分はベータ関数 ∫
δ
ωa,b
N = B

(
a
N ,

b
N

)
. ここで, δ(t) = ( N

√
t, N
√
1− t).
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• ℓ 進エタールコホモロジー Hℓ(X
a,b
N ) は 1 次元であり, k の素イデアル p ∤ N に対して,

Frobenius元 Frobp ∈ Gal(Q/k) は Jacobi和 j(φa
N,p, φ

b
N,p) 倍で作用し, L関数は Jacobi

和 Hecke L関数
L(ja,bN , s) :=

∏
p∤N

(
1− j(φa

N,p, φ
b
N,p)q

−s
p

)−1
.

ここで, Fp は pにおける剰余体, φN,p ∈ F̂×
p は p における N 乗剰余指標, qp := |Fp|.

このように, ベータ関数と Jacobi和は単に類似するだけでなく, 共通のモチーフの異なる実現で
ある. ガンマ関数・ベータ関数の間の関数等式たち, およびそれらと類似する Gauss和・Jacobi和
の間の関係式たちは, (ほぼ全て) モチーフの同形に持ち上がる (O.-Yamazaki [15]). 例えば, ガン
マ関数の Legendre-Gauss積公式, および Gauss和の Davenport-Hasse積公式

Γ(ns)

Γ(n)
= nn(s−1)

n−1∏
i=0

Γ(s+ i
n )

Γ(1 + i
n )
, g(φna

N ) = φa
N (n)n

∏
b∈Z/NZ,nb=0

g(φa+b
N )

g(φb
N )

(n | N)

を持ち上げるものは次である.

定理 3.3 ([15, Theorem 7.2]). 基礎体 k の標数は N と素であり, µN ⊂ k とする. 任意の n | N
に対して,

XN 〈n〉(a,...,a) '
⊗

b∈Z/NZ,nb=0

Xa,b
N (a ∈ Z/NZ− {0}).

ここで左辺は, (n− 1)次元 Fermat型多様体 xN1 + · · ·+ xNn = n に付随するモチーフである.

これらの証明では Katsura-Shioda の帰納的構造と, Terasoma による代数対応が重要な役割を
果たす. また, 技術的な理由で Voevodskyモチーフの理論を用いる.

例 3.4 (保型形式のモチーフ). レベル Γ0(N)のモジュラー曲線 X0(N)を考える. 素数 p ∤ N に
対して, 射

X0(pN)→ X0(N)×X0(N); (E,C) 7→
(
(E,CN ), (E/Cp, C/Cp)

)
,

(E は楕円曲線, C ⊂ E は位数 pN の巡回部分群, CN は C の N ねじれ部分群)

の像はHecke代数対応
Tp ∈ End(h(X0(N))) = CH1(X0(N)×X0(N))⊗Z K

を定める. これらにより, 保型形式のモチーフへの分解

h1(X0(N)) =
⊕

f∈S2(Γ0(N)): 正規 Hecke 同時固有
M(f).

を得る (Deligne-Scholl). モチーフ M(f) の ℓ 進エタール・コホモロジーは 2 次元であり, f =∑∞
n=1 anq

n のとき, M(f)の L関数は保型 L関数

L(f, s) =
∏

p: 素数
(1− app−s + p1−2s)−1
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(p | N における Euler因子は要修正) と一致する.

3.3 超幾何モチーフ
上記のArtinモチーフ, Fermatモチーフは階数 1のモチーフ (可逆モチーフ)であったが, Gauss

超幾何モチーフは保型形式のモチーフと同様に階数 2のモチーフである.

本稿では, 有理数 A,B,C をパラメータとする Gauss超幾何関数で, C = 1の場合

F (A,B; 1;λ) =

∞∑
n=0

(A)n(B)n
(1)n(1)n

λn

に対応するモチーフを中心に紹介する. この関数はベータ関数の 1パラメータ変形とみなすことが
できる:

F (A,B; 1; 1) = − 1

2πi

(1− e(A))(1− e(B))

1− e(A+B)
B(A,B), e(x) := e2πix.

同様に, 有限体 F上の超幾何関数は Jacobi和の変形である: (α, β) 6= (1, 1) のとき

F (α, β; 1; 1) = j(α, β).

基礎体 k は char k ∤ N , かつ µN ⊂ k をみたすとする. 各 λ ∈ k − {0, 1} に対して, k 上の超幾
何曲線を

XN,λ : (1− xN )(1− yN ) = λxNyN

で定める (正確には, このアフィン曲線を P1 × P1 において完備化したもの). このとき:

• 群 GN = µ2
N が作用する.

• 非特異射影曲線で, 種数は (N − 1)2.

• P1 − {0, 1,∞} 上の曲線族を定める.

• λ = 1において, N 次 Fermat曲線と有理曲線の和に退化する.

注意 3.5. N = 2のとき, Legendre楕円曲線 Eλ : v2 = −u(1− u)(1− λu) への全射が存在する:

X2,λ → Eλ; (u, v) =

(
− x2

1− x2
,

xy

(1− x2)y2

)
.

よく知られているように, Eλ の周期は楕円積分であり, Gauss 超幾何関数 F (1/2, 1/2; 1;λ),

F (1/2, 1/2; 1; 1− λ) になる.

Fermatモチーフの場合と同様に, 超幾何曲線 XN,λ への群 GN = µ2
N の作用を用いて, 超幾何

モチーフへの分解を得る:

h(XN,λ) = h0(XN,λ)⊕ h1(XN,λ)⊕ h2(XN,λ), h1(XN,λ) =
⊕

(a,b)∈(Z/NZ)2,a,b ̸=0

Xa,b
N,λ.
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これらのモチーフの Betti-de Rham実現およびエタール実現としてそれぞれ, C上の Gauss超
幾何関数と有限体上の Gauss 超幾何関数が現れる. 以下, a, b ∈ {1, . . . , N − 1} とし, A = a/N ,

B = b/N とおく. 次が成り立つ [2]:

• de Rhamコホモロジー HdR(X
a,b
N,λ) は 2次元で, 次の微分 1形式の類が基底をなす:

ωa,b
N = xayb

dxN

xN (1− xN )
, ηa,bN = (1− yN )ωa,b

N .

• ωa,b
N の複素周期の本質的な部分は F (A,B; 1;λ) および F (A,B;A + B; 1 − λ) であり,

ηa,bN のそれは d
dλF (A,B; 1;λ) および d

dλF (A,B;A+B; 1− λ) である.

• Xa,b
N,λ を P1 − {0, 1,∞} 上のモチーフ族と見たときの Gauss-Manin 接続は, 超幾何微分方
程式 [D2 − λ(D +A)(D +B)

]
y = 0 (D = λ d

dλ ) である.

• ℓ進エタールコホモロジーHℓ(X
a,b
N,λ) は 2次元であり, kの (良い) 素イデアル p ∤ N におけ

る Frobenius作用のトレースは Fp 上の超幾何関数 F (φa
N,p, φ

b
N,p; 1;λ mod p) である.

• 付随する L関数は (悪い素イデアルにおける Euler因子を除いて)∏
p∤N

(
1− F (φa

N,p, φ
b
N,p; 1;λ mod p)p−s + φ−a−b

N,p (1− λ)p1−2s
)−1

.

Frobenius トレースの計算には 2つの方法がある. 一つは (指標つき) 有理点の個数を数えるも
ので, Fermat曲線に対するWeilの方法と同様である. もう一つは Frobenius代数対応 (およびそ
の転置) を「超幾何代数対応」で表すものであり, Fermat曲線に対する Colemanの方法と同様で
ある.

注意 3.6. 一般のパラメータ A,B,C をもつ Gauss超幾何モチーフを定義するには, 超幾何曲線と
して

xN1 + yN1 = 1, xN2 + yN2 = 1, λxN1 x
N
2 = yN1 y

N
2

で定義されるものを用いる. この曲線には群 µ4
N が作用し, 4 つの指数をもつモチーフが定義さ

れる.

3.4 超幾何モチーフの変換公式
C上の超幾何関数に対して, 以下の変換公式は基本的である:

F (A,B;C;λ) = (1− λ)C−A−BF (C −A,C −B;C;λ). (Euler)

F (A,B;C;λ) = (1− λ)1−AF

(
A,C −B;C;

λ

λ− 1

)
. (Pfaff)

これらの有限体類似が存在する: 例外的な場合を除いて,

F (α, β; γ;λ) = αβγ(1− λ)F (αγ, βγ, γ;λ),

F (α, β; γ;λ) = αγ(1− λ)F
(
α, βγ, γ;

λ

λ− 1

)
.
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これらはともにモチーフの同形に持ち上がる :

定理 3.7 (モチーフ的 Euler-Pfaff 変換, “C = 1” の場合). 任意の a, b ∈ Z/NZ に対して,

Mot(k,K)における以下の同形が存在する:

Xa,b
N,λ ' KN 〈1− λ〉−a−b ⊗X−a,−b

N,λ ,

Xa,b
N,λ ' KN 〈1− λ〉−a ⊗Xa,−b

N, λ
λ−1

.

ここで, KN 〈1− λ〉a は Kummer拡大 k( N
√
1− λ)/k に関する Artinモチーフである.

4 アデール的超幾何関数
4.1 多様体の射影系
我々はしばしば, 多様体の射影系 (VN )N∈Z>0

(M | N のとき VN → VM ) を考える:

• 有限体 VN = SpecFpN . 代数多様体 X/Fp に対して VN = X ⊗Fp
FpN .

• 円分体 VN = SpecQ(µN ) – 岩澤理論など.

• Fermat曲線 VN : xN + yN = 1 – 伊原-Anderson理論など.

• モジュラー曲線 VN = X(Γ1(N)) – 肥田理論など.

• 超幾何曲線 VN = XN,λ (λ ∈ P1 − {0, 1,∞}).

各 VN のホモロジー的不変量 H(VN ) (例えば円分体のイデアル類群) よりも, それらの逆極限

H(V∞) := lim←−
N

H(VN )

の方が, 加群としての構造が捉えやすい場合がある.

4.2 アデール的超幾何関数
代数体 k 上の超幾何曲線の射影系 (XN,λ)N に対して, アデール的ホモロジー群

H ét
1 (X∞,λ, Ẑ) := lim←−

N,n

H ét
1 (XN,λ,Z/nZ), XN,λ := XN,λ ⊗k Q

を考える. これは完備群環

Λ = Ẑ[[G∞]] := lim←−
N,n

Z/nZ[GN ] (GN = µ2
N )

上の加群になる. 絶対 Galois群 Gal(Q/k) は H ét
1 (X∞,λ, Ẑ) および Λ に作用する. 曲線 XN,λ の

種数は (N − 1)2, よって第 1 Betti数は 2(N − 1)2 ≈ 2N2 であることを思い出そう.

定理 4.1 (Λ自由性 [2, Corollary 3.4]). 任意の λ ∈ k − {0, 1} に対して, H ét
1 (X∞,λ, Ẑ) は階数 2

の自由 Λ加群である.
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注意 4.2. 素数 lを固定して l進部分だけを考えることもできる. このとき,

Λpro-l = Zl[[Gl∞ ]] := lim←−
i,j

Z/liZ[Glj ] ' Zl[[x, y]] (形式的べき級数環)

(ζl∞ , 1) 7→ 1− x, (1, ζl∞) 7→ 1− y.

定義 4.3. H ét
1 (X∞,λ, Ẑ) の Λ基底 {α∞, β∞} を選ぶと, 絶対 Galois群の 1-コサイクル

Gal(Q/k)→ GL2(Λ); σ 7→M(σ) s.t. σ(α∞, β∞) = (α∞, β∞)M(σ)

が定まる (i.e. M(στ) =M(σ) · σM(τ)). このトレース

Fλ : Gal(Q/k)→ Λ; σ 7→ traceM(σ)

をアデール的超幾何関数と呼ぶ.

この関数は全ての有限体上の全ての Gauss超幾何関数 (C = 1型) を補完する:

定理 4.4 (補完性質 [2, Theorem 4.4]). k ⊃ µN のとき, k の素イデアル p ∤ N で λ が p 整かつ
λ 6≡ 0, 1 (mod p) であるもの, および a, b ∈ Z/NZ− {0} に対して,

χa,b
N (Fλ(Frobp)) = 1⊗ F (φa

N,p, φ
b
N,p; 1;λ mod p).

ここで, 左辺は Λ→ Ẑ[GN ]
χa,b
N−−−→ Ẑ⊗Q(µN ) による Fλ(Frobp)の像である.

4.3 アデール的ベータ関数
Fermat曲線の射影系 (XN )N のアデール的ホモロジー群

H ét
1 (X∞, Ẑ) = lim←−

N,n

H ét
1 (XN ,Z/nZ)

は階数 1の自由 Λ加群であり, その基底 γ∞ を選ぶと, 1-コサイクル

Gal(Q/k)→ Λ× = GL1(Λ); σ 7→ B(σ) s.t. σγ∞ = B(σ)γ∞

が定まる. これが Anderson-Iharaのアデール的ベータ関数 ([1], [4]) であり, 全ての有限体上の全
ての Jacobi和を補完するものである.

これまでに紹介した超幾何的対象の λ = 1 における特殊化をまとめると以下の通りである :
C上の超幾何関数 → ベータ関数,

有限体上の超幾何関数 → Jacobi和,

超幾何曲線・超幾何モチーフ → Fermat曲線・Fermatモチーフ,

アデール的超幾何関数 → アデール的ベータ関数.
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4.4 アデール的超幾何関数の変換公式
Euler-Pfaff 変換公式はモチーフのレベルで存在するので, その実現であるエタール・コホモ
ロジー群の同形を導き, アデール的超幾何関数の Euler-Pfaff 変換公式 [2, Theorem 4.6] を導く:

k ⊃ µN , a ∈ Z/NZ のとき,

χa,b
N (Fλ(σ)) = K−a−b

N,1−λ(σ)χ
−a,−b
N (Fλ(σ)),

χa,b
N (Fλ(σ)) = K−a

N,1−λ(σ)χ
a,−b
N (F λ

λ−1
(σ)) (σ ∈ Gal(Q/k)).

ここで, KN,1−λ は Kummer拡大 k( N
√
1− λ)/k が定める Galois指標である.

アデール的超幾何関数の変換公式があれば, それは特殊化によって有限体上の超幾何関数の変換
公式を導く. 逆に補完性質と Chebotarev密度定理によって, 有限体上の超幾何関数の変換公式か
らアデール的超幾何関数の変換公式が導くことができる. 例えば, Gauss変換公式 (C = 1の場合)

F (2A,−2A; 1;x) = F
(
A,−A; 1; 1− (1− 2x)2

)
のアデール版が成り立つ [2, Theorem 4.8]: k ⊃ µN , a ∈ Z/NZ のとき

χ2a,−2a
N (Fλ(σ)) = χa,−a

N (F1−(1−2λ)2(σ)) (σ ∈ Gal(Q/k)).

4.5 課題
今後の課題として, 以下のような問題が挙げられる.

超幾何モチーフについて:

• 正則型の一般超幾何関数 q+1Fq に対応する (q 次元) モチーフは例 3.6と同様に構成ができ
る. その期待される性質 (コホモロジーの次元など) を示す必要がある.

• 非正則型の場合は, 代数多様体から構成するモチーフではなく「指数モチーフ」になるが, そ
れらについて理解を深めたい. この場合でも有限体上では, Artin-Schreier 曲線を用いるこ
とでモチーフを構成できるだろう [8]参照).

• さまざまな変換公式 (Gauss, Goursat, など) および積公式をモチーフの同形に持ち上げる.

アデール的超幾何関数について:

• 一般化された超幾何曲線 (例 3.6) の射影系のアデール的ホモロジー群の Λ自由性 (階数 4)

を示す. すると, C上の関数 xDF (A+D,B +D;C +D;x) (A,B,C,D ∈ Q) と対応する,

4変数のアデール的超幾何関数が定義できる.

• アデール的ベータ関数の l進成分を Zl[[x, y]]の元と見たとき (注意 4.2), その展開係数には
円単数が現れる (伊原予想: Ihara-Kaneko-Yukinari, Anderson, Colemanが証明). アデー
ル的超幾何関数の l進成分の展開係数を調べる.

• Furushoによる l進超幾何関数 [3] との関係を調べる.
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Riemann 球面上の有理型線型微分方程式とルー
ト系

廣惠一希　 ∗

Abstract

微分方程式の特異点の合流/開折操作は古典的な研究手法ですが現在でも重要な研
究対象である．本稿では Riemann球面上の有理型の線形微分方程式に対して，特異
点の合流/開折による微分方程式の退化を考え，「特異点の合流/開折による微分方程
式の退化の族は，スペクトル型と呼ばれる微分方程式の局所データの組み合わせ的構
造によって記述される」とした大島利雄氏による予想を出発点として，複素簡約代数
群の構造論やルート系の概念がどのように微分方程式の特異点とその変形（合流）に
関連するのかを解説する．

Introduction

線形微分方程式の不確定特異点の研究において，特異点の合流操作は古典的に重要な研
究手法として知られています．例えば，Gaussの超幾何微分方程式の特異点の合流によっ
て，Kummerの合流型超幾何微分方程式や，Hermite-Weber, Airyといった不確定特異点
を持つ微分方程式が得られることはよく知られています．本稿では高々不分岐不確定特異
点を考えることとして，Airyの微分方程式は除外して，これらの微分方程式の退化の様
子を図示すると次のようになります．

Gauss Kummer Hermite-Weber

また，アクセサリーパラメーターを持つ微分方程式として知られるHeunの微分方程式に
対しても，下の図のような特異点の合流による微分方程式の退化族が知られており，モノ
ドロミー保存変形を通じたPainlevé方程式の退化の観点からも盛んに研究されています．

Heun confluent Heun

biconfluent Heun

doubly-confluent Heun

triconfluent Heun

アクセサリー・パラメーターはRiemann球面上の微分方程式の研究の上で非常に重要
な量と考えられており，上のGaussの方程式はアクセサリー・パラメーターが 0個の方程
式の典型例として知られていて，次のHeunの方程式はアクセサリー・パラメーターを 1

∗千葉大学大学院理学研究院 数学・情報数理学研究部門, kazuki@math.s.chiba-u.ac.jp



個1もつ方程式の典型例です．そうした中で，川上-坂井-中村は Painlevé方程式の高次元
化の文脈から 4次元の相空間をもつモノドロミー保存変形方程式の分類を考え，その研究
過程で 4個のアクセサリー・パラメーターを持つ線形微分方程式ついての系統的な退化の
リストを構成しました [6]．

22,22,22,211

(2)(11),22,22

(2)(2),22,211

(2)(2),(2)(11)

((2))((11)),22

((2))((2)),211

(((2)))(((11)))

上の図は川上-坂井-中村のリストから一例を取り上げたものです．左端の箱の中にある
22, 22, 22, 211

についてもう少し説明します．これは自然数 4の分割の 4つの組みと思うことができて，
対応する微分方程式はRiemann球面上に 4つの確定特異点を持つ 4階の微分方程式です．
すなわち，方程式の階数である自然数 4の分割が，方程式の特異点の個数である 4個並ん
でいるという具合です．
さて確定特異点近傍の同値類は局所モノドロミー行列の共役類や，冪級数解の特性指

数によって分類されることを思い出しましょう．その上で 4の分割は特性指数あるいはモ
ノドロミー行列の固有値の重複を表すと考えます．すなわち 4の分割

211

はこの確定特異点近傍では解空間の次元である 4次元のうち，特性指数が同じ級数解が 2
つあり，その他に特性指数が異なる解が 1つずつ合計 4次元の解空間を生成していいるこ
とを意味しています．こうした特性方程式の根（特性指数）の重なりを表す自然数の分割
の組をスペクトル型と呼びます．
古典的な例であるGaussやHeunの方程式は 2階の方程式だったので，こうした特性

指数の重複というものは意味を持たない（特性指数が重複すると，特異点はゲージ変換で
除去できる）ため，これまであまり考えられてきませんでした．しかし，アクセサリー・
パラメータを複数個もつような一般の微分方程式の研究が進むにつれて，特性指数（モノ
ドロミー行列の固有値）の重複度はアクセサリー・パラメータの個数を決める重要な不変
量として認識されるようになってきました．
その他の記号の詳細に関しては原論文を参照してもらい，これと等価な対応物を本稿

でも後に導入します．例えば pp2qqpp11qq, 22などは不確定特異点の特性方程式の重根の様
子を表し，括弧の個数で不確定度の深さを表現しています．このように上の図式は，スペ
クトル型 22, 22, 22, 211を持つ Fuchs型微分方程式から出発して，特異点の合流によって
得られる不確定特異点型の微分方程式たちを，対応するスペクトル型によって表すもので
す．また図の矢印は，微分方程式たちが特異点の合流によってつながっていることを意味
します．
さて上の図を眺めていると，自然数 4の分割の 4つ組 22, 22, 22, 211から出発して，こ

の分割に対する何らかの組み合わせ的な操作がこの退化図式の背後にあるのが感じ取れる
かと思います．詳細は後に回しますが，実際この川上-坂井-中村による微分方程式の退化
の図式は，微分方程式の特異点の合流とは全く独立に, 自然数 4の分割の組 22, 22, 22, 211
の組み合わせ的な考察によって再構成することが出来ます．このことから次のような問い
を立ててみましょう．

11階の行列型微分方程式として書くと 2個のアクセサリーパラメーターを持ちます.



Question 0.1. 自然数 nの勝手な分割の組

m1,1 . . . m1,k1 , m2,1 . . . m2,k2 , . . . , mr,1 . . . mr,kr

˜

n “

ki
ÿ

j“1

mi,j, i “ 1, . . . , r

¸

に対して，川上-中村-坂井の退化図式を形式的に得ることができる．一方でこの形式的な
退化図式を実現するような，Riemann球面上の有理型線形微分方程式は存在するのだろ
うか．
この素朴な問いは大島利雄氏によって数学的に定式化され，論文 [10], [11]において予

想として提出されました．本稿ではこの大島氏の予想について解説し，またその解決に向
けて複素簡約Lie群の構造論やルート系が本質的な役割を果たすことを説明したいと思い
ます．
以下に予想の解決に向けた戦略を非常に雑にですが述べることにします．上の問いは

自然数 nの分割の組の退化 ?
ÐÑ 微分方程式の特異点の合流

という対応関係について問うています．この対応を考える際に鍵となる基本戦略は吉田正
章氏によって提出された以下の問題になります．
Problem 0.2 (吉田 [13]2). m個の特異点をもつ n階線型 Fuchs型微分方程式と，それら
から合流操作で得られる方程式とを合わせた全体X(あるいは適当な部分)を適当な同値
関係で割ったものX{ „に解析構造を入れること
すなわち特異点の合流/開折による微分「方程式」の変形の問題を，微分方程式たちの

なす「空間」（微分方程式のアクセサリーパラメーター（モジュライ）の空間）の変形族
を幾何学的に構成する問題としてとらえなおし

自然数 nの分割の組の退化 ?
ÐÑ 微分方程式のモジュライ空間の変形

という対応関係を構築すること目標とします．この対応を与える鍵はLie群の表現論では
よく知られた

自然数 nの分割の組 !!
ÐÑ GLnの放物型部分群

という関係です．この関係から，自然数 nの分割の組の退化によって，この放物型部分群
たちの包含列が構成されるのですが，これを通じて最終的に

自然数 nの分割の組の退化 放物型部分群の包含列

モジュライ空間の変形 微分方程式の特異点の合流

という対応を構成するのが本稿での戦略になります．

2若林功氏によってまとめられた諸問題のうちの一つ．



1 スペクトル型
本節ではスペクトル型の定義を与えます．微分方程式 d{dz Y “ ApzqY , Apzq P MnpCpzqq

が z “ 0に確定特異点を持つことは，ある gpzq P GLnpCppzqqqによる変換で

gpzqApzqgpzq´1 `

ˆ

d

dz
gpzq

˙

gpzq´1 “
A

z
, pA P MnpCqq

と方程式の係数行列を単純極に変換できることと同値であったことを思い出しましょう．
このとき特に方程式 d{dz Y “ ApzqY の z “ 0の局所同型類は e2πiAの共役類によって一
意的に特徴づけることができます．すなわち変換後の留数行列Aの Jordan標準型が微分
方程式の局所同型類を決定することになります．これから定義するスペクトル型とはこの
Aの Jordan細胞の大きさや，それらの数を数えるための有限個のデータからなり，微分
方程式の局所同型類のある種のラベルの役割を果たすものです．
さて，これを拡張して不確定特異点の形式的局所同型類を特徴づける標準型を与える

のが福原-Turrittin理論です．福原-Turrittin理論はBabbitt-Varadarajanによって一般の
複素線形代数群に拡張がなされているので，彼らの手法に沿って不確定特異点の局所形式
論の復習をしましょう．

Gを連結な複素簡約線形代数群として，gでその Lie環を表します．適当な GLN へ
の埋め込み ρ : G ãÑ GLN を固定します．Rを形式的べき級数環 Crrzss，あるいは形式的
Laurent級数体Cppzqq のいずれかとします．このとき写像 δG : GpRq Ñ gpRq であって

dρpδGpgqq “

ˆ

d

dz
ρpgq

˙

ρpgq´1 pg P GpRqq

を満たすものが存在します（例えば [2]を参照）．ここで GLNpRq にはRの微分構造に
よって d{dzが自然に定義され，また実は δGはGの埋め込みに依存しません．
ここで g-値形式的微分形式Adz, A P gpRq :“ gbCRをR上の形式的有理型G接続と

呼び，それらの間の変換を g P GpRqに対して，
g ¨ Adz :“ AdpgqpAq dz ` δGpgq dz (1)

と定めゲージ変換と呼びます．
確定特異点の場合にゲージ変換で定数行列Aを留数に持つ接続A{z dz に変換できた

ように，不確定特異点を持つ場合も，以下の「標準型」に必ず変換できるというのが，福原
[7]，Turrittin[12]，Levelt[9]による標準化 (G “ GLN)，そしてBabbitt-Varadarajan[2](一
般の複素線形代数群)による標準化として知られています．
Definition 1.1 (標準形). H P gpCppzqqqは次のように表されるとき，福原-Turrittin-
Levelt-Babbitt-Varadarajanの標準形，あるいは単に標準形と呼ばれる．すなわち，H
は

H dz “

˜

k
ÿ

i“1

Hiz
´i ` Hres

¸

dz

z

と表され，各Hi, i “ 1, . . . , kは半単純で，rHi, Hjs “ 0, rHi, Hress “ 0を満たす．
留数のHresは一般には半単純である必要はないので，Hres “ H0 ` Hnilで半単純部分

H0と冪零部分Hnil に Jordan分解しておきます．
Theorem 1.2. 形式的有理型G接続 Adz pA P gpCppzqqqqに対して，拡大体 Cpptqq ptq “

z, q P Zě1q とCpptqq上の標準形H P gpCpptqqqが存在して，AdzはCpptqq上のゲージ変換で
H dtに移すことができる．



上の定理において，Adzが特に係数体の拡大を必要とせずに標準化出来るとき (q “ 1
の場合)，Adzは z “ 0を不分岐な不確定特異点に持つといいます．以下本稿では有理型
接続の特異点は常に不分岐とします．
この標準型H dzに対してスペクトル型と呼ばれる有限データを定義しましょう．ス

ペクトル型とは雑にいうと「固有値の重複」を数えるデータです．しかし今

H dz “

˜

k
ÿ

i“1

Hiz
´i ` Hres

¸

dz

z

と係数 “行列”Hiたちが z´iごとに並んでいますので，これらの「同時固有値の重複」を
数えていくことにします．

H P gpCppzqqqを Cppzqq上の標準形とすると，係数のHi達は互いに可換な半単純元で
あったので，これらHi すべて含むようなCartan部分代数 t Ă gが存在します．この tに
対して gのルート空間分解

g “ t ‘
à

αPΦ

gα

を考え，単純ルート系 Π Ă Φを一つ決めます．最も深い極 z´pk`1qの係数であるHkは，
必要ならばGpCqの作用を考えて，tの基本領域
D :“ tX P t | α P Π に対し ReαpXq ě 0 かつ ReαpXq “ 0 の場合 ImαpXq ě 0u

に入っているとして，Πの部分集合を
Πk :“ tα P Π | αpHkq “ 0u

と定めます．例えば，G “ GL5の場合にΠ “ te1, . . . , e4uを標準的な単純ルート系として，

Hk “

¨

˚

˚

˚

˚

˝

a
b
b
c
c

˛

‹

‹

‹

‹

‚

pa, b, c は互いに異なる q

を考えると，Πk “ te2, e4uとなります．これを自然数 5の分割で言い換えると 122とな
り，Introductionで例示した固有値の重複度のデータが得られます．すなわちΠkはHkの
固有値の重複度を表していると思うことができます．
次のHk´1も適当なWeyl群作用で
Dk :“ tX P t | α P Πk に対し ReαpXq ě 0 かつ ReαpXq “ 0 の場合 ImαpXq ě 0u

に入っているとしましょう．ここでHkは動かさずにHk´1 をDkに入れることが出来る
ことに注意します．そして

Πk´1 :“ tα P Π | αpHkq “ αpHk´1q “ 0u

と定義すると，これはHkとHk´1の “同時固有値”の重複を表す量と思えます．
以下同様にしてHk, Hk´1, . . . , H0に対してもΠiを定義することが出来るので，結果と

して単純ルート系Πの部分集合の列
Πk`1 “ Π Ą Πk Ą ¨ ¨ ¨ Ą Π0

が得られ，これがH全体の “同時固有値”の重複の様子を表すことになります．また冪零
部分は留数Hres “ H0 ` Hnil の冪零部分Hnilの随伴軌道を考えることになりますが，そ
の際Hk, . . . , H1 は動かさないようにする必要があります．以上の考察から不分岐標準型
H dzのスペクトル型を同時固有値の重複度と冪零部分のデータとして次のように定義し
ましょう．



Definition 1.3. H dzを上のような不分岐な標準形とする．このときHのスペクトル型
を対 sppHq :“ pΠH ; rHnilsqによって定める．ここで

ΠH : Πk Ą Πk´1 Ą ¨ ¨ ¨ Ą Π0

は上で定めた単純ルート系Πの部分集合列で，rHnils は冪零元Hnilの

GpCqHirr
:“ tg P GpCq | AdpgqpHiq “ Hi, i “ 1, 2, . . . , ku

による随伴軌道である．
スペクトル型自体は次のように標準型とは独立に定義することができます．Πk Ą

Πk´1 Ą ¨ ¨ ¨ Ą Π0 を gの単純ルート系の部分集合の列，li Ă gを Πi Ă Πに付随した
放物部分代数の Levi部分代数として，Liで各 liに対応するGpCqの解析的部分群としま
しょう．J P l0 を冪零元として，rJsで J の L1 随伴軌道とします．このとき対 pΠk Ą

Πk´1 Ą ¨ ¨ ¨ Ą Π0; rJsq を抽象スペクトル型と呼ぶことにします．

2 スペクトル型の開折と退化図式
本節ではスペクトル型に対して開折という操作を導入します．これは後の節で微分方程式
の特異点の退化と対応することになります．

S “ pΠk Ą Πk´1 Ą ¨ ¨ ¨ Ą Π0; rJsq を抽象スペクトル型とします．さらにPrk`1sで集合
t0, 1, . . . , kuの分割全体の集合とします．Prk`1sには分割の細分によって自然に半順序が
入ることに注意します．
分割 t0, 1, . . . , ku “ I0 \ I1 \ ¨ ¨ ¨ \ Ir を，I “ pI0, I1, . . . , Irq P Prk`1s と書くこと

にして，以下では適当に並べ替えて 0 P I0であると約束します．ここで，分割の各成分
Ij Ă t0, 1, . . . , kuに添字づけられたΠk Ą Πk´1 Ą ¨ ¨ ¨ Ą Π0 の部分列をΠIj とおいて，

SI0 :“ pΠI0 ; rJsq, SIj :“ pΠIj ; r0sq, j ‰ 0

と定めると，分割 Iに対して，スペクトル型の組 SI :“ pSIjqj“1,...,r が得られます．これ
を分割 I P Prk`1sに対する開折と呼びます．
一般には微分方程式は複数の特異点を持つため，各特異点ごとに複数のスペクトル型

が定まり，その組S “ pSiqi“1,2,...,d “

´

pΠ
piq
ki

Ą Π
piq
ki´1 Ą ¨ ¨ ¨ Ą Π

piq
0 ; rJ

piq
0 sq

¯

i“1,2,...,d
を考えま

す．その場合も各分割の組 I “ pIpiqqi“1,2,...,d P
śd

i“1 Prki`1s によって Sの開折を

SI “ pSIpiq

i qi“1,2,...,d

と定めることができます．特に，最も細かい分割 pt0u \ ¨ ¨ ¨ \ tkauqaPD P Prka`1s に対応す
る Sの開折を Sreg と書くことにしておきます．これはスペクトル型 Sに対応する不確定
特異点を開折して得られる確定特異点型方程式のスペクトル型に対応することが期待さ
れるものです．
上の定義では異なる分割に対して，同じスペクトル型が現れてしまう場合があるので，

それらを次のように同一視しておきます．抽象スペクトル型の組 S “ pSiqi“1,2,...,dから，
整数の列 0 ď l

piq
1 ă l

piq
2 ă ¨ ¨ ¨ ă l

piq
ti “ ki を

Π
piq
ki

“ ¨ ¨ ¨ “ Π
piq

l
piq
ti´1`1

Ľ ¨ ¨ ¨ Ľ Π
piq

l
piq
2

¨ ¨ ¨ “ Π
piq

l
piq
1 `1

Ľ Π
piq

l
piq
1

“ ¨ ¨ ¨ “ Π
piq
0 ,



i “ 1, 2, . . . , dとなるようにとります．ここから対称群Ski`1の部分群S
l
piq
0 `1

ˆS
l
piq
1 ´l

piq
0

ˆ

¨ ¨ ¨S
l
piq
ti

´l
piq
ti´1
が定まるので，この群作用による半順序集合の商として

PSi
rki`1s

:“ Prki`1s{pS
l
piq
0 `1

ˆ S
l
piq
1 ´l

piq
0

ˆ ¨ ¨ ¨S
l
piq
ti

´l
piq
ti´1

q

を考えます．商の作り方から，分割の組 I ,J P
śd

i“1Prki`1s がこの商の中で等しくなる
ならば，は SI “ SJ となることがわかります．
したがって半順序集合śd

i“1 P
Si
rki`1s

では，開折によって得られるスペクトル型の重複
が解消されていることになるので，このHasse図式を抽象スペクトル型の組Sの被約な開
折図式，あるいは単に開折図式，退化図式などと呼ぶことにします．
例えば，スペクトル型の組として pte12, e34u Ą te12, e34u Ą te12, e34u Ą te12u; r0sq を考

えると，以下の被約な開折図式を得ますが，これは Introductionで例示した川上-坂井-中
村の退化図式に他なりません．

pte12, e34u; r0sq ,
pte12, e34u; r0sq ,
pte12, e34u; r0sq ,
pte12u; r0sq

pte12, e34u; r0sq ,
pte12, e34u; r0sq ,
pte12, e34u Ą te12u; r0sq

pte12, e34u Ą te12, e34u; r0sq ,
pte12, e34u; r0sq ,
pte12u; r0sq

pte12, e34u Ą te12, e34u; r0sq ,
pte12, e34u Ą te12u; r0sq

pte12, e34u Ą te12, e34u Ą te12u; r0sq ,
pte12, e34u; r0sq

pte12, e34u Ą te12, e34u Ą te12, e34u; r0sq ,
pte12u; r0sq

pte12, e34u Ą te12, e34u Ą te12, e34u Ą te12u; r0sq

3 大島予想
抽象スペクトル型に対しその開折と開折図式を形式的に定義しました．では実際にこれを
P1上の有理型G接続の不確定特異点の開折によって実現することができるでしょうか．
定式化を正確にするために少し準備をします．Dは P1上の点の有限集合で，簡単の

ため8 R D としておきます．S “ pSaqaPDを抽象スペクトル型の組とします．このとき
SppHq “ Sとなる標準形の組H “ pHpaqqaPD P

ś

aPD gpCppzaqqq があって，次の意味でH
を局所データにもつP1上の自明G主束における既約3な有理型接続が存在する時，Sは既
約実現可能であるということにします．自明G主束の接続は g値微分 1形式で代表され
たことから，既約実現可能であるとは，P1上でDにのみ特異点を持つ g値微分 1形式

∇A “
ÿ

aPD

ka
ÿ

i“0

A
paq

i

pz ´ aqi
dz

z ´ a
pA

paq

i P gq

があって，接続行列の各特異点 a P Dでの主要部が
ka
ÿ

i“0

A
paq

i

pz ´ aqi`1
P OHpaq Ă gpCppz´1

a qq{Crrzassq

を満たす，と言い換えられます．ただしOHpaqは標準形をHpaqのGpCrrzassq作用による軌
道を表します．このとき dAを Sの実現と呼びます．

3既約性の定義は Arinkin[1]を参照．



また Sは半普遍的に既約実現可能であるというのを以下のように定義します．原点を
含む開集合 U Ă

ś

aPD Cka`1 に対して，c P U に正則に依存する既約な g値微分 1形式の
族∇Apcq “ Apcq dz が存在し，任意のI P

ś

aPD Prka`1s に対して∇Apcq pc P CpIq XUq は
SI の実現を与える．すなわち，p∇ApcqqcPU は Sの開折図式に従って特異点が退化してい
くG接続の正則族を与えているといえます．
抽象スペクトル型 Sの実現可能性，その確定特異点型への開折 Sregの実現可能性，そ

してSの半普遍的実現可能性，が同値であるという次の予想が大島利雄によって提出され
ました．
Conjecture 3.1 (大島 [10, 11]). S “ pSaqaPDを抽象スペクトル型の組とする．このとき
以下は同値．

1. Sは既約実現可能．
2. Sは半普遍的に既約実現可能．
3. Sregは既約実現可能．
G “ GLN であってアクセサリーパラメーターの個数が 0～4個の場合に，この予想が

正しいことが大島自身によって示されています (Remark 6.2 [10], Remark 5.7 [11])．

4 福原標準形の打ち切り軌道
前節の予想にアタックするために吉田の問題に倣ってG接続のモジュライ空間の変形を
考えるというのが本稿の基本戦略でした．その準備として，本節ではまずはG接続の局
所同型類をパラメトライズするために，Boalch[3]にならって標準形の打ち切り軌道とい
うものを導入し，その余随伴軌道としての解釈について説明します．
定理 1.2でみたようにG接続のゲージ変換による同型類は定義 1.1で与えた標準形に

よって分類されます．すなわち標準形H dzに対して，そのゲージ変換軌道
OH :“ tAdpgqpHq ` δGpgq | g P GpCppzqqqu

がG接続の局所形式的同型類を与えます．一方Boalchは [3]で δGpgqを打ち切った以下の
ような軌道を導入しました. 一般に g P GpCrrzssqに対しては，

δGpgq P gpCrrzssq (2)

とできることから，標準形を

H dz “

˜

k
ÿ

i“1

Hiz
´i ` Hres

¸

dz

z
P gpCppzqq{Crrzssq

と gpCppzqqqから正則項を打ち切った部分に属するとみなすことで，gpCppzqq{Crrzssq上での
GpCrrzssq軌道を考えると式 p2qより δGpgq部分が打ち切られて，

OH :“ tAdpgqpHq | g P GpCrrzssqu Ă gpCppzqq{Crrzssq

が得られます．これを不分岐な標準形H dzの打ち切り軌道と呼びましょう．
ここではGpCrrzssqの随伴作用のみで軌道を考えることができ，元のゲージ変換軌道OH

よりも構造が単純化されています．またH dzが非共鳴的4という条件下ではOH によっ
てゲージ変換による同型類がパラメトライズできることが知られています．

4詳細は [5]



さらに打ち切り軌道は以下で見るように自然に有限次元 Lie群の余随伴軌道としての
構造を持ちます．l P Zě0に対して

Crzsl :“ Crrzss{xzl`1y

というC代数を定めます．さらに

Crz´1sl :“ z´pl`1qCrrzss{Crrzss

として高々 l ` 1位の極を持ち正則項を打ち切った形式的有理型関数の空間を考えると，
これには自然にCrzsl加群の構造が入ります．
特に標準形H dzはその形からH dz P gpCrz´1skq とみなすことができます．さらにこ

のとき, 非退化ペアリング

glNpCrzslq ˆ glNpCrz´1slq Q pXpzq, Y pzqq ÞÑ Resz“0 ptr pXpzqY pzqqq P C

によって
gpCrz´1slq – gpCrzslq

˚

と同一視することで
H dz P gpCrzskq˚

とH dzを gpCrzskqの双対空間の元だと思えます．したがって

OH “ tAd˚pgqpHq | g P GpCrzskqu Ă gpCrzskq˚

となり，打ち切り軌道OH は有限次元複素 Lie群GpCrzskqの余随伴軌道としての解釈を
持つことがわかります．

5 P1上の有理型G接続のモジュライ空間
前節同様にDを P1の有限部分集合で，簡単のため8 R Dとしておきます．za :“ z ´ a
で a P Dを中心とした P1の局所座標関数を表し，H “ pHpaqqaPD として各点 a P Dでの
不分岐標準形の組を固定します．
各打ち切り軌道OHpaq は余随伴軌道として自然に正則シンプレクティック構造を持ち

ますが，その際自然なはめ込み5ιHpaq : OHpaq ãÑ gpCrzaskpaqq˚ はGpCrzaskaq作用の運動量
写像となることはよく知られています．ここでさらに自然な包含 g ãÑ gpCrzskqの双対写
像 gpCrzskq˚ Ñ g˚ は同一視 gpCrzskq˚ – gpCrz´1skq の下で留数写像

Resz“0 : gpCrz1skq Q Xpzq ÞÑ Resz“0Xpzq P g

を与えることに注意すると，

µH : OH ãÑ gpCrz´1skq
Resz“0
ÝÝÝÝÑ g – g˚

はGpCq作用による運動量写像を与えることがわかります．これによってH “ pHpaqqaPD

全体では積多様体ś

aPDOHpaq へのGの対角作用による運動量写像

µH :
ź

aPD

OHpaq Q pXaqaPD ÞÑ
ÿ

aPD

µHpaqpXaq P g˚

5ここでは OHpaq “ GpCrzskpaq q{GpCrzskpaq qHpaq みなしています．



に対するシンプレクティック簡約

MH :“ µ´1
H p0q{G

を考えることができます．
このシンプレクティック簡約は運動量写像 µHpaq が留数写像と一致することから，次

のように P1上の g値有理型 1形式，すなわち自明G主束上の有理型接続の空間とみなす
ことができます．

MH “ µ´1
H p0q{G

“

#

pXaqaPD P
ź

aPD

gpCrz´1
a skpaqq

ˇ

ˇ

ˇ

ˇ

ˇ

ř

aPD Resza“0Xa “ 0,
Xa P OHpaq , a P D

+

N

G

“

#

∇A “
ÿ

aPD

ka
ÿ

i“0

A
paq

i

pz ´ aqi`1
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ř

aPD A
paq

0 “ 0,
řka
i“0

A
paq
i

pz´aqi
P OHpaq , a P D

+

N

G

ここでMH “ µ´1
H p0q{GではG作用による素朴な商をとっているので，作用の安定性

について以下でコメントをしておきます．G接続∇A “
ř

aPD

řka
i“0

A
paq
i

pz´aqi`1 dzが既約であ
るというのを，係数A

paq

i を全てを同時に含む gの放物型部分代数は gのみである，という
条件で定めることにします．そして pµ´1

H p0qqir で µ´1
H p0qの既約元全体のなす開部分集合

を表すことにします．すると幾何学的不変式論から，Gをその中心Zで割ったG{Zの作
用は固有かつ概自由6であることがわかるので，

Mir
H :“ pµ´1

H p0qqir{G

を以下 P1上の既約G接続のモジュライ空間と呼ぶことにします．

6 福原標準形の δ不変量と剛性指数
本節では標準形に対して δ不変量と剛性指数と呼ばれる不変量を導入し，G接続のモジュ
ライ空間の次元との関係について説明します．
不分岐な標準形

H dz “

˜

k
ÿ

i“1

Hiz
´i ` Hres

¸

dz

z

をとり，pΠk Ą ¨ ¨ ¨ Ą Π0; rJ0sqをそのスペクトル型とします．このとき標準形H dz の不
確定度を

IrrpHq :“
k
ÿ

i“1

pdimG ´ dimLiq

によって定めます．ここでLiは放物型部分群PΠi Ă G のLevi部分群をあらわします．こ
れはG “ GLN の場合の小松-Malgrangeの不確定度の類似となっています．
さらにこの不確定を用いてH dzの δ不変量を

δpHq :“ dimG ` Irr pHq ´ dimGH

で定めます．ただしGH はHのGにおける固定化部分群をあらわします．
6固定化部分群が有限



不確定度や δ不変量は局所的な不変量でしたが，次に剛性指数とよばれる大域的な不
変量を導入します．前節のように不分岐標準形の組H “ pHpaqqaPDを考えます．このとき
Hの剛性指数を

rigpHq :“ 2dimG ´
ÿ

aPD

δpHpaqq

によって定めます．これはG “ GLN の場合のKatzの剛性指数の類似にあたるものです．
これらの不変量は定め方から標準形のスペクトル型のみに依存することに注意をして

おきます．
ではここからは，これらの不変量たちとG接続のモジュライ空間の次元との関係につ

いて説明していきます．
そのために有限次元複素 Lie群GpCrzskqの構造について少し復習しておきましょう．

Crzskは唯一の極大イデアルm
pkq
z :“ xzy を持つ局所C代数なので，剰余写像 π : Crzsk Ñ

Crzsk{m
pkq
z – C とおくと，包含写像 i : C ãÑ Crzsk はその切断を与えます．これよりGに

対する右分裂短完全列

1 Ñ Ker π˚ Ñ GpCrzskq
π˚

Õ
i˚
GpCq Ñ 1

が定まるので，半直積分解

GpCrzskq “ G ˙ GpCrzskq1 pGpCrzskq1 :“ Ker π˚q

が得られます．ここで半直積の第二成分GpCrzskq1の Lie環は

gpCrzskq1 :“ g bC mpkq
z

となりますが，m
pkq
z が冪零イデアルであることから，gpCrzskq1 は冪零 Lie環，よって

GpCrzskq1は冪単Lie群となります．したがって，指数写像が同型を与えることからGpCrzskq1
の元を次のように明示的に書くことができます．
Proposition 6.1. gpzq P GpCrzskq1は

gpzq “ eXkz
k

eXk´1z
k´1

¨ ¨ ¨ eX1z pX1, . . . ,k P gq

の形に一意的に書くことができる．
この明示式からGpCrzskq1におけるH dzの固定化部分群を次のようにあらわすことが

できます．
StabGpCrzskq1pHq “

!

eXkz
k

eXk´1z
k´1

¨ ¨ ¨ eX1z
ˇ

ˇ

ˇ
Xi P li

)

(3)

このことから打ち切り軌道OH の次元が δ不変量で次のように計算されます．
Proposition 6.2. 次の等式が成立．

dimOH “ δpHq

Proof. これまでの準備からすぐに従うので証明を与えておきます．上の等式 p3qより

dimStabGpCrzskq “

k
ÿ

i“1

dimLi ` dimStabGpHq



となるので，

dimOH “ dimGpCrzskq ´ dimStabGpCrzskqppHq

“ pk ` 1q ¨ dimG ´

˜

k
ÿ

i“1

Li ` StabGpHq

¸

“ dimG `

k
ÿ

i“1

pdimG ´ dimLiq ´ dimStabGpHq

“ dimG ` IrrpHq ´ dimStabGpHq “ δpHq.

同様にモジュライ空間の次元も次のように計算できます．
Proposition 6.3. 標準形の組H “ pHpaqqaPDの留数の和が gの半単純部分 gssに含まれ
るとする．このとき等式

Mir
H “ 2 dimZ ´ rigpHq

が成立する．
前節でコメントしたように δ不変量や剛性指数はスペクトル型のみから決定されまし

た．したがって Proposition6.2, 6.3の等式からスペクトル型はG接続の局所同型類やモ
ジュライ空間の次元を決定する重要な不変量であることが見て取れます．

7 福原標準形の開折とスペクトル型の開折
第 2節でスペクトル型に対して開折という操作を形式的に定義しました．本節ではそれを
福原標準形の変形として実現します．まず z “ 0を不分岐な不確定特異点と考えた場合の
福原標準形

H dz “

˜

k
ÿ

i“1

Hiz
´i ` Hres

¸

dz

z
P gpCppzqq{Crrzssq

をとります．このとき z “ 0は点が k ` 1重に縮退した点とみなして，この縮退を開折す
ることを考えましょう．そのためにCk`1に対して有限集合 t0, 1, . . . , kuの分割から定ま
る自然な階層構造を導入します．I : I0 \ ¨ ¨ ¨ \ Ir “ t0, 1, . . . , ku を分割として，0 P I0と
しておきます．このとき

CpIq :“
␣

pa0, . . . , akq P Ck`1
ˇ

ˇ ai “ aj ô Dl s.t. i, j P Il
(

としてCk`1の部分集合を定義しましょう．これによって非交和分解

Ck`1 “
ğ

IPPrk`1s

CpIq

を得られます．ここで I,J P Prk`1sに対して

CpIq Ă CpJ q ô I ď J

が成立することに注意します．



さて，c “ pc0, . . . , ckq P Ck`1を k` 1個の点の集合とみなして，標準形H dzの変形を
次のように定義します

Hpcq :“

ˆ

Hk

pz ´ c1q ¨ ¨ ¨ pz ´ ckq
`

Hk´1

pz ´ c1q ¨ ¨ ¨ pz ´ ck´1q
` ¨ ¨ ¨ `

H1

z ´ c1

˙

1

z ´ c0
.

このとき c P Ck`1に対して階層 c P CpIq なる分割 I : I0 \ ¨ ¨ ¨ \ Irがただ一つ定まり，c
は点集合としては

tc0, . . . , cku “ tcI0 , . . . , cIru

と r個の異なる点の集合となります．したがって部分分数分解を考えることで，

Hpcq “

r
ÿ

j“0

|Ij |´1
ÿ

ν“0

Hj,νpcq

pz ´ cIjq
ν`1

とあらわして，分解の各 Ij成分をHpcqj “
ř|Ij |´1
ν“0

Hj,νpcq

pz´cIj qν`1 と書きましょう．このとき部
分分数分解Hpcq “

řr
j“0Hpcqj と，第 2節で定義したスペクトル型 sppHqの I P Prk`1s

に対する開折
sppHqI “ psppHqIjqj“0,...,r

は次のように対応します．
Proposition 7.1. Hを不分岐な標準形，sppHqをそのスペクトル型とする．原点を含む
稠密な開部分集合 BH Ă Ck`1が存在して以下が成り立つ．

1. すべての Iに対してCpIq X BH ‰ H．
2. c P CpIq XBHならば，部分分数分解Hpcq “

řr
j“0Hpcqjの各成分は z “ cIj におけ

る不分岐な標準形であって，そのスペクトル型に対して

sppHpcqjq “ sppHqIj pj “ 0, . . . , rq

が成り立つ．
さらにこの変形Hpcqは δ不変量を保ちます．

Proposition 7.2. I P Prk`1s, c P CpIqXBH に対して，部分分数分解Hpcq “
řr
j“0Hpcqj

は以下のように δ不変量を保つ．すなわち
r
ÿ

j“0

δpHpcqjq “ δpHq

が成立する．
同様のことは標準形の組H “ pHpaqqaPD P

ś

aPD gpCrz´1
a skaq に対しても考えることが

できますが，各成分Hpaqの変形が δ不変量を保つことから，H全体の変形が剛性指数を
保つことになります．
Proposition 7.3. c P BH :“

ś

aPD BHpaq とすると，

rigpHpcqq “ rigpHq

が成立する．



8 吉田の問題と大島の予想
本節では吉田の問題（Problem 0.2）に一つの解答を与えることで，大島の予想 (Conjecture
3.1)が解決できることを解説します．
残念ながら詳細は省略しますが，前節までの考察から次のように打ち切り軌道OH の

変形を構成することができます．紙数の都合から詳細は省略しますが，ここからさらに次
のように打ち切り軌道OH の変形を構成することができます．
Theorem 8.1. ([5]) πBH : OH,BH Ñ BH を上で定めた OH の変形とする. このとき c P

CpIq X BH におけるファイバー π´1
BH pcq はśr

j“0 OHpcqj の稠密な開集合と同型である．

スペクトル型の開折 福原標準形の開折

Ck`1の階層
=

t0, . . . , kuの分割

打ち切り軌道の変形

さらに，D “
řd
i“1pkai ` 1q ¨ ai を P1の有効因子として，簡単のためDが定める点集

合 |D|は複素数平面Cに含まれているとします．H “ pHpaqqaP|D| P
ś

aP|D| gpCrz´1
a skaq を

各点 a P |D|での不分岐標準形の組とします．また変形のパラメーター空間として BH “
ś

aP|D| BHpaq を考えると，打ち切り軌道の変形の組ś

aP|D| OHpaq,B
Hpaq
と射影

πBH
:
ź

aP|D|

OHpaq,B
Hpaq

ÝÑ
ź

aP|D|

BHpaq .

が上のように定義できます．
さらに第 5節で導入した打ち切り軌道の運動量写像 µHpaq : OHpaq Ñ g˚ の変形も構成

することができ，その変形された運動量写像の積によってG同変な写像

µH,BH
:
ź

aP|D|

OHa,BHpaq
Q pXaqaP|D| ÞÝÑ

ÿ

aP|D|

µO
HpaqÓG,B

Hpaq

pXaq P g˚,

を構成することができます．
Definition 8.2 (モジュライ空間Mir

Hの変形). 上で定めた変形された運動量写像の 0で
の等位集合 pµH,BH

q´1p0qとそのG安定部分 ppµH,BH
q´1p0qqst に対して

MH,BH
:“ µ´1

H,BH
p0q{G, Mir

H,BH
:“ ppµH,BH

q´1p0qqst{G.

と定める．ここで射影 πBH
:
ś

aP|D| OHpaq,B
Hpaq

Ñ BH によって射影 πBH
:MH,BH

Ñ BH，
πBH :Mir

H,BH
Ñ BH がそれぞれ定義される．

次の定理が吉田の問題に対する一つの解答です．Mir
H ‰ Hとして，πBH

:Mir
H,BH

Ñ BH

の像を rBH とおきます．そして π
rBH

:Mir
H,BH

Ñ rBHを πBH
から誘導される射影とします．

Theorem 8.3. ([5])Mir
H ‰ Hとする.



1. 商空間Mir
H,BH

は複素軌道体 (orbifold)の構造を持つ．

2. rBHは 0を含むCk`1の開部分多様体である.

3. 射影 π
rBH

:Mir
H,BH

Ñ rBH は全射沈め込みである．

4.
ś

aP|D| Cka`1の全ての階層ś

aP|D| CpIpaqq は低空間 rBHと空でない交わりを持つ.

5. 軌道体Mir
H,BH

はMir
Hの変形を与える．すなわち

Mir
H – π´1

rBH
p0q.

が成り立つ．
6. 任意の c P rBHに対し，ファイバー π´1

rBH
pcqはG接続のモジュライ空間Mir

Hpcqの稠密
な開部分集合と同型である.

この定理の 6は，不確定特異点の開折によって得られる，福原標準形の開折そしてス
ペクトル型の開折，の両者と整合的にG接続のモジュライ空間が変形されていることを
表しています．また，この変形の切断 s : U ÑMir

H,BH
が，既約なG接続の変形を与える

ことになりますが，定理の 2と 3より原点近傍で陰関数定理を適用することで，このよう
な切断が原点近傍でとれることが保証されます．したがって，この定理より次が言えるこ
とになります．

標準形の組Hを局所同型類に持つ既約G接続∇Aに対して，次を満たすG接
続の変形族 p∇ApcqqcPU , U Ă BHがが必ず存在する．
1. ∇Ap0q “ ∇A.

2. 任意の I “ pIpaqqaP|D| P
ś

aP|D|Prka`1s, c P CpIq X U に対して，∇Apcqは
既約で，その標準形はHpcqと一致する．

すなわち次が従うことになります．
Corollary 8.4. 大島の予想Conjecture 3.1において，条件 1と条件 2は同値．
また条件 2が条件 3を導くことは定義から明らかです．さらにここで次の事実を思い

出しておきます．
Theorem 8.5. ([4]) G “ GLN の場合，条件 3は条件 1を導く
この定理はG “ GLN にG接続のモジュライ空間が箙多様体で実現できることから，

箙のルート系の組み合わせ的議論を用いることで示されます．したがって以上を合わせる
とG “ GLN の場合の大島の予想の解決が得られます．
Theorem 8.6. G “ GLN の場合Conjecture 3.1は真である．
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Blow-up代数の環構造論
遠藤 直樹（明治大学政治経済学部）

1 はじめに
本小稿では, blow-up代数を巡る歴史的潮流を概観する。Blow-up代数の環論的性質につ

いては, 第 51回代数学シンポジウムにおいて, 後藤四郎明治大学名誉教授が「blow-up 代数
の可換環論」と題するご講演を行い, 1970年代から 2000年代に至る発展の道筋を整理・概
説された。本小稿では, その流れを受け, とりわけ 2010年代以降から近年にかけての話題を
中心として, 私自身が関わってきた範囲に重点を置きつつ, 謂わば「blow-up代数の可換環
論」の続編に相当する位置付けで論じる。なお, blow-up代数の Gorenstein性に関しては,

第 67回代数学シンポジウムにおいて, 北海道教育大学の居相真一郎先生がご講演「ブロー
アップ代数のゴレンシュタイン性について」の中で, 精緻かつ体系的に論じられている。
定義 1.1 (Blow-up代数). 可換Noether環A内のイデアル I に対して

R(I) = A[It] ⊆ A[t]
R′(I) = A[It, t−1] ⊆ A[t, t−1]

G(I) =R′(I)/t−1R′(I) ∼= R(I)/IR(I)

と定め, それぞれイデアル I のRees代数, 拡大Rees代数, 随伴次数環といい, これらを総称
して, イデアル I の blow-up代数と呼ぶ1。但し, tにより, A上の不定元を表す。
Blow-up代数に関する基本的事項については, [6, Section 4.5], [54], [92, Chapter 5], [98],

[99], [112, 第 3章第 2節]等を参照されたい。代数幾何学の観点では, Rees代数R(I)はイデ
アル Iの生成元 a1, a2, . . . , aℓから定まる有理写像 SpecA 99K Pℓ−1のグラフの閉包の斉次座
標環として登場し, 後に定義を紹介する射影スキームProjR(I)は SpecAの Iが定める部分
スキーム V (I)に沿った blowing upを与える ([21, IV.2 Blow-ups])。
一方, 可換環論の文脈における Rees代数の淵源は, D. Reesによる 1956年の研究 [79]に

遡る。Reesは, 実際にはRees代数そのものではなく, 拡大Rees代数を導入・考察し, Krull

の交叉定理の鮮やかな別証明を提示すると共に, Artin-Reesの補題を準備し, これを用いて
Krullの単項イデアル定理の別証明を与えた。なお, Artin-Reesの補題の名称に関して, Rees

は次のように経緯を説明している。Rees自身は 1954年の時点で既に当該証明を得ていたも
のの, 論文として投稿したのは 1955年 5月になってからであった。ところが, 論文 [79]が
出版された 1956年のまさにその月に, E. Artinは日本で開催された研究集会において, 同
一の議論と結果を発表した。その為, どちらの功績に帰すべきかの裁定を永田雅宜先生に仰
いだところ,「それは明らかにArtin-Reesの補題である」と答えたと述べている ([82, pages

563–564])。
さて, A上の多項式環A[t]と Laurent多項式環A[t, t−1]を自然に Z-次数環とみなすと, そ

れらの次数付けにより, blow-up代数も Z-次数環の構造を持つ。即ち
R(I) =

⊕
n≥0

Intn, R′(I) =
⊕
n∈Z

Intn, G(I) ∼=
⊕
n≥0

In/In+1

1Rees代数のことを blow-up代数と呼ぶ流儀もある。また, (A,m)が Noether局所環である場合には, イデ
アル I に関する fiber cone F(I) = R(I)/mR(I) ∼=

⊕
n≥0 I

n/mIn も blow-up代数に含めることがある。

1



である。但し, n ≤ 0に対しては, In = Aと定める。特に, AはR(I)の環直和因子である。
また, イデアル I の生成元 a1, a2, . . . , aℓを取り, I = (a1, a2, . . . , aℓ)と表すと

R(I) = A[a1t, a2t, . . . , aℓt]

が成り立つ。従って, blow-up代数R(I),R′(I), G(I)は全てNoether環である。

命題 1.2 ([97, Corollary 1.6, Remark 1.7], [92, Theorem 5.1.4, Proposition 5.1.6]). Noether

環AのKrull次元 d = dimAは有限とし, I ̸= Aと仮定する。次の主張が成り立つ。

(1) dimR(I) =

 d+ 1 (∃P ∈ SpecA s.t. I ̸⊆ P and dimA/P = d)

d (その他)

(2) dimR′(I) = d+ 1

(3) dimG(I) ≤ dであり, (A,m)がNoether局所環ならば, dimG(I) = d

注意 1.3. (A,m)が Noether局所環でない場合には, dimG(I) = dは一般には成立しない。
実際, R = k[X,Y, Z]は体 k上の多項式環とし, 積閉集合 S = R \ {(X,Y ) ∪ (Z)}を考える。
そこで, A = S−1Rとおくと, Aは Noether環であって, m = (X,Y )Aと n = (Z)Aは環 A

内の極大イデアルである。特に, htAm = 2 > 1 = htA nとなる。従って

dimG(n) = dimG(nAn) = dimAn = htA n < htAm ≤ dimA

が得られる。
ここで, R(I)+ =

⊕
n>0 I

ntnとおくと, R(I)+はR(I)の次数付きのイデアルである。集合

ProjR(I) = {P ∈ SpecR(I) | P は次数付き,R(I)+ ̸⊆ P}

を考えると, 空間 ProjR(I)にはスキームの構造が入る。自然な射 f : ProjR(I) → SpecA

を SpecAの閉集合 V (I)を中心とする blowing-upと呼ぶ。Noether局所環 (A,m)の特異点
解消とは, 射影的射 f : X → SpecAであって, X が非特異であり, f の制限X \ f−1(m)→
SpecA \ {m}が同型であることをいう ([112, 第 3章第 2節])。
Blowing-upは特異点解消の基本的手法であり, その幾何学的側面については古典以来, 膨

大な研究が蓄積されている。一方で, 私の興味はスキーム ProjR(I)の斉次座標環である
R(I)の環論的側面にある。即ち, 本研究の目的は, 下記の通りである。
研究の目的� �
Blow-up代数の環論的性質を調べる。� �
Blow-up代数の環構造を解析する上で, 分析の視座の適切な設定は不可欠である。本研究

では, 次のNoether局所環の階層を指標とする環構造解析に従事する。
Noether局所環の階層� �

• 正則局所環 =⇒ 完全交叉環 =⇒ Gorenstein環 =⇒ Cohen-Macaulay環
=⇒ Buchsbaum環, 系列的 Cohen-Macaulay環

• 正則局所環 =⇒ 有理特異点 =⇒ Cohen-Macaulay正規環

• 正則局所環 =⇒ 弱 F -正則環 =⇒ F -有理環 =⇒ Cohen-Macaulay正規環� �
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第 1行はホモロジー代数的視点に基づく階層であり, 第 2行は特異点論的視点, 第 3行は
正標数の視点 (最後の含意には, 基礎環は Cohen-Macaulay環の準同型像という仮定が必要
である) の階層である。
現在では, blow-up代数の環構造解析は可換環論の中核的課題の 1つとして, 確固たる地

位を築くに至っているが, 1970年代半ば頃までを顧みれば, Rees代数の環論的性質の研究
は, いくつかの具体例と散発的な結果を除いて, 包括的な理論の体系化はなお途上にあった
([106, page 6])。以下に, その代表例を紹介する。
例 1.4. 体 k上の多項式環A = k[X1, X2, . . . , Xd] (d ≥ 2)内において, 不定元で生成される
イデアル I = (X1, X2, . . . , Xd)を考えると, 次の同型

R(I) ∼= k[X1, X2, . . . , Xd, Y1, Y2, . . . , Yd]/I2

(
X1 X2 · · · Xd

Y1 Y2 · · · Yd

)
が成り立つ。但し, I2(M)により, 行列Mの 2次小行列式全体が生成するイデアルを表す。
例 1.4において, Rees代数R(I)は行列式環として現れ, ASL (Algebras with Straightening

Law)の枠組みで捉えられるため ([6, Section 7.2]),組合せ論的視点からの考察が可能である。
この環は多項式環の Segre積 k[X1, X2]#k[Y1, Y2, . . . , Yd]でもあり ([53, page 197], [80, page

653]), 標数 0の体 kに対しては, 一般線型群の不変式環としても実現される ([7, Theorem

(7.6)], [15], [93, page 1166])。環構造に目を向けると, このR(I)はCohen-Macaulay正規整
域であって, 体 kの標数が 0である場合には有理特異点 ([103, (6.1.5) Corollary (b)]), 正標
数の場合には F -正則特異点 ([5, Theorem 3.1], [59, Theorem (7.14)])となる。以上の事実
は, Rees代数が多様な視点からの探求に値する豊かな研究対象であることを物語っている。
例 1.5 ([1, Proposition 2, Corollary], [97, Theorem 3.1]). Noether環A内の正則列2a1, a2, . . .,

ad ∈ A (d ≥ 2)に対して, I = (a1, a2, . . . , ad)とおくと

R(I) ∼= A[Y1, Y2, . . . , Yd]/I2

(
a1 a2 · · · ad

Y1 Y2 · · · Yd

)
が成り立つ。但し, A[Y1, Y2, . . . , Yd]はA上の多項式環を表す。従って, AがCohen-Macaulay

局所環ならば, 任意の n ≥ 1に対して, R(In)は Cohen-Macaulay環である。
例1.4, 1.5の証明は,原論文以外にも, [106,例1.3,命題1.4]に記載されている。なお,正則列

が生成するイデアル Iの随伴次数環はA/I上の多項式環に同型である ([6, Theorem 1.1.8])。
正則列が生成するイデアルの冪の拡大 Rees代数や随伴次数環に関しては, [60, Section 4],

[97, Theorem 3.2]を参照されたい。

2 Blow-up代数のCohen-Macauay性
Blow-up代数のCohen-Macaulay性解析に関しては, [106, 第 4節, 第 7節]に詳細な記述が

ある。歴史を遡れば, Cohen-Macaulay環という名称は, F. S. Macaulayと I. S. Cohenの結
果に由来する。1916年, Macaulayは体上の多項式環において非混合定理3 (the unmixedness

theorem) が成り立つことを示し ([71]), 1946年には, O. Zariskiの学生であったCohenが正
則局所環の場合に同定理が成り立つことを証明した ([14])。以上を背景に, Cohen-Macaulay

環は非混合定理を満たす環として定義された。特に, Noether局所環に対しては, Krull次元
と深さ (depth) が一致することと同値となる。
以下, (A,m)はNoether局所環とし, d = dimAとする。
2M は A-加群とする。Aの元の列 a1, a2, . . . , ad がM -正則列であるとは, 任意の 1 ≤ i ≤ dに対して, ai は

M/(a1, a2, . . . , ai−1)M 上の非零因子であり, かつ (a1, a2, . . . , ad)M ̸= M を満たすことをいう。
3Noether 環 A内で非混合定理が成り立つとは, イデアル I が n = htA I 個の元で生成されるとき, 任意の

P ∈ AssAA/I に対して, htA P = nであることをいう。
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定義 2.1. Aが Cohen-Macaulay環であるとは, dimA = depthAが成り立つことである。

Noether局所環がCohen-Macaulayであることと, 任意の巴系4が正則列を成すことは同値
であり, また 1つでも正則列をなすような巴系を含めば, その局所環は必ずCohen-Macaulay

環である。整数 i ∈ Zに対して, Aの極大イデアルmに関する i次局所コホモロジー加群

Him(A) = lim−→
n

ExtiA(A/m
n, A)

を考えると, 等式

dimA = sup{n ∈ Z | Him(A) ̸= (0)}, depthA = inf{n ∈ Z | Him(A) ̸= (0)}

が成り立つ ([6, Theorem 3.5.7])。従って, Aが Cohen-Macaulay環であることと次の条件

Him(A) = (0) (∀ i ̸= d)

は同値である。必ずしも局所環とは限らないNoether環AがCohen-Macaulayであるとは,

任意の p ∈ SpecAに対して, 局所環Apが Cohen-Macaulayであることと定める。
Rees代数の Cohen-Macaulay性解析において, 決定的な役割を果たしたのは, Hochster-

Robertsによる次の例である。

例 2.2 ([61, Example 2.2], [34, Example 3.4]). 体 k上の形式的冪級数環 k[[X,Y ]]の部分環
A = k[[X2, Y,X3, XY ]]は Cohen-Macaulayではない5が, イデアル I = (X2, Y )に関する
Rees代数R(I)は Cohen-Macaulay環である。

例 2.2の帰結として, 環の Cohen-Macaulay性が環直和因子を取る操作で保たれないこと
が従う。Hochster-Robertsが例 2.2を提示した目的は, この事実を指摘することにあったが,

例 2.2は別の観点から眺めても示唆に富む。即ち, 基礎環が Cohen-Macaulayでない場合で
あっても, イデアルを適切に選べば, Rees代数がCohen-Macaulay環となり得ることを示し
ている。実際, 下田保博により, この現象は精緻に解析され, 次の定理として定式化された。

定理 2.3 ([83, Theorem], [49, Theorem (1.1)]). 次の 2条件は同値である。

(1) Aは Buchsbaum環であり, かつHim(A) = (0) (∀ i ̸= 1, d)である。

(2) Aの任意の巴系イデアル6Qに対して, R(Q)は Cohen-Macaulay環である。

上記の同値条件が成り立つとき, Aの任意の巴系イデアルQと任意のn ≥ 1に対して, R(Qn)
は Cohen-Macaulay環である。

定理 2.3は, 下田により, まず基礎環が 2次元Noether局所整域の場合に示され, その後, 後
藤-下田によって, 高次元の場合を含む上記の定理の形へと一般化された。なお, Aが重複度 2

の Buchsbaum局所環であって, depthA > 0であると仮定すると, Him(A) = (0) (∀ i ̸= 1, d)

が成り立つ ([34, Theorem 1.1])。特に, 例 2.2における環 Aは定理 2.3の条件 (1)を満たす
ので, 巴系イデアル I = (X2, Y )に関するRees代数R(I)は Cohen-Macaulay環である。
定理 2.3を踏まえると, 極大イデアルmに関するRees代数の環構造解析は, 自ずから生起

する課題であり, 次の定理が, 所謂, Rees代数のCohen-Macaulay性に関する「後藤-下田の
定理」である。

4M ̸= (0)は有限生成 A-加群とし, s = dimAM とする。mの元の列 a1, a2, . . . , as がM の巴系であるとは,
ℓA(M/(a1, a2, . . . , as)M) < ∞を満たすことをいう。

5環 Aは dimA = 2, depthA = 1であって, 重複度 2の Buchsbaum局所環である。
6巴系で生成されたイデアルのことである。
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定理 2.4 ([50, Theorem (1.1), Remark (3.10)]). (A,m)は Cohen-Macaulay局所環, d =

dimA ≥ 1とし, I はAのm-準素イデアルとする。このとき, 次の 2条件は同値である。

(1) R(I)は Cohen-Macaulay環である。

(2) G(I)が Cohen-Macaulay環であり, かつ a(G(I)) < 0である。

ここで, M = mR(I) +R(I)+により, R(I)の次数付き極大イデアルを表し

a(G(I)) = sup{n ∈ Z | [HdM(G(I))]n ̸= (0)}

により, G(I)の a-不変量7（a-invariant）を表す。但し, [HdM(G(I))]nは, 次数付き局所コホ
モロジー加群HdM(G(I))の n次斉次成分を表す。

定理 2.4は, [50, Theorem (1.1)]において, 極大イデアルの場合に証明されたが, 同論文の
[50, Remark (3.10)]において, 同様の議論により, m-準素イデアルの場合に拡張されること
が言及されている。

例 2.5. (A,m)は Cohen-Macaulay局所環, d = dimA ≥ 1とする。Aの巴系イデアルQに
対して, R(Q)は Cohen-Macaulay環8である。

m-準素イデアル I に対して, I2 = QI を満たす巴系イデアルQ ⊆ I が存在するならば

G(I)が Cohen-Macaulay環 かつ a(G(I)) ≤ 1− d

が成り立つ。

例 2.6. (A,m)は 2次元正則局所環, I は整閉な m-準素イデアルとすると, R(I)は Cohen-

Macaulay環である。実際, 無限体を通して, A/m =∞と仮定して良い ([50, Lemma (3.8)],

[92, Lemma 8.4.2 (9)])。剰余体が無限である 2次元正則局所環上の整閉な m-準素イデア
ルに対しては, J. Lipman-B. Tessierの定理 ([70, Proposition 5.5], [64, Theorem 5.1], [66,

Theorem 3.1]) により, I2 = QIを満たす巴系イデアルQ ⊆ Iが存在する。故に, 定理 2.4か
ら, R(I)は Cohen-Macaulay環となる。

以上, 定理 2.4により, 具体的かつ豊富な Cohen-Macaulay Rees代数の例を構成すること
が可能である。なお, 定理 2.4において, Rees代数R(I)の構造が随伴次数環G(I)とその a-

不変量の挙動により記述されることが見出され, 長期に渡って後のRees代数研究の指針の 1

つとなった。現在では, 定理 2.4は次のように拡張されている。

定理 2.7 ([96, Theorem 7.1]). (A,m)は Cohen-Macaulay局所環, d = dimA ≥ 1とする。
I ( ̸= A)はAのイデアルであって, htA I > 0とする。このとき, 次の 2条件は同値である。

(1) R(I)は Cohen-Macaulay環である。

(2) G(I)が Cohen-Macaulay環であり, かつ a(G(I)) < 0である。

即ち, 定理 2.4は, m-準素イデアルに限らず, htA I > 0であるイデアル Iに対しても成立す
る。併せて, 定理 2.4は第 5節で述べるように, 後藤-西田康二 ([47, Part II, Theorem (1.1)])

やD. Q. Viet ([101, Theorem 1.1]) によるイデアルの filtrationに関する定理へと拡張され
る端緒を開いた。加えて, 基礎環Aが正則局所環である場合（より一般には pseudo-rational

の場合）には, 常に a(G(I)) < 0が成立するため,「R(I)の CM性とG(I)の CM性は同値
である」という Lipmanの定理 ([69, Theoerm 5]) が直接的に導出される。なお, 論文 [50]

7[53, Definition (3.1.4)]を参照されたい。
8例 1.5からも従う。
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では, 極大イデアル mに関する Rees代数が正則環, 完全交叉環となる特徴付けも与えられ
ている ([50, Proposition (4.9), Corollary (4.10)])。
本節の最後に, Rees代数R(I)のCohen-Macaulay性と射影スキームProjR(I)のCohen-

Macaulay性の関連を考察する。ここで, ProjR(I)がCohen-Macaulayスキームであるとは,

任意の p ∈ ProjR(I)に対して, 局所環R(I)pがCohen-Macaulay局所環であることをいう。

命題 2.8 ([99, Proposition 3.20]). (A,m)は Cohen-Macaulay局所環, d = dimA ≥ 1とす
る。I ( ̸= A)は Aのイデアルであって, htA I > 0とする。このとき, ProjR(I)が Cohen-

Macaulayであるための必要十分条件は, ProjG(I)が Cohen-Macaulayである。

注意 2.9 ([99, Remark 3.21]). 命題 2.8の設定の下, 次の含意と同値性

R(I)は Cohen-Macaulay =⇒ G(I)は Cohen-Macaulay

=⇒ ProjR(I)は Cohen-Macaulay

⇐⇒ ProjG(I)は Cohen-Macaulay

が成り立つ。

3 Blow-up代数のGorenstein性
本節では, blow-up代数のGorenstein性について論じる。Cohen-Macaulay性の場合と同

様に, Gorenstein性に関しても, [106, 第 4節, 第 6節]に詳しい記述がある。近年の進展に
ついては, [109]を参照されたい。Gorenstein環の概念は, 1952年のD. Gorensteinによる平
面曲線の研究 ([31]) に起源を持ち, その後, A. Grothendieckによる双対性に関する理論の
枠組みの中で整備され, 1963年にH. Bassの自己入射次元による環論的特徴付けが確立され
た。Gorenstein環の歴史的背景については, [65, 107]に詳しい。
以下, (A,m)はNoether局所環とし, d = dimAとする。A-加群M に対して, idAM によ

り, M の入射次元を表す。

定義 3.1 ([3, Theorem and definition]). AがGorenstein環であるとは, 自己入射次元が有
限である, 即ち, idAA <∞が成り立つことである。

Noether局所環AがGorenstein環であるための必要十分条件は, AがCohen-Macaulay環
であり, かつKA

∼= Aが成り立つこと9である。但し, KAはAの正準加群を表す。局所コホ
モロジー加群を用いると, AのGorenstein性はAがCohen-Macaulay環であって, 次の同型

Hdm(A)
∼= EA(A/m)

が成り立つことで特徴付けられる。但し, EA(A/m)により,剰余体A/mの入射包絡 (injective

envelope, injective hull) を表す。Blow-up 代数の Gorenstein 性に目を向けると, Cohen-

Macaulay性に関する結果の類似として, 次の定理が成り立つ。

定理 3.2 ([50, Theorem (1.2)], [67, Corollary 3.7], [47, Part II, Corollary (1.4)]). (A,m)は
Cohen-Macaulay局所環, d = dimA ≥ 2とし, I はAのm-準素イデアルとする。このとき,

次の 2条件は同値である。

(1) R(I)がGorenstein環である。

(2) G(I)がGorenstein環であり, かつ a(G(I)) = −2である。
9正準加群KAが環Aの双対的な性質を持つことを鑑みるに, Gorenstein環は対称性を備えたCohen-Macaulay

環であると判断される。
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上記の同値条件が成り立つとき, AはGorenstein環である。
定理 3.2は, 定理 2.4に合わせて m-準素イデアルの場合に限定して主張を述べたが, [67,

Corollary 3.7], [47, Part II, Corollary (1.4)]に示されているように, 定理 3.2の主張は, より
一般のイデアルやイデアルの filtrationに付随する blow-up代数に対しても成立する。
例 3.3. (A,m)はCohen-Macaulay局所環, d = dimA ≥ 2とする。例 2.5により, Aの巴系
イデアルQに対して, R(Q)はCohen-Macaulay環であった。このとき, R(Q)がGorenstein

環であることと, AがGorenstein環かつ d = 2であることは同値である。
例 3.4. (A,m)が 2次元正則局所環の場合に, m-準素イデアル I = mℓ (ℓ ≥ 1)を考えると,

Zariskiの定理 ([104, Part II, Section 12], [105, Appendix 5, Theorem 2’], [64, Theorem

3.7]) によって, I は整閉である。例 2.6により, R(I)はCohen-Macaulay環である。このと
き, R(I)がGorenstein環であるための必要十分条件は, I = mである。
例 3.3において, 基礎環の次元を 3以上に取るか, 或いは例 3.4において, ℓ ≥ 2とすると,

それらに伴い現れるRees代数はいずれもGorensteinではない Cohen-Macaulay環となる。

4 Blow-up代数の almost Gorenstein性
Almost Gorenstein環論の根底には,「何故GorensteinでないCohen-Macaulay環が, かく

も多様かつ豊富に存在するのか」という素朴な疑問がある。Almost Gorenstein環は, 1997

年に V. Barucci-R. Fröbergにより, 解析的不分岐な 1次元 Cohen-Macaulay局所環10に対
して導入された概念である ([2, Definition–Proposition 20])。その後, 2013年に, 後藤-松岡
直之-T. T. Phuongによって, 解析的不分岐を仮定しない 1次元の Cohen-Macaulay局所環
へと枠組みが拡張された ([42, Definition 3.1])。2015年には, これら 1次元の理論を高次元
へと拡張する定義が後藤-高橋亮-谷口直樹11によって導入され ([51, Definition 3.3]), 本節
で扱う blow-up代数をはじめとして, 行列式環 ([10, 93]), Stanley-Reisner環 ([72]), 日比環
([73]), 標準的次数付き環 ([51, 57]), 2次元正規特異点 ([78])等, 多岐に渡るクラスの環に対
して, almost Gorenstein性が精緻に解析されてきた。なお, almost Gorenstein性の基本的
性質に関しては, [110]も併せて参照されたい。
近年, almost Gorenstein環論を嚆矢として非 Gorenstein環論が急速に展開されており,

nearly Gorenstein環 ([55]), semi-Gorenstein環 ([51]), 2-almost Gorenstein環 ([11]), gen-

eralized Gorenstein環 ([40]), weakly almost Gorenstein環 ([20]), far-flung Gorenstein環
([56]), canonical trace radical環 ([74]), Goto環 ([24]) 等, Gorenstein性の一般化としての
多様なクラスが提案され, 積極的に解析されている。このように非Gorenstein環論は, 現代
可換環論における主要な研究潮流の 1つを形成しつつある。以上の環のクラスを相関図に纏
めると, 次のようになる。但し, CTRにより, canonical trace radical環を表し, min. multi.

は極小重複度 (minimal multiplicity)を意味する。

CTR ks nearly Gor ksfn
dim=1

UUUU
UUUU

UUUU
U

UUUU
UUUU

UUUU
U

nearly Gor + min. multi.

��

2-almost Gor

$,Q
QQQ

QQQ
QQQ

QQQ
QQQ

QQQ
Q

semi-Gor +3 almost Gor
ss

“twins”
33hhhhhhhhh

+3

dim≤1 '/VV
VVVVV

VVVVV
VVVV

VVVVV
VVVVV

VVVVV
V generalized Gor +3 Goto

far-flung Gor ks nearly Gor + far-flung Gor

dim=1

KS

weakly almost Gor

Blow-up代数に着目すると, 例 3.3, 例 3.4のように, 数多ある Cohen-Macaulay Rees代
数の中でも, Gorenstein環は僅かであり, これら非 Gorenstein Rees代数の中には, almost

10典型例として, 体上の数値半群環が挙げられる。
112019年 2月に遠藤に改姓する。

7



Gorenstein環となり得るものが含まれていて, 解明を待っていると推測される。この種の典
型例に対して, almost Gorenstein性を解析することは, almost Gorenstein環の具体例を与
えるに留まらず, その定義の妥当性を検証し, 理論の基盤を強固にする上でも重要な課題で
ある。以上を踏まえ, 本節では, まず, [51]による almost Gorenstein環の定義を紹介したい。

定義 4.1 ([51, Definition 3.3]). (A,m)はCohen-Macaulay局所環, d = dimAとし, 環Aは
正準加群 KAを持つと仮定する。このとき, Aが almost Gorenstein局所環であるとは, A-

加群としての短完全列
0→ A→ KA → C → 0

であって, 等式 µA(C) = e0m(C)を満たすものが存在するこという。但し, µA(C)によりA-加
群Cの極小生成系の個数を表し, また e0m(C)はA-加群Cのmに関する重複度を表す。即ち

e0m(C) = lim
n→∞

(d− 1)! · ℓA(C/m
n+1C)

nd−1

である。

任意のGorenstein環は, 余核として零加群が取れるため, almost Gorenstein環である。一
方, その逆は基礎環AがArtin環であれば成り立つ ([51, Lemma 3.1 (3)])。定義 4.1の意味
するところは, almost Gorenstein環 Aは, 必ずしもGorenstein環であるとは限らないもの
の, 環Aは正準加群KAへ埋め込むことができ, その差分KA /Aが「良い性質を備える」と
いう点にある。今, 任意に Aから KAに単射が与えられているとし, その余核を C で表す。
即ち, 次のA-加群としての短完全列

0→ A→ KA → C → 0

を考える。C ̸= (0)の場合, A-加群CはCohen-Macaulayであって, dimAC = d− 1である
([51, Lemma 3.1 (2)])。剰余体A/mが無限体であると仮定し, 局所環A1 = A/[(0) :A C]を
見ると, A1の剰余体も無限であるので,元 f1, f2, . . . , fd−1 ∈ mであって, (f1, f2, . . . , fd−1)A1

がA1の極大イデアルm1の極小節減を成すものを選ぶことができる。従って, 次の不等式

e0m(C) = e0m1
(C) = ℓA(C/(f1, f2, . . . , fd−1)C) ≥ ℓA(C/mC) = µA(C)

が得られる。以上より, e0m(C) ≥ µA(C)である。ここで, 等号 e0m(C) = µA(C)が成り立つ
とき, C をUlrich A-加群と呼ぶ。従って, 剰余体A/mが無限体である場合, C がUlrich A-

加群であることと
mC = (f1, f2, . . . , fd−1)C

が成り立つことは同値である。特に, 環 Aが 1次元の場合, A-加群 C が Ulrichである必要
十分条件は, C が剰余体 A/m上のベクトル空間である。このように, almost Gorenstein環
は, 同型KA

∼= Aが成り立つとは限らないが, その差 C がベクトル空間 (とその一般化であ
るUlrich 加群) という「良い性質を備える」ことを意味している。
Almost Gorenstein環の具体例は数多く存在する ([9, 30, 41, 42, 43, 44, 45, 46, 48, 51, 52,

57, 72, 73, 93])。とりわけ重要な例としては, 2次元有理特異点や有限表現型 1次元Cohen-

Macaulay局所環が挙げられる。なお, almost Gorenstein環論の根底に数値半群環の理論が
あることから, almost Gorensteinとなる数値半群環の例も非常に豊富である ([2, 42])。
次に, 次数環に対する almost Gorenstein性の定義を紹介する。実は, Cohen-Macaulay性,

Gorenstein性と異なり, almost Gorenstein性は次数環と局所環の間に若干の差異が生じる。
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定義 4.2 ([51, Definition 8.1]). R =
⊕

n≥0Rnは Cohen-Macaulay次数環, d = dimRとす
る。(R0,m)は局所環とし, 環Rは次数付き正準加群KRを持つと仮定する。このとき, Rが
almost Gorenstein次数環であるとは, 次数R-加群としての短完全列

0→ R→ KR(−a)→ C → 0

であって, 等式 µR(C) = e0M(C)を満たすものが存在するこという。但し, a = a(R)により,

Rの a-不変量12を表し, M = mR+R+はRの次数付き極大イデアルである。なお, KR(−a)
はR-加群としてはKRと同一であるが, [KR(−a)]n = [KR]n−a (n ∈ Z) という次数付けを持
つ次数付きR-加群を表す。

局所環の場合と同様に, 任意のGorenstein次数環は almost Gorensteinである。また, CM

はUlrich RM-加群であり,正準加群KRは局所化と可換であるため, Rが次数環として almost

Gorensteinであれば, 局所環 RMも almost Gorensteinとなる。もっとも, 一般にはその逆
は成立しない ([44, Theorems 2.7, 2.8], [51, Example 8.8])が, 次の例が示すように, almost

Gorenstein環は次数付き環として見た場合にも, 魅力的な性質を備えている。

例 4.3 ([51, Example 10.5], [93, Theorem 1.1]). 無限体 k上の不定元を成分に持つm × n
行列 X = [Xij ] (2 ≤ t ≤ min{m,n})に対して, k 上の多項式環を S = k[X] = k[Xij |
1 ≤ i ≤ m, 1 ≤ j ≤ n] により表し, 行列式環 R = S/It(X) を考える。但し, It(X) は
行列 X の t次小行列式全体が生成する S のイデアルを表す。Hochster-J. A. Eagon ([58,

Theorem 2, Corollary], [6, Theorem 7.3.1 (c)]) により, Rは Cohen-Macaulay整閉整域,

dimR = mn− (m− (t− 1))(n− (t− 1))である。また, 行列式環RがGorensteinであるた
めの必要十分条件は, m = nで与えられる ([91, Theorem (5.5.6)], [6, Theorem 7.3.6 (b)])。
このとき, 次の 2条件は同値である。

(1) R = k[X]/It(X)は almost Gorenstein次数環である。

(2) m = nであるか, またはm ̸= nかつ t = min{m,n} = 2である。

例 4.4 ([51, Example 10.8]). 無限体 k上の多項式環R = k[X1, X2, . . . , Xd] (d ≥ 1)と整数
n ≥ 1に対して, Veronese部分環R(n) = k[Rn]を考える。R(n)はRの純 (pure) 部分環なの
で, Cohen-Macaulay環である ([108, 注意 7.7, 補題 7.7])。特に, R(n)がGorenstein環であ
ることと, d = 1または n | dが成り立つことは同値である ([32, Examples (1)])。このとき,

次の主張が成り立つ。

(1) d ≤ 2の場合, R(n)は almost Gorenstein次数環である ([51, Corollary 10.6])。

(2) d ≥ 3の場合, R(n)が almost Gorenstein次数環であるための必要十分条件は, n | d
または d = 3 かつ n = 2である。

以上の準備の下, blow-up代数の almost Gorenstein性に関する結果を紹介する。

定理 4.5 ([51, Theorem 8.3], [43, Theorem 1.3], [48, Theorem 1.3]). (A,m) は Cohen-

Macaulay局所環, d = dimA ≥ 3とし, 環 AはGorenstein環の準同型像とする。Aの部分
巴系 a1, a2, . . . , ar ∈ m (3 ≤ r ≤ d)に対して, Q = (a1, a2, . . . , ar)とおくと, 次の 2条件は
同値である。

(1) R(Q)は almost Gorenstein次数環である。

(2) Aは正則局所環であり, かつ a1, a2, . . . , arはAの正則巴系の一部である。
12即ち, a(R) = max{n ∈ Z | [HdM(R)]n ̸= 0} = −min{n ∈ Z | [KR]n ̸= 0}である。
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定理 4.5は, [51, Theorem 8.3]において, [39]による canonical filtrationの理論を駆使し,

基礎環AがGorenstein環であり, Qが巴系イデアルである場合に証明された。続いて, [43,

Theorem 1.3]において, Eagon-Northcott複体を用いて極小自由分解の構造を解析し, 部分
巴系で生成されるイデアルの場合へと拡張された。さらに, [48, Theorem 1.3]では, 基礎環
に課す仮定がGorenstein性からCohen-Macaulay性へと緩和され, 上記の形で定理 4.5が得
られている。一方で, 定理 4.5に関連する次の予想は依然として未解決である。
予想 4.6 ([48, Conjecture 1.4]). (A,m)はCohen-Macaulay局所環とし, Gorenstein環の準
同型像とする。I ( ̸= A)は環 Aのイデアルであって, htA I ≥ 3とする。このとき, Rees代
数R(I)が almost Gorenstein次数環ならば, AはGorenstein環である。
定理4.5に対して, Rees代数の次数付き極大イデアルによる局所化の局所環としてのalmost

Gorenstein性は次のように特徴付けられる。
定理 4.7 ([43, Theorem 1.3]). (A,m)はGorenstein局所環とし, d = dimA ≥ 3とする。A
の部分巴系 a1, a2, . . . , ar ∈ m (3 ≤ r ≤ d)に対して, Q = (a1, a2, . . . , ar)とおくと, 次の 2

条件は同値である。
(1) R(Q)Mは almost Gorenstein局所環である。

(2) Aは正則局所環である。
但し, M = mR(Q) +R(Q)+により, R(Q)の次数付き極大イデアルを表す。
定理 4.5と定理 4.7により, 局所環R(Q)Mが almost Gorensteinであっても, 次数環R(Q)

が almost Gorensteinとは限らないことが従う。また, これらの結果において, 基礎環の次元
は 3以上と仮定しているが, 2次元の場合は次のようになる。
注意 4.8 ([43, Proposition 2.10]). (A,m)はCohen-Macaulay局所環, dimA = 2とする。A
の巴系イデアルQに対して, 次の 3条件は同値である。
(1) R(Q)はGorenstein環である。

(2) AはGorenstein環である。

(3) R(Q)Mは almost Gorenstein局所環である。
次に, 例 2.5と例 3.4を鑑み, 2次元正則局所環 (A,m)上の整閉なm-準素イデアルのRees

代数を考察する。
定理 4.9 ([44, Theorem 1.3]). (A,m)は 2次元正則局所環であり, 剰余体 A/mは無限とす
る。任意の整閉なm-準素イデアル I に対して, R(I)は almost Gorenstein次数環である。
定理 4.9の証明の鍵は, J. Vermaによる joint reduction numberが 0であるような joint

reduction の存在性にある ([100, Theorem 2.1])。加えて, Zariski の定理 ([104, Part II,

Section 12], [105, Appendix 5, Theorem 2’], [64, Theorem 3.7]) により, 2次元正則局所環
上の極大イデアルの冪は整閉である。従って, 定理 4.9から次の系が直ちに得られる。
系 4.10 ([44, Corollary 1.4]). (A,m)は 2次元正則局所環であり, 剰余体 A/mは無限とす
る。任意の ℓ ≥ 1に対して, R(mℓ)は almost Gorenstein次数環である。
続いて, 定理 4.9の拡張可能性を考察したい。定義の紹介から始める。

定義 4.11 ([76, Definition 3.2], [77, Theorem 1.1]). (A,m)は 2次元優秀正規局所環とし,

剰余体A/mは代数閉体と仮定する。Aのm-準素イデアル Iが pgイデアルであるとは, Rees

代数R(I)が Cohen-Macaulay正規整域であることをいう。

10



剰余体が代数閉体である 2次元優秀正則局所環 (A,m)上では, 任意の整閉な m-準素イデ
アルは pg イデアルであるので, 次の定理は定理 4.9の 1つの拡張である。

定理 4.12 ([46, Theorem 1.3]). (A,m)は2次元優秀Gorenstein正規局所環とし,剰余体A/m

は代数閉体であると仮定する。任意の pg イデアル I に対して, R(I)は almost Gorenstein

次数環である。

また, 系 4.10の拡張として, 次の定理が得られる。

定理 4.13 ([46, Theorem 1.4]). (A,m)は 2次元 almost Gorenstein局所環であり, 極小重複
度を持つと仮定する。任意の ℓ ≥ 1に対して, R(mℓ)は almost Gorenstein次数環である。

系 4.14 ([46, Corollary 1.5]). (A,m)は 2次元有理特異点とする。任意の ℓ ≥ 1に対して,

R(mℓ)は almost Gorenstein次数環である。

系 4.10の高次元化としては, 次の定理が成り立つ。

定理 4.15 ([46, Theorem 1.6]). (A,m)は正則局所環, d = dimA ≥ 2とし, 剰余体 A/mは
無限とする。次の主張が成り立つ。

(1) R(mℓ)が almost Gorenstein次数環であるための必要十分条件は, ℓ = 1かつ d = 2, ま
たは ℓ = d− 1である。

(2) ℓ ≥ 2, d ≥ 3の場合, R(mℓ)Mが almost Gorenstein局所環であるための必要十分条件
は, ℓ | d− 1である。

但し, M = mR(mℓ) +R(mℓ)+により, R(mℓ)の次数付き極大イデアルを表す。

特に, ℓ = 2, d = 5の場合, R(m2)Mは almost Gorenstein局所環であるが, 次数環として
R(m2)は almost Gorensteinではない。
注意 4.16. 定理 4.15の設定の下, ℓ = 1の場合, 定理 4.5により, R(mℓ) = R(m)は almost

Gorenstein次数環である。d = 2の場合, 系 4.10から, R(mℓ)は almost Gorenstein次数環
である。加えて, ℓ = d− 1の場合, R(mℓ)はGorenstein環である ([43, Proposition 2.3])。
本節の最後に,随伴次数環のalmost Gorenstein性に関する結果を紹介する。ここで, Cohen-

Macaulay環Rに対して, r(R)により, Rの Cohen-Macaulay型を表す。

定理 4.17 ([51, Theorem 9.1]). (A,m)は Cohen-Macaulay局所環であり, 剰余体 A/mは
無限とする。環 Aは正準加群 KAを持つと仮定する。Aの m-準素イデアル I に対して, 随
伴次数環G(I)が almost Gorenstein次数環であり, r(G(I)) = r(A)が成り立つならば, Aは
almost Gorenstein局所環である。

定理 4.17の証明は,次元に関する数学的帰納法による。1次元の場合は, canonical filtration

を用い, 2次元以上の場合は, 適切に上表元を選ぶことにより証明される。

5 Blow-up代数の系列的Cohen-Macaulay性
加群の系列的 Cohen-Macaulay性は, Cohen-Macaulay性の拡張概念の 1つであり, 元々,

次数環上の加群に対して, 1983年に R. P. Stanleyによって定義された概念である ([86, 2.9

Definition])。局所環上の加群に対する定義は, 1998年, P. Schenzelにより, Cohen-Macaulay

filtered moduleという名称の下で導入された ([81, Definition 4.1])。系列的Cohen-Macaulay

加群という用語が局所環上の加群に対して明示的に定義されたのは, 2003年の [18, Definition
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4.2]である。系列的 Cohen-Macaulay加群の基本的性質に関しては, [16, 17, 38, 94, 95]等
を参照されたい。
以下, 特に断らない限り, 本節では, Aは Noether環, M ̸= (0)は有限生成 A-加群とし,

s = dimAM < ∞と仮定する。任意の n ∈ Zに対して, dimAN ≤ nを満たす最大のM の
A-部分加群N をMnと表す。集合 S(M) = {dimAN | N はM のA-部分加群, N ̸= (0)}を
考えると, 等式

S(M) = {dimA/p | p ∈ AssAM}

が成り立つ。ℓ = #S(M)とおき

S(M) = {d1 < d2 < · · · < dℓ = s}

と表す。各 1 ≤ i ≤ ℓに対して, Di =Mdi とおくと, 次のM のA-部分加群の列

D0 := (0) ( D1 ( D2 ( · · · ( Dℓ =M

が得られる。これをMの dimension filtrationという。各 1 ≤ i ≤ ℓに対して, Ci = Di/Di−1

と定める。すると, dimADi = dimACi = diが成り立つ。

定義 5.1 ([86, 2.9 Definition], [81, Definition 4.1]). A-加群M が系列的 Cohen-Macaulay

A-加群であるとは, 任意の 1 ≤ i ≤ ℓに対して, 剰余加群CiがCohen-Macaulay A-加群であ
ることをいう。Noether環 Aが系列的 Cohen-Macaulay環であるとは, dimA <∞であり,

かつA自身が系列的 Cohen-Macaulay A-加群であることをいう。

例 5.2. (A,m)はNoether局所環, M ̸= (0)は有限生成A-加群とする。次の主張が成り立つ。

(1) dimAM = 1ならば, M は系列的 Cohen-Macaulay A-加群である。

(2) M が Cohen-Macaulay A-加群ならば, M は系列的 Cohen-Macaulay A-加群である。
A-加群M が unmixed13ならば, 逆も正しい。

(3) 整数 n ≥ 1に対して, MiがCohen-Macaulay A-加群 (1 ≤ i ≤ n) ならば,
⊕n

i=1Miは
系列的 Cohen-Macaulay A-加群である ([95, Proposition 3.2])。

(4) A上M のイデアル化AnM14が系列的 Cohen-Macaulay環であるための必要十分条
件は, Aが系列的Cohen-Macaulay環であり, かつM が系列的Cohen-Macaulay A-加
群である ([95, Theorem 1.2])。

(5) 自己同型群AutAの有限部分群Gに対して, #GはAの単元とする。このとき, Aが
系列的 Cohen-Macaulay環ならば, 不変式環 AGは系列的 Cohen-Macaulay環である
([95, Corollary 3.7])。

例 5.3 ([86, pages 86–87]). kは体とする。単体的複体∆に付随する Stanley-Reisner環 k[∆]

に対して, ∆が shellableならば, k[∆]は系列的 Cohen-Macaulay環である。

注意 5.4. 単体的複体∆が shellableであることの定義には, ∆が pureであることを仮定する
流儀がある ([6, Definition 5.1.11])。このとき, 付随する Stanley-Reisner環 k[∆]は Cohen-

Macaulay環となる ([6, Theorem 5.1.13])。一方で, pureであることを要請しない shellable

の定義もあり ([4, 2.1 Definition]), その場合には, k[∆]は系列的Cohen-Macaulay環となる。

命題 5.5 ([94, Proposition 2.2]). (A,m)は Noether局所環, M ̸= (0)は有限生成 A-加群と
する。x ∈ mはM -非零因子とする。次の 2条件は同値である。

13Â, M̂ により, 環 Aと加群M の m-進完備化を表すとき, 等式 AssÂ M̂ = AsshÂ M̂ が成り立つことである。
14イデアル化の基本的性質に関しては, [108, 1.86]を参照されたい。
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(1) M は系列的 Cohen-Macaulay A-加群である。

(2) M/xM は系列的Cohen-Macaulay A/xA-加群であり, かつ {Di/xDi}0≤i≤ℓはM/xM

の dimension filtrationである。

注意 5.6. 命題 5.5 (2) ⇒ (1)において, {Di/xDi}0≤i≤ℓ がM/xM の dimension filtration

であるという仮定は不可欠である。実際, Aは 2次元 Noether局所整域, depthA = 1とす
る15。任意の 0 ̸= x ∈ Aに対して, A/xAは系列的 Cohen-Macaulayであるが, Aは系列的
Cohen-Macaulayではない。
以上を踏まえて, blow-up代数の系列的Cohen-Macaulay性を考察する。鍵となる着想は,

filtrationに付随する blow-up代数へと枠組みを拡張することである。

定義 5.7 (イデアルのfiltrationに付随するblow-up代数). 環Aのイデアルの族 F = {Fn}n∈Z
がAのイデアルの filtrationであるとは, 次の 3条件

(1) 任意の n ∈ Zに対して, Fn ⊇ Fn+1

(2) 任意のm,n ∈ Zに対して, FmFn ⊆ Fm+n

(3) F0 = A

を満たすことである16。環Aのイデアルの filtration F = {Fn}n∈Zに付随して, 次数環

R(F) =
∑
n≥0

Fnt
n ⊆ A[t]

R′(F) =
∑
n∈Z

Fnt
n ⊆ A[t, t−1]

G(F) =R′(F)/t−1R′(F)

が定まり, それぞれ F の Rees代数, 拡大 Rees代数, 随伴次数環と呼ぶ。但し, tにより,

A上の不定元を表す。すると, R(F) ∼=
⊕

n≥0 Fn, R′(F) ∼=
⊕

n∈Z Fn であって, G(F) ∼=⊕
n≥0 Fn/Fn+1が成り立つ。

注意 5.8. 環Aのイデアルの filtration F = {Fn}n∈Zに対して, F1 = Aであることと, G(F)
が零環であることは同値である。

例 5.9. 次に挙げるイデアル Fnによる族F = {Fn}n∈Zがイデアルの filtrationの例である。

(1) Aのイデアル I に対して, Fn = In (イデアルの冪)

(2) p ∈ SpecAに対して, Fn = p(n) = pnAp ∩A (素イデアルのシンボリック冪)

(3) Aのイデアル I に対して, Fn = In (イデアルの冪の整閉包)

(4) Aのイデアル I に対して, Fn = Ĩn (イデアルの冪のRatliff-Rush閉包)

(5) 次数環R =
⊕

n≥0Rnのとき, Fn =
∑

k≥nRk

定義 5.7と同様に, 環Aのイデアルの filtrationに基づくA-部分加群の filtrationを次のよ
うに導入する。

15例えば, Nagata’s bad example [75, Appendix A1]がある。
16(1)は随伴次数環 G(F)を考える上で不可欠な条件であり, (2)は blow-up代数に環構造を入れるための条

件である。(3)は, 任意の n ∈ Zに対して Fn = (0)という自明な filtrationを排除し, また blow-up代数を A-
代数とみなすために課されている。
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定義 5.10. F = {Fn}n∈Zは環Aのイデアルの filtrationとする。M はA-加群とする。M の
A-部分加群の族M = {Mn}n∈ZがM のA-部分加群の F-filtrationであるとは, 次の 3条件

(1) 任意の n ∈ Zに対して, Mn ⊇Mn+1

(2) 任意のm,n ∈ Zに対して, FmMn ⊆Mm+n

(3) M0 =M

を満たすことである。A-加群M のA-部分加群の F-filtrationに対して

R(M) =
∑
n≥0

tn ⊗Mn ⊆ A[t]⊗AM

R′(M) =
∑
n∈Z

tn ⊗Mn ⊆ A[t, t−1]⊗AM

G(M) =R′(M)/t−1R′(M)

と定め, それぞれMのRees加群, 拡大Rees加群, 随伴次数加群という。但し, tはA上の不
定元とし, 任意の n ∈ Zに対して, tn ⊗Mn = {tn ⊗ x | x ∈Mn} ⊆ A[t, t−1]⊗AM とする。

定義 5.7, 定義 5.10により, R(M)は次数R(F)-加群, R′(M)は次数R′(F)-加群であって,

F1 ̸= Aである場合には, G(M)は次数G(F)-加群である。なお, 任意の n ∈ Zに対して, A-

加群としての同型 tn ⊗Mn
∼=Mnを踏まえると

R(M) ∼=
⊕
n≥0

Mn, R′(M) ∼=
⊕
n∈Z

Mn, G(M) ∼=
⊕
n≥0

Mn/Mn+1

が成り立つ。以下, 本節においては, 次の設定の下に議論を進める。

設定 5.11. (A,m)はNoether局所環とし,M ̸= (0)は有限生成A-加群とする。F = {Fn}n∈Z
によりAのイデアルの filtrationを表し,M = {Mn}n∈ZはM のA-部分加群のF-filtration
とする。さらに, F1 ̸= Aであり, R(F)はNoether環であって, R(M)は有限生成R(F)-加
群と仮定する。M = mR(F) +R(F)+により, R(F)の次数付き極大イデアルを表す。

定理 5.12 ([94, Corollary 2.4, Proposition 2.5 (3), Corollary 2.6]). 次の主張が成り立つ。

(1) dimR(F)R(M) =

 dimAM + 1 (∃ p ∈ AsshAM s.t. F1 ̸⊆ p)

dimAM (その他)

(2) dimR′(F)R′(M) = dimAM + 1

(3) dimG(F)G(M) = dimAM

但し, AsshAM = {p ∈ SuppAM | dimA/p = dimAM}である。

ここで, 有限生成次数R(F)-加群N , dimR(F)N = tに対して

a(N) = max{n ∈ Z | [HtM(N)]n ̸= (0)}

と定め, N の a-不変量17と呼ぶ。次の定理で述べるように, Rees代数のCohen-Macaulay性
に関する後藤-下田の定理 (定理 2.4) は, イデアルや加群の filtrationに対しても成立する。

定理 5.13 ([47, Part II, Theorem (1.1)], [94, Theorem 3.8], [101, Theorem 1.1]). M は
Cohen-Macaulay A-加群とする。次の 2条件は同値である。

17[53, Definition (3.1.4)]を参照されたい。
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(1) R(M)は Cohen-Macaulay R(F)-加群であり, かつ dimR(F)R(M) = d+ 1である。

(2) G(M)は Cohen-Macaulay G(F)-加群であり, かつ a(G(M)) < 0である。

定理 5.13は, 1990年代に後藤-西田, 及びVietにより, イデアルの filtrationに基づく blow-

up代数に対して証明され, その後 2018年に, 谷口-Phuong-N. T. Dung-T. N. Anにより加群
の filtrationの場合へと拡張された。続いて, このような filtrationから構成される blow-up

代数の系列的 Cohen-Macaulay性について考察する。
設定 5.11の下, M の dimension filtration {Di}0≤i≤ℓ を取り, 各 1 ≤ i ≤ ℓに対し, Ci =

Di/Di−1とおく。ここで

Di = {Mn ∩Di}n∈Z, Ci = {[(Mn ∩Di) +Di−1]/Di−1}n∈Z.

を考えると, Diと CiはそれぞれDi, CiのA-部分加群の F-filtrationである。任意の n ∈ Z
に対して, A-加群としての短完全列

0→ [Di−1]n → [Di]n → [Ci]n → 0

から, 次数R(F)-加群としての短完全列が導出される。

0→R(Di−1)→R(Di)→R(Ci)→ 0

0→R′(Di−1)→R′(Di)→R′(Ci)→ 0

0→ G(Di−1)→ G(Di)→ G(Ci)→ 0

補題 5.14 ([17, Proposition 5.1], [94, Lemma 3.1]). 次の主張が成り立つ。

(1) {R′(Di)}0≤i≤ℓはR′(M)の dimension filtrationである。

(2) 任意の p ∈ AssAM に対して, F1 * pと仮定すると, {R(Di)}0≤i≤ℓはR(M)の dimen-

sion filtrationである。

以上の準備の下,次の定理が成り立つ。特に,定理 5.16は,後藤-下田の定理の系列的Cohen-

Macaulay性への一般化である。

定理 5.15 ([17, Theorem 5.2], [94, Theorem 1.1]). 次の 2条件は同値である。

(1) R′(M)は系列的 Cohen-Macaulay R′(F)-加群である。

(2) G(M)は系列的 Cohen-Macaulay G(F)-加群であり, かつ {G(Di)}0≤i≤ℓは G(M)の
dimension filtrationである。

上記の同値条件が成り立つとき, M は系列的 Cohen-Macaulay A-加群である。

定理 5.16 ([17, Theorem 5.3], [94, Theorem 1.2]). M は系列的Cohen-Macaulay A-加群と
し, 任意の p ∈ AssAM に対して, F1 * pと仮定する。次の 2条件は同値である。

(1) R(M)は系列的 Cohen-Macaulay R(F)-加群である。

(2) G(M)は系列的 Cohen-Macaulay G(F)-加群, {G(Di)}0≤i≤ℓ は G(M)の dimension

filtrationであって, 任意の 1 ≤ i ≤ ℓに対して, a(G(Ci)) < 0である。

上記の同値条件が成り立つとき, R′(M)は系列的 Cohen-Macaulay R′(F)-加群である。

本節の最後に, 定理 5.15, 定理 5.16の Stanley-Reisner環への応用を論じる。
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設定 5.17. ∆は V = {1, 2, . . . , n} (n > 0)を頂点集合とする単体的複体で, ∆ ̸= ∅とする。
F(∆)により, ∆の facet全体の集合を表し, m = #F(∆)とおく。体 k上の多項式環 S =

k[X1, X2, . . . , Xn]内において, イデアル I∆ = (Xi1Xi2 · · ·Xir | {i1 < i2 < · · · < ir} /∈ ∆)

を考える。単体的複体∆に付随する Stanley-Reisner環

R = k[∆] = S/I∆

を Z-次数環 R =
∑

n≥0Rnとみなし, 各 n ∈ Zに対して In =
∑

k≥nRk とおくと, In = mn

となる。但し, m = R+ =
∑

n>0RnはRの次数付き極大イデアルである。

定義 5.18 ([4, 2.1 Definition]). 単体的複体 ∆が shellable18であるとは, m = 1または,

m ≥ 2であって, 次の 3条件

(1) F(∆) = {F1, F2, . . . , Fm}

(2) 任意の 2 ≤ i ≤ mに対して, ⟨F1, F2, . . . , Fi−1⟩ ∩ ⟨Fi⟩が pure19

(3) 任意の 2 ≤ i ≤ mに対して, dim ⟨F1, F2, . . . , Fi−1⟩ ∩ ⟨Fi⟩ = dimFi − 1

を満たすF1, F2, . . . , Fm ∈ F(∆)が存在することである。このようなF1, F2, . . . , Fm ∈ F(∆)

を shelling orderと呼ぶ。

単体的複体 ∆ が shellable ならば, shelling order F1, F2, . . . , Fm ∈ F(∆) を dimF1 ≥
dimF2 ≥ · · · ≥ dimFmを満たすように選ぶことができる。仮定より, ∆ ̸= {∅}であるので,

任意の p ∈ AssRに対して, p + I1が成り立つ。加えて, ∆が shellableならば, Rは系列的
Cohen-Macaulay環なので, 次を得る。

命題 5.19 ([94, Proposition 5.1]). 単体的複体∆が shellableならば, R′(m)は系列的Cohen-

Macaulay環である。

定理 5.20 ([94, Theorem 5.2]). ∆は shellableであり, shelling order F1, F2, . . . , Fm ∈ F(∆)

は dimF1 ≥ · · · ≥ dimFmを満たすと仮定する。次の 2条件は同値である。

(1) R(m)は系列的 Cohen-Macaulay環である。

(2) m = 1または, m ≥ 2であって,任意の 2 ≤ i ≤ mに対して, dimFi+1 > #F(∆1∩∆2)

が成り立つ。但し, ∆1 = ⟨F1, F2, . . . , Fi−1⟩, ∆2 = ⟨Fi⟩とする。

系 5.21 ([94, Corollary 5.4]). 定理 5.20の設定の下, m ≥ 2であり, dimFm ≥ 1と仮定
する。任意の 2 ≤ i ≤ mに対して, ⟨F1, F2, . . . , Fi−1⟩ ∩ ⟨Fi⟩が単体ならば, R(m)は系列的
Cohen-Macaulay環である。

例 5.22. ∆ = ⟨F1, F2, F3⟩を F1 = {1, 2, 3}, F2 = {2, 3, 4}, F3 = {4, 5}により定めると, ∆

は shellableであって, ⟨F1⟩ ∩ ⟨F2⟩と ⟨F1, F2⟩ ∩ ⟨F3⟩ は単体である。従って, R(m)は系列的
Cohen-Macaulay環である。

∆ =
1 4 5

2

3

18shellableとは, 単体的複体 ∆の facetを貝殻を 1枚ずつ重ねるように順番に並べられることを意味する。
19単体的複体∆が pureであるとは, 任意の F1, F2 ∈ F(∆)に対し, dimF1 = dimF2が成り立つことである。
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例 5.23. ∆ = ⟨F1, F2, F3, F4⟩を F1 = {1, 2, 5}, F2 = {2, 3}, F3 = {3, 4}, F4 = {4, 5}によ
り定めると, ∆は shellableである。∆1 = ⟨F1, F2, F3⟩, ∆2 = ⟨F4⟩を考えると

#F(∆1 ∩∆2) = 2 = dimF4 + 1

であるので, R(m)は系列的 Cohen-Macaulay環ではない。
1

2

3 4

5

∆ =

6 Blow-up代数のBuchsbaum性
Buchsbaum環は, 1973年にW. VogelがD. A. Buchsbaumの問題に対して否定的な結論

を得た事実を契機として, J. Stückrad-Vogelによって導入されたCohen-Macaulay環の拡張
概念である20。まず, Buchsbaumの問いを振り返りたい。
問題 6.1 ([8, page 228], [33, page 42]). (A,m)はNoether局所環とする。環Aの任意の巴
系イデアルQに対して, 差 ℓA(A/Q)− e0Q(A)は dimA− depthA, 或いは他の不変量によっ
て決定されるだろうか。
ここで, ℓA(X)によりA-加群Xの長さを表し, 有限生成A-加群M とその巴系イデアル q

に対して, e0q(M)は qに関するM の重複度とする。
現代的な観点から見れば, 上記の問いが正しくはないことは容易に判別されるが, その反例

がVogelによって初めて提示されたのは 1973年のことである ([102, Satz])。その後, 上記の
差 ℓA(A/Q)− e0Q(A)が一定値となる局所環の構造が解析される過程で, Buchsbaum環の概
念が, 同年 Stückrad-Vogelによって定義された。もっとも 1973年の段階では, Buchsbaum

環は I-環 (I-Ring) と呼ばれており ([88, Definition 2]), その翌年の 1974年に, Buchbaum

環という名称が初めて登場した ([89, Section 3, Definitionen, page 439])。
以下, (A,m)はNoether局所環とし, M は有限生成A-加群, s = dimAM とする。

定義 6.2 ([88, Definition 2], [89, Section 3, Definitionen, page 439]). A-加群M が Buchs-

baum環 A-加群であるとは, 差 I(M) = ℓA(M/qM) − e0q(M)が, M の巴系イデアル qの選
び方に依らず, 一定値21を取ることをいう。また, s ≥ 1の場合, この条件は, M の任意の巴
系 a1, a2, . . . , asがM -弱列 (weak M -sequence) を成すこと, 即ち, 任意の整数 0 ≤ i ≤ s− 1

に対して, 等式
(a1, . . . , ai)M :M ai+1 = (a1, . . . , ai)M :M m

が成り立つことと同値22である ([90, Theorem 1.12], [108, 定理 9.14])。なお, M が Buchs-

baum A-加群であることは, M の任意の巴系 a1, a2, . . . , asが d-列23を成す, 即ち, 任意の整
数 1 ≤ i ≤ j ≤ sに対して, 等式

(a1, . . . , ai−1)M :M aiaj = (a1, . . . , ai−1)M :M aj

20系列的 Cohen-Macaulay性とは別方向への拡張である。後藤四郎先生のお言葉であるが, Cohen-Macaulay
環との比較において, Buchsbaum 環とは双子であり, Buchsbaum 環の更なる一般化である FLC 環 (finitely
generated local cohomology modulesを持つ環) とは従兄弟, 系列的 Cohen-Macaulay環とは友達である。

21一般に, ℓA(M/qM) ≥ e0q(M)が成り立つ ([108, 命題 8.21]) ので, 一定値は非負整数値を取る。
22但し, i = 0のとき, (a1, . . . , ai) = (0)と定める。
23d-列の概念は, C. Huneke ([63, Definition 1.1]) により導入された。基本的性質に関しては, [108, 付録 D]

も併せて参照されたい。
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が成り立つこととも同値である ([63, Remarks (1), page 252], [108, 命題 9.12])。環 Aが
Buchsbaum環であるとは, A自身が Buchsbaum A-加群であることをいう。

M がBuchsbaum A-加群であるとき, M の巴系イデアル qの取り方に依らず定まる一定値

I(M) = ℓA(M/qM)− e0q(M)

をMのBuchsbaum不変量24という。次元正のBuchsbaum A-加群Mは,M -弱列により特徴
付けられるため, mHim(M) = (0) (∀ i ̸= s)であって,局所コホモロジー加群Him(M) (∀ i ̸= s)

は剰余体A/m上の有限次元ベクトル空間となり, 等式

I(M) =

s−1∑
i=0

(
s− 1

i

)
ℓA(H

i
m(M))

が成り立つ ([90, Proposition 2.6])。Buchsbaum A-加群Mにおいて, 任意の p ∈ SuppAM \
{m}に対して,局所化MpはCohen-Macaulay Ap-加群であって,等式dimAp Mp = dimAM−
dimA/pが成り立つ ([108, 定理 9.6])。
有限生成A-加群M ̸= (0)に対し, s = dimAM とおくと, Him(M) = lim−→n

ExtiA(A/m
n,M)

であるので, 自然な射
ExtiA(A/m

n,M)→ Him(M)

が得られる。次の定理が, 所謂, Buchsbaum性に関する surjectivity criterionである。

定理 6.3 ([90, Theorem 2.10], [108, 定理 9.19]). 任意の i ̸= sに対して, 上記の自然な射が
全射であれば, M は Buchsbaum A-加群である。Aが正則局所環であれば, 逆も正しい。

定理 6.3の帰結として, 次を得る。

系 6.4 ([90, Theorem 2.10], [108, 系 9.20]). t = depthAM < sかつHim(M) = (0) (i ̸= t, s)

と仮定する。このとき, M がBuchsbaum A-加群であるための必要十分条件は, mHtm(M) =

(0)が成り立つことである。

例 6.5 ([108, 例 9.16]). kは体とし, S = k[[X,Y, Z,W ]]は k上の形式的冪級数環とする。こ
のとき, A = S/(X,Y ) ∩ (Z,W )は 2次元 Buchsbaum局所環, depthA = 1である。

以下, 与えられた blow-up代数が如何なる条件下で Buchsbaum環になり得るかという問
いを考察する。

定理 6.6 ([35, Theorem 1.1 (3)]). (A,m)は Buchsbaum局所環, d = dimA ≥ 1とする。A
の任意の巴系イデアルQに対して, G(Q)は Buchsbaum環である。

定理 6.7 ([87, Theorem 13]). (A,m)はBuchsbaum局所環, d = dimA ≥ 1とする。Aの任
意の巴系イデアルQに対して, R(Q)は Buchsbaum環である。

定理 6.6, 定理 6.7は, 後藤-下田の定理のBuchsbaum性への拡張可能性を示唆する。この
方面においては, 次の結果が知られている。

定理 6.8 ([37, Theorem (1.2)]). (A,m)はCohen-Macaulay局所環, d = dimA ≥ 2とし, 剰
余体A/mは無限とする。Aのm-準素イデアル I は極小重複度25を持つと仮定する。次の 2

条件は同値である。

(1) R(I)は Buchsbaum環である。
24或いは, I-不変量とも呼ばれる。
25等式 µA(I) = e0I(A) + d− ℓA(A/I)が成り立つことである。
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(2) G(I)は Buchsbaum環である。
その後, 礎石イデアル I = Q :A mに付随する blow-up代数の Buchsbaum性を巡る諸問

題も提起され, 後藤, 西田に加え, 山岸規久道や櫻井秀人により精力的に解析されている。
本節においては, より多くの Buchsbaumとなる Rees代数の例を提供するという観点から,

Ratliff-Rush閉包に着目したい。ここで, 加群に対するRees代数を考察する。
Rees代数は通常イデアルに基づき定義されるが, 自由加群の対称代数が多項式環に同型で

ある事実を用いて, 自然に加群へと拡張され, 特異点論への応用を中核に加群に固有の理論
が展開されている ([25, 26, 27, 28, 29, 84, 85])。
定義 6.9 (加群のRees代数). AはNoether環とする。有限生成自由A-加群F = A⊕r (r > 0)

のA-部分加群M に対して, 包含写像から誘導される対称代数 SymA(−)の間の射

Sym(i) : SymA(M)→ SymA(F ) = A[t1, t2, . . . , tr] = S

を考える。このとき, R(M) = ImSym(i)と定め, A-加群M のRees代数と呼ぶ。多項式環
Sを自然にZ-次数環と考え, この次数付けを用いてR(M)もZ-次数環の構造を持つ。従って

R(M) =
⊕
n≥0

Mn

と表せる。但し, MnはR(M)の n次斉次成分である。
A-加群M は, R(M)の 1次斉次成分 [R(M)]1に一致し, 対称代数は次数 1の斉次成分で

生成されるので, Rees代数R(M)はA上M により生成される標準的次数付き A-代数であ
る。また, r = 1の場合, A-加群M としてA内のイデアル I を選ぶと, 加群M のRees代数
はイデアル I のRees代数に一致する。即ち, R(M) = R(I) = A[It]が成り立つ。環A内の
イデアル I1, I2, . . . , Irに対して, A-加群M = I1⊕ I2⊕ · · ·⊕ Irを F = A⊕rのA-部分加群と
考えると, M のRees代数は多重Rees代数R(I1, I2, . . . , Ir) = A[I1t1, I2t2, . . . , Irtr]となる。
注意 6.10. M がA-加群として階数 e > 0を持つ26とすると, Ker Sym(i) = t(SymA(M))が
成り立つ。ここで, t(SymA(M))は SymA(M)のA-加群としての捩れ部分を表す。従って

R(M) ∼= SymA(M)/t(SymA(M))

となり, Rees代数R(M)はM の自由加群への埋め込みの取り方に依存しない。
定理 6.11 ([85, proposition 2.2]). (A,m)は Noether局所環, d = dimAとし, M は有限生
成自由A-加群 F = A⊕r (r > 0)のA-部分加群であって, 階数 rを持つとする。等式

dimR(M) = d+ r = d+ htR(M)R(M)+

が成り立つ。
加群の Rees代数は, イデアルの Rees代数の場合と異なり, 随伴次数環が存在しないとい

う顕著な事実により, その構造はイデアルの場合に比べ遥かに複雑となる。この事実を鑑み,

随伴次数環の非存在性を補うべく, 導入された概念が generic Bourbaki idealsである。
定義-定理 6.12 ([85, Definition 3.3, Theorem 3.5]). (A,m)は Noether局所環, d = dimA

とし, M は有限生成自由 A-加群 F = A⊕r (r > 0)のA-部分加群であって, 階数 rを持つと
する。depthAp ≤ 1を満たす任意の p ∈ SpecAに対して, Mpは自由Ap-加群であると仮定
する。A-加群M の生成元を a1, a2, . . . , anとし, A上の多項式環

A′ = A[Z] = A[Zij | 1 ≤ i ≤ n, 1 ≤ j ≤ r − 1]

26即ち, Q(A)により Aの全商環を表すとき, Q(A)⊗A M ∼= Q(A)⊕e が成り立つことである。
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を考える。但し, Z = {Zij | 1 ≤ i ≤ n, 1 ≤ j ≤ r − 1}は A上の不定元の成す集合を表す。
また, M ′ =M ⊗AA′内において, xj =

∑n
i=1 Zijai (1 ≤ j ≤ r− 1)とおき, G′ =

∑r−1
j=1 A

′xj
とする。さらに

A′′ = A[Z]mA[Z], M ′′ =M ⊗A A′′, G′′ = G′ ⊗A′ A′′

とおく。このとき, G′′ ∼= (A′′)⊕(r−1)であって, gradeA′′ I > 0かつ E′′/G′′ ∼= I を満たすA′′

のイデアル Iが存在する ([85, Proposition 3.2])。イデアル IをEの generic Bourbaki ideal

という ([85, Definition 3.3])。上記の設定の下, 次の主張が成り立つ ([85, Theorem 3.5])。

(1) R(M)がCohen-Macaulay環であるための必要十分条件は, R(I)がCohen-Macaulay

環である。

(2) R(I)が正規ならば, R(M)は正規である。逆は, (0)でない任意の p ∈ SpecAに対し,

depthAp ⊗A R(M) ≥ r + 1ならば, 正しい。

従って, 加群のRees代数の議論がイデアルの場合に帰着されるのである。次に, 加群に対
する整閉包の概念を紹介する。

定義 6.13. Aは Noether環とし, M は有限生成自由 A-加群 F = A⊕r (r > 0)の A-部分加
群とする。整数 n ≥ 0に対して, Mnの整閉包を

Mn =
(
R(M)

S
)
n
⊆ Sn = Fn

により定める。但し, R(M)
S はR(M)の S内における整閉包を表す。言い換えるなら, Mn

は Sのイデアル (MS)nに対する整閉包の n次斉次成分にも一致する。即ち

Mn =
(
(MS)n

)
n

が成り立つ。特に, M =
(
MS

)
1
⊆ F であって, 元 x ∈M は, 環 S内における等式

xn + c1x
n−1 + · · ·+ cn = 0 (∃n > 0, ∃ ci ∈M i)

を満たす。

注意 6.14 ([23, Lemma 2.2]). M が階数 rを持つならば, Q(R(M)) = Q(S)である。特に, A

が正規整域ならば, R(M)
Q(R(M))

= R(M)
Sが成り立つ。但し, Q(−)により全商環を表す。

以上を踏まえて, 加群に対するRatliff-Rush閉包を導入する。

定義 6.15 ([23, Definition 3.1]). AはNoether環,Mは有限生成自由A-加群F = A⊕r (r > 0)

のA-部分加群とする。自然な全射 ε : S → S/R(M)について, 環 Sの次数付き部分環

R̃(M)
S
= ε−1

(
H0

a(S/R(M))
)
⊆ S

を考える。但し, a = R(M)+とする。整数 n ≥ 0に対して, MnのRatliff-Rush閉包を

M̃n =

(
R̃(M)

S
)
n

⊆ Sn = Fn

により定める。即ち
M̃n =

⋃
ℓ>0

[
(Mn)ℓ+1 :Fn (Mn)ℓ

]
が成り立つ。特に, M̃ =

⋃
ℓ>0

[
M ℓ+1 :F M

ℓ
]である。
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定義 6.15はイデアルのRatliff-Rush閉包の自然な拡張である。基本的性質等の詳細は, [23,

Section 3]を参照されたい。
定理 6.16 ([23, Theorem 1.2], [111,定理 3.6]). (A,m)は 2次元正則局所環とし,剰余体A/m

は無限とする。M ̸= (0)は有限生成 torsion-free A-加群とする。次の 2条件は同値である。
(1) M̃ =M

(2) ProjR(M)は正規スキーム
上記の同値条件が成り立つとき, R(M)がCohen-Macaulay環であるための必要十分条件は,

A-加群M が整閉である。
系 6.17 ([23, Theorem 5.1], [111, 系 3.7]). 定理 6.16の設定の下, 次の 3条件は同値である。
(1) R(M)は Buchsbaum環であり, かつ M̃ =M である。

(2) R(M)は Buchsbaum環であり, かつ ProjR(M)は正規である。

(3) mM ⊆M であり, かつM ·M =M2である。
例 6.18. A = k[[X,Y ]]は無限体 k上の形式的冪級数環とする。次の主張が成り立つ。
(1) I = (X4, X3Y 2, XY 6, Y 8), M = I ⊕ I ⊆ F = A⊕A とおくと, R(M)はBuchsbaum

環ではない。

(2) I1 = (X6, X5Y 2, X4Y 3, X3Y 4, XY 7, Y 8), I2 = (X5, X4Y 2, X3Y 3, XY 6, Y 7) とし,

M = I1 ⊕ I2 ⊆ F = A⊕Aとおくと, R(M)は Buchsbaum環である。

(3) M =

〈(
X3

0

)
,

(
X2Y 2

0

)
,

(
XY 3

X3

)
,

(
Y 5

0

)
,

(
0

X2Y 2

)
,

(
0

XY 4

)
,

(
0

Y 5

)〉
とおくと,

A-加群M は直既約であり, R(M)は Buchsbaum環である。

7 Blow-up代数のCohen-Macaulay正規性
本小稿の掉尾を飾るべく, 本節では blow-up代数, 特にRees代数のCohen-Macaulay正規

性について論じる。第 6節において, 加群に対する整閉包を紹介したが, ここではイデアル
の場合の定義を改めて振り返りたい。
以下, Aは Noether環, I は Aのイデアルとする。元 x ∈ Aが I 上で整 (integral over I)

であるとは, 等式
xn + c1x

n−1 + · · ·+ cn = 0, ∃n > 0, ∃ ci ∈ Ii (1 ≤ i ≤ n)

を満たすことである。イデアル I 上で整であるような環Aの元全体の集合

I = {x ∈ A | x は I 上で整である }

は Aのイデアルであって, I の整閉包 (integral closure) と呼ばれる。等式 I = I が成り立
つとき, イデアル I は整閉といい, I の任意の冪が整閉であるとき, 即ち, In = Inが任意の
整数 n ≥ 1に対して成立するとき, I は正規であるという。なお, Aが正規整域の場合, Rees

代数の正規性はイデアルの正規性と同値である。本節で考察する問題は下記の通りである。
問題 7.1. (A,m)は正則局所環, d = dimAとし, I は整閉な m-準素イデアルとする。この
とき, いつRees代数R(I)は Cohen-Macaulay正規整域となるか。
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問題 7.1に対して, d ≤ 1の場合は, 定義により, R(I)は常に Cohen-Macaulay正規整
域である。d = 2の場合は, Zariskiの定理 ([104, Part II, Section 12], [105, Appendix 5,

Theorem 2’], [64, Theorem 3.7]) により, R(I)は正規であって, Lipman-Tessierの定理 ([70,

Proposition 5.5], [64, Theorem 5.1], [66, Theorem 3.1]) と後藤-下田の定理 (定理 2.4) によ
り, R(I)はCohen-Macaulay環である。なお, 2次元の場合には, 環Aの正則性を緩和して,

(A,m)が 2次元有理特異点27の場合にも, 剰余体が無限ならば, Rees代数 R(I)は Cohen-

Macaulay正規整域である ([69, Theorem (7.1)], [112, 5.45 定理])。有理特異点とイデアル
の整閉性に関しては次の定理がある。
定理 7.2 ([19, Theorem 1]). (A,m)は 2次元優秀正規局所整域とし, 剰余体 A/mは代数閉
体であると仮定する。次の 3条件は同値である。
(1) Aは有理特異点である。

(2) I, J が整閉なm-準素イデアルならば, IJ は整閉である。

(3) I がAの整閉なm-準素イデアルならば, I2は整閉である。
同論文 ([19]) において, 環 A = Q[[X,Y, Z]]/(X3 + 3Y 3 + 9Z3) は有理特異点ではない 2

次元正規局所整域であって, 任意の整閉なm-準素イデアル I, Jに対して, IJが整閉であるこ
とも示されている。即ち, 定理 7.2では, 剰余体A/mが代数閉体という仮定は不可欠である。
議論を正則局所環に戻して, d ≥ 3の場合を考察すると, 実は次の例が存在する。

例 7.3 ([92, Exercise 1.14]). A = k[[X,Y, Z]]は体 k上の形式的冪級数環とする。このとき

Q = (X7, Y 3, Z2), I = Q = (X7, Y 3, Z2, X5Y,X4Z,X3Y 2, X2Y Z, Y 2Z)

とおくと, I = I, I2 ̸= I2, I2 = QI である。故に, R(I)は Cohen-Macaulay環であるが, 正
規ではない。
例 7.4 ([62, Theorem 3.11]). A = k[[X,Y, Z]]は体 k上の形式的冪級数環とする。ch k ̸= 3

と仮定し, I = (X4, X(Y 3 + Z3), Y (Y 3 + Z3), Z(Y 3 + Z3)) +m5とおくと, I は正規である
が, G(I)はCohen-Macaulay環ではない。故に, R(I)は正規であるが, Cohen-Macaulay環
ではない。但し, m = (X,Y, Z)とする。
つまり, d ≥ 3の場合, 例 7.4が示すように, 正規性は Cohen-Macaulay性を導かない。同

様に, 例 7.3より, Cohen-Macaulay環であるが, 正規でない Rees代数も存在する。従って,

Rees代数のCohen-Macaulay性と正規性は独立の概念であり, Rees代数がCohen-Macaulay

かつ正規整域になるためには, 基礎環, 或いはイデアルに対する制約条件が必要となる。本
節では基礎環を正則と仮定しているので, イデアルに対する条件に焦点を当て議論を進める。
とりわけ, その条件として生成元の個数に注目して考察する。ここで, v(−)により環の埋め
込み次元を表し, µA(−)は極小生成系の個数である。この方面においては, 次の結果がある。
定理 7.5 ([36, Corollary (1.3)]). (A,m)は正則局所環, d = dimAとし, I は整閉なm-準素
イデアルとする。次の主張が成り立つ。
(1) µA(I) = dならば, R(I)は Cohen-Macaulay正規整域である。

(2) µA(I) = dであることの必要十分条件は, v(A/I) ≤ 1である。
定理 7.6 ([12, Theorem 1.1, Corollary 3.3], [13, Section 4]). (A,m)は正則局所環, d = dimA

とし, I は整閉なm-準素イデアルとする。次の主張が成り立つ。
27正規局所環 Aが有理特異点であるとは, 特異点解消 f : X → SpecAであって, Hi(X,OX) = (0) (∀ i > 0)

を満たすものが存在することをいう。
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(1) µA(I) = d+ 1ならば, R(I)は Cohen-Macaulay正規整域である。

(2) µA(I) = d+ 1ならば, v(A/I) ≤ 2である。

以上の先行研究を踏まえて, 本報告書の最後に最近の結果を紹介したい。

定理 7.7 ([25]). (A,m)は正則局所環, d = dimAとし, I は整閉なm-準素イデアルとする。
次の主張が成り立つ。

(1) v(A/I) ≤ 2ならば, R(I)は Cohen-Macaulay正規整域である。

(2) µA(I) ≤ d+ 2ならば, v(A/I) ≤ 2である。

特に, µA(I) ≤ d+ 2ならば, R(I)は Cohen-Macaulay正規整域である。

例 7.8. A = k[[X,Y, Z]]は体 k上の形式的冪級数環とする。次の主張が成り立つ。

(1) I = (X3, Y 3, Z) = (X3, X2Y,XY 2, Y 3, Z)とおくと, I は整閉な m-準素イデアルで
あって, µA(I) = 5 = d+ 2である。故に, R(I)は Cohen-Macaulay正規整域である。

(2) I = (X4, Y 4, Z) = (X4, X3Y,X2Y 2, XY 3, Y 4, Z)とおくと, I は整閉な m-準素イデ
アルであって, µA(I) = 6 > d + 2であるが, v(A/I) = 2である。従って, R(I)は
Cohen-Macaulay正規整域である。

(3) 任意の f ∈ m\m2と整数 n ≥ 1に対し, I = (f)+mnとおくと, Iは整閉なm-準素イデ
アルであって, v(A/I) ≤ 2である。故に, R(I)は Cohen-Macaulay正規整域である。

定理 7.9 ([25]). 標数 0の体 k上の多項式環A = k[X1, X2, . . . , Xd]における整閉なm-準素イ
デアル Iに対して, µA(I) ≤ d+3かつ Iが単項式イデアルならば, R(I)はCohen-Macaulay

正規整域である。
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[2] V. Barucci and R. Fröberg, One-dimensional almost Gorenstein rings, J. Algebra, 188 (1997),
no. 2, 418–442.

[3] H. Bass, On the ubiquity of Gorenstein rings, Math. Z., 82 (1963), 8–28.

[4] A. Björner and M. L. Wachs, Shellable nonpure complexes and posets. I, Trans. Amer. Math.
Soc., 348 (1996), no.4, 1299–1327.

[5] W. Bruns and A. Conca, F-rationality of determinantal rings and their Rees rings, Michigan
Math. J., 45 (1998), no.2, 291–299.

[6] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge,
1993.

[7] W. Bruns and U. Vetter, Determinantal rings, Lecture Notes in Mathematics, 1327, Springer-
Verlag, Berlin, 1988.

[8] D. A. Buchsbaum, Complexes in local ring theory, Some Aspects of Ring Theory, C.I.M.E.,
Rome, 1965.

23



[9] E. Celikbas, O. Celikbas, S. Goto, and N. Taniguchi, Generalized Gorenstein Arf rings, Ark.
Mat., 57 (2019), no.1, 35–53.

[10] E. Celikbas, N. Endo, J. Laxmi, and J. Weyman, Almost Gorenstein determinantal rings of
symmetric matrices, Comm. Algebra, 50 (2022), no.12, 5449–5458.

[11] T. D. M. Chau, S. Goto, S. Kumashiro, and N. Matsuoka, Sally modules of canonical ideals
in dimension one and 2-AGL rings, J. Algebra, 521 (2019), 299–330.
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24



[34] S. Goto, Buchsbaum rings with multiplicity 2, J. Algebra, 74 (1982), 494–508.

[35] S. Goto, On the associated graded rings of parameter ideals in Buchsbaum rings, J. Algebra,
85 (1983), 490–534.

[36] S. Goto, Integral closedness of complete intersection ideals, J. Algebra, 108 (1987), 151–160.

[37] S. Goto, Buchsbaumness in Rees algebras associated to ideals of minimal multiplicity, J.
Algebra, 213 (1999), 604–661.

[38] S. Goto, Y. Horiuchi, and H. Sakurai, Sequentially Cohen-Macaulayness versus parametric
decomposition of powers of parameter ideals, J. Comm. Algebra, 2 (2010), 37–54.

[39] S. Goto and S.-i. Iai, Embeddings of certain graded rings into their canonical modules, J.
Algebra, 228 (2000), no.1, 377–396.

[40] S. Goto and S. Kumashiro, On generalized Gorenstein local rings, arXiv:2212.12762.

[41] S. Goto, D. V. Kien, N. Matsuoka, and H. L. Truong, Pseudo-Frobenius numbers versus
defining ideals in numerical semigroup rings, J. Algebra, 508 (2018), 1–15.

[42] S. Goto, N. Matsuoka and T. T. Phuong, Almost Gorenstein rings, J. Algebra, 379 (2013),
355–381.

[43] S. Goto, N. Matsuoka, N. Taniguchi, and K.-i. Yoshida, The almost Gorenstein Rees algebras
of parameters, J. Algebra, 452 (2016), 263–278.

[44] S. Goto, N. Matsuoka, N. Taniguchi, and K.-i. Yoshida, The almost Gorenstein Rees algebras
over two-dimensional regular local rings, J. Pure Appl. Algebra, 220 (2016), 3425–3436.

[45] S. Goto, N. Matsuoka, N. Taniguchi, and K.-i. Yoshida, On the almost Gorenstein property
in Rees algebras of contracted ideals, Kyoto J. Math., 59 (2019), no.4, 769–785.

[46] S. Goto, N. Matsuoka, N. Taniguchi, and K.-i. Yoshida, The almost Gorenstein Rees algebras
of pg-ideals, good ideals, and powers of the maximal ideals, Michigan Math. J., 67 (2018),
159–174.

[47] S. Goto and K. Nishida, The Cohen-Macaulay and Gorenstein properties of Rees algebras
associated to fltrations, Mem. Amer. Math. Soc., 110, 1994.

[48] S. Goto, M. Rahimi, N. Taniguchi, and H. L. Truong, When are the Rees algebras of parameter
ideals almost Gorenstein graded rings?, Kyoto J. Math., 57 (2017), no.3, 655–666.

[49] S. Goto and Y. Shimoda, On Rees algebras over Buchsbaum rings, J. Math. Kyoto Univ., 20
(1980), 691–708.

[50] S. Goto and Y. Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Commutative
algebra (Fairfax, Va., 1979), 201–231, Lecture Notes in Pure and Appl. Math., 68, Dekker,
New York, 1982.

[51] S. Goto, R. Takahashi and N. Taniguchi, Almost Gorenstein rings -towards a theory of higher
dimension, J. Pure Appl. Algebra, 219 (2015), 2666–2712.

[52] S. Goto, R. Takahashi, and N. Taniguchi, Ulrich ideals and almost Gorenstein rings, Proc.
Amer. Math. Soc., 144 (2016), 2811–2823.

[53] S. Goto and K.-i. Watanabe, On graded rings I, J. Math. Soc. Japan, 30 (1978), no. 2, 179–213.

[54] M. Herrmann, S. Ikeda, and U. Orbanz, Equimultiplicity and blowing up, Springer-Verlag,
Berlin, 1988. An algebraic study; With an appendix by B. Moonen.

[55] J. Herzog, T. Hibi, and D. I. Stamate, The trace of the canonical module, Israel J. Math.,
233 (2019), 133–165.

[56] J. Herzog, S. Kumashiro, and D. I. Stamate, The tiny trace ideals of the canonical modules
in Cohen-Macaulay rings of dimension one, J. Algebra, 619 (2023), 626–642.

[57] A. Higashitani, Almost Gorenstein homogeneous rings and their h-vectors, J. Algebra, 456
(2016), 190–206.

[58] M. Hochster and J. A. Eagon, A class of perfect determinantal ideals, Bull. Amer. Math. Soc.,
77 (1970), 1971–1120.

25



[59] M. Hochster and C. Huneke, Tight closure of parameter ideals and splitting in module-finite
extensions, J. Algebraic Geom., 3 (1994), 599–670.

[60] M. Hochster and L. J. Ratliff, Jr., Five theorems on Macaulay rings, Pacific J. Math., 44
(1973), 147–172.

[61] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings
are Cohen-Macaulay, Adv. Math., 13 (1974), 115–175.

[62] S. Huckaba and C. Huneke, Normal ideals in regular rings, J. reine angew. Math., 510 (1999),
63–82.

[63] C. Huneke, The theory of d-sequences and powers of ideals, Adv. Math., 46 (1982), 249–279.

[64] C. Huneke, Complete ideals in two-dimensional regular local rings, In Commutative Algebra
(Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., 15, New York, Springer, 1989, pp. 325–338.

[65] C. Huneke, Hyman Bass and ubiquity: Gorenstein rings, Algebra, K-theory, groups, and
education (New York, 1997), 55–78. Contemp. Math., 243, American Mathematical Society,
Providence, RI, 1999.

[66] C. Huneke and J. Sally, Birational extensions in dimension two and integrally closed ideals,
J. Algebra, 115 (1988), 481–500.

[67] S. Ikeda, On the Gorensteinness of Rees algebras over local rings, Nagoya Math. J., 102
(1986), 135–154.

[68] J. Lipman, Rational singularities with applications to algebraic surfaces and unique factoriza-
tion, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 195–279.

[69] J. Lipman, Cohen-Macaulayness in graded algebras, Math. Res. Lett., 1 (1994), 149–157.

[70] J. Lipman and B. Tessier, Pseudo-rational local rings and a theorem of Briançon-Skoda about
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概要
複素解析空間の間の射影射に対する極小モデル理論について説明する。
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1 はじめに
極小モデル理論は、本来、射影的な代数多様体に対する理論として発展してきた。しか
し、現代的な代数幾何においては、相対的な設定で理論を構築することが自然であり、極
小モデル理論もまた、代数多様体の間の射影射に対して展開されてきた。
ここ数年で、この理論を複素解析空間の間の射影射にまで一般化する計画を実行した。
概要を述べると、次のようになる。

複素解析空間の間の射影射に対して、極小モデル理論を完全に一般化した。

より具体的には、以下の二点が主な成果である：

• 代数多様体の間の射影射に対する極小モデル理論の結果のほとんどは、複素解析空
間の間の射影射に対しても証明が可能であることを示した。

• 主要な未解決問題（アバンダンス予想や極小モデルの存在など）は、射影的な代数
多様体に対する元々の予想に帰着されることを明らかにした。

このように、複素解析空間の間の射影射に対しても、代数多様体の場合とほぼ同様に極
小モデル理論を構築することができる。上に述べたとおり、解析的な設定での極小モデ
ル理論の完成のためには、もとの射影的な代数多様体に対する予想を解決すれば十分で
ある。
本稿の第 1章から第 12章までは、ほぼ講演の内容に基づいている。第 13章には文献
に関するメモを、また第 14 章にはおまけとして補足的な内容を付け加えた。第 15 章に
は、よくある質問の答えを書いておいた。興味を持たれた読者は、第 13章の文献案内を
参考にし、ぜひ原論文に挑戦していただきたい。
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2 非特異射影曲面の極小モデルプログラム（現代版）
極小モデル理論を、最も基本的な場合として、非特異複素射影曲面に対して考察する。

X を非特異な複素射影曲面とするとき、以下のように極小モデルプログラムが実行さ
れる：

X =: X0 → X1 → · · · → Xm

• 各ステップは、(−1)曲線と呼ばれる P1 を一点に収縮する双有理写像である。
• 最終的なモデル Xm は、極小モデルまたは森ファイバー空間となる。
• 非特異射影曲面が森ファイバー空間であるとは、それが P2 または曲線上の P1 束
であることを意味する。

• 非特異射影曲面が極小モデルであるとは、その標準因子 K が数値的に非負 (nefと
呼ばれる)であることを意味する。

上記の事実は、本質的にはイタリア学派によって既に得られていたが、極小モデルの概
念およびこのような視点での体系的理解は、森理論の成果によるところが大きい。
極小モデルプログラムとは、非常に大まかに言えば、与えられた射影多様体に対して有
限回の双有理変換を施し、極小モデルあるいは森ファイバー空間を得る操作である。

3 歴史
森理論（以下、極小モデル理論ともいう）の歴史を簡単に振り返る。

• 1980年頃：森理論（極小モデル理論）が始まる。
• 1980年代後半：森重文氏が 3次元フリップの存在を証明し、3次元における極小モ
デルの存在が確立される。これにより、1990年に森氏がフィールズ賞を受賞。

• 1990年代前半：3次元極小モデル理論に関する主要な予想がすべて解決される。
• 1990 年代後半：極小モデル理論の「冬の時代」。筆者が大学院に進学し、研究を
開始。

• 2000年頃：Shokurov氏が「Prelimiting flips」と題された長大なプレプリントを
公開。

• 2002年：ケンブリッジ大学・ニュートン研究所にて、Shokurov氏のプレプリント
の解読セミナーが開催される。

• 2005年：Hacon氏とMcKernan氏がフリップの存在証明を発表。
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• 同年：筆者が第 50回代数学シンポジウムにて、上記の成果を解説 ([藤 1])。
• 2006 年：Birkar–Cascini–Hacon–McKernan による重要な成果のプレプリントが
発表される (後に [BCHM]として出版)。この論文は通例、BCHMと略称される。

• 2007年：筆者が第 52回代数学シンポジウムにて、BCHMを解説 ([藤 2])。

20世紀における極小モデル理論は主に 3次元代数多様体を対象としていたが、21世紀
に入ってからは、Shokurov氏の哲学に基づき、一般次元への展開が進められていると言
える。Hacon–McKernan によるフリップの存在証明の衝撃や、BCHM の登場による驚
きについては、筆者が当時執筆した代数学シンポジウムの報告 ([藤 1]と [藤 2]) をご覧い
ただければ、当時の雰囲気を感じ取っていただけるだろう。
その後の主要な発展として、以下のような顕著な成果が挙げられる：

• Sarkisovプログラムの確立（Hacon–McKernan）
• Shokurovの ACC予想の解決（Hacon–McKernan–Xu）
• 安定多様体の有界性の確立（Hacon–McKernan–Xu）
• BAB（Borisov–Alexeev–Borisov）予想の解決（Birkar）

これらの成果は、基本的に BCHM を起点とした自然な流れの中で得られたものであ
る。BAB予想の解決によって Birkar氏がフィールズ賞を受賞したことは、広く知られて
いる。
これらの成果とは異なる方向への一般化として、以下のような研究もある：

• 極小モデル理論の枠組みの拡張（Fujino）

上記の成果の多くは、Shokurov氏の哲学を忠実に受け継ぎつつ、同一路線上で理論を
「前へ前へ」と進めていったものであるのに対し、筆者の研究は、極小モデル理論の適用
範囲を「横へ横へ」と広げるものであり、当初の想定を超えて研究対象を拡張した点に特
徴がある。
このほかにも、安定多様体のモジュライ理論、正標数における極小モデル理論、K 安定
性との関係、混標数の極小モデル理論、葉層構造の極小モデル理論やケーラー多様体の極
小モデル理論など、多方面での発展が現在も続いており、その勢いは衰える気配がない。

4 研究の動機
今回の研究の動機は、主に以下の二点である。
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• 複素解析的特異点の研究
• 代数多様体の退化の研究

2次元における孤立特異点の研究では、以下のような操作が標準的に用いられる。まず
特異点解消を施し、例外集合の中に (−1)曲線が存在すれば、それを収縮する。有限回の
収縮射を経ることで、最終的に例外集合内に (−1)曲線が存在しない状態にすることがで
きる。このような特異点解消をminimal resolutionと呼ぶ。minimal resolutionにお
ける例外集合のなす双対グラフを調べることで、特異点の性質を詳しく理解することが可
能となる。
極小モデル理論の解析化の第一の動機は、このような操作を高次元の複素解析的特異点
に対しても実行可能にすることである。特異点解消は有限回の爆発により得られ、解消か
ら元の空間への射は射影的となる。したがって、複素解析空間の間の射影射に極小モデル
理論を適用できるようになれば、高次元における minimal resolution を構成するための
理論的枠組みが得られることになる。
第二の動機である代数多様体の退化の研究としては、KulikovによるK3曲面の退化の
研究が念頭にある。単位円板上に定義された射影多様体の族を考え、原点を除く各ファイ
バーが非特異であるとする。このとき、原点上での退化の様子を解析する方法として、半
安定極小モデルプログラムと呼ばれる極小モデル理論が考えられる。
ただし、単位円板自体は代数多様体ではなく複素解析空間であるため、この種の議論を
理論的に保証するには、複素解析空間の間の射影射に対して極小モデル理論が構築されて
いる必要がある。以上の理由から、複素解析空間の間の射影射に対する極小モデル理論の
確立は重要であると思う。

5 BCHMの結果について
ここでは、[BCHM] の主な結果を簡単に紹介する。[BCHM] は、多くの命題を次元に
よる帰納法により同時に示しており、その全体像を追うのは容易ではない。詳細について
は原論文 [BCHM] を参照されたい。ここでは、特に応用上有用で、比較的理解しやすい
二つの主張に焦点を当てて述べる。
まず一つ目の定理は、適切な仮定の下でスケール付き極小モデルプログラムが機能する
ことを主張している。

定理 5.1（[BCHM, Corollary 1.4.2]） X と Y を準射影的代数多様体とし、π : X → Y

を射影射とする。(X,∆) は Q-分解的な川又対数的末端対とし、∆ は π-巨大 (big) と仮
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定する。さらに、有効な R-因子 C が存在して、KX +∆+ C が π-数値的非負 (nef)で
あり、(X,∆+ C) も川又対数的末端対であるとする。このとき、Y 上で C に関するス
ケール付き (KX +∆)-極小モデルプログラムを実行することができ、その結果として、Y
上の極小モデルあるいは森ファイバー空間の構造を得る。

次に述べる定理は、上述のスケール付き極小モデルプログラムの実行可能性を前提とす
れば、比較的容易に導かれるものである。

定理 5.2（[BCHM, Theorem 1.2]） X と Y を準射影的代数多様体とし、π : X → Y を
射影射とする。(X,∆) は川又対数的末端対と仮定する。さらに、以下のいずれかの条件
を仮定する。

• ∆ は π-巨大で、かつ KX +∆ は π-擬有効 (pseudo-effective)である。
• KX +∆ は π-巨大である。

このとき、次の主張が成り立つ。

(1) (X,∆) は Y 上の極小モデル (minimal model)をもつ。
(2) KX +∆ が π-巨大であれば、(X,∆) は Y 上の対数的標準モデル (log canonical

model)をもつ。
(3) KX +∆ が Q-カルティエであれば、

R(X/Y,KX +∆) :=
⊕
m∈N

π∗OX(⌊m(KX +∆)⌋)

は有限生成な OY -代数である。

6 極小モデル理論の解析化を目指して
[F2] における最大の成果は、次のような設定が複素解析空間の間の射影射に対する極小
モデル理論を論じるための正しい枠組みであると見抜いた点にあると考えられる。

設定 6.1 以下が我々の目的に適した正しい設定である：

• X と Y は複素解析空間である。
• π : X → Y は射影射である。
• W は Y のスタインコンパクトな部分集合であり、Γ(W,OY ) はネーター環になる
ものとする。
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見慣れない用語が含まれているかもしれないが、まずはこの設定が適切なものであると
認め、その上で議論を進めることにしたい。

7 BCHMの解析化
[BCHM] の証明を精査すると、[BCHM] は究極的には広中の特異点解消定理と川又–

フィーベック消滅定理しか使っていないと言ってよいだろう。川又–フィーベック消滅定
理は小平消滅定理の一般化である。小平の消滅定理を認めると簡単に証明できる定理であ
る。広中の特異点解消定理は元々は代数多様体に対する定理であったが、複素解析空間に
対しても同様の特異点解消定理が証明されていることはよく知られている。また、小平の
消滅定理は非コンパクトな複素多様体に一般化されており、その応用として複素解析空間
の間の射影射に対して小平の消滅定理（の相対版）も知られている。

[BCHM] の主結果のほとんどは、複素解析空間の間の射影射に対しても移植可能であ
る。以下では、定理 5.1 および定理 5.2 の解析的類似を述べる。

定理 7.1（[F2, Theorem 1.1]） X, Y , π : X → Y , および W は設定 6.1 の通りとする。
(X,∆) は川又対数的末端対であり、∆ は π-巨大と仮定する。また、X は W 上 Q-分解
的とする。さらに、有効な R-因子 C が存在して KX +∆+C が W 上 π-数値的非負で
あり、(X,∆+ C) も川又対数的末端対であるとする。
このとき、Y 上で C に関するスケール付き (KX + ∆)-極小モデルプログラムを実行
することができ、その結果として、Y 上の極小モデルまたは森ファイバー空間の構造を
得る。
すなわち、Y 上のフリップおよび因子収縮 (divisorial contraction)からなる有限列

(X,∆) =: (X0,∆0) 99K · · · 99K (Xi,∆i) 99K · · · 99K (Xm,∆m)

が存在し、(Xm,∆m) は Y 上の極小モデルか、あるいは森ファイバー空間の構造をもつ。

以下は、代数的設定と解析的設定の間の重要な違いに関する注意である。

注意 7.2 定理 7.1 における各ステップ（フリップや因子収縮）では、必要に応じて Y を
W のより小さな近傍に取り直す必要がある。そのため、最終的に得られる Xm も、Y を
W の近傍に置き換えた後のものである。この点は、注意 8.2 や第 15 章と深く関係して
いる。
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定理 7.3（[F2, Theorem 1.2]） X, Y , π : X → Y , および W は設定 6.1 の通りとし、
(X,∆) は川又対数的末端対と仮定する。さらに、以下のいずれかの条件を仮定する：

• ∆ は π-巨大であり、かつ KX +∆ は π-擬有効である。
• KX +∆ は π-巨大である。

このとき、次の各主張が成り立つ：

(1) (X,∆) は W のある近傍上で極小モデルをもつ。
(2) KX + ∆ が π-巨大であれば、(X,∆) は W のある近傍上で対数的標準モデルを

もつ。
(3) KX +∆ が Q-カルティエであれば、

R(X/Y,KX +∆) :=
⊕
m∈N

π∗OX(⌊m(KX +∆)⌋)

は局所的に有限生成な OY -代数である。

8 π-豊富性と π-数値的非負性
代数多様体の間の射影射に対する極小モデル理論と、複素解析空間の間の射影射に対す
る極小モデル理論は非常によく似ているが、複素解析的な設定にすることによって、新た
に微妙な問題が生じることもある。
以下、この章では、π : X → Y を複素解析空間の間の射影射とし、W を Y の部分集
合とする。L を X 上の R-直線束あるいは R-カルティエ因子とする。

注意 8.1（W 上の π-豊富性） L が W 上 π-豊富 (ample)であるとは、任意の w ∈ W
に対して L|π−1(w) が豊富であることをいう。π−1(w) は射影的であるため、L|π−1(w) の
豊富性は、通常の代数幾何学における豊富性と同義である。
この定義からは明らかではないが、L が W 上 π-豊富であることと、L が W の適当な
開近傍上で π-豊富であることは同値である。したがって、L が W 上 π-豊富であり、か
つ W がコンパクトであれば、L はW の近傍上で有限個の π-豊富な直線束の R>0-線形
結合として表せることになる。

注意 8.2（W 上の π-数値的非負性） L が W 上 π-数値的非負 (nef)であるとは、任意
の w ∈ W に対して L|π−1(w) が数値的非負であることをいう。π−1(w) は射影的である
ため、L|π−1(w) の数値的非負性も、通常の代数幾何学におけるものと同じである。
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ここまでは豊富性とまったく同様である。しかし、L が W 上で π-数値的非負であっ
ても、必ずしも W の近傍上で π-数値的非負となるとは限らない。

このように、π-数値的非負性の「振る舞いの悪さ」が、解析的設定における極小モデル
理論の展開において、ところどころで障害となる。以下に述べる予想は、この問題に対す
る自然な解決を示唆するものである。

予想 8.3（[F2, Conjecture 8.4]） π : X → Y を複素解析空間の間の射影射とし、(X,∆)

を対数的標準対とする。P を Y の一点とし、(KX +∆)|π−1(P ) が数値的非負であると仮
定する。このとき、KX +∆ は P の近傍上で π-数値的非負である。

仮に予想 8.3 が正しいとすれば、解析的設定で極小モデルプログラムを実行し、W に
潰れる曲線で KX +∆ と負に交わるものが存在しないようにできれば、それは W の近
傍上で極小モデルとなる。

注意 8.4 予想 8.3 は、複素解析空間の間の射影射に対する極小モデル理論が完全に
確立されれば成立することが知られている（[F2, Remark 8.5] を参照）。また、[EH3,

Theorem 1.7] を用いると、X が 3 次元以下の場合には予想 8.3 が成り立つことが確認で
きる。
一方で、一般の R-直線束については、数値的非負性の開性 (openness) が成り立たない
ことが知られている（[F2, Remark 4.3]）。しかし、曲面の場合には任意の R-直線束に対
して数値的非負性の開性が成立することが示されている（[Mo, Lemma 2.6]）。

さらに強い結果として、次の予想も成立すると期待される。

予想 8.5（アバンダンス予想の特殊形） π : X → Y を複素解析空間の間の射影射とし、
(X,∆) を対数的標準対とする。P を Y の一点とし、(KX +∆)|π−1(P ) が数値的非負で
あると仮定する。このとき、KX +∆ は P の近傍上で π-半豊富 (semi-ample)である。

仮に予想 8.5 まで正しいとすれば、解析的極小モデル理論において、W に潰れる曲線
で KX +∆ と負に交わるものが存在しないようにできれば、それは W の近傍上で良い
極小モデル（good minimal model）になるといえる。
予想 8.3 および予想 8.5 は未解決であるが、[BCHM] の解析的類似に現れるような特
定の設定（たとえば、定理 7.1 や定理 7.3）においては、これらの予想が成り立つことが
証明されている。詳しくは [F2, Theorem 8.3] を参照されたい。いずれにせよ、完全に一
般の設定では、予想 8.3 と予想 8.5 は依然として非常に困難な未解決問題であると考えら
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れている。

9 極小モデル理論をいかに定式化するか？
ここからは設定 6.1をもう少し詳しく見てみたい。我々の目的には以下のスタイン空間
の特徴付けを定義として採用しても問題ない。

定義 9.1（スタイン空間） X を複素解析空間とする。X がスタイン空間であるとは、任
意の解析的連接層 F に対して Hi(X,F) = 0がすべての i > 0に対して成り立つことと
する。

この定義を見ると、代数幾何学でのアフィンスキームと複素幾何のスタイン空間が対応
すると思ってよい。

定義 9.2（スタインコンパクト集合） X を複素解析空間とし、K を X のコンパクト部
分集合とする。K がスタイン開集合からなる基本近傍系を持つとき、K はスタインコン
パクト集合と呼ばれる。

以下の補題を用いると、スタインコンパクト集合が多数存在することがわかる。正則凸
包は多変数関数論でよく知られた概念である。

補題 9.3（正則凸包） K をスタイン空間 X 上のコンパクト集合とする。

K̂ :=

{
x ∈ X

∣∣∣∣ |f(x)| ≤ sup
z∈K
|f(z)| for every f ∈ Γ(X,OX)

}
と定めるとき、K̂ は K の正則凸包と呼ばれる。このとき、K̂ は X のスタインコンパク
ト集合である。

次の例は、ルベーグ積分論でよく知られるカントール集合に関するものである。

例 9.4（カントール集合） X = {z ∈ C | |z| < 2} とし、C をカントール集合とする。

C ⊂ [0, 1] ⊂ X

であることに注意する。このとき、C は X のスタインコンパクト集合である。なぜなら、
非コンパクトなリーマン面はすべてスタインであり、C はコンパクトだからである。
しかし、

OX(C) = Γ(C,OX) = lim−→
C⊂U

Γ(U,OX)
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はネーター環ではない。

上の例からわかるように、スタインコンパクト集合という仮定だけでは、「病的」とも
言えるような集合も存在し得る。次に述べる Siu による結果は、そのような集合を排除す
る条件を与えるものである。

定理 9.5（Siu, [F2, Theorem 2.10]） K を複素解析空間 X のスタインコンパクトな部
分集合とする。このとき、OX(K) = Γ(K,OX) がネーター環となるための必要十分条件
は、以下の通りである：

(⋆) K の開近傍上で定義された任意の解析的集合 Z に対し、K ∩Z の連結成分は高々
有限個である。

カントール集合 C の場合、連結成分が無限個存在するため、OX(C) はネーター環とな
らなかったのである。

注意 9.6 条件 (⋆) はいつ成立するのか、あるいは (⋆) を満たすコンパクト集合は豊富に
存在するのか、という疑問が生じるかもしれない。
一般に、K が 半解析的集合（semianalytic subset） でかつコンパクトであるとき、

K は条件 (⋆) を満たすことが知られている。
解析空間 X のある点 P の近傍で何かを考察する際には、局所的に X を多重円板内に
実現できる。このような状況において、P の近傍にスタインコンパクトな半解析的集合を
構成することはいくらでも可能である。

π : X → Y を複素解析空間の間の射影射とし、W を Y のコンパクトな部分集合とす
る。π(C)がW の点になるような X 上の射影曲線 C たちが生成する自由アーベル群を
Z1(X/Y ;W )と書く。現時点ではW はコンパクト部分集合であることのみを仮定する。
U をW の開近傍とすると、

Pic
(
π−1(U)

)
× Z1(X/Y ;W )→ Z

なる交点形式を定義することができる。ここで、我々が考える曲線は π によってW の点
に移るものであるため、U がW の近傍であれば、上の交点形式は問題なく定義される。
代数的な場合と同様に、数値的同値関係 ≡で割った空間

Ã(U,W ) := Pic
(
π−1(U)

)
/ ≡
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を考える。さらに、W の開近傍 U を走らせて
A1(X/Y ;W ) := lim−→

W⊂U

Ã(U,W )

と定義する。もちろん A1(X/Y ;W )はアーベル群であるが、一般には有限生成とは限ら
ない。
ここで、以下の中山の定理が重要な役割を果たす。

定理 9.7（Nakayama, [N2, Chapter II. 5.19. Lemma], [F2, Theorem 4.7]） π : X → Y

を複素解析空間の間の射影射とし、W を Y のコンパクト部分集合とする。

(⋆) W の開近傍上に定義された任意の解析的集合 Z に対して、W ∩ Z の連結成分は
高々有限個である。

という条件 (⋆)が成り立つとき、A1(X/Y ;W )は有限生成アーベル群である。

すでにお気付きの読者も多いと思われるが、定理 9.7 における条件 (⋆)は、定理 9.5に
おける条件 (⋆) と全く同じものである。このことから、結局のところ (⋆) という条件が
様々な有限性を保証するために本質的なものであることがわかる。単にコンパクト部分
集合を固定するだけでは不十分であり、(⋆)を満たすコンパクト部分集合を考える必要が
ある。
A1(X/Y ;W )が有限生成アーベル群であるとき、

N1(X/Y ;W ) := A1(X/Y ;W )⊗Z R

は有限次元の実ベクトル空間となる。このとき、その双対ベクトル空間 N1(X/Y ;W )内
に、クライマン–森錐体

NE(X/Y ;W )

を定義することができる。すなわち、NE(X/Y ;W ) は、π によってW の点に移る曲線
たちが張る錐体の N1(X/Y ;W )内での閉包である。

NE(X/Y ;W )が定義できれば、クライマンの豊富性判定法も、代数多様体の場合と同
様に、NE(X/Y ;W )を用いて定式化・証明することができる。また、極小モデル理論の
出発点である錐体定理（cone theorem）や収縮定理（contraction theorem）も、代数的
な場合と類似の形で定式化可能である。ただし、すでに見たように、「W 上での π-数値
的非負性」と「W の近傍上での π-数値的非負性」には差があるため、細かな技術的修正
が必要になる。いずれにせよ、NE(X/Y ;W )が適切に定義できるような枠組みを整備す
る段階自体が、非自明であると思われる。

12



10 消滅定理
川又対数的末端対を扱うだけであれば、小平の消滅定理の解析版だけで十分である。し
かし、対数的標準対や、さらに悪い特異点を持つ複素解析空間まで扱おうとすると、既存
の消滅定理では全く不十分である。このような状況を踏まえ、以下の定理を証明した。代
数多様体に対する同様の定理は、極小モデル理論や高次元代数多様体に関する研究におい
てすでに大きな役割を果たしている。ここではその複素解析空間版を与えることが主張で
ある。

定理 10.1（[F4, Theorem 1.1]） (X,∆) を解析的な単純正規交叉対とし、∆ を境界 R-
因子とする。f : X → Y を複素解析空間の間の射影射とし、L を X 上の直線束とする。
q は任意の整数とする。

(i) （Strict support condition）L− (ωX +∆)が f -半豊富であるとき、Rqf∗Lの随伴
部分多様体 (associated subvariety)は、(X,∆)のある階層 (stratum)の f による
像である。

(ii) （Vanishing theorem）π : Y → Z を複素解析空間の間の射影射とし、Hを Y 上の
π-豊富な R-直線束とする。L− (ωX +∆) ∼R f

∗Hが成り立つとき、任意の p > 0

に対して、Rpπ∗R
qf∗L = 0が成立する。

技術的な定義については詳述しないが、定理 10.1 に現れる単純正規交叉対 (X,∆) と
は、単純正規交叉的な複素解析空間 X と、その上の境界因子 ∆ からなる対をいう。特
に、X は一般には可約であることに注意しておきたい。

注意 10.2 代数的な設定における定理 10.1 の証明には、混合ホッジ構造が本質的に用い
られていた。代数多様体は常にコンパクト化可能であるため、大域的なホッジ理論の結果
を利用することができる。詳しくは [F1, Chapter 5] を参照されたい。
実際、混合ホッジ構造の理論から導かれるスペクトル系列の E1 退化を用いることで、
代数的な設定における定理 10.1 は証明されていた。
しかし、この手法は定理 10.1 のような解析的な設定には適用できないため、同定理は
長らく未解決の問題として残されていた。

定理 10.1は、最初に [F4]で、斉藤盛彦による混合ホッジ加群の理論を用いて証明され
た。定理 10.1に関しては、[F7]も参照されたい。その後、[FF]において、ホッジ加群を
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用いない別の証明が与えられた。[FF] では、タイトルにもある通り混合ホッジ構造の変
動の理論を利用している。証明のアイデア自体は、[F4]および [FF]の両者で本質的に同
じである。その後、[Mu]では、上記の定理を含むより一般的な結果が示されているよう
だが、残念ながら私はその内容を十分に追えていない。

いったん定理 10.1 が証明されると、複素解析空間に対しても対数的標準中心 (log

canonical center) に関する基本的な性質が示されるほか、究極的な形の錐体定理や収縮定
理も複素解析的な設定で証明できるようになる。詳しくは [F5]や [F6]を参照されたい。
川又対数的末端対よりも悪い特異点をもつ複素解析空間に対しては、今回の一連の研究
における最大の成果は、まさに定理 10.1 を解析的設定で証明できたことである。という
のも、定理 10.1 を出発点として導かれるさまざまな結果は、代数的な設定においてすで
に多くの蓄積があり、それらはほとんどそのまま複素解析空間の場合にも翻訳可能だから
である。

11 代数的 vs. 解析的
これまで全体を通じて、代数的な場合と解析的な場合の類似性を強調してきたが、ここ
では両者の違いを際立たせる Serreの有名な例を紹介する。

例 11.1（Serre） C を楕円曲線とし、以下のような分裂しない短完全列

0→ OC → E → OC → 0

によって定義される階数 2のベクトル束 E を考える。
このとき、C× × C× は、射影ベクトル束 PC(E)のザリスキ開集合として実現可能であ
る。もう少し詳しく言うと、PC(E)のザリスキ開集合 U が存在して、複素解析空間とし
て U ≃ C× ×C× が成り立つ。もちろん、U は代数多様体としては C× ×C× と同型では
ない。
一方、C× × C× は明らかに P1 × P1 のザリスキ開集合でもある。
すなわち、

PC(E) oo 解析的
? _C× × C× � �

代数的
// P1 × P1

という形で、C× × C× に対して二通りのコンパクト化を構成することができる。

複素解析空間が必ずしもコンパクト化できるとは限らないことは、よく知られてい
る事実である。また、f : X → Y を複素解析空間の間の射影射とし、X と Y がそれ
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ぞれコンパクト化可能であったとしても、f がそれらのコンパクト化の間で双有理型
(bimeromorphic)写像を与えるとは限らない。上の Serreの例は、まさにそのような現象
が起こり得ることを示している。

12 アバンダンス予想について
極小モデル理論において最も困難な未解決問題と考えられているのが、アバンダンス予
想である。この予想は複数の形で述べられるが、ここでは以下のように定式化する。

予想 12.1（アバンダンス予想） (X,∆) を射影的な対数的標準対とする。KX +∆ が数
値的に非負であるとき、KX +∆ は半豊富である。

この予想に関して、以下のような定理が証明できた：

定理 12.2（複素解析空間の間の射影射に対するアバンダンス定理、[F9, Theorem 1.10]）
予想 12.1 が n 次元で成立すると仮定する。π : X → Y は複素解析空間の間の射影射と
し、W は Y のコンパクト部分集合で、(X,∆) が対数的標準対であるとする。このとき、
KX +∆ が Y 上で数値的に非負かつ dimX ≤ n であれば、KX +∆ は W の適当な近
傍上で π-半豊富である。

定理 12.2は [F9]において証明されたが、その証明は決して容易ではない。

注意 12.3 厳密に言えば、定理 12.2において ∆が R-因子の場合には若干の修正が必要
である。詳しくは [F9, Corollary 1.11]を参照されたい。しかしながら、いずれにしても、
射影的な多様体に対するアバンダンス予想（予想 12.1）が成立すれば、複素解析空間の間
の射影射に対してもアバンダンス予想が成り立つことがわかる。

この定理のおかげで、アバンダンス予想に関しては、射影的な（元々の）設定における
予想さえ解決すれば十分であることが明確になった。この意味において、複素解析空間の
間の射影射に対するアバンダンス予想は解決したと言ってもいいであろう。

13 文献についての備忘録
ここでは複素解析空間の間の射影射に対する極小モデル理論関連の文献について述べて
おく。
この方面を最初に系統立てて研究したのは中山による [N1] である。1980 年代の仕事
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で、極小モデル理論のかなり初期段階の仕事であった。もちろん、扱っている対象は川又
対数的末端対のみであった。3次元極小モデル理論の研究で必要に応じて複素解析的設定
の極小モデル理論を扱うことは他の人の論文内でもあったと思うが、一般次元で一般論を
本格的に論じたものは [N1]だけであったと思う。中山は著書 [N2]で [N1]の不備を修正
している。定理 9.7は [N2]が初出である。
その後は複素解析空間の間の射影射に対する極小モデル理論関連の仕事はまったく
存在しなかった。ここ数年の一連の仕事の始まりは [F2] である。すでに述べたように、
[F2]では [BCHM]をほぼ忠実に複素解析空間の間の射影射に対して一般化した。その後、
[DHP] では少し異なる方法で [F2] の主要な結果を再現している。また、[LM] は [DHP]

と似た方法で、複素解析空間以外にも適用可能なさらなる一般化を与えている。
いずれにせよ、ここまで述べた仕事は主に川又対数的末端対に対するものであり、特異
点解消定理と小平の消滅定理が解析的設定で成り立つことを考えれば、とくに驚くことで
はない。中山の [N1]、[N2]と [F2]の主たる貢献は、極小モデル理論を論じる正しい設定
を見つけ、定式化した点であると思う。
次に、[F4]で複素解析空間の間の射影射に対して強力な消滅定理（定理 10.1）を確立し
た。これは個人的には長年未解決の問題で、[F2]の仕事を完成させた後も、定理 10.1は
私が現役の間には証明できないかもしれないと思っていた主張であった。いずれにせよ、
[F4]が完成してしまえばあとは一気に研究が進むのは自明であった。
[F5] では対数的標準対に対して極小モデル理論の基礎である錐体定理や収縮定理を証
明した。消滅定理の応用である。[F6]では半対数的標準対 (semi-log canonical pairs)な
ども扱えるように複素解析空間にも擬対数的構造 (quasi-log structure) を導入して基本
的な道具を全部揃えた。
榎園と橋詰は [EH1]で複素解析空間の間の射影射に対して (弱)半安定退化定理を確立
し、それを用いて [EH2] で対数的標準対に対しても解析的な極小モデル理論を論じた。
[F9] では上記結果も援用し、アバンダンス予想を論じた。特に対数的標準フリップ (log

canonical flip) が複素解析的設定でも存在することを示した ([F9, Theorem 1.7])。フ
リップの存在問題は最初の非自明で重要な場合が森によって証明されたが、ここにきて通
常考えられるフリップの一番一般的な存在定理が確立したことになる。[F9]や [EH3]で、
極小モデル関連のほぼすべての予想はオリジナルの代数的な設定の予想に帰着できること
が確認され、ある意味、複素解析空間の間の射影射に対する極小モデル理論は完成したと
言って良いだろう。
橋詰は [H]でさらに特異点の悪い場合の極小モデル理論も扱っている。いずれにせよ、
ここ数年の一連の仕事で、複素解析空間の射影射に対しても代数多様体の場合とほぼ同じ
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ように極小モデル理論は使える、となり、一段落ついたと思う。
複素解析的な設定での対数的標準閥値 (log canonical threshold) の ACC については

[F3]と [F9, Theorem 6.2]、複素解析的な設定での対数的標準性についての逆随伴は [F8]

と [F9, Theorem 6.3]で扱われている。

14 おまけ
今回の極小モデル理論の解析化に関する話の前半（論文 [F2]で扱った部分）は、[BCHM]

を読めば誰でもすぐに思いつくような話である。優秀な学生でちょうどいい問題を探して
いる人がいればやらせてみよう、と考えていたのだが、そんな機会がないまま気づけば 10

年以上が経ってしまっていた。
コロナ禍の 2021 年 9 月、「極小モデル理論についての問題」というタイトルで講演を
行った（講演記録は [藤 3] を参照）。この講演では、極小モデル理論の解析化についても
話したのだが、その後、数理研の講究録（[藤 3]）を書く段になって、「変なこと言ってな
かったかな？」「当たり前のことばかりじゃなかったかな？」と少し気になり始めた。そ
こで改めて考えてみたところ、気づけば [F2] ができあがっていた、というのが今回の研
究の裏話である。
当時はコロナ禍で外出も少なく、時間に余裕があり、周囲の雑音に惑わされることもな
かったので、集中して仕事ができた。その結果、10年以上手つかずだった消滅定理の複素
解析化も [F4] であっさり証明できてしまった。
こうなると、あとは代数的な結果を複素解析的な設定にどんどん翻訳していくだけの話
であった。

15 よくある質問への答え
ここでは、よくある質問への答えを記しておく。代数多様体の場合には問題とならな
かったが、複素解析空間の間の射影射を扱う際に現れる現象である。

Y を非特異射影曲面、P ∈ Y とする。

π : X
β−→ Z

α−→ Y

を次のように構成する。α : Z → Y は Y の点 P におけるブローアップ、β : X → Z は
Q ∈ Z \ Exc(α) におけるブローアップとする。β による例外曲線を F ⊂ X、α による
例外曲線の厳密変換（strict transform）を E ⊂ X とする。
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このとき、W := P とおいて錐体定理を考えると、

NE(X/Y ;P ) = R≥0[E]

となることは明らかであろう。ここで、Y 上の豊富なカルティエ因子 H を一つ選び、
L = OX(π∗H + F ) とおく。
このとき、L · E = 0 より、L は明らかに P 上で π-数値的非負である。また、

KX = π∗KY + E + F

より、−KX は P 上で π-豊富である。
さらに、L−KX は P 上で π-豊富となるので、複素解析空間の間の射影射に対する固
定点自由化定理（basepoint free theorem）を用いれば、L は P のある開近傍上で π-半
豊富であることが示せる。
しかしながら、L · F = −1 であるため、L はそもそも Y 上では π-数値的非負ではな
い。したがって、当然ながら L は Y 上で π-半豊富にはなりえない。
L は NE(X/Y ;P ) = R≥0[E] における KX -負な端射線の支持関数を与え、また、L は
この端射線に含まれる曲線を潰す収縮写像を与えるが、この収縮写像は Y 上ではなく、
Y \ α(Q) 上でのみ存在する。
複素解析空間の間の射影射に対する極小モデルプログラムにおいて、各ステップが W

の適当な近傍に制限しないと存在しないというのは、このような現象によるものである。
もちろん、ここで取り上げた例は極めて単純であり、Y 上で目的の E のみを潰す射の
存在は明らかであるが、NE(X/Y ;W ) の端射線から一般論により収縮射を構成すると、
W の近傍上でしかその存在を言えないことになる。
通常の錐体定理を考えると、

NE(X/Y ) = R≥0[E] + R≥0[F ]

となり、このとき Lは R≥0[E]の支持関数にはならない。たとえば、L′ := OX(π∗H−F )
は R≥0[E] の支持関数となることが分かり、通常の代数多様体の場合の収縮定理を用いれ
ば、L′ は Y 上で E のみを潰す収縮写像を与える。
一方、複素解析空間の間の射影射に対する極小モデルプログラムでは、W に潰れる曲
線のみを扱うため、上記のような差異が生じるのである。

折角なので、もう一つ別の例も扱ってみる。今度は Y := P3 とし、点 P ∈ L ⊂ P3 を
取る。ただし、L は P3 上の直線とする。π : X → Y を L に沿ったブローアップとする。
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このとき W = P として錐体定理を考えると、

NE(X/Y ;P ) = R≥0[ℓ]

となることは明らかであろう。ここで、ℓ := π−1(P ) ≃ P1 である。
π の例外因子を E とすると、

KX = π∗KY + E

と書けるので、−KX が π-豊富であることがわかる。
このとき、複素解析空間の間の射影射に対する収縮定理を用いることで、P の開近傍

U が存在し、Y を U に縮めた上で、ℓ を点に潰す収縮射 φ が存在することがわかる。
さらに、π : E → L に剛性補題（rigidity lemma）を適用すると、Q ∈ L∩U の任意の
ファイバー π−1(Q) ≃ P1 は収縮射 φ により点に潰されることがわかる。
この例からわかるように、複素解析空間の間の射影射に対する極小モデルプログラムで
は、W = P に潰れる曲線だけを用いて錐体定理および収縮定理が構成されている。しか
し、極小モデルプログラムの各ステップにおいては、W からはみ出す曲線が潰されるこ
ともある。
つまり、NE(X/Y ;P ) は P に潰れる曲線のみを考慮しているが、実際にプログラムを
走らせると、P のファイバー内だけでフリップや因子収縮が生じるとは限らない。この点
には注意が必要である。
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斜交的 p-進GALOIS表現に対する p-PARITY予想：岩澤理論的なアプローチ

中村　健太郎

1. p-parity予想とは
F を代数体, Eを F 上の楕円曲線とする. EのMordell-Weil群E(F )の階数を ralg(E),

E の L-関数 L(E/F, s)の (解析接続を仮定した上で)s = 1での零点の位数を ran(E)と表
す. Eに対する p-parity予想とは, Birch and Swinnerton-Dyer予想 (BSD予想)の等式

ralg(E) = ran(E)

の法 2版, つまり, 合同式
(1.1) ralg(E) ≡ ran(E) mod 2

に関する予想である. L(E, s)に適切な Gamma因子をかけて得られる Λ(E/F, s)は関数
等式

Λ(E/F, s) = w(E/F )Λ(E/F, 2− s)

(w(E/F ) ∈ {±1})を満たすと予想されているが, これを認めると上の合同式は次の等式と
同値になる.

予想 1.1. (parity予想 )

(1.2) (−1)ralg(E) = w(E/F )

「parity 予想+ L(E, s)の良い解析的性質」⇒弱 BSD mod 2

ここで, w(E/F )はルートナンバーと呼ばれ, F の各素点 vでの完備化 Fv への E の底
変換EFv = E ×Spec(F ) Spec(Fv)に対して定義される局所ルートナンバー

w(EFv/Fv) ∈ {±1}

の積
w(E/F ) =

∏
v

w(EFv/Fv)

として定義される. w(EFv/Fv)は, vが無限素点の場合は−1, vが有限素点で EFv が良還
元をもつ場合は 1である. EFv が悪い還元を持つ場合もほとんどの場合 (特に p ≥ 5の場
合は全ての場合)に値が知られている (Rohlich[19], Kobayashi[11]).
これらの事実, 特に,
• L(E, s)に関する予想を仮定しないでも w(E/F )は定義できる
• w(E/F )は各素点での局所成分に分解できる
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2 中村　健太郎

という 2つの事実によって, parity予想は弱BSD予想よりも調べやすい予想となるが, さら
に左辺 ralg(E)も素点への分解に適したより扱い易い対象に置き換えることで本稿のテー
マである次の p-parity予想に到達する.
E/F の p∞-Selmer 群と Tate-Shafarevich 群をそれぞれ Selp∞(E/F ), X(E/F ) と表

す. これらの群の定義は解説しない (Selp∞(E/F ) についてはこれと非常に近い対象で
ある Bloch-加藤 Selmer群の定義を後で解説する)が, E(F )とこれらの群の間には次の完
全列

0→ E(F )⊗Z Qp/Zp → Selp∞(E/F )→X(E/F )[p∞]→ 0

があることが知られており, これによって等式
ralg(E) = corankZp(Selp∞(E/F )) + corankZp(X(E/F )[p∞])

(corankZp(−) := rankZp(Qp/Zp,−)) があるため, X(E/F )が (よってX(E/F )[p∞]も)
有限群であるという基本的な予想の下では parity予想は次の予想と同値になる.

予想 1.2. (p-parity予想 )

(1.3) (−1)corankZp (Selp∞ (E/F )) = w(E/F )

「p-parity 予想+X(E/F )[p∞]の有限性」⇒ parity予想
詳しくは後で説明するが, Selp∞(E/F )は, E の p進 Tate加群 TpE := lim←−nE(F )[pn]

として得られる GF の p-進 Galois表現を用いて定義され, 特に F の各素点 vでの分解群
GFv ⊂ GF への制限 TpE|GFv の局所的な性質が反映した群となる. corankZp(Selp∞(E/F ))
はVpE = TpE⊗ZpQpの情報から定まり,また, EFvから定義されたw(EFv/Fv)もVpE|GFv
から定義されることが知られている. 以上のことから, p-parity予想では等式の両辺が

• p進Galois表現 VpEという線形代数的な対象から得られる
• 各素点での情報に分解し易い

という性質を持つことになり, これらの事実によって p-parity予想は parity予想よりも遥
に扱い易い予想となる.
本稿では, より一般の p進Galois表現に対する p-parity予想について, まずは予想の定

式化を解説し, ついで予想の両辺を素点ごとの情報の積に分解するための代表的な研究手
法を一つ（相対的 p-parity予想を)解説する. 予想の右辺 w(E/F )は定義からそもそも素
点ごとに定義される w(Ev/Fv)の積であるので, ここでの問題は Selp∞(E/F )をいかにし
て素点ごとの情報に分解するかが本質的な問題となる.
以下, 本稿では簡単のため代数体 F はQの場合のみ考え, 合わせて (分解群として考え

る)局所体もQℓのみを考えることにする.

1.1. 斜交的 p進Galois表現. K = Q,Qℓとする. Rを位相的な可換 Zp-代数とする. GK
が連続R-線形に作用する有限自由R-加群 T をGK のR-表現と呼ぶことにする. GK の階
数 1の Zp-表現 lim←−n µpn(K) (µpn(K) = {x ∈ K | xpn = 1})を Zp(1)と表し, 整数 rに対
して Zp(r) = Zp(1)

⊗r (r ≥ 0), HomZp(Zp(−r),Zp) (r ≤ 0)と表す. GK のR-表現 T に対
して T (r) = T ⊗Zp Zp(r)と表す.
楕円曲線Eに対する p-parity予想をより一般の p進Galois表現に対して拡張したい. 楕

円曲線の parity予想の背景には, Eのゼータ関数が
Λ(E, s) = w(E/F )Λ(E, 2− s)
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という関数等式を持つという事実 (予想)が存在していたが, この事実のGalois表現論的な
背景には, VpEがWeilペアリングから定まる斜交的完全ペアリング

VpE × VpE → Qp(1)

を持つことがある. p-parity予想はこのようなペアリングを持つ幾何的な大域 p進Galois
表現に対して定式化される.

定義 1.3. GK のR-表現 T がR-双線形かつGK-同変な斜交的完全ペアリング
〈−,−〉 : T × T → R(1)

を持つとき, つまり, 等式
〈x, y〉 = −〈y, x〉 (x, y ∈ T )

を満たし, 〈−,−〉から誘導される写像
T → T ∗(1) := HomR(T,R(1)) : x 7→ [y 7→ 〈x, y〉]

が同型となるとき, T (正確には組 (T, 〈−,−〉))は斜交的自己双対性を持つ (symplectic self-
dual), または単に斜交的である, と言うことにする.

K 上の楕円曲線 E に対して, VpE はWeilペアリングによって GK の斜交的な 2次元
Qp-表現になる. より一般にK 上の奇数次元 d = 2m− 1の proper smooth な代数多様体
Xに対して, それのKへの底変換XK の中間次元エタールコホモロジーHdét(XK ,Qp(m))
は Poincaré双対ペアリング
Hdét(XK ,Qp(m))×Hdét(XK ,Qp(m))→ H2d

ét (XK ,Qp(2m)) = H2d
ét (XK ,Qp(d+1))

∼→ Qp(1)

によってGK の斜交的Qp-表現となる. 重さが偶数 k = 2k′ ∈ Z≥2, レベルN の Hecke固
有新形式 f ∈ Snew

2k (Γ0(N))に対して, f に付随するGQの 2次元 p-進表現 Vf (k
′)は, Vf を

実現するモジュラー曲線のエタールコホモロジーの Poincaré双対ペアリングから誘導さ
れるペアリングによって斜交的となる. GK の階数 2のR-表現 T に対して, T が斜交的で
あることは , T の行列式指標 detR(T ) : GK → R×が p進円分指標に一致することと同値
になる. より一般に, GK の斜交的 R-表現は必ず階数は偶数 2dであり, GK の階数 2dの
R-表現が (あるペアリングによって)斜交的であるためには T の基底を選ぶことで表現行
列がGSp2n(R)に値を持ち, かつ similitude characterが p進円分指標となることと同値に
なる.

1.2. p-parity予想の定式化. ここでは楕円曲線に対して説明した p-parity予想を GQ の
斜交的 p-進表現に対して拡張したい. p-parityは p∞-Selmer群とルートナンバーに関する
等式であったが, このような Selmer群的なものと L-関数的なものを定義するためには, p-
進表現が幾何的という条件を満たす必要がある. そこでまずはこれらと関連する事柄の定
義を復習したい.
LをQpの有限次拡大体とする.
V をGQの L-表現とする. V が幾何的であるとは, V |GQℓ

は有限個の素数 `を除いて不
分岐であり, かつ V |GQp

が de Rham表現であることとする. 次に説明するように, 幾何的
な表現からは各素点での V |GQℓ

の情報を用いて (適切な性質を持つ)Selmer群や L-関数が
定義される.
`を素数とし, V をGQℓ

の L-表現とする. ` = pの場合は V は de Rhamであると仮定
する. このような V に対しては, Selmer群や L-関数の局所因子となる対象を定義するこ
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とができる. ます, V のGalois コホモロジー群H1(Qℓ, V )の部分空間H1
f (Qℓ, V )を

H1
f (Qℓ, V ) :=

{
Ker(H1(Qℓ, V )→ H1(Iℓ, V )) (` 6= p)

Ker(H1(Qp, V )→ H1(Qp,Bcrys ⊗Qp V )) (` = p)

で定める (IℓはGQℓ
の分岐群). 重要な事実として, Tate ペアリング

H1(Qℓ, V )×H1(Qℓ, V
∗(1))→ L

によって部分空間H1
f (Qℓ, V )とH1

f (Qℓ, V
∗(1))は直交補空間の関係

H1
f (Qℓ, V ) = H1

f (Qℓ, V
∗(1))⊥

になることが知られている (Bloch-加藤双対). また, V に対して, Qℓ のWeil-Deligne群
の表現WD(V )というより代数的な表現が得られ, 局所因子の理論 (Deligne[6])によって
WD(V )からは局所L-因子,局所 ε-因子というL関数の `における局所因子となる複素関数

Lℓ(WD(V ), s), εℓ(WD(V ), s)

を定義することができる. 定義は解説しないが, これらは一般には様々な選択 (例えばCp

とCの同一視の取り方や非自明指標 ψ : Qℓ → C×の取り方)に依存することを注意した
い. ` = pの場合にはさらに, V に対応する de RhamコホモロジーのHodgeフィルトレイ
ションからHodge-Tate重みという V の階数 d個の (重複を許す)整数の組 {k1, k2, · · · , kd}
が定まる.
ここで, GQℓ の L-表現 V (` = pの場合は de Rhamを仮定)が斜交的であると仮定する.

このとき, WD(V )の局所 ε-定数
εℓ(V ) := εℓ(WD(V ), 0) ∈ C×

(局所 ε-因子の s = 0での値)は様々な選択に依存せず, かつ
εℓ(V ) ∈ {±1}

となることが知られている. H1
f (Qℓ, V )に関しては, (V 上に与えられた斜交的ペアリング

によって)同型 V
∼→ V ∗(1)があるから, TateペアリングはH1(Qℓ, V )の完全ペアリング

H1(Qℓ, V )×H1(Qℓ, V )→ L

を誘導し, Bloch-加藤双対によって H1
f (Qℓ, V )はこのペアリングに関して Lagrangian, つ

まり,
H1
f (Qℓ, V ) = H1

f (Qℓ, V )⊥

を満たすものとなる. また, V のペアリングの斜交性とTateペアリングの斜交性から上記
のペアリングは対称ペアリングになる. 最後に ` = pの場合の Hodge-Tate重みに関して
は, Qp(1)の Hodge-Tate重みは 1となることと, V の Hodge-Tate重みが {k1, · · · , kd}の
とき V ∗の Hodge-Tate重みが {−k1, · · · ,−kd}となることから, 斜交的な 2d次元の V に
対しては

{k1 ≥ k2 ≥ · · · ≥ kd ≥ 1− kd ≥ · · · ≥ 1− k2 ≥ 1− k1}

(ki ≥ 1)と書けることがわかる.
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次に, V はGQの幾何的かつ斜交的L-表現であると仮定する. このとき,まずV のBlcoh-
加藤 Selmet群H1

f (Q, V )を

H1
f (Q, V ) := Ker

(
H1(Q, V )→

∏
ℓ

H1(Qℓ, V )/H1
f (Qℓ, V )

)

で定める. これは有限次元であることが知られており (この事実については斜交的という
仮定は不要である),

χf (V ) := dimLH
1
f (Q, V )− dimLH

0(Q, V )

と定める. 各素数 `に対して εℓ(V ) := εℓ(V |GQℓ
)と表す. さらに, V |GQp

のHodge-Tate重
みを {k1 ≥ k2 ≥ · · · ≥ kd ≥ 1− kd ≥ · · · ≥ 1− k2 ≥ 1− k1}としたとき,

ε∞(V ) =
d∏
i=1

(−1)ki−1 ∈ {±1}

と定め, さらに
ε(V ) := ε∞(V ) ·

∏
ℓ

εℓ(V ) ∈ {±1}

と定める. V |GQℓ
が不分岐なとき εℓ(V ) = 1であり, V は幾何的と仮定しているので上の

無限積は意味を持つことに注意. 後で使う記号として
ε̂p(V ) = ε∞(V )εp(V )

と定める.

注意 1.4. EをQ上の楕円曲線とする. このとき, Qの全ての素点 vに対して,

εv(VpE) = wv(EQv/Qv)

が成り立つ. よって
ε(VpE) = w(E/Q)

も成り立つ. さらに, dimQpH
0(Q, VpE) = 0,

dimQpH
1
f (Q, VpE) = corankZp(Selp∞(E/Q))

が成り立つので
χf (VpE) = corankZp(Selp∞(E/Q))

が成り立つ.

予想 1.5. (p-parity予想 ) V をGQの幾何的かつ斜交的な L-表現とする. このとき

(−1)χf (V ) = ε(V )

が成り立つ.
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2. 相対的 p-parity予想
多くの (大域体的な)整数論の問題と同様に, p-parity予想においても問題を素点毎の問

題に分解して考えることは重要である. p-parity予想
(−1)χf (V ) = ε(V )

の右辺は
ε(V ) = ε∞(V ) ·

∏
ℓ

εℓ(V )

と局所成分の積に分解していたので, 問題は左辺
(−1)χf (V )

の局所成分への分解となる. (−1)χf (V )を単独で局所成分に分解することは難しく, 適切な
他のものと比較することで分解する, というのが p-parity予想におけるスタンダードな研
究手法である. 本稿ではその中でも代表的な手法の一つである, p-進表現 V1, V2に対する
p-parity予想を比較する相対的 p-parity予想について解説する. これは, 二つの斜交的 p-進
Galois表現 V1, V2に対して, 両者の予想の同値性, つまり, V1(または V2)に対して p-parity
予想が成り立っていれば V2(または V1)に対しても成り立つ, ことを主張する予想である.
一般の V1, V2に対してこの予想を考えることは, p-parity予想自体を考えること大差がな
くなってしまうので, 適切な関係性を持つ V1, V2に対してこの予想を考えることが重要に
なる. 本稿では, 法 pで合同な V1, V2についての相対的 p-parity予想 (のみ)を考える.

2.1. 相対的 p-parity予想. GK の斜交的OL-表現 T1, T2に対して, 斜交的ペアリングと両
立する F[GK ]-加群の同型

T 1 := T1 ⊗OL F
∼→ T 2

が存在するとき, T1とT2は法 pで合同である,と呼ぶことにする. このようなとき, T := T 1

と表し, 同型によってこれを T 2とも同一視することにする.

予想 2.1. (相対的 p-parity予想 ) T1, T2を法 pで合同なGQの斜交的 L-表現とし, V1 :=
T1 ⊗OL L, V2は幾何的であるとする. このとき

(−1)χf (V1)−χf (V2) = ε(V1)

ε(V2)

が成り立つ.

注意 2.2. p-parity予想と相対的 p-parity予想には多くの先行研究があるが, ここでは我々
の研究と関連する代表的なものを挙げるにとどめたい. まず, Q上の楕円曲線に対する
p-parity予想は全ての場合にDokchitser兄弟 [7]によって証明されている. Coates-Fukaya-
Kato-Sujathaは代数体上の g次元アーベル多様体Aで, pの上の素点で (アーベル拡大上)
準安定還元を持ち,かつA[p]が位数 pgのF 上の部分群を持つ場合にVpAに対する p-parity
予想を示している. Aが (一般の代数体上の)楕円曲線の場合は Česnavičius[4]によって p
の上の素点で (アーベル拡大上)準安定還元を持つという仮定は不要になった. Nekovar[14]
は p-ordinary族 (例えば肥田族)の同じ既約成分に含まれる V1, V2に対する（必ずしも法
pで合同とは限らない場合の)相対的 p-parity予想を証明している. ここでは, V1, V2 は
p-ordinary族に含まれるので V1|GQp

, V2|GQp
ともに ordinaryという強い条件が必要であ

り, かつ, 族の同じ既約成分に入るかどうかは一般には判定するのが難しい問題である.
Pottharst-Xiao[20]はNekovarの結果を p-trianguline族 (例えばColeman族)に一般化し,
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その族の同じ既約成分に含まれる V1, V2に対する相対的 p-parity予想を証明している. こ
の族に含まれる V1, V2 は p-triangulineなので V1|GQp

, V2|GQp
ともに (アーベル拡大した

ら)semi-stableという条件が必要であり, かつ, 族の同じ既約成分に入るかどうかは一般に
は判定するのはさらに難しい問題である. 同じ既約成分に入るかについては Johannson-
Newtonの結果 [9]がある. 次で詳しく説明するが, Nekovar 法 pで合同な場合の上記の相
対的 p-parity予想についても多くの研究を行っている ([15], [16], [17], [18]).

幾何的な斜交的 L-表現 V に対して, 定義より
ε(V ) = ε∞(V ) ·

∏
ℓ

εℓ(V )

だったので予想 2.1の右辺は局所成分の積
ε(V1)

ε(V2)
=
ε∞(V1)

ε∞(V2)
·
∏
ℓ

εℓ(V1)

εℓ(V2)

に分解している. 法 pで合同な T1, T2の場合, これに対応するような左辺 (−1)χf (V1)−χf (V2)
の局所成分への分解がMazur-Rubin[12]によって与えられた.

2.2. Mazur-Rubin 定数. T を GQℓ
の OL-表現とし, T をその剰余表現とする. V =

T ⊗OL Lとおく, ` = pの場合は V は de Rhamであるとする. このとき, H1(Qℓ, T )およ
びH1(Qℓ, T )の部分OL-加群を

H1
f (Qℓ, T ) = Ker(H1(Qℓ, T )→ H1(Qℓ, V )/H1

f (Qℓ, V )),

H1
f (Qℓ, T ) := Image(H1

f (Qℓ, T )→ H1(Qℓ, T )→ H1(Qℓ, T ))

で定める. H1
f (Qℓ, V )の Bloch-加藤双対性からの簡単な帰結として, Tate ペアリング

H1(Qℓ, T )×H1(Qℓ, T
∗
(1))→ F

に対して (Fは体係数なので V の場合と同様にこれは完全ペアリングになる),

H1
f (Qℓ, T ) =

(
H1
f (Qℓ, T ∗(1)

)⊥
が成り立つことがわかる.
T1 と T2 は法 pで合同な GQℓ

の OL-表現であるとする. ` = pの時は V1 = T1 ⊗OL L,
V2 = T2 ⊗OL L はともに de Rhamであると仮定する. 上に述べたことからH1

f (Qℓ, T1)と
H1
f (Qℓ, T2) はともにH1(Qℓ, T )の Lagrangianとなっている (T := T 1

∼→ T 2). これらを用
いて

δℓ(T1, T2) ∈ Z/2Z

を次で定義する.

定義 2.3. (Mazur-Rubin定数 [12])

δℓ(T1, T2) := dimF

(
H1
f (Qℓ, T1)/H

1
f (Qℓ, T1) ∩H1

f (Qℓ, T2)
)

mod 2
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対称二次加群の Lagrangianの性質から, δℓ(T1, T2)は
δℓ(T1, T2) = δℓ(T2, T1),

δℓ(T1, T3) = δℓ(T1, T2) + δℓ(T2, T3)

などの良い性質を持つ. また, ` 6= pかつ T1, T2がともに不分岐であるときは
H1
f (Qℓ, T1) = H1

f (Qℓ, T2) = Ker(H1(Qℓ, T )→ H1(Iℓ, T ))

となり, δℓ(T1, T2) = 0が成り立つ.
T1, T2を法 pで合同なGQの斜交的OL-表現とし, V1, V2は幾何的であると仮定する. こ

のとき, 各素数 `に対して
δℓ(T1, T2) = δℓ(T1|GQℓ

, T2|GQℓ
)

と表す.
Mazur-Rubin定数によって χf (V1)と χf (V2)のずれが次のように局所成分の和として

書くことができる.

定理 2.4. (Mazur-Rubin[12])

(−1)χf (V1)−χf (V2) = (−1)Σℓδℓ(T1,T2)

この定理により, 合同な T1, T2に対する相対的 p-parity予想は等式

(−1)Σℓδℓ(T1,T2) = ε∞(V1)

ε∞(V2)
·
∏
ℓ

εℓ(V1)

εℓ(V2)

となる. よって, 相対的 p-parity予想は次の局所相対的 p-parity予想に帰着される.

予想 2.5. (局所相対的 p-parity予想, Nekovar[17], [18], [BKNO][2]) T1, T2を法 pで合同
な GQℓ

の OL-表現とする. ` = pのときは, V1, V2 は de Rhamであると仮定する. この
とき,

(−1)δℓ(T1,T2) =

{
εℓ(V1)
εℓ(V2)

(` 6= p)
ε̂p(V1)
ε̂p(V2)

(` = p)

注意 2.6. ` = pのときは, Nekovar[18]では, V1, V2 の Hodge-Tate 重みが (重複を除い
て){0, 1}となる場合が扱われており (このとき ε∞(V1) = ε∞(V2) = 1となるので, 上の予
想の右辺は εp(V1)

εp(V2)
となる), 上記の ε̂p(−)による予想は明示的には書かれていなかった. 予

想を明示的に述べたのは (おそらく)[BKNO][2]が初めてで, この論文では実際に階数 2の
場合に予想を証明している (後述).

` 6= pの場合は, この予想はすでに証明されている.

定理 2.7. (Nekovar[17]) ` 6= pのとき, 局所相対的 p-parity予想は正しい.

以上により, 相対的 p-parity予想は ` = pにおける局所相対的 p-parity予想に帰着され
る. Nekovarは次の特別な場合, 特に ε∞(V1) = ε∞(V2) = 1の場合に相対的 p-parity予想
を示した.

定理 2.8. (Nekovar[18]) ` = pとする. V1, V2のHodge-Tate重みは (重複を除いて ){0, 1}
かつ V1|GQp(ζp)

, V2|GQp(ζp)
がクリスタリンのとき, T1, T2に対する相対的 p-parity予想は正

しい.
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注意 2.9. 実際には [18]ではより一般に, 任意の p-進体K に対して, 上記の仮定に相当す
るGK の表現に対する相対的 p-parity予想を証明している.

3. [BKNO]の結果
以下, p-進 Galois表現の係数環 Rは, 完備 Noether 局所 (可換)Zp-代数で, 剰余体 F =

R/mRが有限体となるもの (mRは Rの極大イデアル)か, Qpの有限次拡大体かのいずれ
かとする. 例えば, Qpの有限次拡大体 Lに対して, その整数環OLやその剰余体Fはその
ような環の例である. これらを係数に持つ表現はGK の L-表現 V があれば, GK-作用で閉
じている OL-格子 T ⊂ V や剰余表現 T = T/πLT として現れるが, ここでより重要なの
は, OL-係数の形式的冪級数環OL[[X1, · · · , Xd]]やその商などの L, OLなどと比べて大き
な環である.
GQp の斜交的R-表現 T に対して T = T ⊗R Fと表す. H0(Qp, T ) = 0となるとき T は

genericであると呼ぶ. このとき, (T の階数を 2dとすると)H0(Qp, T ) = H2(Qp, T ) = 0と
なり, H1(Qp, T )は階数 2dの自由R-加群となり, 任意の環準同型R→ R′に対して底変換
の写像の同型

H1(Qp, T )⊗R R′ ∼→ H1(Qp, T ⊗R R′)

が成り立つ (以下, この同型によって両者を同一視する). また, Tateペアリングと斜交的
ペアリングの同型 T

∼→ T ∗(1)によって誘導される対称完全ペアリング
H1(Qp, T )×H1(Qp, T )→ R

がある.

3.1. 階数 2の場合: H1(Qp, T )の符号分解.

定理 3.1. ([BKNO][2])任意のR, およびGQp の階数 2の genericな斜交的R-表現 T に対
して次を満たす分解が一意的に存在する：

H1(Qp, T ) = H1
+(Qp, T )⊕H1

−(Qp, T )

(1) H1
±(Qp, T )は Lagrangian, つまり, H1

±(Qp, T ) = (H1
±(Qp, T ))

⊥.
(2) H1

±(Qp, T )は任意の底変換と可換, つまり, 任意のR→ R′に対して
H1

±(Qp, T )⊗R R′ = H1
±(Qp, T ⊗R R′)

(3) R = L, T = V が de Rhamであるとき,

H1
f (Qp, V ) = H1

−ε̂p(V )(Qp, V )

(ここで, H1
±1(Qp, V ) := H1

±(Qp, V )とおいた )

系 3.2. T1, T2を法 pで合同な階数 2の genericな斜交的OL-表現とし, V1, V2は de Rham
と仮定する. このとき

(−1)δp(T1,T2) = ε̂p(V1)

ε̂p(V2)

Proof. ε̂p(V1)
ε̂p(V2)

= 1の場合に系を証明する (他の場合も同様). そこで, ε := ε̂p(V1) = ε̂p(V2)

と仮定する. このとき, (3)を V1, V2に対して考えることで
H1
f (Qp, Vi) = H1

−ε(Qp, Vi) (i = 1, 2)
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が成り立つ. これと, H1
f (Qp, Ti)の定義, および (2)のOL ↪→ Lの場合から

H1
f (Qp, Ti) = H1

−ε(Qp, Ti)

も成り立つ. これと, H1
f (Qp, Ti)の定義, および (2)のOL → Fの場合から

H1
f (Qp, Ti) = H1

−ε(Qp, T )

が成り立つ (T = T 1
∼→ T 2). よって,

H1
f (Qp, T1) = H1

f (Qp, T2)

となるので
δp(T1, T2) = 0

となり, 等式
(−1)δp(T1,T2) = (−1)0 = 1 =

ε̂p(V1)

ε̂p(V2)

を得る.
□

3.2. 高次元の場合への拡張：pfaffianを用いた定式化. M を階数 2dの自由 R-加群とし,
対称完全R-双線形ペアリング

〈−,−〉 :M ×M → R

が与えられているとする. N ⊂ M をこのペアリングによる Lagrangian, つまり, N およ
びM/N は自由R-加群でN = N⊥を満たすとする. このとき, 同型 (M/N)

∼→ N∗ : x̄→
[y 7→ 〈x, y〉]が誘導されるが, 次の同型の合成
detRM

∼→ detRN ⊗R detR(M/N)
∼→ detRN ⊗R detR(N

∗)
∼→ detRN ⊗R (detRN)∗

∼→ R

を
PfN : detRM

∼→ R

と表し, これをN の Pfaffianと呼ぶことにする.

補題 3.3. 同型M
∼→M∗ : x 7→ [y 7→ 〈x, y〉]によって誘導される同型

c : detRM
∼→ detR(M

∗)
∼→ (detRM)∗

に対して次の可換図式が成り立つ.

detRM

c
��

PfN // R

idR
��

(detRM)∗ R
(PfN )∗
oo

定義 3.4. 可換図式
detRM

c
��

Ψ // R

idR
��

(detRM)∗ R
(Ψ)∗
oo
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を満たす同型Ψ : detRM
∼→ Rを weak pfaffianと呼ぶことにする.

補題 3.5. Ψ1,Ψ2 : detRM
∼→ Rを weak pfaffianとすると, Ψ1 ∈ {±Ψ2}となる.

注意 3.6. 通常, pfaffianは歪対称ペアリングの Lagrangianに対して定義され, その場合は
pfaffianは Lagrangianによらないペアリングの不変量となる. この定義を対称ペアリング
に適用したものが我々の pfaffianであるが, この場合は Lagrangianの選び方のズレとして
±1が現れる.

補題 3.7. Rを体とし, N1, N2をM の Lagrangianとする. このとき
δ(N1, N2) = dimR(N1/N1 ∩N2)

とおくと
PfN1 = (−1)δ(N1,N2)PfN2

が成り立つ.

このPfaffianを我々の設定に適用したい. T をGQp の斜交的OL-表現とし, V = T ⊗OL
L は de Rham であると仮定する. このとき, H1(Qp, V ) の Lagrangian H1

f (Qp, V ) と
H1(Qp, T )の Lagrangian H1

f (Qp, T )から Pfaffian

PfH1
f (Qp,V ) : detLH

1(Qp, V )
∼→ L,

Pf
H1
f (Qp,T )

: detFH
1(Qp, T )

∼→ F

がそれぞれ定まる. また,さらにTがgenericという仮定のもとでは, H1
f (Qp, T )はH1(Qp, T )

の Lagrangian であり
PfH1

f (Qp,T ) : detLH
1(Qp, T )

∼→ OL
も定まる. そして, Pfaffianの底変換との両立性から, 底変換による同型

H1(Qp, T )⊗OL L
∼→ H1(Qp, V )

と (genericのもとで成り立つ同型)

H1(Qp, T )⊗OL F
∼→ H1(Qp, T )

による同一視のもとでそれぞれ
PfH1

f (Qp,T ) ⊗ idL = PfH1
f (Qp,V )

および
PfH1

f (Qp,T ) ⊗ idF = Pf
H1
f (Qp,T )

が成り立つ.
T1, T2を法 pで合同なGQℓ

の斜交的OL-表現, T = T 1
∼→ T 2をその剰余表現, V1, V2は

de Rhamとする. H1(Qp, T )の Lagrangian H1
f (Qp, T1), H1

f (Qp, T2)に上の補題を適用す
ることで次が得られる (PfaffianによるMazur-Rubin定数の解釈).

系 3.8.
Pf

H1
f (Qp,T1)

= (−1)δp(T1,T2)Pf
H1
f (Qp,T2)

我々は定理 3.1の高次元版として次の予想を立てた.
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予想 3.9. ([BKNO][3])任意のR, およびGQp の genericな斜交的R-表現 T に対して次を
満たすR-線形同型

Pf(T ) : detRH
1(Qp, T )

∼→ R

が一意に存在する.
(1) Pf(T )は weak pfaffian.
(2) 任意の R → R′に対して, 底変換の同型 H1(Qp, T ) ⊗R R′ ∼→ H1(Qp, T ⊗R R′)に
よる両者の同一視の元で

Pf(T )⊗ idR′ = Pf(T ⊗R R′)

が成り立つ.
(3) R = L, T = V が de Rhamであるとき,

Pf(V ) = εp(V )PfH1
f (Qp,V )

が成り立つ.

注意 3.10. 階数 2の場合は, 予想 3.9は定理 3.1から直ちに従う. 実際, 階数 2の任意の T
に対して, H1(Qp, T )の Lagrangian H1

−(Qp, T )に対する Pfaffian

PfH1
−(Qp,T ) : detRH

1(Qp, T )
∼→ R

が予想の Pf(T )の性質を満たす. 定理の性質 (1), (2), (3)がそれぞれ予想の性質 (1), (2),
(3)を導く.

命題 3.11. 予想 3.9を仮定すると, ` = pにおける gerericな表現に対して局所相対的 p-
parity予想は正しい. つまり, T1, T2を法 pで合同な generic 斜交的 OL-表現とし, V1, V2
は de Rhamと仮定する. このとき

(−1)δp(T1,T2) = ε̂p(V1)

ε̂p(V2)

Proof. まず, (3)を V1, V2に対して考えることで
Pf(Vi) = ε̂p(Vi)PfH1

f (Qp,Vi)
(i = 1, 2)

が成り立つ. これと予想 (2)のOL ↪→ Lの場合から
Pf(Ti) = ε̂p(Vi)PfH1

f (Qp,Ti)
(i = 1, 2)

が得られ, さらに予想 (2)のOL → Fの場合から
Pf(T ) = Pf(T i) = ε̂p(Vi)PfH1

f (Qp,Ti)
(i = 1, 2)

が得られる. よって
ε̂p(V1)PfH1

f (Qp,T1)
= ε̂p(V2)PfH1

f (Qp,T2)

が得られ, これと等式
Pf

H1
f (Qp,T1)

= (−1)δp(T1,T2)Pf
H1
f (Qp,T2)

から
(−1)δp(T1,T2) = ε̂p(V1)

ε̂p(V2)
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が得られる.
□

予想 3.9に関しては現在次の定理の証明に取り組んでいる.

定理 3.12. ([BKNO][3] in progress) 任意のR, およびGQp の genericな斜交的R-表現 T
に対して次を満たすR-線形同型

Pf(T ) : detRH
1(Qp, T )

∼→ R

が一意に存在する.
(1) Pf(T )は weak pfaffian.
(2) 任意の R → R′に対して, 底変換の同型 H1(Qp, T ) ⊗R R′ ∼→ H1(Qp, T ⊗R R′)に
よる両者の同一視の元で

Pf(T )⊗ idR′ = Pf(T ⊗R R′)

が成り立つ.
(3) R = L, T = V が de Rhamかつ trianguline, つまり, Qpのある有限次元アーベル
拡大K があり V |GK が semi-stableとなるとき,

Pf(V ) = εp(V )PfH1
f (Qp,V )

が成り立つ.

注意 3.13. 本稿では簡単のため T が genericであると仮定した. H1(Qp, T )の代わりに
Galoisコホモロジー複体 C•(GQp , T )を考え, 導来圏レベルで pfaffianを定義することで
genericでない一般のGQp の斜交的R-表現に対して予想 3.9および定理 3.12 が得られる.
また, 今回は (genericを仮定したので)` = pの場合のみの予想 3.9を解説したが, ` 6= p
の場合も同様の予想が定式化および証明ができ, Nekovarの定理 2.8の別証明および一般
化が得られる. さらに, 大域 Galoisコホモロジー複体に対して (Poitou-Tate完全列によ
る)pfaffianを考えるとMazur-Rubinの定理 2.4の別証明および一般化が得られ, 相対的
p-parity予想のみでなく, p-parity予想自体も pfaffianを用いて定式化できるようになる.
さらに, 注意 2.2のほぼ全ての結果も pfaffianによる定式化によって統一的に扱うことがで
き, 既存の理論の簡易化, 一般化などができるようになる. 以上については全て [3]にまと
める予定である.
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有限群の表現論におけるブロックの森田同値および
導来同値について
㓛刀 直子 (東京理科大学)

1 はじめに
有限群の表現論は，標数が 0 または G の位数を割らない体上の表現である通常表現と，標数が

G の位数を割る体上の表現であるモジュラー表現に分けられる。通常表現では，Maschkeの定理
により群環 kG は半単純であり，さらに単純加群の同型類の個数は G の共役類の個数と一致する
ことが知られる。したがって，有限個である単純加群の同型類を記述することで，全体が把握でき
る。一方，モジュラー表現では，kG は半単純にならず，単純加群だけでなく，より複雑な構造を
もつ直既約加群を調べる必要がある。群環 kG の表現型は，多くの場合「wild 表現型」となること
が知られ，すべての直既約加群を調べることは困難であるため，加群圏やその導来圏の分類が重要
な課題となる。Brauerによる「与えられた群 G の素数 p に関する表現の情報は，その p-局所部分
群の表現の情報から得られるのではないか」という考えに基づき，モジュラー表現論ではMcKay

予想，Alperin 予想，Dade予想，Broué予想，Donovan予想など多くの予想が提唱され，それら
を中心に研究が発展してきた。
本稿では，加群の圏やその導来圏の分類に関する予想である，Broué予想，Donovan予想 (Puig

予想)に関する研究について述べる。

2 記号と基本用語
p を素数とし，G を有限群とする。また，k を標数 p をもつ代数的閉体とする。kG を

kG :=

∑
g∈G

λgg | λg ∈ k


で定まる G の群環とする。kG-加群は k 上有限次元であるとし，特に断らない限り右加群とする。
kG で自明な kG-加群を表す。これは

kG ∼= k
∑
g∈G

g ⊂ kG

と同一視できる。

1



kG-加群 U が Q-射影的であるとは，次の kG-準同型

φ : U ⊗kQ kG −→ U, u⊗ a 7→ ua

が分裂するときである (U | U ⊗kQ kG = U ↓Q↑G）。kG-準同型 f : U → V が Q-射影的であると
は，Q-射影的 kG-加群 W，および kG-準同型 g : U →W , h :W → V が存在して，f = h ◦ g と
なることである。Q = 1 のときは，普通の射影加群のことである。
kG-加群 U が p-置換加群であるとは，U を Gの任意の p-部分群へ制限したとき，置換加群と
なることである。p-部分群 Q に対し，誘導加群 kQ ↑G は自明な kG-加群 kG を部分加群にもつ直
既約因子をただ 1つもつ。この直既約因子を Q に関する Scott加群とよび，S(G,Q) で表す。定
義より，Scott 加群は p-置換加群である。
kG-加群 U，G の p-部分群 Q に対し，U(Q) = UQ/

∑
R⪇Q TrQR(U

R) を U の Q に関する
Brauer construction とよぶ。ここで，UR = {u ∈ U |ux = u(∀x ∈ R)}, Tr : UR → UQ, u 7→∑

t∈[R\Q] ut である。
群環 kG の両側イデアルとしての直既約分解

kG = A0 ⊕A1 ⊕ · · · ⊕ Aℓ

において，各成分 Ai を kG のブロックと呼ぶ。任意の直既約 kG-加群はちょうど 1つのブロック
に属する。自明な kG-加群を含むただ 1つのブロックを主ブロックとよび，B0(G) で表す。G の
ブロック A と G の p-部分群 D に対し，両側 (A,A)-加群の準同型写像

φD : A⊗kD A −→ A, x⊗ y 7→ xy

を考える。φD が分裂する最小の p-部分群 D を A の不足群とよぶ。不足群は G-共役をのぞき一
意に定まり，ブロックの表現型に深く関係する。例えば不足群が自明であればブロックは半単純
となり，不足群が巡回群であればブロックは有限表現型である。Gの主ブロックの不足群は G の
Sylow p-部分群である。
Brauer は第 1主定理において，以下のような対応を与えている。

定理 1 (Brauer の第 1主定理). 有限群 G の p-部分群 D に対し，Gの不足群 D をもつブロック
と NG(D) の不足群 D をもつブロックの間に 1対 1対応が存在する。

とくに D が G の Sylow p部分群であるとき，G の主ブロックはこの対応により NG(D) の主
ブロックへ対応する (Brauerの第 3主定理)。

3 Broué予想および関連する予想
有限群のモジュラー表現論では，

{Gの表現の情報 } 対応←→ {Gの p-局所部分群たちの表現の情報 }
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を考えることが重要である。とくに，p-局所構造を共通にもつ有限群のブロックについて，加群の
圏やその導来圏の関係を調べることは重要である。この節では，この観点での予想および関連する
予想について述べる。
P を G の p-部分群とする。G における P 上の fusion system FP (G) とは，次のように定義
される圏である。FP (G) の対象は P の部分群全体であり，任意の部分群 Q,R ≤ P に対して，射
の集合は

HomFP (G)(Q,R) = { f : Q→ R : 群準同型 | ある g ∈ G に対して f = cg }

で与えられる。ここで cg は g による共役写像を表す。
本稿では，基本的に以下の設定を考える。

設定 1. 有限群 G と H は共通の Sylow p部分群 P ( 6= 1) を持つとし，同じ p-局所構造をもつこ
と，すなわち， FP (G) = FP (H)であることとする。また，A = B0(G)，B = B0(H) とおく。

予想 1 (Broué [1, 2]). 設定 1 のもとで，さらに，P は可換群とする。このとき，Db(modA) ∼
Db(modB) すなわち，A と B に対する導来圏は，三角圏として同値（導来同値）である。

P が非可換群である場合には，反例が存在することが知られている。Rouquier [18] により，P
が非可換である場合に関する予想も提唱されている。
Broué 予想が解決されている場合としては，P が巡回群 ([15, 17])，P ∼= C2 × C2([16])，

P ∼= C3 × C3([6], また例 1，例 2も参照) などの場合が挙げられる。また，対称群や一般線型群に
関しても解決が得られている ([3])。

例 1 ([13],[9]). p = 3 とし，F3 := {q : 素数のべき | (q − 1)3 = 3} とおく。G = PSL(3, q) と
し，q ∈ F3 であるとすると，C3 × C3

∼= P ∈ Syl3(G) である。H = NG(P ) とする。このとき，
FP (G) = FP (H) が成り立つ。この設定のもと，以下が成立する。

(1) Db(modB0(G)) ∼ Db(modB0(H)) すなわち，B0(G) と B0(H) に対する導来同値である。
つまり，Brouéの予想が成立する。

(2) G と H の主ブロックの間だけでなく，P の各部分群 Qの中心化群 CG(Q), CH(Q))の主
ブロック間にも導来同値（この場合は実際は，森田同値）が得られる。

例 1(2)のように，splendid 同値とよばれる，中心化群のブロック間にも導来同値を引き起こす
状況がよいものがある。この例での導来同値は，splendid 同値と呼ばれているものであり，実際
Broué予想の状況では，splendid 同値まで予想されている ([16])。

例 2 ([9]). p = 3 とし，F3 := {q : 素数のべき | (q − 1)3 = 3} とおく。q1, q2 ∈ F3 に対し，
G1 = PSL(3, q1), G2 = PSL(3, q2) ) とする。このとき，FP (G1) = FP (G2)であり（例 1参照）
B0(G1) と B0(G2)は森田同値である。

例 2のように Lie型の群の無限系列で p 局所構造を一致させると，森田同値が期待される。以
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下の予想とも関連し重要である。

予想 2 (Donovan). P を有限 p群とする。P を不足群にもつ有限群のブロックの森田同値類は有
限個である。

4 森田型安定同値の森田同値への持ち上げ
森田同値や導来同値を構成する手法として，まず森田型安定同値を構成し，それを森田同値，導
来同値へ持ち上げる手法がある。この節では，森田型安定同値を森田同値へ持ち上げる手法を述
べる。

設定 2. M は (A,B)-両側加群とし，以下を仮定する：

(I) M は左 A-加群かつ右 B-加群として射影的
(II) k-双対加群 M∗ := Homk(M,k) を用いて，次の両側加群同型が存在する：

M ⊗B M∗ ∼= A⊕X, M∗ ⊗A M ∼= B ⊕ Y (⋆)

定義 1. (1) 設定 2(⋆) において，X = 0 かつ Y = 0 となるとき，M は Aと B の間の森田同値
を誘導するという。

(2) 設定 2(⋆) において， X と Y が射影的となるとき，M は A と B の間の森田型安定同値を誘
導するという。

森田同値は導来同値を誘導し，導来同値は森田型安定同値を誘導する。G ≥ H のとき，B0(G)

と B0(H)の間での誘導と制限が森田型安定同値を与えることがある。例えば，Gが TI-set とな
る Sylow p-部分群 P をもつとき，B0(G) と B0(NG(P )) は誘導と制限により森田型安定同値と
なる。
森田型安定同値と森田同値に関して，次の定理はとても重要である (導来同値への持ち上げにも
使える)。

定理 2 (Linckelmann [12] ). M を直既約 (A,B)両側加群で A と B の森田型安定同値を誘導す
るとする。このとき，次が成立する。

(1) 任意の単純 A-加群に対し，S ⊗A M は直既約 B-加群である。
(2) 任意の単純 A-加群に対し，S ⊗A M が単純 B-加群となるならば，M は A と B の間の森
田同値を誘導する。

以下，引き続き設定 1を仮定する。∆(P ) = {(x, x)|x ∈ P} ≤ G×H とする。∆(P )-射影的な p-

置換 k[G×H]加群で誘導される森田同値は splendid森田同値とよばれる。M = S(G×H,∆(P ))

を ∆(P ) に関する Scott加群とする。このとき，M は，設定 2を満たしている。

定理 3 (Broué [2]). 設定 1を仮定する。M = S(G×H,∆(P ))に対し，次は同値である。
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(1) M は A と B の間の森田型安定同値を誘導する。
(2) 1 ⪇ ∀Q ≤ P に対し，M のBrauer constructionM(∆(Q)) =M∆(Q)/

∑
R⪇Q TrQR(M

∆(R))

は B0(CG(Q)) と B0(CH(Q)) の森田同値を誘導する。

注 1. M のかわりに 各項が ∆(P )-射影的な p-置換加群からなる有界複体 M• にかえ, 森田同値
を導来同値とした，複体版（Rouquierの定理 [18]）が得られるている。

Brouéの定理（Rouquierの定理）と Linckelmann の定理を組合せ，以下のような森田同値の構
成法が考えられている。

(i) 任意の p部分群 Q( 6= 1) に対し，中心化群の主ブロック B0(CG(Q)) と B0(CH(Q)) の間
に森田同値を構成する

(ii) (i)で得られた各森田同値をはり合わせることにより，B0(G) と B0(H)の間の森田型安定
同値を構成する

(iii) (ii)で構成した森田型安定同値のもとで，単純 B0(G)加群の像がまた単純 B0(H)加群にな
ることを示す

実際，例 2や他の多くの例で，この方法で森田同値が示されている。

5 Brauer 直既約性
前節で説明した森田型安定同値を森田同値に持ち上げる手法の適用の際，いくつかの課題があ
る。課題の 1 つは，p 局所部分群の森田同値をうまくはりあわせることができるかという点であ
る。うまくはりあわせるために，Scott 加群 S(G ×H,∆(P ))について，Brauer直既約性という
性質をもつことが要求される。kG-加群 U がBrauer 直既約であるとは，Gの任意の p-部分群 Q

に対し，Brauer construction U(Q) が kQCG(Q)-加群として直既約または 0となるときにいう。
設定 1のもと，さらに P が可換である場合に，以下が示されている。

定理 4 (Kessar-K-Mitsuhashi [5]). 設定 1のもと，M = S(G×H,∆(P ))とおく。P は可換群で
あると仮定すると，M は Brauer直既約である。

P が非可換のときは，状況は複雑である。以下が示されている。

定理 5 (Ishioka-K [4]). G を有限群, P を G の p-部分群，FP (G) saturated であるとする。
M = S(G,P ) とおく。次は同値

(1) M は Brauer 直既約
(2) 任意の fully nodrmalized な P の部分群 Q に対し，S(NG(Q), NP (Q)) は QCG(Q) 加群
として直既約

定理 5を用いることなどにより，Koshitani,Tuvayなどが，Brauer 直既約性の研究を発展させ
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ている。たとえば，設定 1において p = 2, P を準 2面体群 [7]，あるいはリース 2群 [8]，に対し，
M = S(G×H,∆(P ))の Brauer直既約性が示されている。
次節で述べる相対安定同値の構成のために，[10]において，相対 Brauer直既約性も定義されて
いる。

6 中心的 p-部分群を含む場合の新しい手法
はりあわせのもう一つの大きな問題として， G, H が非自明な中心的 p部分群 Z をもつときに
は，CG(Z) = G, CH(Z) = H となってしまうため, Brouéの定理 (3)をうまく使えない，という
ことがあげられる。これを克服するために，森田型相対安定同値の理論を発展させた。以下は，鈴
木香一氏との共同研究に基づく内容である。
A を群 G のブロック，Q を G の p 部分群とする。Aの相対 Q安定圏 modQA とは，A-加群
を対象とし，HomQ

A(U, V ) = HomA(U, V )/{f ∈ HomA(U, V ) | f : Q-射影的 } を射の集合とする
圏である。これは，三角圏の構造をもつ。

定義 2 (Wang-Zhang [19]). G と H は Q を共通の p部分群としてもつ有限群とし，A, B をそ
れぞれ G, H のブロックとする。設定 2(⋆) において X と Y が (Q ×Q) 射影的となるとき，M
は A と B の間の森田型相対 Q 安定同値を誘導するという。

この定義において，G と H は設定 1をみたすことは要求されていないが，その場合，一般にM

は相対安定圏の同値を引き起こすとは限らない。
以下，Gと H は設定 1をみたす，すなわち，共通の Sylow p部分群 P をもち，FP (G) = FP (H)

が成立しているとする。Gと H は中心に p部分群 Z 6= P をもつ場合を考える。
Brouéの定理 (定理 3)に対応するものとして，以下の定理を得た。

定理 6 (K-Suzuki [10]). 設定 1のもと，さらに G, H は中心に p部分群 Z ⪇ P をもつとする。
M = S(G×H,∆(P )) に対し，次は同値である。

(1) M は B0(G) と B0(H) の間の森田型相対 Z 安定同値を誘導する。
(2) Z を真に含む P の任意の部分群 Q に対し，Brauer construction M(∆(Q)) は B0(CG(Q))

と B0(CH(Q)) の森田同値を誘導する。

Linckelmannの定理 (定理 2)に対応するものとして，以下の定理を得た。

定理 7 (K-Suzuki [10]). 設定 1のもと，さらに G, H は中心に p部分群 Z ⪇ P をもつとする。
M = S(G×H,∆(P )) が A = B0(G) と B = B0(H) の間の森田型相対 Z 安定同値を導くと仮定
する。このとき，次が成立する。

(1) M は modZAと modZB の間の三角圏としての同値を導く。
(2) 任意の単純 B0(G)加群 S に対し，S ⊗B0(G) M は直既約 B0(H)加群である。
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(3) 任意の単純 B0(G)加群 S に対し，S ⊗B0(G) M が単純 B0(H)加群であれば，M は森田同
値を誘導する。

定理 6, 7 を組み合わせることで，非自明な中心的 p部分群 Z を持つ場合に，森田型相対 Z 安
定同値を構成し，それを森田同値へ持ち上げるという新しい手法が得られたことになる。

(i) 任意の p 部分群 Z ⪇ Q に対して，中心化群 CG(Q)，CH(Q) の主ブロック B0(CG(Q))，
B0(CH(Q)) の間に森田同値を構成する。

(ii) (i) で得られた各森田同値をはり合わせることにより，B0(G) と B0(H) の間の森田型相対
Z 安定同値を構成する。

(iii) (ii) で構成した森田型相対 Z 安定同値において，単純 B0(G)-加群の像が再び単純 B0(H)-

加群になることを示す。

新しい手法を適用することで，以下を得た。

定理 8 (K-Suzuki [11]). p = 2, q1, q2: 奇素数べきとし，(q1 − 1)2 = (q2 − 1)2 = 2m (m ≥ 2)

とする。G1 = GL(2, q1), G2 = GL(2, q2) とすると，G1 と G2 は共通の Sylow 2-部分群
P ∼= (C2m ×C2m)⋊C2 をもち，FP (G1) = FP (G2) となる。このとき，M = S(G1×G2,∆(P ))

は森田同値 modB0(G1) ∼ modB0(G2) を誘導する。

この定理により，GL(2, q)に対する森田同値分類は完成したことになる。

7 おわりに
モジュラー表現論における主ブロックの森田同値について，はりあわせを用いて森田型安定同値
を構成し，森田同値を得る手法について整理し，非自明な中心的 p-部分群をもつ場合にも適用でき
る新しい手法を紹介した。
導来同値の構成については，多くの課題がある。中心に非自明な p-部分群を含む場合の導来同値
の構成法を与えることも課題の 1つである。また，巡回不足群をもつブロックに対する Broué予
想の解決を利用し，p-ランクが 2の可換不足群をもつ場合やメタ巡回不足群をもつ場合について，
主ブロック間の森田型安定同値がそれぞれ [18][13] において得られている。導来同値の構成にこれ
らを有効に使った研究を進展させることも今後の課題である。
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ON sl2-ALGEBRAS AND MULTIPLE EISENSTEIN SERIES

HENRIK BACHMANN
(Based on a joint work with JAN-WILLEM VAN ITTERSUM and NILS MATTHES [BIM],

and work in progress with JAN-WILLEM VAN ITTERSUM and ANNIKA BURMESTER [BBI])

Abstract. In this survey article we summarize the results of [BIM] in which the authors in-
troduced the algebra of formal multiple Eisenstein. This algebra is motivated by the classical
multiple Eisenstein series, introduced by Gangl–Kaneko–Zagier as a hybrid of classical Eisen-
stein series and multiple zeta values. This algebra is an sl2-algebra by formalizing the usual
derivations for quasimodular forms and extending them naturally to the whole algebra. A
quotient of this algebra is isomorphic to the algebra of formal multiple zeta values. This gives
a novel and purely formal approach to classical (quasi)modular forms and builds a new link
between (formal) multiple zeta values and modular forms. In this note, we use a new algebraic
setup, used in [BBI], to define these objects and present dimension and structural conjectures
related to Lie algebras of derivations.

1. Introduction

The purpose of this note is to provide a summary of the work [BIM], where the authors
introduced formal multiple Eisenstein and studied their derivations, and to give an overview
of a work in progress [BBI] on certain conjectures which arose from [BIM]. Formal multiple
Eisenstein series are a formalization of multiple Eisenstein series, which are a hybrid of classical
Eisenstein series and multiple zeta values. Multiple zeta values, which are defined for integers
r ≥ 1 and k1 ≥ 2, k2, . . . , kr ≥ 1 by

ζ(k1, . . . , kr) :=
∑

m1>···>mr>0

1

mk1
1 · · ·mkr

r

(1.1)

are subject to many relations. Denote the Q-algebra of all multiple zeta values by Z. Con-
jecturally, the extended double shuffle relations of multiple zeta values provide all algebraic
relations among multiple zeta values [IKZ]. These relations are obtained (after possible reg-
ularization) from the two ways of expressing the product of multiple zeta values—the ‘usual’
(stuffle) product of real numbers, and a (shuffle) product from the iterated integral represen-
tation of multiple zeta values—which both can be interpreted as quasi-shuffle products [H].

Multiple zeta values and (quasi)modular forms are connected in various ways. For example,
in the case r = 1, they appear as the constant term of the Eisenstein series. The Eisenstein
series of weight k ≥ 2 is given for τ ∈ H = {τ ∈ C | Im(τ) > 0} by

Gk(τ) := ζ(k) +
(−2πi)k

(k − 1)!

∑
m,n≥1

nk−1qmn (q = e2πiτ ).

For even k ≥ 2 these series are (quasi)modular forms for the full modular group. In [GKZ] the
authors defined double Eisenstein series, which have double zeta values ((1.1) in the case r = 2)
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as their constant terms, and which can be seen as a natural depth two version of Eisenstein
series. This construction was generalized by the first author in [Ba1].

The main goal of [BIM] was to define a formal algebraic structure that captures the prop-
erties of these series. In this note, we will first review the classical theory of Multiple Zeta
Values and the motivation coming from analytic Multiple Eisenstein series (and their relation
to MacMahon’s sums). We will then introduce the algebra of formal multiple Eisenstein series
Gf . While [BIM] used a ”bi-bracket” notation, we will present here a new ”balanced” setup
developed in [Bu1] and used in [BBI], which simplifies the algebraic description. Finally, we
will discuss the sl2-structure on this algebra and relate it to conjectures about Lie algebras of
derivations.

Acknowledgements. The author thanks the organizers of the conference ”70th Algebra Sym-
posium 2025” for giving him the opportunity to present the results of [BIM] and [BBI]. This
project was partially supported by JSPS KAKENHI Grant 23K03030.

2. Multiple Zeta Values and Lie Algebras

We begin by establishing the algebraic framework for multiple zeta values, which serves as
the foundation for the more general theory of multiple Eisenstein series.

2.1. Algebraic setup. Let X = {x0, x1} and Y = {y1, y2, . . .}. We have an embedding

ι : Q⟨Y ⟩ ↪→ Q⟨X⟩
yk1 · · · ykr 7→ xk1−1

0 x1 · · · xkr−1
0 x1,

and a canonical projection ΠY : Q⟨X⟩ → Q⟨Y ⟩ which maps any word ending in x0 to 0. This
setup reflects the two representations of MZVs: the harmonic sum representation (alphabet Y )
and the iterated integral representation (alphabet X).
We define two coproducts corresponding to the two multiplication laws of MZVs. On Q⟨X⟩,

let ∆� be the shuffle coproduct defined on generators by ∆�(xi) = xi ⊗ 1 + 1⊗ xi. On Q⟨Y ⟩,
let ∆∗ be the harmonic coproduct defined by ∆∗(yi) = yi ⊗ 1 + 1⊗ yi +

∑
k+l=i yk ⊗ yl.

2.2. The Lie algebra dm0. The structure of multiple zeta values is conjecturally governed
by a specific Lie algebra. For f ∈ Q⟨X⟩ and a word w ∈ Q⟨X⟩, we denote by (f | w) the
coefficient of w in f .

Definition 2.1 ([Rac]). Let dm0 be the set of all ψ ∈ Q⟨X⟩, such that

(i) (ψ | x0) = (ψ | x1) = (ψ | x0x1) = 0,
(ii) ∆�ψ = ψ ⊗ 1 + 1⊗ ψ,
(iii) ∆∗ψ∗ = ψ∗ ⊗ 1 + 1⊗ ψ∗,

where ψ∗ = ΠY (ψ) + correction terms.

Racinet showed that (dm0, {−,−}) is a Lie algebra under the Ihara bracket. The connection
to formal MZVs is given by the following isomorphism:

Theorem 2.2 ([Rac]). We have an isomorphism Z f ∼= Q[ζ f(2)]⊗ U(dm0)
∨.

One of the major open problems in the field is to determine the structure of this Lie algebra.
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Conjecture 2.3. We have dm0
∼= Lie(σ3, σ5, σ7, . . .), a free Lie algebra with one generator in

each odd weight k ≥ 3.

This conjecture implies the famous Zagier dimension conjecture for MZVs:∑
k≥0

dimQZf
k X

k =
1

1−X2 −X3
.

The motivation of [BBI] is to describe an analogue of Theorem 2.2 for multiple Eisenstein series.

3. Multiple Eisenstein Series

Before defining multiple Eisenstein series, we recall some basic facts on (quasi)modular forms
and related objects.

3.1. sl2-algebras and Classical Quasimodular Forms. The structure we aim to capture is
that of an sl2-algebra.

Definition 3.1. An sl2-algebra is an algebra A together with a Lie algebra homomorphism
sl2 → Der(A). Equivalently, an sl2-algebra is an algebra A together with three derivations
D,W, δ ∈ Der(A) satisfying the commutator relations

[W,D] = 2D, [W, δ] = −2δ, [δ,D] = W.

In this case, (D,W, δ) is called an sl2-triple.

The prototypical example arises from the theory of modular forms. For τ ∈ H, let M̃ =
Q[G2,G4,G6] be the algebra of quasimodular forms with rational coefficients. It is well known

that M̃ is an sl2-algebra. The derivations D,W, δ ∈ Der(M̃) are defined on generators by:

D(Gk) = (2πi)
d

dτ
Gk, W (Gk) = kGk, δ(Gk) =

{
−1

2
, k = 2,

0, k ≥ 4.

3.2. MacMahon’s sums and q-analogues. A historical motivation for multiple Eisenstein
series comes from the work of MacMahon, who introduced the q-series

Ar(q) =
∑

m1>···>mr>0

qm1+···+mr

(1− qm1)2 · · · (1− qmr)2
. (3.1)

Andrews and Rose ([AR]) proved that for any r ≥ 1, the Ar(q) are quasimodular forms of mixed
weight. For example, A1(q) = G2(q) +

1
24

and A2(q) = −1
2
G4(q) +

1
2
G2(q)

2 + 1
8
G2(q) +

3
640

.
The Ar(q) can be seen as special cases of the q-series

g(k1, . . . , kr) =
∑

m1>···>mr>0
n1,...,nr>0

nk1−1
1

(k1 − 1)!
. . .

nkr−1
r

(kr − 1)!
qm1n1+···+mrnr . (3.2)

Specifically, Ar(q) = g(2, . . . , 2). These g-series are q-analogues of multiple zeta values: limq→1(1−
q)wt(k)g(k) = ζ(k). However, like Ar(q), they are not of homogeneous weight. This leads to
the definition of multiple Eisenstein series, which provide a ”homogeneous weight” version of
these objects.
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3.3. Multiple Eisenstein Series (MES). For a depth r ≥ 1 and integers k1, . . . , kr ≥ 2, the
multiple Eisenstein series are defined for τ ∈ H by

Gk1,...,kr(τ) :=
∑

λ1≻···≻λr≻0
λi∈Zτ+Z

1

λk11 · · ·λkrr
,

where the order ≻ on the lattice Zτ +Z is the standard lexicographical order. These functions
are holomorphic in H. Since Gk1,...,kr(τ + 1) = Gk1,...,kr(τ), they possess a Fourier expansion.
These Fourier expansions can be described explicitly in terms of the q-series g(k1, . . . , kr) given
in (3.2). In this context the q-series g always appear together with a power of −2πi and
therefore we set for k1, . . . , kr ≥ 1

ĝ(k1, . . . , kr) := (−2πi)k1+···+krg(k1, . . . , kr) ∈ Q[πi]JqK .

Notice that with that notation we can write the classical Eisenstein as

Gk(τ) = ζ(k) + ĝ(k)

and for multiple Eisenstein series we get the following generalization:

Theorem 3.2 (r = 1, 2 [GKZ], r ≥ 1 [Ba1]). For k1, . . . , kr ≥ 2 there exist explicit αk1,...,kr
l1,...,lr,j

∈ Z,
such that for q = e2πiτ we have

Gk1,...,kr(τ) = ζ(k1, . . . , kr) +
∑

0<j<r
l1+···+lr=k1+···+kr

l1≥2,l2,...,lr≥1

αk1,...,kr
l1,...,lr,j

ζ(l1, . . . , lj)ĝ(lj+1, . . . , lr) + ĝ(k1, . . . , kr) .

In particular, Gk1,...,kr(τ) = ζ(k1, . . . , kr) +
∑

n>0 ak1,...,kr(n)q
n for some ak1,...,kr(n) ∈ Z[πi].

In the case r = 2 we get that for k1, k2 ≥ 2 the Fourier expansion of the double Eisenstein
series is given by (see [GKZ, Theorem 6])

Gk1,k2(τ) = ζ(k1, k2) +
∑

l1+l2=k1+k2
l1,l2≥2

(
(−1)k2

(
l1 − 1

k2 − 1

)
+(−1)l1−k1

(
l1 − 1

k1 − 1

)
+δl1,k2

)
ζ(l1)ĝ(l2) + ĝ(k1, k2) .

Example 3.3. Writing P = −2πi we have

G6(τ) = ζ(6) + ĝ(6)

= ζ(6) +
1

120
P 6q +

11

40
P 6q2 +

61

30
P 6q3 + . . . ,

G4,2(τ) = ζ(4, 2) + 2ζ(2) ĝ(4) + 2ζ(3) ĝ(3) + 4ζ(4) ĝ(2) + ĝ(4, 2)

= ζ(4, 2) +
(1
3
P 4ζ(2) + P 3ζ(3) + 4P 2ζ(4)

)
q +

(
3P 4ζ(2) + 5P 3ζ(3) + 12P 2ζ(4)

)
q2 + . . . ,

G3,3(τ) = ζ(3, 3) + ζ(3) ĝ(3)− 6ζ(4) ĝ(2) + ĝ(3, 3)

= ζ(3, 3) +
(1
2
P 3ζ(3)− 6P 2ζ(4)

)
q +

(5
2
P 3ζ(3)− 18P 2ζ(4)

)
q2 + . . . .

Example 3.4. Multiple Eisenstein series can also be seen as giving the correct linear combina-
tion of the q-series g in order to get something of homogeneous weight. For example, the mixed
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weight quasimodular forms (3.1) can be made into homogeneous weight as follows: Setting
G{2}l = (2πi)−2lG{2}l we get

G2 = g(2)− 1

24
,

G2,2 = g(2, 2)− 1

8
g(2) +

1

1920
,

G2,2,2 = g(2, 2, 2)− 5

24
g(2, 2) +

13

1920
g(2)− 1

322560
.

These are quasimodular forms of homogeneous weights 2, 4 and 6 , respectively

3.4. The space E and Conjectures. We denote the Q-vector space spanned by all multiple
Eisenstein series by

E = ⟨Gk1,...,kr | r ≥ 0, k1, . . . , kr ≥ 2⟩Q.

It is easy to check that E is an algebra, which has the algebra of quasimodular forms as a
subalgebra. We conjecture that the sl2-structure of quasimodular forms extends to the entire
space E .

Conjecture 3.5. The operators D,W, δ defined on generators by

D(Gk) = (2πi)
d

dτ
Gk,

W (Gk1,...,kr) = (k1 + · · ·+ kr)Gk1,...,kr ,

δ(Gk1,...,kr) =

{
−1

2
Gk2,...,kr if k1 = 2,

0 if k1 > 2,

give well-defined derivations on E and form an sl2-triple.

We also have a conjecture for the size of this space. Let M(X) = ((1 − X4)(1 − X6))−1 be
the series for modular forms, S(X) = X12M(X) for cusp forms, and O(X) = X3(1−X2)−1 for
odd weights.

Conjecture 3.6. The dimension of E is given by∑
k≥0

dimQ EkXk = M(X) · 1

1−X2 − O(X) + 2S(X)
.

This suggests an isomorphism E ∼= M ⊗ U(E)∨, where E is a Lie algebra related to cusp
forms. This Lie algebra will be studied in [BBI].

4. Formal multiple Eisenstein series

To study these structures rigorously without relying on analytic difficulties, we introduce the
algebra of formal multiple Eisenstein series. Here we use the ”balanced” setup introduced in
[Bu1] and used in [BBI], which differs from the bi-bracket notation used in [BIM] but describes
the same object.
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4.1. The balanced setup. Let Q⟨B⟩ be the non-commutative polynomial ring in the alphabet
B = {b0, b1, . . .}. On Q⟨B⟩ we recursively define the stuffle product ∗ as the Q-bilinear product
satisfying 1 ∗ w = w ∗ 1 = w and

biu ∗ bjv = bi(u ∗ bjv) + bj(biu ∗ v) + δij>0 bi+j(u ∗ v).

Let Q⟨B⟩0 be the subspace of words not starting in b0. This subspace is closed under ∗. We
define a Q-linear involution τ : Q⟨B⟩0 → Q⟨B⟩0 by

τ(bk1b
m1
0 · · · bksbms

0 ) := bms+1b
ks−1
0 · · · bm1+1b

k1−1
0 ,

where ki ≥ 1 and mi ≥ 0. This map τ plays the role of the swap map in [BIM].

Definition 4.1. The algebra of formal multiple Eisenstein series is defined by

Gf := (Q⟨B⟩0, ∗)⧸T ,

where T is the ideal generated by τ(w)−w for all w ∈ Q⟨B⟩0. We denote the class of bk1 · · · bkr
by Gf(k1, . . . , kr).

While the definition involves b0, we are often interested in the ”analytic” subspace spanned
by generators with indices ≥ 2:

Ef := ⟨Gf(k1, . . . , kr) | r ≥ 0, ki ≥ 2⟩Q.

Conjecture 4.2. The map Ef → E given by Gf(k) 7→ Gk is an isomorphism.

The formal space satisfies the properties conjectured for the analytic space.

Theorem 4.3 ([BIM]). There exist explicit derivations W,D, δ on Gf such that Gf is an sl2-
algebra.

The derivations are defined combinatorially on the words in B. In particular, D is a derivation
of weight −2 and δ is a derivation of weight 2.

Theorem 4.4 ([BIM]). There exists a surjective algebra homomorphism

π : Gf → Zf

such that π(Gf(k)) = ζf (k).

This is the ”formal projection to the constant term”. As a natural sub algebra we define the

algebra of formal quasimodular forms by M̃f := Q[Gf(2), Gf(4), Gf(6)] ⊂ Gf .

Theorem 4.5. M̃f ∼= M̃ as sl2-algebras.

This implies that relations such as the Ramanujan differential equations and the Chazy
equation hold in Gf . We also define the algebra of formal cusp forms by Sf = ker π|Mf . The

first non-zero formal cusp form is ∆f ∈ Sf
12, defined analogously to the classical discriminant

∆.

5. Lie Algebras and Dimensions

In this final section, we mention the conjectural structure of the derivations on Gf and
dimension conjectures which will be studied in [BBI].
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5.1. The Lie algebra D. For l ∈ Z, let Dl be the space of τ -equivariant derivations on Q⟨B⟩0
of weight −l.

Dl = {d ∈ Der(Q⟨B⟩0, ∗) | d ◦ τ = τ ◦ d, deg(d) = −l}.

Define D =
∑

l≥1Dl. It is easy to check that D is a Lie subalgebra of derivations.

Theorem 5.1 ([BIM]). There exist explicit non-zero elements ω1 ∈ D1 and δ ∈ D2.

The element δ here is the same operator that gives the sl2-structure. We conjecture that
D is generated by δ and elements ωs ∈ Ds for odd s ≥ 1. We further expect an embedding
dm0 ↪→ D.

5.2. The space bm0. To better understand D, Burmester introduced a subspace bm0 ⊂ Q⟨B⟩,
which can be seem as an analogue of Racinets dm0.

Definition 5.2 ([Bu1]). The space bm0 consists of all Ψ ∈ Q⟨B⟩, such that

(i) (Ψ | bk) = 0 for k = 0, 2, 4, 6,
(ii) ∆b(Ψ) = Ψ⊗ 1 + 1⊗Ψ,
(iii) τ(Π0(Ψ)) = Π0(Ψ).

Theorem 5.3 ([Bu1]). There is an embedding dm0 ↪→ bm0.

Conjecture 5.4. bm0 is a Lie algebra and Gf ∼= M̃f ⊗ U(bm0)
∨.

5.3. Relation between D and bm0. The main motivation of [BBI] is to show that Burmesters
bm0 can be described by the derivations in D. Let B = D1 ⊕

⊕
l≥3Dl.

Conjecture 5.5 ([BBI]). B ∼= bm0 as Lie algebras. Thus D ∼= Qδ ⊕ bm0.

5.4. Dimension Conjecture for Gf . Define the Hilbert–Poincaré series of the space of period
polynomials Wk with even k ≥ 2 by

W(X) =
∑
k≥2

k even

dimQWkX
k = M(X) + S(X)− 1 =

X4

1−X2
+ 2 S(X)

where D(X) = 1
1−X2 , O(X) = X3

1−X2 , M(X) = 1
(1−X4)(1−X6)

, S(X) = X12M(X).

Conjecture 5.6 ([BK],[BBI]). The dimension of Gf is given by:∑
k≥0

dimQ GfkX
k = M̃(X) · 1

1− D(X)X − D(X)O(X) + D(X)W(X)

= M(X) · 1

1−X −X2 − O(X) +W(X)
.

This provides a unified conjectural picture for the size of the algebra of multiple Eisenstein
series, combining the structure of modular forms (M) with the structure of multiple zeta values
(O) and period polynomials (W).
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W代数の定義の変形とその応用について
元良 直輝 （富山大学）

1 Motivations

1.1 W -algebras

Let g be a simple Lie algebra and k ∈ C. Then the affine vertex algebra V k(g) of g at level k is defined.
Since

V k(g)-modules = smooth ĝ-modules of level k,

V k(g) is a vertex algebra version of the affine Lie algebra ĝ. Therefore we can study smooth ĝ-modules
using technology of vertex algebras. In particular, ĝ-modules will be related to modular forms because
vertex algebra is originated from 2d conformal field theory.

Let f be a nilpotent element of g. Then one can define the BRST cohomology asso. to f of V k(g):

W k(g, f) := H0
f (V

k(g)).

W k(g, f) is a vertex algebra and called the W -algebra of g, f at level k [FF90, KRW03].

For g = sl2 with f =

(
0 0
1 0

)
, W k(sl2, f) = the Virasoro (vertex) algebra of some central charge. In

general, the W -algebras contain interesting vertex algebra and using the BRST functor

V k(g)−mod 3 M 7→ H0
f (M) ∈W k(g, f)−mod

one may associate ĝ-modules to W k(g, f)-modules.

1.2 Examples: g = sl3

Consider the case g = sl3. Let f be a nilpotent element in sl3. Then the Jordan form of f has only 0 in
the diagonal entries and thus is one of the followings: 0 0 0

1 0 0
0 1 0

 ,

 0 0 0
1 0 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 0

 ,

which corresponds to the partitions (3), (2, 1), (13) of 3, called principal, subregular, zero, respectively.
Thus we obtain three families of W -algebras in case g = sl3:

• W k(sl3, fprin) = the Zamolodchikov W3-algebra.

• W k(sl3, fsub) = the Bershadsky-Polyakov algebra.

• W k(sl3, 0) = the affine vertex algebra V k(sl3).

1.3 Finite analogs

Given a vertex algebra V , we can define the Zhu algebra ZhuV , an associative algebra. For V = V k(g),
ZhuV k(g) = U(g) [FZ92]. Thus, ZhuV gives a finite analog of V .

For V = W k(g, f), ZhuW k(g, f) = U(g, f) [Ara07, DSK06], the finite W -algebra of g, f , introduced
by Premet [Pre02]. For examples,
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• U(g, 0) = U(g).

• U(g, fprin) = Z(g): the center of U(g) [Kos78].

• U(sln, f) = shifted Yangian of type A [BK06].

• U(g, f) = shifted twisted Yangian of type BCD for g = BCD [Bro09, LPT+25].

• U(sl(m|n), f) = shifted super Yangian of type A [BR03, BBG13, Pen21].

1.4 Poisson geometry

Using the PBW filtration on U(g),

grU(g) ' S(g) = C[g∗] (Possion algebra)

Thus g∗ is a Poisson variety (Kirillov-Kostant), and the symplectic leaves of g∗ are coadjoint orbits O∗.
The finiteW -algebra has a canonical filtration (Kazhdan filtration), and the associated graded algebra

also becomes a Poisson algebra [Pre02, GG02, Los10]:

grU(g, f) ' C[Sf ],

where Sf is the Slodowy slice of g at f .
Suppose that f 6= 0. Then the Jacobson-Morozov theorem implies that there exists an sl2-triple

{e, h, f} ⊂ g containing our choice of f . Then

Sf = f + ge ⊂ g ' g∗.

Let h be a Cartan subalgebra of g and h ∈ h.
A pair (f, h) is called a good pair if
(1) adh defines a Z-grading on g =

⊕
j∈Z gj , where

gj = {a ∈ g | [h, a] = ja}
(2) f ∈ g−2

(3) ad f : gj → gj−2 is injective for j ≥ 1 and surjective for j ≤ 1.
For example, we may choose h in the sl2-triple {e, h, f}. In general, we have more options for h.

Classifications: [EK05, Hoy12].
By the good conditions,

〈a, b〉 := (f |[a, b]) = ([f, a]|b), a, b ∈ g1

defines a non-deg. skew-symmetric (=symplectic) form on g1.
Let l be a Lagrangian (= maximal isotropic subspace) in g1 and m a nilpotent subalgebra

m = l⊕ g≥2.

For example, in case g = sl3,

f = fprin =

0 0 0
1 0 0
0 1 0

 ⇒ m =

0 ∗ ∗
0 0 ∗
0 0 0

,

f = fsub =

0 0 0
0 0 0
1 0 0

 ⇒ m =

0 ∗ ∗
0 0 0
0 0 0

 .

Let M = exp(m) a unipotent Lie group. Then the coadjoint action of M on g∗ is Hamiltonian with
the moment map

µ : g∗ ' g→ m∗, a 7→ (a | ·).

Let χ = (f |·) ∈ m∗. Gan-Ginzburg show that

α : M × Sf → µ−1(χ), (g, a) 7→ Adg(a)
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is an isomorphism. Therefore

Sf ' µ−1(χ)/M =: g∗//M.

The RHS is called the Hamiltonian reduction of g∗ by M at χ. Then the Poisson structure of Sf is
induced from g∗.

1.5 Variations of Hamiltonian reductions

Gan-Ginzburg proposed variations of Hamiltonian reductions. Let l be any isotropic subspace in g1 and
set

m = l⊕ g≥2, n = l⊥ ⊕ g≥2,

where l⊥ = {a ∈ g1 | 〈a, l〉 = 0} ⊃ l. Thus m ⊂ n. For example, in case g = sl3 and l = 0,

fsub =

0 0 0
0 0 0
1 0 0

 ⇒ m =

0 0 ∗
0 0 0
0 0 0

 ⊂ n =

0 ∗ ∗
0 0 ∗
0 0 0

.

Let N = exp(n) and χ = (f |·) ∈ n∗. Set the N -orbit at χ

On := Ad∗N χ ' l⊥/l.

Then X := g∗ ×On is a Poisson variety. Define a moment map

µX : X = g∗ ×On 3 (ζ, η) 7→ ζ|n − η ∈ n∗.

We have µ−1
X (0) ' µ−1(On), where µ : g

∗ ↠ n∗ the restriction. Gan-Ginzburg show that

γ : N × Sf → µ−1(On), (g, a) 7→ Adg(a)

is an isomorphism. Hence Sf ' µ−1(On)/N . For l =Lagrangian: Sf ' µ−1(χ)/M (Premet). For l = 0:
Sf ' µ−1(Og>0)/G>0 (Kac-Roan-Wakimoto).

At the level of coordinate rings (or Poisson algebras),

C[Sf ] ' C[µ−1(On)]
N = C[µ−1(On)]

ad n = (C[X]/In)
ad n,

where In is the defining ideal for

µ−1(On) ' µ−1
X (0) ⊂ X = g∗ ×On.

Using the Lie algebra cohomology and homology,

C[Sf ] ' H0(n,C[X]/In) = H0(n,H0(n,C[g∗]⊗ C[On])).

Fourthermore, using the semi-infinite cohomology (= a mix version of homology/cohomology),

C[Sf ] ' H
∞
2 +0(n,C[g∗]⊗ C[On]).

These results lead to equivalent variant definitions of U(g, f).
Given a good pair (f, h) in g and an isotropic subspace l in g1, set

U(g, f, h, l) := H
∞
2 +0(n, U(g)⊗Dn),

where Dn is the Weyl algebra associated to On ' l⊥/l.
For example, if l⊥/l = C2n, then Dn = 〈∂i, xi | i = 1, . . . n〉alg with the relation [∂i, xj ] = δi,j and

[∂i, ∂j ] = [xi, xj ] = 0.
Gan-Ginzburg [GG02] and Brundan-Goodwin [BG07] show that these algebras are isomorphic to

each other if f belongs to the same nilpotent orbit Of := AdG(f). Therefore,

U(g, f, h, l) is isomorphic to the finite W -algebra U(g, f)

because these include Premet’s original definition of U(g, f): h comes from an sl2-triple {e, h, f} and l
is a Lagrangian.

3



2 Main results

Following Gan-Ginzburg, for a good pair (f, h) in g and an isotropic subspace l in g1, define a vertex
algebra

W k(g, f, h, l) := H
∞
2 +0(n[t±1], V k(g)⊗An),

where n[t±1] is a Lie subalgebra of ĝ and An is the Weyl vertex algebra assoiated to On.
The following result is a long-standing conjecture or well-known “fact” for specialists of W -algebras,

but nobady knows the precise proof:

Theorem 2.1 ([GJ25]). Fix g and k. Then W k(g, f, h, l) are isomorphic to each other if f belongs to
the same nilpotent orbit Of .

Therefore, W k(g, f, h, l) is isomorphic to the W -algebra W k(g, f) because these include Kac-Roan-
Wakimoto’s original definition: l = 0.

2.1 Idea of proof for equivalence theorem

We mimic the strategy of [AKM15]. They provided the ℏ-adic version of our results for l = 0 and l is
a Lagrangian (they defined the W -algebras as the C∗-invariant algebra of the ℏ-adic ones. In fact, one
can prove their W -algebras are isomorphic to W k(g, f, h, l) by using our results).

Here I will expain the strategy.
Let a be a vector space and Λ(a⊕ a∗) the Clifford algebra associated to a⊕ a∗. This means Λ(a⊕ a∗)

is generated by odd generators ϕi, ϕ
∗
i for i = 1, . . . dim a with the relations

[ϕi, ϕ
∗
j ] = δi,j , [ϕi, ϕj ] = [ϕ∗

i , ϕ
∗
j ] = 0,

where [·, ·] is the odd bracket. Then the cochain complex of U(g, f, h, l) = H
∞
2 +0(n, U(g)⊗Dn) is defined

by

C(g, f, h, l) := U(g)⊗Dn ⊗ Λ(n⊕ n∗).

Vertex algebra version:

Ck(g, f, h, l) := V k(g)⊗An ⊗F(n⊕ n∗),

where F(a ⊕ a∗) is the Clifford vertex superalgebra associated to a ⊕ a∗. Ck(g, f, h, l) is the cochain
complex of W k(g, f, h, l).

Want to compare the case of l = 0 (Kac-Roan-Wakimoto choice) and the case of l = Lagrangian
(Premet choice). Set

CKRW = V k(g)⊗Ag>0
⊗F(g>0 ⊕ g∗>0), CLag = V k(g)⊗F(n⊕ n∗).

But we have no morphisms between CKRW and CLag commuting with the differentials in general. Now,
define the intermediary complex

Cint = V k(g)⊗F(n⊕ g∗>0).

Then the natural maps n ↪→ g>0 and g∗>0 ↠ n∗ induces

CKRW ←↩ Cint ↠ CLag.

Then these maps are commuting the diffrentials and we have

W k(g, f)KRW ←W k(g, f)int →W k(g, f)Lag.

In finite cases,

U(g, f)KRW ← U(g, f)int → U(g, f)Lag
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are isomorphisms because

grU(g, f, h, l) ' C[µ−1(On)]
N ' C[Sf ].

What about grW k(g, f, h, l) ?
The following result is proved esssentially by Kac-Roan-Wakimoto [KRW03] for l = 0, and by

Arakawa-Moreau [AM24] when l is a Lagrangian, but we prove general cases:

Theorem 2.2 ([GJ25]).
grW k(g, f, h, l) ' C[J∞Sf ].

Therefore grW k(g, f)KRW ' grW k(g, f)int ' grW k(g, f)Lag, which implies the original maps are
isomorphisms.

2.2 Structure Theorem on BRST cohomology

Let m ⊂ n be nilpotent Lie algebras s.t. [n, n] ⊂ m.
Set M = exp(m) / N = exp(n). Denote by V (m) ⊂ V (n) the affine vertex algebras of m ⊂ n.

LetX be a Poisson variety with the Hamiltonian N -action and µ : X → m∗ the N -equivariant moment
map.

Suppose that
(P1) µ is smooth and surjective and there exists a closed subvariety S ⊂ µ−1(χ) for some χ ∈ m∗ s.t.

α : N × S → µ−1(χ), (g, s) 7→ g · s

is a well-defined isom.
Let V ⊂ Ṽ be vertex algebras with V (m) ⊂ V (n)-actions, i.e. there exist vertex algebra homomor-

phisms

Υ: V (n)→ Ṽ , Υ|V (m) : V (m)→ V.

Suppose that
(P2) V is closed by n[t]-action through Υ.
(P3) grV ' C[J∞X] and Υ|V (m) imduces a PVA hom

grΥ: C[J∞m∗]→ C[J∞X].

Then grΥ(a) = J∞µ
∗(a) for a ∈ m.

(P4) The induced n[t]-action on C[J∞X] coincides with the one from J∞N .

(P5) Ṽ is graded by Lold
0 : Ṽ =

⊕
∆∈ 1

K Z Ṽ (∆) for some K ∈ N s.t. V is non-negatively graded and

each homogeneous space V (∆) is finite-dimensional.

(P6) Υ(a) ∈
⊕

∆≤1 Ṽ (∆) for all a ∈ n.

(P7) Let Υ1(a) be the image of the proj. V (n)
Υ−→ Ṽ ↠ Ṽ (1). Then Υ1(a) ∈ V (1) for a ∈ n and

V (n)→ V, a 7→ Υ1(a)

defines a free n[t−1]t−1-action on V .

Let CV = V ⊗F(m⊕ n∗) ⊂ CṼ = Ṽ ⊗F(m⊕ n∗) and

Qχ =

dim n∑
i=1

(Υ(xi)− χ(xi))⊗ ϕi − 1

2

dim n∑
i,j,k=1

ckij⊗ :ϕkϕ
iϕj : ∈ CṼ .

Then dχ = Qχ(0) satisfies that d
2
χ = 0 on CV .

The (mixed-type) BRST cohomology is defined by

H•
χ(V ) := H•(C•

V , dχ).

Let CV,+ = CV /IV with IV = Span{ϕi(−n)c, (dχϕi)(−n)c | 1 ≤ i ≤ dimm, c ∈ CV }.
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Suppose that
(P8) CV has a new Hamiltonian op. Lnew

0 s.t. Lnew
0 ◦ dχ = dχ ◦ Lnew

0 and Lnew
0 (IV ) ⊂ IV .

(P9) The Lnew
0 -action defines a non-negative garding on CV,+.

The folllowing theorem is a generalization of results of Arakawa-Moreau for V = V k(g) with H0
χ(V ) =

W k(g, f)Lag:

Theorem 2.3 ([GJ25]). Suppose (P1)–(P9). Then Hi
χ(V ) = 0 for i 6= 0, and grH0

χ(V ) ' C[J∞S].

3 Applications: Reduction by stages

We apply our theorem for V = V k(g) or V = V k(g) ⊗ A, then we get the equivalence theorem. How
about V = W k(g, f)? Answer: we get reduction by stages theorem, which tells that BRST reduction of
W -algebra gives different W -algebra under some nice geometric assumptions.

3.1 Reduction by stages (general cases)

Let X be a Poisson variety with a Hamiltonian M2-action and M1 a normal Lie subgroup of M2. Then
we obtain two Poisson varieties X//M1, X//M2 from X by using the Hamiltonian reductions. But, under
suitable assumptions, we may define a Hamiltonian M2/M1-action on X//M1 such that the following
diagram commutes:

X
//M2

//

//M1

&&
NNN

NNN
NNN

NNN
NN

X//M2

X//M1

//(M2/M1)

88ppppppp

This procedure is called the reduction by stages since we obtain X//M2 by stages. We will apply for
X = g∗.

3.2 Reduction by stages for W -algebras

Let (f1, h1), (f2, h2) be good pairs in g s.t. h1, h2 ∈ h, and

g =
⊕
j∈Z

g
(1)
j =

⊕
j∈Z

g
(2)
j

the Z-gradings by ad h1, adh2. Then we have Slodowy slices

Sf1 ' µ−1
1 (On1)/N1, Sf2 ' µ−1

2 (On2)/N2.

Definition 3.1. (f1, h1) is a step towards (f2, h2) if f0 := f2 − f1 ∈ g
(1)
0 ∩ g

(2)
−2, and

g
(1)
≥2 ⊂ g

(2)
≥1 ⊂ g

(1)
≥0, g

(1)
1 ⊂

2⊕
j=0

g
(2)
j , g

(2)
1 ⊂

2⊕
j=0

g
(1)
j .

Note: we will explain examples later.
By the step conditions,

• we have Of1 ⊂ Of2 (Zariski clusure).

• n1 ⊂ n2 ideal and n2 = n1 ⊕ n0 for some Lie subalgebra n0.

• Sf1 has a Hamiltonian N0-action for N0 := exp(n0) ' N2/N1.

The result (1) in the following was conjectured by Morgan in case of g = sln:

Theorem 3.2 ([GJ24]). Suppose that (f1, h1) is a step towards (f2, h2). Then
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1. Sf2 ' Sf1//N0.

2. U(g, f2) ' H0
f0
(U(g, f1)).

Examples:

• Let g = sln, a1, a2 ∈ N such that 1 ≤ a1 < a2 ≤ n and f1 = (a1, 1
n−a1), f2 = (a2, 1

n−a2). These
are called hook-type nilpotent elements:

Then f1, f2 satisfies the step conditions.

• Let g = sl4, f1 = (2, 12) and f2 = (22).

• Let g = so2n+1, f1 is subregular and f2 is principal.

• Let g = sp2n, f1 = (22, 12n−4) (short nilpotent) and f2 is principal.

• Let g = G2, f1 is Ã1 and f2 is subregular.

• (Maybe) more...

Our goal is to establish a proof of the following theorem:

Theorem 3.3 ([GJ25]). Suppose that (f1, h1) is a step towards (f2, h2). Then

W k(g, f2) ' H0
f0(W

k(g, f1))

for all k ∈ C.

Main technical difficulty is that we have no morphism naively between W k(g, f2) and H
0
f0
(W k(g, f1)).

To overcome the difficulty, we need to vary the defining complexes of these algebras.

3.3 Idea of proof for reduction by stages theorem

Under the step conditions, there exist nilpotent Lie algebras ni (i = 0, 1, 2) such that n2 = n1 ⊕ n0,
Sf1 ' µ−1

1 (On1
)/N1 and Sf2 ' µ−1

2 (On2
)/N2. Set

ñ2 := ñ1 ⊕ n0, ñ1 := g
(1)
>0.

We have ñi ⊃ ni for i = 1, 2. Let

V1 = V k(g)⊗Añ1
, C1 = V1 ⊗F(ñ1 ⊕ ñ∗1), C2 = V1 ⊗F(ñ2 ⊕ ñ∗2)

W1 = H0(C1), W2 = H0(C2), CW1
=W1 ⊗F(n0 ⊕ n∗0).

Then W1 =W k(g, f1) and H
0(CW1

) = H0
f0
(W k(g, f1)).

Geometry says:
N0 × Sf2 ' µ−1

0 (χ0), Ñ2 × Sf2 ' µ−1
2 (Oñ1

).

Therefore the structure theorem of BRST cohomology applies:

Hi(CW1
) = Hi(C2) = 0 (i 6= 0), grH0(CW1

) ' grH0(C2) ' C[J∞Sf2 ].

Let
ι : CW1 =W1 ⊗F(n0 ⊕ n∗0) ↪→ C1 ⊗F(n0 ⊕ n∗0) = C2.

Then we have ι : H0(CW1)→ H0(C2) and gr ι is an isom. Hence

H0
f0(W

k(g, f1)) = H0(CW1
) ' H0(C2).
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Remaining part: W k(g, f2) ' H0(C2). Recall C2 = V k(g)⊗Añ1
⊗F(ñ2 ⊕ ñ∗2). Set

Cn2
= V k(g)⊗An2

⊗F(n2 ⊕ n∗2),

Cint = V k(g)⊗Añ1
⊗F(n2 ⊕ ñ∗2).

Then the natural maps n2 ↪→ ñ2 and ñ∗2 ↠ n∗2 induces

C2 ←↩ Cint ↠ Cn2
.

Then we have H0(C2) ← H0(Cint) → H0(Cn2
), which are isomorphisms by the strucrue theorem of

BRST cohomology. Now we have H0(Cn2
) 'W k(g, f2) by the equivcalence theorem. As a consequence,

W k(g, f2) ' H0(Cn2
) ' H0(C2) ' H0(CW1

) = H0
f0(W

k(g, f1)).

This completes the proof.
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GAN-GUREVICH リフトのフーリエ係数の数論

山内 卓也 (東北大学)

1. 序文
本稿はトロント大のHenry Kim氏との共同研究 [11]の概説である. 内容を代数学シンポジ

ウムにおける講演内容に沿う形でまとめた.
表題のGan-GurecivhリフトはQ上の分裂例外群G2上のある種の尖点的保型形式 (cuspidal

automorphic form), またはそれが生成する保型表現である. 一般に簡約連結代数群G/Q上
の保型形式 F を調べるとき F が生成する (g, K)加群の素性を知ることは F の研究の方向性
を決める重要な手掛かりとなる ([27]). 加えて, 数論への応用を考える場合, 具体的に扱いや
すい F の表示が必要となる. G = GL2/QまたはG = SL2/Qの場合に代表される保型形式
は正則な楕円保型形式, 所謂, モジュラー形式である. モジュラー形式は正則性からフーリ
エ展開がきれいな形をしており, これを中心として様々な数論が展開される. このことは保
型表現論の一般論から眺めると極めて希な状況であり, 正則保型形式の範囲を超えて「フー
リエ展開」および「フーリエ展開係数の数論」の研究を実行するためには織田孝幸氏の哲学
([26],[27],[35])に立ち戻り保型形式を具体的に実現する球関数を明示的に求めなくてはならな
い (例えば, G = Sp4 の場合は文献 [24], [25],[26],[27],[28],[14]を参照).
本稿の設定ではAaron Pollackが明示的に求めた球関数とそれを用いて得られるフーリエ

展開の理論 ([30],[31])を援用する. この理論をGan-Gurevich リフトと呼ばれる PGL2/Qか
らG2へのリフトに適用することで, Gan-Gurevich リフトを生成する四元数カスプ形式をユ
ニポテントアーベル群に沿った先頭項のフーリエ展開係数を得る. 我々が興味を持つ対象は
S2k(SL2(Z)) (k ≥ 6は偶数)に属する正規化されたHecke 固有形式 f (以下これを newformと
呼ぶ)に付随する尖点的保型表現πfのGan-Gurevichリフトである. 得られたリフトを生成す
る保型形式は四元数カスプ形式と呼ばれる. このフーリエ係数を調べるためにGan-Gurevich
リフトの各有限素点における成分が退化主系列表現, 無限素点では退化主系列表現の部分表
現であることに着目し, 任意の素点において局所フーリエヤコビ写像を構成し, 大域的なフー
リエヤコビ展開との整合性を確認する. これより, Gan-Gurevich リフトのフーリエ係数の一
部は f の志村対応のフーリエ係数で記述されることが分かり, Grossの予想が部分的解決さ
れる.
本講演では先ずフーリエ係数の数論というものがどういうものか感じ取って頂くために具

体例から始める. そして,一般の保型形式に対するフーリエ係数を定義し, G2の場合にPollack
のフーリエ展開の理論を紹介する. Gan-GurevichリフトはGinzburgによるリフトと例外テー
タリフトとを組み合わせたハイブリッドリフトである. これについて簡単に紹介した後で, 四
元数カスプ形式に対するGrossの予想について述べる. Grossの予想とは彼がDavid Pollack
に宛てた手紙の中で論じた Saito-Kurokawa liftのG2類似のフーリエ係数の明示公式を含む
予想である.
後半では退化主系列表現の局所・大域フーリエヤコビ係数の理論を援用して得られた結果

について論じる. 最後に今後の課題や関連する話題についても述べたい.

Date: 第 70回 代数学シンポジウム, 2025年 8月 29日 (金).
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2. 保型形式のフーリエ係数の数論: 具体例
整数N, k ≥ 1,指標χ : (Z/NZ)× −→ Cに対して重さ k,レベルΓ0(N),指標χを持つモジュ

ラー形式 (正則楕円保型形式)全体の成す空間をMk(Γ0(N), χ), モジュラー尖点形式全体の成
す空間を Sk(Γ0(N), χ)で表す (cf. [4],[3]). 以下 χが自明指標のときは記号から略すことにす
る. 代数群 SL2/Qの保型因子を j : SL2(R)×H −→ C×, (γ =

(
a b
c d

)
, z) 7→ j(γ, z) = cz + d

と定義する. ただし, H = {z = x + y
√
−1 ∈ C | y > 0}は複素上半平面である. モジュラー

形式 f(z) =
∑
n≥0

an(f)q
n ∈Mk(Γ0(N), χ), q = e2π

√
−1z, z ∈ Hに対して,

ϕf : SL2(R) −→ C, g 7→ j(g,
√
−1)−kf(g

√
−1)

と定義すると, ϕf は SL2(R)上の保型形式 (automorphic form)となる (cf. [2, 1.3, 1.5-(1)]).
非負整数 nに対して, ϕf の n-th フーリエ係数を

Wn(ϕf ; g) :=

∫ 1

0

ϕf (

(
1 t
0 1

)
g)e−2π

√
−1ntdt

と定めると, 岩澤分解 g =

(
1 x
0 1

)(√
y 0
0
√
y−1

)
k ∈ SL2(R) = B(R)SO(2), x ∈ R, y >

0, k ∈ SO(2)より,

Wn(ϕf ; g) = y
k
2

∫ 1

0

f(x+ t+ y
√
−1))e−2π

√
−1ntdt

= y
k
2 qnan(f)(2.1)

= Im(g
√
−1)

k
2 e2π

√
−1n(g

√
−1)an(f)

となり, モジュラー形式 f の n-th フーリエ係数 an(f)は保型形式ϕf に対する積分Wn(ϕf ; g)
に対応する. ここで, an(f)は “数”であるのに対し, Wn(ϕf ; ∗)は SL2(R)上の関数であること
に注意されたい. Wn(ϕf ; g)における SL2(R)上の関数 Im(g

√
−1) k2 e2π

√
−1n(g

√
−1)は所謂, 球関

数と呼ばれる部分であり, これを基準にして得られるもの, 数論を展開するに相応しい数, が
我々がよく見かける an(f)である.
以下の例ではモジュラー形式のように対称領域上の関数のフーリエ係数についての話だが

上記のように保型因子を用いて (代数群上の)保型形式のフーリエ係数としても捉えられるこ
とに注意されたい.

Example 2.1. テータ級数 θ(z) =
∑
n∈Z

qn
2

, q = e2π
√
−1z, z ∈ Hに対して, θ4 ∈ M2(Γ0(4))で

あることが知られている (cf. [16, p.138-139]). モジュラー形式 θ4の n-thフーリエ係数は
an(θ

4) = ]{(n1, n2, n3, n4) ∈ Z4 | n2
1 + n2

2 + n2
3 + n2

4 = n}

となる. 他方, M2(Γ0(4)) = 〈E(2)
2 , E

(4)
2 〉Cとなることが知られている. ただし, E2(z) = 1 −

24
∑
n≥1

σ1(n)q
n, σ1(n) :=

∑
d|n

dに対して, E
(d)
2 (z) = (1 − d)−1(E2(z) − dE2(d)), d = 2, 4と定

義する. よって, ある a, b ∈ Cが存在して, θ4 = aE
(2)
2 + bE

(4)
2 となるが, フーリエ係数を比較

することで, a = 0, b = 1を得るので,

]{(n1, n2, n3, n4) ∈ Z4 | n2
1 + n2

2 + n2
3 + n2

4 = n} = an(θ
4) = an(E

(4)
2 ) = 8

∑
d|n
4∤d

d

2



を得る. これはよく知られた Lagrangeの四平方定理の保型形式を用いた証明である1.

Example 2.2. エータ積によって得られる級数 f(z) = η(z)η(23z) = q

∞∏
n=1

(1− qn)(1− q23n) =∑
n≥1

an(f)q
n = q − q2 − q3 + q6 + q8 − q13 − q16 + q23 + · · · + 2q59 + · · · は S1(Γ0(23), χ) の

元を定める. ただし, 2次指標 χ : (Z/23Z) = 〈5̄〉 −→ C×は χ(5̄) = −1で定める. 多項式
h(x) = x3 − x+ 1 ∈ Z[x]を考え, 各素数 pに対して h mod pを hpと記す. このとき, 各素数
p 6= 23に対して,

ap =

 2 (hpは Fp上の 1次式の積に分解)
0 (hpは Fp上 1次式と既約 2次式の積に分解)
−1 (hpは Fp上既約)

が成り立つ. このようにモジュラー尖点形式 f のフーリエ係数は多項式 hの相互法則 ([36,
Section 6])を支配している.

Example 2.3. 次数 2 のジーゲル上半空間 H2 = {Z = X + Y
√
−1 ∈ M2(C) | tZ =

Z, Im(Z) = Y > 0}を考える. G = Sp4 = {X ∈M4 | tXJ2X = J2}, J2 =
(

02 I2
−I2 02

)
とする

と, G(R)の元 γ =

(
A B
C D

)
およびZ ∈ H2に対して, γZ = (AZ +B)(CZ +D)−1と定める.

また, j(γ, Z) = CZ+Dとおく. これはGの (canonical)保型因子である. Γ = G(Z) = Sp4(Z)

とおき, その部分群 Γ∞ =

{(
A B
02 D

)
∈ Γ

}
を考える. 整数 k ∈ 2Z≥0と複素変数 sに対して,

Siegel-Eisenstein seriesを
Ek(Z, s) := det(Im(Z))s

∑
γ∈Γ∞\Γ

det(j(γ, Z))−k| det(j(γ, Z))|−2s, Z ∈ H2, s ∈ C

と定めると, これは {(Z, s) ∈ H2 ×C | k + 2Re(s) > 3} において絶対一様収束し, さらに, 全
s-平面に有理型に解析接続される (cf. [22, Section 1]). それを再びEk(Z, s)と記す. Kohnen
は各 Z ∈ H2に対して, E2(Z, 0)が有限であることを示し, そのフーリエ展開を計算した [17]
([21]に short proofがある). E2(Z, 0)はZに関する正則関数とはならないが,

E2(Z, 0) = (非正則な部分) +
∑

T∈Sym2(Z)∗>0

A(T )qT , qT = e2π
√
−1tr(TZ), Z ∈ H2

と展開される. ただし, Sym2(Z)∗ > 0は正定値半整数対称行列全体の成す集合. このとき, 正
整数m1,m2であって, m1m2が平方数でないものに対して, 次が成り立つ ([9, Section 2]):

1

288

∑
T∈Sym2(Z)∗>0

diag(T )=(m1,m2)

A(T ) = Hecke対応 Tm1と Tm2との交点数.

ただし, T = (tij)1≤i,j≤2に対して, diag(T ) := (t11, t22)である. また, 整数m ≥ 1に対して,
Hecke対応 TmはC × C内の解析的集合 {(j(τ), j(mτ)) ∈ C × C | τ ∈ H}に対応するアフィ
ン代数曲線である (cf. [33]). ただし, jは (Felix Kleinの)j-関数である. このように, E2(Z, 0)
の正則部分のフーリエ係数は幾何的意味をもつ (cf. [19]).

1ヤコビは楕円関数を用いた証明を与えた.
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Example 2.4. 整数 k ≥ 6に対して, 志村, Kohnenの基本結果により S2k := S2k(SL2(Z))
と半整数重さのモジュラー cusp formsの成す空間の plus空間 S+

k+ 1
2

(Γ̃0(4)) (cf. [16, Chapter

IV]) との間にHecke作用素を保つC線形同型が存在することが知られている. これを志村対
応という. 正規化されたHecke固有形式 f ∈ S2kに対応する S+

k+ 1
2

(Γ̃0(4))の元を Sh(f)と表し
fの志村リフトという. Sh(f) =

∑
n≥1

c(n)qnとフーリエ展開する. Kohnen-Zagierの結果 ([18])

により, 基本判別式Dであって (−1)kD > 0なるものに対して

(2.2)
L(k, f ⊗ χD)
〈f, f〉

=
c(|D|)2

〈g, g〉
· πk

(k − 1)!|D|k− 1
2

が成り立つ. ただし, χDは判別式Dを持つ 2次体に付随する 2次指標であり, f ⊗ χDは f の
χDによる捻りである. このように志村リフト Sh(f)の |D|-th フーリエ係数 c(|D|)は f ⊗ χD
の L関数の中心値と関係する.

3. 保型形式のフーリエ係数:一般論
G/Qを連結簡約代数群2とする (cf. G = GLn, SLn, PGLn, GSp2n, Sp2n, SO(p, q), U(p, q),

SU(p, q)). ある整数N をとり, Gを一般線形群GLN/Qに埋め込んでおく: ι : G ↪→ GLN .
G(Q)の離散部分群Γが数論的であるとはΓと ι−1(GLN(Z))∩G(Q)が通約可能3であるときを
いう. G(R)の元 gに対してそのノルムを, ι(g) = (gij)1≤i,j≤Nとおくとき, ||g|| :=

√ ∑
1≤i,j≤N

g2ij

と定める. G(R)のリー代数 g = Lie(G(R))の複素化 gCの普遍包絡環 U(gC) := T (gC)/〈X ⊗
Y − Y ⊗ X − [X,Y ] | X,Y ∈ gC〉, T (gC) =

⊕
n≥0

g⊗nC の中心を Z(gC)と表す4. gの元X と

G(R)上の (ベクトル値)関数 f に対して, X · f を

X · f(g) :=
( d
dt
f(g exp(tX))

)∣∣∣
t=0

と定め, この定義をC線形に gCに延長し, さらには U(gC)上にも自然に延長しておく.
GのQ-放物部分群 P とはGのQ上の閉部分群であり, G/P が射影的代数多様体となるも

のである. そのような P に対して, P = MPNP = MP nNP を Levi分解とする. MP は P に
含まれる最大の reductive部分であり, NP は P に含まれる最大のユニポテント正規部分群で
ある. 以下, P の Levi分解を単に P =MN と表すこともあるので注意されたい.
G(R)の最大コンパクト部分群をK∞とし, K∞の有限次元複素表現 ρ : K∞ −→ AutC(Vρ)

を考える. また, ΓをG(Q)の数論的部分群とする. このとき, 滑らかな Vρ値関数
f : G(R) −→ Vρ

が
(1) f(γgk∞) = ρ(k−1

∞ ), γ ∈ Γ, g ∈ G(R), k∞ ∈ K∞;
(2) Z(gC)のイデアル Jであって, dimCZ(gC)/J が有限となるものが存在して, J · f = 0;
(3) f は緩増加, つまり, ある正定数 C と正整数 nが存在して, 任意の linear functional

l : Vρ −→ Cに対して, |l ◦ f(g)| ≤ C||g||n, ∀g ∈ G(R),
2代数群 Gが簡約であるとは, Gは非自明な nomral unipotent 部分群を持たないときを言う.
3群 Gの部分群H,K が通約可能であるとは [H : H ∩K], [K,H ∩K]が共に有限であるときをいう.
4Gは半単純であるとし, その Q-階数を rとするとき, Z(gC)は r変数の C上の多項式環と同型となること

が知られている (Harish-Chandra同型).
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を満たすとき, f を (Γ, K∞)に対する型 (ρ, J)の保型形式 (automorphic form)という (cf. [2,
1.3+1.5-(1)]). そのようなもの全体の成す空間をA(Γ, ρ, J,K∞)と表す. さらに次の条件を課
すとき, f を尖点的保型形式 (cuspidal automorphic form)という:

(4) 任意のQ-放物部分群 P =MPNP 6= Gに対して,∫
(NP (R)∩Γ)\NP (R)

f(ng)dn = 0, ∀g ∈ G(R).

尖点的保型形式全体の成す空間をAcusp(Γ, ρ, J,K∞)と表す.
保型形式 f ∈ A(Γ, ρ, J,K∞)をとる. Q-放物部分群P =MNおよび連続指標ψ : N(R) −→

C×に対して,

fN,ψ(g) :=

∫
(N(R)∩Γ)\N(R)

f(ng)ψ(n)dn

を f のNに沿った指標ψに関するフーリエ係数という. ψはアーベル商N(R)/[N(R), N(R)]
を経由するので, f の [N(R), N(R)] の作用が自明な部分の情報を見ていることに注意された
い. よって, このフーリエ係数を用いて, f 全体が”フーリエ展開”されるとは限らないので注
意が必要である.

Example 3.1. 半単純群Gの対称領域G(R)/K∞がHermitian tube domainであるとき (cf.
G = Sp2n, SU(n, n), SU(n, n,H)5, SO(2, n), E7,3), Gは Q-放物部分群 P であって, NP が
アーベルであるものを備える. G上の保型形式 f のN に沿ったフーリエ係数は実際にN に
沿ったフーリエ展開に現れる係数と対応する. 正則な部分は Example 2.3で見たようにフー
リエ係数は球関数 (この場合は指数関数 qT と det(Y )の冪をかけたもの)の前に現れる数A(T )
である ([27, 2節]). 非正則な部分の記述に現れる球関数は一般には複雑になり, 幾つかの場合
には計算されているが完全にフーリエ展開を書ききるには至っていない (どの場合に書き下
されているかは [20], [14]等を参照).

Example 3.2. 連結簡約群GのQ-放物部分群P =MNを考える. Nは 2-step unipotencyを
持つと仮定すると, N の中心 Zは Z = [N,N ]を満たす. W = N/Zとおくとこれは additive
algebraic groupとなる. 連続指標 ψ : N(R) −→ C×は商W (R) = N(R)/Z(R)を経由するこ
とに注意する. 保型形式 f ∈ A(Γ, ρ, J,K∞)に対して, Nに沿った指標ψに関するフーリエ係
数 fN,ψは次のように現れる. 先ず, Zに沿った定数項

fZ(g) :=

∫
(Z(R)∩Γ)\Z(R)

f(zg)dz

を考える. このとき, fZ(zg) = fZ(g), z ∈ Z(R)なので, fZはコンパクトアーベル群WΓ\W (R)
の指標で展開ができる. ただし, WΓはN(R) ∩ ΓのW (R)への像を表す. この指標は連続指
標 ψ : N(R) −→ C×であって, N(R) ∩ Γ上自明なものを渡るので,

(3.1) fZ =
∑

ψ:N(R)−→C×
ψ|N(R)∩Γ=1

fN,ψ

という展開を得る. このようにフーリエ係数 fN,ψは f の Zに沿った定数項 fZ の展開に現れ
る. もう少し詳しく見ると, f は
(3.2) f =

∑
φ:Z(R)−→C×
φ|Z(R)∩Γ≡1

fZ,φ, fZ,φ(g) :=

∫
(Z(R)∩Γ)\Z(R)

f(zg)ϕ(z)dz

5H は Q上の四元数代数.
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と展開され, 連続指標ϕが自明指標 1のときが fZ = fZ,1である. 従って, 一般には fを記述す
るには非自明なϕに対しても fZ,φを調べる必要がある. 一方, 例外群G2のときには興味深い
ことに fZと f は等価な情報を持っていることが知られている (次節参照). 他方, fZ,φ, ϕ 6= 1
も十分に深い考察対象であり (G2の場合は [11, Appendix B],[23]を参照), 次の例で述べる
フーリエヤコビ展開を用いて考察される.

Example 3.3. この例に関する内容は [13]を参照. 連結簡約群GのQ-放物部分群P =MN =
NM = NoMをとる. ZNをNの中心とする. 今,Mの半単純部分群Hが存在して, J = NoH
がヤコビ群となっているとする. 定義より, N = XY Zという分解をもつ. ただし, XはN の
Lagrangian 部分群, Y はXの双対に対応する部分群であり, ZはNの中心である. この時, 非
自明な加法的指標ψ : ZN(R) −→ C1 := {z ∈ C| |z| = 1}とシュワルツ関数Φ ∈ S(X(R))に対
して, J(R)のmetaplectic double covering J̃(R) = N(R)oH̃(R)上のテータ関数Θψ(vh̃; Φ)で
あって, Θψ(zvh̃; Φ) = ψ(z)Θψ(vh̃; Φ), z ∈ ZN(R)を満たすものを J̃(R)のWeil表現の (lattice
modelを用いて)定義することができる. このときG(R)上の保型形式 f ∈ A(Γ, ρ, J,K∞)に
対して,

fψ,Φ(h̃) :=

∫
N(R)∩Γ\N(R)

fZ,ψ(vh)Θψ(zvh̃; Φ)dv

を f の (ψ,Φ)におけるフーリエヤコビ係数という. ただし, hは h̃の H̃(R) −→ H(R)による
像である. フーリエヤコビ係数 fψ,Φ(h̃)は H̃(R)上の保型型式である.

Example 3.4. G/QをQ上の簡約代数群とする. Bをボレル部分群とし, B = TN と Levi
分解する. ∆ = ∆(B, T )を (B, T ) に関する単純ルート全体の成す集合とする. また各元
α ∈ ∆ に対応する root spaceをXα ⊂ N と記す. 連続指標 ψ : N(R) −→ C1が非退化で
あるとは, 任意の α ∈ ∆に対して, ψ|Xα(R) 6≡ 1. そのような非退化指標 ψに対し, 保型形式
f ∈ A(Γ, ρ, J,K∞)が ψ-genericであるとは fN,ψ 6≡ 0となるときを言う. ψ-generic な f に対
して, fN,ψ をWhittaker フーリエ係数といい, その数論的性質については森本氏の講演およ
びその報告集原稿を参照されたい.

4. G2上の四元数保型形式とPollackの (ロバスト)フーリエ展開の理論
4.1. G2の定義. G2をQ上の分裂例外群 “G2”とする. G2の単純ルートは α, βであり (αは
short root, βは long root), positive roots全体の成す集合は

Φ(G2)
+ = {α, β, α + β, 2α + β, 3α + β, 3α + 2β}

となる. Roots 全体を Φ(G2) := Φ(G2)
+ ∪ (−Φ(G2)

+) とし, 各 root γに対して, Xγ を root
space (その元を xγ(t), t ∈ Gaとかく), wγ をWeyl元とする. [11, Appendix C]では Pollack
[31]に従って, G2を SO(3, 4)内で明示したので興味ある読者はそちらも参照されたい.
集合 {α}に対応する G2 の Q-放物部分群 P = MN に対してその unipotent part N は

Heisenberg 群の構造をもつ. 実際,

N = XβXα+βX2α+βX3α+βX3α+2β

= {n(a1, a2, a3, a4, t) := xβ(a1)xα+β(a2)x2α+β(a3)x3α+β(a4)x3α+2β(t) | a1, . . . , a4, t ∈ Ga}.
で与えられ, 演算は
n(a1, a2, a3, a4, t1)n(b1, b2, b3, b4, t2) = n(a1 + b1, a2 + b2, a3 + b3, a4 + b4, t1 + t2− a4b1 + 3a3b2)
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で与えられる. 具体的には

n(a1, a2, a3, a4, t) :=



1 0 −a3 2a2 −a1 a22 − a1a3 2a2a3 − a1a4 − t
0 1 −a4 2a3 −a2 −a2a3 + t a23 − a2a4
0 0 1 0 0 a1 a2
0 0 0 1 0 a2 a3
0 0 0 0 1 a3 a4
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

N の中心はZN = {n(0, 0, 0, 0, t) = x3α+2β(t) | t ∈ Ga}である. また, 座標を

(4.1) n1(a1, a2, a3, a4, t) := n(a1, a2, a3, a4,
1

2
t− (

1

2
a1a4 −

3

2
a2a3)).

と修正し, n1(a, t) = n1(a1, a2, a3, a4, t), a = (a1, a2, a3, a4) ∈ G4
aと書くことにすると

(4.2) n1(a, t1)n1(b, t2) = n1(a+ b, t1 + t2 + 〈a,b〉)
となる. ただし, 〈a,b〉 = a1b4 − 3a2b3 + 3a3b2 − a4b1, a = (a1, a2, a3, a4), b = (b1, b2, b3, b4).
これより, N はZN を中心とするHeisenberg群の構造をもつ.
また, 〈∗, ∗〉は

W := XβXα+βX2α+βX3α+β ' N/ZN .

上の symplectic formを定める. P の Levi factorはM ' GL2 であり,

(
a b
c d

)
∈ GL2に対応

するM の元m = m(

(
a b
c d

)
)は

m(

(
a b
c d

)
) =



d −cd 0 0 0 0 0
−ab a(bc+ 1) 0 0 0 0 0

0 0 d
a

−2cd
a

c2d
a

0 0
0 0 −b 2bc+ 1 −c(bc+ 1) 0 0

0 0 ab2

d
−2ab(bc+1)

d
a(bc+1)2

d
0 0

0 0 0 0 0 bc+1
d

b
d

0 0 0 0 0 c
a

1
a


で与えられる. Determinant 指標 det : M −→ GL1を上記同一視M ' GL2と det : GL2 −→
GL1との合成で与え, それを det : P −→ GL1に延長しておく. 直接計算で,

(4.3) Ad(m)(n1(a, z)) = mn1(a, z)m
−1 = n1(det(m)−1ρ3(m)a, det(m)z)

が示せる. ただし, ρ3(m)a は同一視
(4.4) W ' Sym3St2, a = (a1, a2, a3, a4)←→ fa(u, v) = a1u

3 + 3a2u
2v + 3a3uv

2 + a4v
3

の下, 作用mfa(u, v) = f(du+ bv, cu+av)に対応するものである. ここで, Sym3St2 はGL2の
2次元標準表現 Stの symmetric cubic 表現である. M のW への adjoint actionは det−1⊗ρ3
であり, 同型W ' det−1 St2 ⊗ Sym3St2 を誘導する. この作用は [31]で導入したものとは
若干異なることに注意. Haar 測度が考えられる設定に於いて, P の modulus characterは
δP (p) = | det(m)|3, p = mn ∈ P =MN で与えられる.
任意の標数 0の可換環Rに対して,

W (R) := {a = (a1, a2, a3, a4) := n(a1, a2, a3, a4, 0) | a1, a4 ∈ R, a2, a3 ∈
1

3
R}
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とおき, a = (a1, a2, a3, a4) ∈ W (R)に対して, Freudenthal’s quartic formを
(4.5) q(a) = − 1

27
discx(fa(x, 1)) = −3a22a23 + 4a1a

3
3 + 4a32a4 − 6a1a2a3a4 + a21a

2
4.

と定める.

4.2. G2上の四元数保型形式 (quaternionic modular forms)の定義. 以下では保型形式は
Q上の代数群上のアデール値上定義されたものを考える (cf. [2, Section 1.9]). 強近似定理よ
り, Section 3との定義との対応は容易に確認できる. Qのアデール環をAとし, その有限部
分をAf と記す.
G2(R)の極大コンパクト群をK∞とする. K∞ ' SU(2)3α+2β × SU(2)αが知られている.

ただし, SU(2)γ は G2(R)のコンパクト部分群で, その複素化の Lie代数が sl2,γ(γ に対する
sl2-triple)と同型となるものである. G2(R)の対称空間は実 14次元であるが複素構造を持た
ない. よって正則離散系列表現 (Gelfand Kirillov 次元が小さい表現)を持たない. しかしなが
ら, G2の場合におけるその代替物が, 四元数離散系列表現Dk, k ≥ 2である ([10]). Dkの最
小K∞-typeは (τk, Vk), Vk = Sym2k(C2)⊠ 1 で与えられ, 退化主系列表現への埋め込み

Dk ↪→ Ind
G2(R)
P (R) sgn

k(det)| det |k−
1
2

を持つことが知られている [10, Section 13](右辺は normalized induction).
以下では Gan-Gross-Savin [5, Section 7]に従って, G2(A)上の四元数保型形式 (quaternionic

modular forms)の定義を与える:

Definition 4.6. 滑らかな Vk-値関数 F : G2(A) −→ V ∨
k が重さ kの四元数保型形式 (quater-

nionic modular form)であるとは F が次の条件を満たすときを言う:

(1) F (γgκ∞) = τ∨k (κ∞)−1F (g), g ∈ G2(A), γ ∈ G2(Q), κ∞ ∈ K∞;
(2) あるG2(Af )の開コンパクト部分群が U 存在して, F (gu) = F (g) g ∈ G2(A), u ∈ U ;
(3) Z(gC)のイデアル Jであって, dimCZ(gC)/J が有限となるものが存在して, J · f = 0;
(4) 各 gf ∈ G2(Af )に対して F (gfg∞) は g∞ ∈ G2(R) について緩増加;
(5) F はDkに付随する (g, K∞)加群を生成.

さらに, G2の任意のQ-放物部分群の unipotent partに沿った定数項が 0であるとき, F を四
元数カスプ形式 (quaternionic cusp form)という.

4.3. Pollackによる四元数保型形式の (ロバスト)フーリエ展開. 標準加法的指標ψ = ⊗′
pψp :

Q\A −→ C× を p < ∞に対しては, ψp(x) = e−2π
√
−1Frac(x)とし (Frac(x) は x ∈ Qpの有理数

部分), p = ∞に対しては ψ∞(x) = e2π
√
−1xと定める. 各 t ∈ Qに対して, ψt : Q\AQ −→ C×

を ψt(∗) = ψ(t∗) によって定める. Section 4.1のHeisenberg 放物群P =MN を思い出す. N
の中心をZN とする. 今, F : G2(A) −→ V ∨

k を四元数保型形式とするとF は左ZN(Q)-不変な
ので, ZN に沿った展開

F =
∑
t∈Q

Ft = F0 +
∑
t∈Q×

Ft, Ft(g) :=

∫
ZN (Q)\ZN (A)

F (zg)ψt(z)dz(4.7)

を得る. 定数項 ZN に沿った F0および Ft, t 6= 0は F の情報を引き継いでいる. 実際, [5,
Lemma 8.5]を援用すると次が成り立つ ([11, Proposition 4.5]):

Proposition 4.1. 次は同値である:

(1) F = 0.
(2) F0 = 0.
(3) 任意の t ∈ Q×に対して, Ft = 0.
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(4) 任意に固定した t ∈ Q×に対して, Ft = 0.

よって, F を調べるために F0 を考えても情報は落ちていないと考えてよい. 実際, [11,
Theorem 1.1]により F0の情報から F が再構成される.
さて, Pollack はより一般の四元数保型形式に対して F0をN/ZN に沿った明示的フーリエ

展開を得た ([30]). Pollackはこれはフーリエ展開のロバスト理論と呼んでいる. それをG2の
場合に論じたのが [31]である. 他方, 成田宏秋氏は Ft, t 6= 0をフーリエヤコビ展開の理論を
用いて調べており, そのテータ展開係数 (SL2-部分)は連続スペクトラムに非自明に寄与する
ことを解明した. この成果は著者には驚くべきものであった.
さて, Pollack のフーリエ展開がどのようなものかを説明する. 任意の quasi-character

N(Q)\N(A) −→ C×は ZN(A)上自明であり,ある w ∈ W (Q)を用いてψw(n) := ψ(〈w, x〉), n =
n(x, t) ∈ N(A) と表せる. これより, W = N/ZN に沿った F0のフーリエ展開

F0(g) =
∑

w∈W (Q)

Fw(g), Fw(g) =

∫
N(Q)\N(A)

F (ng)ψw(n)dn.(4.8)

を得る. Aaron Pollackは球関数を計算することで Fwを明示した. それを強近似定理と岩澤
分解を用いると, F0は本質的には

F0(n(x)m) = F00(m) +
∑

w∈W (Q)
w≥0

aF (w)e
2π

√
−1⟨w,x⟩Ww(m),

n(x) := n(x, 0) ∈ W (R), m ∈ M(R) と表示される ([31, Theorem 3.4]). ただし, Ww(m)は
Pollackの V ∨

k -値球関数でありmodified Bessel関数を用いて表示される ([31, p.391]). また,

F00(g) =

∫
N(Q)\N(A)

F (ng)dnは F0のN/ZN に沿った先頭項である (F がカスプ形式なら 0で
ある). 和の指数に関しては, w ∈ W (Q)に対して, 同型 (4.4)で対応する多項式を fw(z, 1) と
するとき, 条件w ≥ 0 は「fw(z, 1)の根はすべて実数」という条件を意味する. さらに, w ≥ 0
に対して, fw(z, 1)が重根を持たないことと q(w) 6= 0は同値である.
F が四元数カスプ形式の場合, Pollack [30, Corollary 1.2.3]はより精密な展開

(4.9) F0(n(x)m) =
∑

w∈W (Q)
w≥0, q(w)<0

aF (w)e
2π

√
−1⟨w,x⟩Ww(m).

を得た (“q(w) < 0”は “下半”対称空間を考えていることに対応). 冒頭でキーワードとして
説明したフーリエ展開における「球関数」が e2π

√
−1⟨w,x⟩Ww(m)であり, その展開係数 aF (w)

が F の数論的性質を秘めた重要な数となる. 本稿の目標は F がGan-Gurevich リフトとよば
れる四元数カスプ形式であるときにある一部のwに対して aF (w)の数論的性質を調べること
である.

5. Gan-Gurevich リフト
この節の内容は [6]に従う. Gan-Gurevich リフトはGinzburgが構成したリフト (Miyawaki

lift型のリフト)と例外テータリフトを組み合わせたハイブリッドリフトである. 以下このリ
フトについて簡単に説明する. [6]では任意の代数体上で議論しているがここでは簡単のため
Q上で考える.
先ず, Ginzburg が構成したリフト [7]について説明する. PGL2(A)の既約 cuspidal 表現 τ

に対して, S̃L2(A)へのWaldspurger リフトを σ(既約 cuspidal 表現)とする. 一般に σが存在
するとも限らないが, 存在するための必要十分条件はインプシロン因子の言葉で与えられる
([6, Section 3.2]を参照). また, σは存在したとしても一意ではない. そのような σの同型類
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全体の成す集合を global Waldspurger packetといい Ãτ で表す. 各 σ ∈ Ãτ に対して, σの
Saito-Kurokawa リフト ([29])により得られるPGSp4(A)の既約 2乗可積分表現をGSp4(A)に
中心指標が自明となるように延長したものを SK(σ) と書く (SK(σ)は σに対して常に存在す
る). 以下の構成の後半においては SK(σ)は cuspidal とならないように σを選ぶが, そのよう
な σの存在は L(1

2
, τ) 6= 0 と同値である ([6, Theorem 3.2-(iii)]).

代数群GSp8のQ-放物部分群Q8 =MN で, M ' GL2 ×GSp4 となるものをとる. このと
き, (normalized)誘導表現 Ind

GSp8(A)
Q8(Q) δsQ8

(τ ⊗ SK(σ))に付随するEisenstein series の s = 3
14
に

おける residue が張る PGSp8(A)の既約 2乗可積分表現をΠ(σ)と記す.
さて, τ1, τ2をPGL2(A)の既約 cuspidal 表現とし, それぞれ保型形式の成すL2-空間の中で

実現しておく. また τ1に対して, σ1 ∈ Ãτ1を選ぶ. このとき, Σ(σ1, τ2)を次の保型形式が張る
GSp6(A)の表現とする:
(5.1)

θΠ(σ1)(f, ϕ)(g) :=

∫
SL2(Q)\SL2(A)

f(g, h · s(g))ϕ(h · s(g))dh, f ∈ Π(σ1), ϕ ∈ τ2, g ∈ GSp6(A).

ただし, g ∈ GSp6 に対して, s(g) ∈ GL2 は (g, s(g)) ∈ (GSp6 × GL2)
0 := {(g1, g2) ∈

GSp6 × GL2 | ν(g1) = det(g2)}を満たすものを勝手にとってきたものである (例えば, g ∈
Sp6 ならば s(g) = I2). Ginzburgは Σ(σ1, τ2)は non-zeroな L2(PGSp6(Q)\PGSp6(A)) な
PGSp6(A))-部分加群であることを示し, それがL2

cusp(PGSp6(Q)\PGSp6(A))に含まれるため
には ΘSK(σ1)(τ2) = 0 となることが必要十分条件であることを示した ([6, p.16, Proposition
4.3]). ただし, ΘSK(σ1)(τ2)はSK(σ1)をテータ核の類似として見て構成されるPGL2からPGL2

へのリフトであり, (5.1)と同様にして定義される ([6, Section 4.2]を参照).
ここで, L(1

2
, τ1) 6= 0を仮定することで, 先に説明したように τ1のWaldspurger リフト σ1

であって, SK(σ1)は cuspidal とならないように選ぶことができる. これより, ΘSK(σ1)(τ2) = 0
を得るので, non-zero な (既約とは限らない)cuspidal 表現 Σ(σ1, τ2)を得る. 以上がGinzburg
リフトの構成の概要である.

Gan-Gurevich は例外 dual pair (G2, PGSp6) ⊂ E7 (E7は分裂例外E7)に対する例外テー
タ対応ΘC3

E7
のΣ(σ1, τ2)の像ΘC3

E7
(Σ(σ1, τ2))のある idexに対するフーリエ展開および (分岐素

点を除いた部分)L関数計算し, 次を示した. [6]では τ1 6' τ2のとき, ΘC3
E7
(Σ(σ1, τ2)) = 0を示

しているので, τ1 ' τ2 の場合が本質であることに注意する:

Theorem 5.1. [6, p.3, Main theorem, Proposition 5.1,5.2,5.3, Appendix 14] PGL2(A)の既約
cuspidal 表現 τ はL(1

2
, τ) 6= 0を満たすと仮定し, τ のWaldspurger リフト σであって, SK(σ)

は cuspidal とならないものをとる. このとき, ΘC3
E7
(Σ(σ, τ))はG2(A)の non-zeroな (既約と

は限らない)cuspidal 表現であり, その既約成分Πはいずれも Ind
G2(A)
P (A) τ ⊗ | det |

1
2 の既約成分

と nearly equivalentである. さらに, Sを無限素点および τ の分岐素点全体の成す集合とする
とき, Πの標準部分 L関数は

LS(s,Π, St) = LS(s, Sym2τ)LS(s+
1

2
, τ)LS(s− 1

2
, τ)

を満たす.

Definition 5.2. 上記主張のΘC3
E7
(Σ(σ, τ))を τ のGan-Gurevichリフトという.

Gan-Gurevichリフトの既約性は判定されておらず, また, 無限素点における表現がどのよ
うなものであるか調べられていなかったため, 著者はKim氏との共同研究で次を確認した:

Theorem 5.2. ([11, Appendix A]) k ≥ 6とし, new form f ∈ S2k(SL2(Z))は L(k, f) 6= 0を
満たすと仮定する (この仮定から kは evenとなる). New form f に付随するPGL2(A)の既約
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cuspidal 表現を πf とする. このとき, πf のGan-Gurevich リフト Πf := ΘC3
E7
(Σ(σ, πf )) は既

約 cuspidal 表現であり, 無限素点における成分はDkと同型である. 特に, Πf は重さ kの四元
数カスプ形式で生成される. また標準 L関数は

L(s,Πf , St) = L(s, Sym2πf )L(s+
1

2
, πf )L(s−

1

2
, πf )

で与えられる.

6. Grossの予想
この節ではGrossがDavid Pollack氏に宛てた手紙に書かれてある予想について述べる. 重

さ k, G2(Ẑ)で固定される四元数カスプ形式 F : G2(A) −→ V ∨
k とそのZN に沿った定数項 F0

のフーリエ展開 (4.9)

F0(n(x)m) =
∑

w∈W (Q)
w≥0, q(w)<0

aF (w)e
2π

√
−1⟨w,x⟩Ww(m), n(x)m ∈ W (R)N(R)

を思い出す. 同型 (4.4)によりW (Z)の元 w = (a1, a2, a3, a4), a1, a4 ∈ Z, a2, a3 ∈ 1
3
Zに対応

する cubic formを pw(u, v) = a1u
3 + 3a2u

2v + 3a3uv
2 + a4v

3とする. このとき Z上階数 3の
可換代数Aw = Z · 1 + Z · α + Z · βを以下の構造で与える ([5, Proposition 4.2]): αβ = −a1a4,

α2 = −3a1a3 + 3a2α− a1β,
β2 = −3a2a4 + a4α− 3a3β.

以下, wは q(w) < 0および w ≥ 0を満たすと仮定する. このとき, Ew := Aw ⊗Z Qは Q
上エタールかつ Ew ⊗Q R ' R3 となる (実際には q(w) 6= 0, w ≥ 0 の条件のみでそうな
る). 環 Awが Ewの極大整環であるとき, Awはmaximalであるという. さらに, Artin表現
ρAw : GQ := Gal(Q/Q) −→ GL2(C)を ζAw(s) = ζ(s)L(s, ρAw)によって定義する (cf. [32,
Section 3]). また, L(s, f ⊗ρAw)を (unnormalized) Rankin-Selberg Lで s = kが central value
となるものとする. 以上で, Gross予想を述べる準備が整った.

Conjecture 6.1. (Gross の予想 [8]) 偶数 k ≥ 6および new form f ∈ S2k(SL2(Z))をとり,
Qf = Q(an(f) | n ≥ 1)を f のHecke体とする. このとき, f に対して, 重さ kの四元数カスプ
形式 Ff が存在して次を満たす:

(1) 適当な正規化の下, aFf (w) ∈ Qf が任意のmaximalなwに対して成立する.
(2) 任意のmaximalなwに対して

L(k, f ⊗ ρAw)
〈f, f〉

=
aFf (w)

2

〈Ff , Ff〉
· π2k

((k − 1)!)2|q(w)|k− 1
2

が成立する. ただし, 〈∗, ∗〉 は Petersson 内積である.

上記の予想の 2番目の主張はKohnen-Grossの公式 (2.2)の類似である.

7. 主結果と証明のアイデア
この節では [11]の主結果である「Ff に対するGross予想の部分的解決」の証明のアイデア

を紹介する. 主な道具は退化主系列表現における退化Whittaker関数および global Fourier-
Jacobi 展開と local Fourier-Jacobi 写像との整合性である.
偶数 k ≥ 6をとる. New form f ∈ S2k(SL2(Z))に対応する GL2(A)の既約 cuspidal表現

π = πf = ⊗′
pπp = πf ⊗ π∞ を考える. 以下通して, L(k, f) 6= 0を仮定する. 任意の有限
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素点 pにおいて, πp = π(µp, µ
−1
p ), µp : Q×

p −→ C× と表すとき, G2(Qp)の既約許容表現
Πp = Ind

G2(Qp)
P (Qp) µp ◦ det (normalized induction)を考える. 無限素点においては, 四元数離散系

列表現Π∞ = Dkを考える. 今, L(k, f) 6= 0を仮定しているので, Gan-Gurevich リフト Ff に
付随するG2(A)の保型表現は

Πf := ⊗′
pΠp

と同型になる. 各w ∈ W (Q), q(w) < 0, に対して Jacquet積分を用いることで functionals

w̃µp
w ∈ HomN(Qp)(Πp,C(ψw,p)), p <∞, W

(k− 1
2
)

w ∈ HomN(R)(Π∞,C(ψw,∞)),

を対応させることができる. ただし, ψw = ⊗′
pψw,p : N(Q)\N(A) −→ C× は ψw(n(x, t)) =

ψ(〈w, x〉)で定義される. 有限素点の場合はq(w) 6= 0という条件のみで, dim(HomN(Qp)(Πp,C(ψw,p))) =
1が示せる. 他方,無限素点においては q(w) < 0の仮定の下, dim(HomN(R)(Π∞,C(ψw,∞))) = 1
が示せる ([11, Section 6]). Gan-Gurevich リフト Πf の L2空間における実現

Π ↪→ L2
cusp(G2(Q)\G2(A))

を考え, φ = ⊗′
pφp ∈ Πf の上記実現における像を Ff (∗;φ)と記す.

Theorem 7.1. 上記の設定の下, Ff (∗;φ) は次のように展開される:

(7.1) Ff (g;φ) =
∑
s∈Q

F(s,0)(g;φ) +
∑

γ∈wβXβ(Q)

∑
s∈Q×

F(s,0)(γg;φ), g = (gp)p ∈ G2(A).

ただし,

F(s,0)(g;φ) :=
∑

w=(a1,a2,a3,s)∈W (Q)≥0
q(w)<0

Cµf
w (Ff )

( ∏
p<∞

w̃
µp
Ad(wα)w

(gp · φp)
)
W

(k− 1
2
)

Ad(wα)w
(g∞ · φ∞)

であり, Cµf
w (Ff ) ∈ Cである.

不分岐ベクトル φf = ⊗′
p<∞φp ∈ Π

G2(Ẑ)
f , φf (1f ) = 1および φ∞ ∈ Vk ⊂ Dkを適切に選ぶ.

このとき, Ff := Ff (∗;φ)に対して, フーリエ係数Cµf
w (Ff ) を調べたい.

以下では, w = (a1, a2, a3, a4) ∈ W (Z)≥0 := W (Z)∩W (Q)≥0, q(w) < 0であって, EwはQ3

かまたはQ×K (Kは 2次体) となるものを考える. 後者の場合はw ≥ 0からKは実 2次と
なる. このとき, あるm ∈ M(Q)を用いて w = Ad(m′−1)(t, 0, S, 0) と書くことができる. た
だし, m′ = Ad(wα)(m)であり, t, S ∈ Q は t < 0かつ S > 0を満たす.

Theorem 7.2. 上記, w = Ad(m′−1)(t, 0, S
3
, 0) ∈ W (Q), m′ = Ad(wα)(m)に対して, ある零

でない定数C(S)が存在して,

Cµf
w (Ff ) = C(S)µf (det(m))−1µf (S)

−1ctS

が成り立つ. ただし, µf = ⊗′
p<∞µpであり, ctS は f の志村リフト g := Sh(f)の (tS)-th フー

リエ係数である.

応用として, 例えば, 平方因子を持たない整数 t ∈ Z<−1で−tが実 2次体Q(
√
−t)の基本判

別式になっているものに対して, w = (t, 0, 1
3
, 0) (mはM(Q)の単位元のとき)を考えると,

Cµf
w (Ff )

2 = C(1)2c2t

となる. Kohnen-Zagierの公式 (2.2)より c2t の部分はL(k, f ⊗χQ(
√
−t)/Q) と関係付けられるの

で, Petersson内積 〈g, g〉と 〈Ff , Ff〉 とを結びつけることができれば, 上記 wに対してGross
予想がTheorem 7.2から従う.
主定理を t = −1, S = 1として, 応用として次が得られる.
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Corollary 7.3. Ew ' Q3を満たす元 w ∈ W (Q)に対して, Cµf
w (Ff ) は非零定数とL(k, f)と

の積である. 特に, そのようなwに対してはCµf
w (Ff ) 6= 0である.

8. 今後の展望と関連する話題
主定理 (Theorem 7.2)はG2の場合のArthur予想を仮定することで, レベルNが squarefree

の場合の Sk(Γ0(N)), k ≥ 2に対するGan-Gurevich リフトに対しても同様に証明される, そ
れが [11]の主定理である. 他方, 最近 [1]において6, CM formに対して, 同様の wに対して,
Gross予想が部分的に証明された. 我々の設定ではレベルは squarefreeなので, CM formを含
まない. よって, [1]との結果とは排反である.
残された問題は Ewが体の場合である. この場合は EwはGalois cubic または non-Galois

cubicのいずれかであり, それはD := −q(w) > 0が平方数かどうかで決まる. 今, Ewへの f
の cubic base change を fEw := BCEw(f)とすると, fEw はGL2(AEw)上のHilbert cusp form
となる. そこで, fEwのGan-Gurevich リフトをFfEw とする. このとき, Ew ⊗QEwはE3

wまた
はEw ×Ew(

√
D) となる. よって, 基礎体を cubic 拡大Ewに挙げると基礎体がQの場合の状

況になる. そこで, indexに対して, FfEw のフーリエ展開を調べることで間接的にGross予想
を証明する方法をHenry H Kim氏, 及び池田保氏と現在共同で考察中である. また, その中
で池田氏により, Gross予想のGGP予想からの formulationも考察されており, 今後の進展を
期待している.
他方, 四元数保型形式 F に対して展開 (4.7)

F =
∑
t∈Q

Ft = F0 +
∑
t∈Q×

Ft, Ft(g) :=

∫
ZN (Q)\ZN (A)

F (zg)ψt(z)dz

を思い出すと, Ft, t 6= 0のフーリエヤコビ展開を研究する問題は興味深い問題と思われる.
前述したように成田氏は [23]においてFtの楕円部分の解析を表現論的に行った. Ftの研究は
これから発展することを期待したい. 少なくとも, 最初の課題として種々の Eisenstein series
に対してフーリエヤコビ展開がどのようなものであるかは完全に理解されるべきである. そ
のためにはフーリエ係数の明示公式 (cf. [15],[34],[12])などが不分岐指標以外の場合にも必要
であり, 今後この部分の研究が進展することを期待したい.

9. G2の研究についての回想
著者は 2019年に Wee Teck Gan 氏により NUS に招待された際，Gross が David Pollack

に宛てた手紙のコピーを，本研究に対する励ましの言葉とともに受け取った．その後，論文
[11] を執筆するに至るまで，Henry H. Kim 氏と何度も議論を重ねてきたが，G2 に対する
Ikeda type 構成については，どうしてもある段階で本質的な困難に直面し，試みは繰り返し
失敗に終わった（ある時には，構成できたと思ったものが実際には 0であったこともあった）．
こうした困難については，ここ数年，成田氏と問題点を共有しながら議論を重ねることで，

どの辺りに問題の本質があるのかが徐々に見えてきた．その過程で，表現論的に捉えられる
Gan–Gurevich リフトに注目し，少なくとも部分的にでもフーリエ展開を理解するという方
向へと問題を転換したことが，一つの突破口となった．

6彼らは CM 楕円カスプ形式から U(1)のユニタリ Hecke指標を対応させ, それを先ず, テータリフトにより
PU(3)へリフトする. Cubic algebra Ew, w ∈W (Q)≥0の型に応じて,リフトを例外 dual pair PU(3)×G2 ⊂ E6

(E6 は quasi-split adjoint group of type E6)を用いて G2 へリフトする. E6 の Q-rankは Ew ' Q3 なら 6で
(特に split), Ew ' Q×K (K/Qは 2次体) のときは 4.
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スーパー代数群の既約表現のパラメータ集合について

柴田 大樹（岡山理科大学 理学部）

1. はじめに
表現論の研究を行うにあたり「その既約表現の性質を調べよ」というのは極めて基本的な

問いである．古典群（GLn, SLn, SOn, Sp2n）を含む代数群の大きなクラスである連結・分裂
簡約群は，Jantzen の教科書 [Jan03] でもメインの研究対象として扱われており，ルート・
データで記述されとても扱いやすいクラスである．その表現論もまたルートの言葉で組み合
わせ論的に記述され，現在に至るまでかなりのことが理解されてきている．例えば既約表現
はトーラスの指標群の元（ウェイト）から実質的に誘導表現により構成され，これらの既約
表現たちの集合のパラメータ付けも完全にルート系の条件として記述することができる．そ
の結果として，ヤング図形のような組み合わせ的対象と深い関係があることが示唆される．
一方で，スーパー代数群においてルート・データである程度記述できるようなクラスは種々

の具体例が以前から知られておりその表現論も個別に研究されていたが，[Shi20] にて dense

big cell の理論の考え方を用いることで，既約表現の構成を統一的にすることができた．し
かし，非スーパーのときのように既約表現の性質やパラメータ集合 Λ♭ の決定は（リー・スー
パー代数のレベルにおいても）非常に難しい問題として現在もなお残っている．ただし，具
体的ないくつかのスーパー代数群（GLm|n,Qn,SPO2n|ℓ など）に対しては，個々の特殊事情
を上手く解析することでそれぞれ深い研究がなされてきており，例えばパラメータ集合 Λ♭

の決定は既になされてきている（[BruKuj03, BruKle03, ShuWan08]）．他にもある特殊な条
件を満たすスーパー代数群に関しては，Kac 加群のようなよい “踏み台”があることで，非
スーパーのときと並行した議論を行えることが分かっている [Shi21]．
本稿では，スーパー代数群のうち “ルート系”がよく振舞うような（GLm|n,Qn,SPO2n|ℓ を

含む）大きなクラスに対して，ルート系の言葉で書かれた（計算可能な）集合 Λ⋆ を定義し，
個々の特殊事情を用いることなくパラメータ集合 Λ♭ がこの Λ⋆ に包含されることを示す．最
後に具体的ないくつかの場合に等号 Λ♭ = Λ⋆ が成り立つことをみていく．

謝辞. 第 70回代数学シンポジウムにおいて，講演の機会を与えて下さった関係者の皆様にこ
の場を借りて御礼申し上げます．本研究は JSPS KAKENHI (22K13905) の助成を受けたも
のです．

2. 代数群とその既約表現
本稿を通して種々の代数系（代数・余代数・ホップ代数など）は固定した体 k 上で考える．
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2 柴田 大樹（岡山理科大学 理学部）

2.1. 代数群の定義と例. 本稿ではアフィン代数群スキームのことを単に代数群という．すな
わち代数群 G とは可換代数の圏 Alg から群の圏 Grp への表現可能関手であり，その表現対
象 O(G) が有限生成であるもののことをいう．米田の補題により群構造を反映して O(G) に
は可換ホップ代数の構造が入り，ホップ代数の視点からも代数群を研究していくことが可能
である．

例 2.1. 可換代数Rに対して，素朴には特殊線型群は SL2(R) =
{
( a bc d ) ∈ Mat2(R)

∣∣∣ ad− bc = 1
}

という行列らからなる集合であり，これは行列の積によって群をなす．このようにして自然
に関手 SL2 : Alg→ Grp を得たことになる．さらに

SL2(R)→ Alg(k[A,B,C,D]/(AD − BC), R); ( a bc d ) 7→
(
A 7→ a,B 7→ b, C 7→ c,D 7→ d

)
が全単射であることが分かるので，SL2 は有限生成代数 O(SL2) = k[A,B,C,D]/(AD−BC)
によって表現される関手であり SL2 は代数群と分かる．そして SL2 の群構造である積・
単位元・逆元を反映して，O(SL2) には余積 ∆ : O(SL2) → O(SL2) ⊗ O(SL2)・余単位射
ε : O(SL2)→ k・アンチポード S : O(SL2)→ O(SL2) がそれぞれ定まり，明示的には(

∆(A) ∆(B)
∆(C) ∆(D)

)
=
(
A⊗A+B⊗C A⊗B+B⊗D
C⊗A+D⊗C C⊗B+D⊗D

)
,
(
ε(A) ε(B)
ε(C) ε(D)

)
=
(

1 0
0 1

)
,
(
S(A) S(B)
S(C) S(D)

)
=
(

D −B
−C A

)
で与えられる．これで O(SL2)が実際に可換ホップ代数を成すことは容易に確かめられる． □

一般線型群は代数群の代表例であり

GLn(R) := {g ∈ Matn(R) | det(g) 6= 0} (R は可換代数)

で与えられる．ただし，群構造は通常の行列群のものを入れる．実際，表現対象は O(GLn) =

k[Tij, D | 1 ⩽ i, j ⩽ n]/(D.det(Tij)− 1) である．他にも代数群の大きなクラスの例としては，
有限次元半単純リー代数とその忠実表現から構成されるChevalley 群（半単純代数群）と
呼ばれるものがある．例えば，特殊線型群 SLn(R) =

{
g ∈ GLn(R)

∣∣∣ det(g) = 1
}
や直交群

SOn(R) :=
{
g ∈ SLn(R)

∣∣∣ tg Jn g = Jn
}
や斜交群 Sp2n(R) :=

{
g ∈ SLn(R)

∣∣∣ tg J ′
2n g = J ′

2n

}
が Chevalley 群の例である．ここで tg は g の転置行列であり，

J2m+1 =

 1 0 0

0 O Im

0 Im O

 , J2m =

(
O Im

Im O

)
, J ′

2n =

(
O In

−In O

)

とおいている（In は n 次単位行列）．単純リー代数のラベルに応じて，SLn+1 は An 型，
SO2n+1 は Bn 型，Sp2n は Cn 型，SO2n は Dn 型と呼ばれている．
これら GL, SL, SO, Sp を含む概念として連結・分裂簡約群と呼ばれる，ルート・データと

対応する良い代数群のクラスがある．以下で見ていくように，このクラスは表現論の結果を
ルートの言葉で記述できるため，例えば組み合わせ論との相性が非常に良い．
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2.2. 代数群のリー代数とボレル部分群. 代数群 G が与えられたとき，その表現対象 O(G)

は可換ホップ代数をなすのであった．その余積を ∆ とかくとき，線型双対 O(G)∗ は積が
(f ∗ g)(x) =

∑
i f(yi)g(zi) (f, g ∈ O(G)∗, x ∈ O(G) with ∆(x) =

∑
i yi ⊗ zi)，単位元が余

単位 ε ∈ O(G)∗ であたえられる代数をなす．すると，代数 O(G)∗ は [f, g] := f ∗ g − g ∗ f
(f, g ∈ O(G)) によってリー代数をなすのであった．さて余単位の核を m = Ker(ε) とおくと
き，O(G) が有限生成であることから商 m/m2 は有限次元になる．その線型双対 Lie(G) :=

(m/m2)∗ は，自然に O(G)∗ の一部とみてリー代数構造が入る．
例えば代数群を G ⊂ GLn などと，行列群の閉部分群として実現したとき（これはいつも

可能），簡単な計算により

Lie(G)
id
= Ker(G(k[T ]/(T 2))

T 7→0−−−→ G(k)) ⊂ Matn(k)

と行列代数の部分リー代数として実現できる．例えば，G = GLn の場合は Lie(GLn) =

Matn(k) である．

例 2.2. 前のセクションで挙げた代数群のリー代数はそれぞれ
• Lie(SLn) =

{
X ∈ Matn(k)

∣∣∣ tr(X) = 0
}

• Lie(SOn) =
{
X ∈ Lie(SLn)

∣∣∣ tXJn + JnX = 0
}

• Lie(Sp2n) =
{
X ∈ Lie(SLn)

∣∣∣ tXJ ′
2n + J ′

2nX = 0
}

と（同型に）なる． □

定義から連結・分裂簡約群 G は分裂極大トーラス T をもつ．トーラス T は可換であり
その指標群を Λ := X(T)

def
= Homgrp(T,Gm) とおくと，適当な自然数 ` で Λ ∼= Z⊕ℓ と加法的

に同一視することができるのであった．ここで Gm = GL1 は一次元乗法群．
いま T はリー代数 g := Lie(G) へ共役により作用するが，T-不変部分空間を h とかくと

き g は
g = h⊕ ⊕

α∈4 (⊂Λ)

gα, gα =
{
X ∈ g

∣∣∣ ∀H ∈ h, [H,X] = α(H)X
}

とルート空間に分解する．
いわゆる “単純”ルート系を一つとり固定することで，ルート全体の集合 4 に順序をいれ

ることができ，それに即して非交和に分解することができる 4 = 4−t4+ with 4− = −4+

のであった．単純ルート系 Π ⊂ 4 は “線型独立”なものたちからなり Z⩾0Π := {
∑

i ciαi ∈
Λ | ci ∈ Z⩾0, αi ∈ Π} とおくとき 4+ = 4∩ (Z⩾0Π) を満たす．
さらに G の閉部分群たち B,B+ であって，そのリー代数がそれぞれ 4−,4+ に “対応す

る”ようなものがとれるのであった．これらは G のボレル部分群と呼ばれ，適当なユニポテ
ント部分群 U,U+ によってそれぞれ B ∼= U⋊ T,B+ ∼= U+ ⋊ T と分解される．
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例 2.3. G = GLn の場合を考える．トーラス Tとして対角行列全体からなるものをとり，そ
の指標群を加法的に Λ =

⊕n
i=1 Zε とみる．ここで

εi : T −→ k×; diag(t1, . . . , tn) 7−→ ti.

ルート系は 4 = {εi − εj | 1 ⩽ i 6= j ⩽ n} となる．例えば標準的なボレル部分群 B として
下三角行列全体がとれるが，これは

4+ = {εi − εj | 1 ⩽ i < j ⩽ n}, 4− = −4+

としたときのものである．ユニポテント部分群 U は対角成分がすべて 1 である下三角行列
全体である． □

2.3. 既約表現の構成. このセクションでも連結・分裂簡約群 G とその分裂極大トーラス T

とボレル部分群たち B ∼= U⋊ T,B+ ∼= U+ ⋊ T をとり固定する．
各 λ ∈ Λ に対して，一次元空間 kλ を λ を通した T-表現とみる．明らかに T-既約表現の

（同型を除く）全体は {kλ}λ∈Λ で与えられる．座標環の言葉でいえば O(T) が群様元で張ら
れる空間であることから従う．
分解 B ∼= U⋊Tがあることと Uがユニポテントであるということは，座標環の言葉でいえ

ば O(T) が O(B) の O(U)-余不変部分 O(B)coO(U) と同型であることと O(U) が余代数とし
て既約であることに対応している．従って，B-既約表現の（同型を除く）全体もまた {kλ}λ∈Λ
で与えられることが分かる．ここで kλ への B-作用は，分解に即した射影 B ∼= U⋊ T→ T

を用いていれている．
包含 B ⊂ Gを用いれば B-表現を自然に G-表現とみることができる（いわゆる誘導表現）．

座標環の言葉でいえば，各右O(B)-余加群M に対して，商ホップの自然な商射O(G)↠ O(B)
により O(G) を左 O(B)-余加群とみたときのコテンソル

indGB(M) :=M □O(B) O(G)

を自然に右 O(G)-余加群とみたものである．これは標数ゼロの場合のリー代数の方（双対の
方）の対応物でいえば，おおよそヴァーマ加群 M ⊗U(b) U(g) に相当する．
さて，これで既約 B-表現 kλ (λ ∈ Λ) を G-表現に持ち上げた indGB(kλ) を考え，

Λ+ :=
{
λ ∈ Λ

∣∣∣ indGB(kλ) 6= 0
}

とおき，各 λ ∈ Λ+ に対して，indGB(kλ)の G-台 (socle)を L(λ)とかく．すると，積 B×B+ →
G の双対の O(G)→ O(B)⊗O(B+) が単射であるということから，次の結果を得る．

命題 2.4. 既約 G-表現の（同型を除く）全体は {L(λ)}λ∈Λ+ で与えられる．

これでひとまず（抽象的だが）G の既約表現を得ることができたのだが，その構造に関し
て次元や指標の決定などを行うためには，もっと深い表現論を展開する必要がある．そこで
構造の研究はいったん後にして，次のセクションではパラメータ集合 Λ+ についてみていく．
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2.4. 既約表現のパラメータ. パラメータ集合 Λ+ の決定をする方法としては，いったん k が
代数閉体の場合を考え，誘導表現を

indGB(kλ)
id
=
{
f : G→ k

∣∣∣ ∀g ∈ G, b ∈ B, f(gb) = λ(b)−1f(g)
}

と同一視し，Gの Bruhat 分解を用いるなどの技を用いることで G上定義された非ゼロな関
数を構成し，それが indGB(kλ) の元になる条件を調べる，という手法がある（例えば [Jan03,

Part II, Proposition 2.6] 参照）．その結果，非ゼロな関数が作れるための必要十分条件を書
き下すことができ，

indGB(kλ) 6= 0 ⇐⇒ ∀α ∈ 4+, 0 ⩽ 〈λ, α∨〉

とルート系の言葉で記述することができる．これは支配的整ウェイトとでも呼ばれるべき条
件である．条件の 4+ はもちろん単純ルート系に置き換えてもよい．ここで 〈 , 〉 は自然な
ペアリング
〈 , 〉 : X(T)×X∗(T) −→ Z; (λ, ϕ) 7−→ λ ◦ϕ ∈ Endgrp(Gm) ∼= Z (X∗(T) := Homgrp(Gm,T))

であり，α∨ は α の双対ルートで 〈α, α∨〉 = 2 をみたす．本稿ではこの同値，つまり
Λ+ =

{
λ ∈ Λ

∣∣∣ ∀α ∈ 4+, 0 ⩽ 〈λ, α∨〉
}

を認めることにして次のセクションで具体例をいくつかみていくことにする．

2.4.1. GLn, SLn の場合（A 型）. まず G = GLn の場合を考える．例 2.3の記号 Λ =
⊕n

i=1 Zεi
などを自由に使う．各 1 ⩽ i ⩽ n に対して，

ηi : Gm → T; r 7→ diag(1, . . . , 1,

i
∨
r, 1, . . . , 1)

とおくとき，X∗(T)
def
=
⊕n

i=1 Zηi となり，ペアリングは 〈εi, ηj〉 = δi,j（クロネッカーのデル
タ）となっている．この記号のもと，ルート α = εi − εj (i < j) の双対ルートは

α∨ = ηi − ηj : Gm → T; r 7→ diag(1, . . . , 1,

i
∨
r, 1, . . . , 1,

j
∨
r−1, 1, . . . , 1)

となる．
すると各 λ =

∑n
i=1 λiεi ∈ Λ (λi ∈ Z) に対して，正ルート α = εi − εj (i < j) の双対との

ペアリングは 〈λ, α∨〉 = λi − λj となる．従って，既約表現のパラメータ集合は Λ
id
= Z⊕n の

同一視のもと
Λ+ = {(λ1, . . . , λn) ∈ Zn | λ1 ⩾ · · · ⩾ λn}

となる．
一方で G = SLn の場合は，GLn の場合の話をすべて det = 1 という条件で縛れば良いだ

けなので，例えば X(T ) =
⊕n

i=1 Zεi/Z(
∑n

i=1 εi) などとなって，まったく同様にして
Λ+ = {(λ1, . . . , λn) ∈ Zn/Z(1, . . . , 1) | λ1 ⩾ · · · ⩾ λn}
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となる．

2.4.2. SO2n+1 の場合（B 型）. この場合，トーラスを T = {diag(1, t1, . . . , tn, t−1
1 , . . . , t−1

n ) |
t1, . . . , tn ∈ Gm} ととっておく．すると，各 1 ⩽ i ⩽ n に対して，εi ∈ X(T), ηi ∈ X∗(T) をそ
れぞれ

εi : T −→ Gm; diag(1, t1, . . . , tn, t
−1
1 , . . . , t−1

n ) 7−→ ti,

ηi : Gm −→ T; r 7−→ diag(1, . . . , 1,

i+1
∨
r , 1, . . . , 1,

n+i+1
∨
r−1 , 1, . . . , 1)

と定めれば，X(T) =
⊕n

i=1 Zεi,X∗(T) =
⊕n

i=1 Zηi となり，またペアリングは 〈εi, ηj〉 = δi,j

となっている．
リー代数 Lie(SO2n+1) のルート分解を考えればルート系が

4 = {±εi | 1 ⩽ i ⩽ n} ∪ {sεi + tεj | s, t ∈ {±1}, 1 ⩽ i 6= j ⩽ n}

で与えられるとこが分かる．その単純ルート系として {ε1− ε2, . . . , εn−1− εn, εn} を取ること
ができ，このもとで既約表現のパラメータ集合は

Λ+ = {(λ1, . . . , λn) ∈ Zn | λ1 ⩾ · · · ⩾ λn ⩾ 0}

と，ヤング図形の集合と同一視される．

2.4.3. Sp2n の場合（C型）. この場合，トーラスを T = {diag(t1, . . . , tn, t−1
1 , . . . , t−1

n ) | t1, . . . , tn ∈
Gm} ととっておく．すると，各 1 ⩽ i ⩽ n に対して，εi ∈ X(T), ηi ∈ X∗(T) をそれぞれ

εi : T −→ Gm; diag(t1, . . . , tn, t
−1
1 , . . . , t−1

n ) 7−→ ti,

ηi : Gm −→ T; r 7−→ diag(1, . . . , 1,

i
∨
r, 1, . . . , 1,

n+i
∨
r−1, 1, . . . , 1)

と定めれば，X(T) =
⊕n

i=1 Zεi,X∗(T) =
⊕n

i=1 Zηi となり，またペアリングは 〈εi, ηj〉 = δi,j

となっている．
リー代数 Lie(Sp2n) のルート分解を考えればルート系が

4 = {±2εi | 1 ⩽ i ⩽ n} ∪ {sεi + tεj | s, t ∈ {±1}, 1 ⩽ i 6= j ⩽ n}

で与えられるとこが分かる．その単純ルート系として {ε1 − ε2, . . . , εn−1 − εn, 2εn} を取るこ
とができ，このもとで既約表現のパラメータ集合は

Λ+ = {(λ1, . . . , λn) ∈ Zn | λ1 ⩾ · · · ⩾ λn ⩾ 0}

となる．
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2.4.4. SO2n の場合 (D型). この場合，トーラスを T = {diag(t1, . . . , tn, t−1
1 , . . . , t−1

n ) | t1, . . . , tn ∈
Gm} ととっておく．すると，各 1 ⩽ i ⩽ n に対して，εi ∈ X(T), ηi ∈ X∗(T) をそれぞれ

εi : T −→ Gm; diag(t1, . . . , tn, t
−1
1 , . . . , t−1

n ) 7−→ ti,

ηi : Gm −→ T; r 7−→ diag(1, . . . , 1,

i
∨
r, 1, . . . , 1,

n+i
∨
r−1, 1, . . . , 1)

と定めれば，X(T) =
⊕n

i=1 Zεi,X∗(T) =
⊕n

i=1 Zηi となり，またペアリングは 〈εi, ηj〉 = δi,j

となっている．
リー代数 Lie(Sp2n) のルート分解を考えればルート系が

4 = {sεi + tεj | s, t ∈ {±1}, 1 ⩽ i 6= j ⩽ n}

で与えられるとこが分かる．その単純ルート系として {ε1 − ε2, . . . , εn−1 − εn} を取ることが
でき，このもとで既約表現のパラメータ集合は

Λ+ = {(λ1, . . . , λn) ∈ Zn | λ1 ⩾ · · · ⩾ λn−1 ⩾ |λn|}

となる．最後の “絶対値”は条件から λn−1 ⩾ ±λn が出てくるので，これを一つにまとめて
書くためにそうしている．

3. スーパー代数群とその既約表現
スーパーとは次数 2 の群 Z2 = {0, 1} で次数付けられた対象であって，スーパー対称性と

呼ばれる非自明な対称性
V ⊗W −→ W ⊗ V ; v ⊗ w 7−→ (−1)|v||w|w ⊗ v

が考慮された世界のことである．ここで v ∈ V,w ∈ W は斉次元で |v| ∈ {0, 1} はその次数．
スーパー対称性が非自明にならないように，スーパーを扱うときは基礎体 k の標数は 2 で
はないとする．例えば可換スーパー代数とは Z2 で次数付けられた代数 R = R0 ⊕ R1 であ
り，元に関するスーパー可換性

ab =

−ba if a, b ∈ R1,

ba otherwise

を満たすもののことである．
スーパー化された（ルート系で記述されるような良いクラスの）代数群においても「既約

表現を調べよ」というのは自然であり基本的な問題である．実は非スーパーの状況の類似の
議論をすることで，既約表現を全て構成することは可能である．そこで次の問題として，非
スーパーのときと同様に「既約表現のパラメータ集合をルート系で記述せよ」という問いが
生じる．いくつかの具体的なスーパー代数群に対しては，それぞれ固有の手法により具体的
なパラメータ集合の記述が知られている．本研究では個別の特殊性を用いずに，一般的手法
からどこまで形決定に迫れるかを考察する．



8 柴田 大樹（岡山理科大学 理学部）

3.1. 定義と例. 非スーパーのときと同様にして，スーパー代数群 G を，可換スーパー代数
の圏から群の圏への表現可能関手であって，表現対象 O(G) がスーパー代数として有限生成
であるものとして定義する．その “定義域”を可換代数の圏に制限したもの Gev は通常の代
数群になり，その偶部と呼ぶことにする．座標環の言葉で書けば O(Gev) は，O(G) をその
1-part O(G)1 の生成するイデアルで割ったものである．代表的なスーパー代数群の例を以下
に挙げる．

例 3.1. 以下で R = R0 ⊕R1 を可換スーパー代数とする．
• 一般線型スーパー群

GLm|n(R) :=

{(
A B

C D

)
∈ Matm+n(R)

∣∣∣∣∣ A ∈ GLm(R0), D ∈ GLn(R0),

B ∈ Matm,n(R1), C ∈ Matn,m(R1)

}

• Queer スーパー群

Qn(R) =

{(
A B

−B A

)
∈ GLn|n(R)

}
• Kac [Kac77] により分類された有限次元単純リー・スーパー代数（A, B, C, D, ...）と，
その忠実表現から構成される Chevalley スーパー群と呼ばれるスーパー代数群．例
えば，特殊線型スーパー群

SLm|n(R) =
{
g ∈ GLm|n(R)

∣∣∣ sdet(g) = 1
}

や，直交斜交スーパー群 (ortho-symplectic supergroups)

SPO2n|ℓ(R) =
{
g ∈ SL2n|ℓ(R)

∣∣∣ stg J2n|ℓ g = J2n|ℓ
}

がその代表例である．ここで，

sdet

(
A B

C D

)
:= det(A)det(D − CA−1B)−1,

st(
A B

C D

)
:=

(
tA tC

−tB tD

)
は，それぞれスーパー行列式（または Berezinian），スーパー転置と呼ばれるもので，
さらに

J2n|2m+1 :=


O In O O 0

−In O O O 0

O O O Im 0

O O Im O 0

0 0 0 0 1

 , J2n|2m :=


O In O O

−In O O O

O O O Im

O O Im O


と置いている．
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（注意）SLm+1|n+1 は A(m|n)型，SPO2n|2m+1 (with n ⩾ 0) は B(m|n)型，SPO2n|2 は C(n)

型，SPO2n|2m (with m ⩾ 2) は D(m|n)型に対応するが，文献によってパラメータの取り方・
書き方が違うことに注意する． □

さてスーパー代数群 G に対して，非スーパーのときと同様に

Lie(G) := (m/m2)∗, m := Ker(ε : O(G)→ k)

とおくことで，これも自然にリー・スーパー代数をなす．行列スーパー代数

Matm|n(k) =

{(
A B

C D

)
∈ Matm+n(k)

∣∣∣∣∣ A ∈ Matm(k), D ∈ Matn(k),

B ∈ Matm,n(k), C ∈ Matn,m(k)

}
は（次数付けは対角が 0 で非対角が 1）結合スーパー代数なので，自然なブラケット積
[X,Y ] := XY −(−1)|X||Y |Y X (X,Y ∈ Matm|n(k))によってリー・スーパー代数をなすのであっ
た．非スーパーのときと同様にして，G ⊂ GLm|n とみることで，自然に Lie(G) ⊂ Matm|n(k)
と行列スーパー代数の部分リー・スーパー代数として実現できることに注意する．

例 3.2. 例 3.1 のスーパー代数群たちのリー・スーパー代数はそれぞれ
• G = GLm|n の場合

Lie(GLm|n) = Matm|n(k)

• G = Qn の場合

Lie(Qn) =

{(
A B

B A

)
∈ Mat2n(k)

∣∣∣∣∣ A ∈ Matn(k), B ∈ Matn(k)
}

• G = SLm|n の場合

Lie(SLm|n) =

{
X =

(
A B

C D

)
∈ Matm|n(k)

∣∣∣∣∣ str(X) := tr(A)− tr(D) = 0

}
• G = SPO(2n|`) の場合

Lie(SPO2n|ℓ) =
{
X ∈ Lie(SL2n|ℓ)

∣∣∣ stX J2n|ℓ + J2n|ℓX = 0
}

となっている． □

3.2. リー・スーパー代数とルート系. スーパー代数群 G は，その偶部 Gev が連結・分裂簡
約群になっている（=ルートデータで記述される）ときに 連結・分裂準簡約スーパー群と呼
ぶことにする．このとき Gev の分裂極大トーラス T がとれるが，非スーパーのときと同様
にして G のリー・スーパー代数 g := Lie(G) に共役で作用し，次数付けを保つようなウェイ
ト分解を引き起こす：

g = h⊕ (
⊕
α∈Λ

gα0 )⊕ (
⊕
δ∈Λ

gδ1)
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ここで h は T-不変部分で，Λ := X(T) とおいている．各 ε ∈ {0, 1} に対して，4ϵ := {α ∈
Λ | gαϵ 6= 0} とおき，

4 :=

40 ∪41 if h1 = 0

40 ∪41 ∪ {0} if h1 6= 0

と（形式的に）おいておき，これを G のルート系と（公理的な特徴付けを与えず）いって
しまうことにする．
以下で群準同型 Υ : Z4 → R であって Υ(α) 6= 0 for all α ∈ 4 をとり固定する．すると
4± := {α ∈ 4 | ±Υ(α) > 0} として（非ゼロ）ルートに正負が入る．一般に 4 6= 4+ t4−

だし 4− 6= −4+ であるような例が存在することに注意する．

例 3.3. 例 3.2 のリー・スーパー代数のルート系をみていく．トーラスとしてはいずれも対
角行列からなるものをとるが，その成分の添え字を diag(t−m, . . . , t−1, t1, . . . , tn) のように中
央のカナメを境に正負で区別することにする（queer は関係ない）．

(1) G = GLm|n の場合，非スーパーのときと同様にして Λ =
⊕

−m⩽i⩽n,i 6=0 Zεi と同一視
したとき，4 = {εi − εj | −m ⩽ i 6= j ⩽ n with i, j 6= 0} で与えられ，4 = 40 t41

と非交和に分解し

40 = {εi − εj ∈ 4 | −m ⩽ i 6= j ⩽ −1 or 1 ⩽ i 6= j ⩽ n}

となっている．
(2) G = Qn の場合，Λ =

⊕n
i=1 Zεi であり，4 = {εi − εj | 1 ⩽ i 6= j ⩽ n} t {0} で与え

られ，40 = 41 となっている（パリティーがつぶれている）．
(3) G = SLm|n の場合は GLm|n のときと同様なので略．
(4) G = SPO2n|2m+1 の場合，Λ =

⊕
−n⩽i⩽m,i 6=0 Zεi であり，4 = 4+ t (−4+) with

4+
0 = {2εi | −n ⩽ i ⩽ −1} ∪ {εk | 1 ⩽ k ⩽ m} ∪ {εi ± εj | −n ⩽ i 6= j ⩽ m with i, j 6= 0},

4+
1 = {εi | −n ⩽ i ⩽ −1} ∪ {εi ± εk | −n ⩽ i < 0 < k ⩽ m}

で与えられる．
(5) G = SPO2n|2m の場合，Λ =

⊕
−n⩽i⩽m,i 6=0 Zεi であり，4 = 4+ t (−4+) with

4+
0 = {2εi | −n ⩽ i ⩽ −1} ∪ {εi ± εj | −n ⩽ i 6= j ⩽ m with i, j 6= 0},

4+
1 = {εi ± εk | −n ⩽ i < 0 < k ⩽ m}

で与えられる．
以上で εi は非スーパーの時と同じ意味の記号として用いている． □

一般のスーパー代数に対して，少なくとも現時点では公理的にそのルート系の “単純ルー
ト系”を考えないことにする（40 = 41 など厄介な状況があるから）．ただし，表現論を展
開するにあたりどうしても “単純ルート系”は便利なので，個々の具体例においては積極的
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に考えられている．例えば，G = GLm|n のときはブロック分割を忘れて GLm+n だと思った
ときの単純ルート系を考えればよい．

例 3.4. G = SPO2n|ℓ の場合，例 3.3 の正ルート系の取り方に対して，“単純ルート系” Ψ は
それぞれ以下のようになる．

(1) B 型 ` = 2m+ 1 の場合．` = 1 のとき

Ψ = {ε−n − ε−n+1, . . . , ε−2 − ε−1, ε−1},

` = 2m+ 1 with m 6= 1 のとき

Ψ = {ε−n − ε−n+1, . . . , ε−2 − ε−1, ε−1 − ε1, ε1 − ε2, . . . , εm−1 − εm, εm}.

(2) C 型 ` = 2 の場合

Ψ = {ε−1 − ε1, ε1 − ε2, . . . , εn−1 − εn, 2εn}.

(3) D 型 ` = 2m with m ⩾ 2 の場合

Ψ = {ε−n − ε−n+1, . . . , ε−2 − ε−1, ε−1 − ε1, ε1 − ε2, . . . , εm−1 − εm, εm−1 + εm}.

もちろん単純ルート系という言葉は厳密に定義していないが，非スーパーのときと同じよう
な意味で用いている． □

3.3. 既約表現の構成. ここでも連結・分裂準簡約スーパー群 G をとり，Gev の分裂極大トー
ラス T をとり固定しておく．
各 ε ∈ {0, 1} に対して，4±

ϵ := 4± ∩ 4ϵ とおき，u :=
⊕

α∈4− gα とおく．構成から Gev

のユニポテント群 U であって Lie(U) = u0 をみたすものが取れる．
実は，G の閉スーパー部分群たち T,U であって

Tev = T, Uev = U, Lie(T) = h, Lie(U) = u
を満たすものが構成できる．この T をスーパー・トーラスと呼ぶことにする．非スーパー
のときと同様にして自然な作用で T は U を normalize しており，ボレル・スーパー部分群
B を積写像 U⋊T→ G の “像”として定義する．
非スーパーの時と同様にして G の既約表現の構成方法は，スーパー対称性を考慮しても

まったく同様に成り立つことがすぐ分かる．そして上記の T,U,B,G（とそのプラスの方
U+,B+）が設定を満たすことが分かるので，既約表現があっという間に構成できる．ただし，
最初に O(T) の既約余加群を列挙する必要があるが，これはクリフォード理論を拝借すれば
よく，各 λ ∈ Λに対して，Tの既約表現 u(λ)を得ることができ，さらにこれら {u(λ)}λ∈Λ が
全てを尽くしていることが分かる．構成から，T-表現としては u(λ) ∼= k⊕nλ

λ for some nλ ∈ N
と最高ウェイトを重ねただけになっている．
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従って，あとは非スーパーの時と同じように {u(λ)}λ∈Λ たちを自然に B-表現とみて，さ
らに G-表現へと誘導

H0
B
(λ) := indG

B
(u(λ)) = u(λ)□O(B) O(G)

すれば，次が成り立つ [Shi20]．

命題 3.5. 既約 G-表現の（同型を除いた）全体は {L(λ) := socG(H
0
B
(λ)) | λ ∈ Λ♭} で与えら

える．ここで Λ♭ := {λ ∈ Λ | H0
B
(λ) 6= 0} とおいている.

3.4. 既約表現のパラメータ（先行研究）. 上述のように既約 G-表現の構成は非スーパーのと
きとまったく同様にすることができ，パラメータ集合 Λ♭ もまったく同じ形式で得られた．
次の目標はこのパラメータ集合の形を決定することになろう．
比較的簡単な考察により，T-表現の単射

H0
B
(λ) ↪→ H0

Bev
(λ)dim(u(λ)) ⊗

∧
(g1)∗

があることが分かる．ここで H0
Bev

(λ) := indGev
Bev

(kλ) とおいている．すると

(3.1) Λ♭ ⊂ Λ+ =
{
λ ∈ Λ

∣∣∣ ∀α ∈ 4+
0 , 0 ⩽ 〈λ, α∨〉

}
という包含を得る．つまり少なくとも Λ♭ は「Gev の支配的整ウェイト (with respect to Bev)

たちで書かれている」ということが分かる．
一般論ではこれ以上詳しいことは難しそうなので，以下ではひとまず知られている結果を

列挙することにする．以下の例では k を代数閉体とし，標数を p := char(k) とおく．注意
として，非スーパーのときと同様にして，もし p = 0 であれば G の表現論と Lie(G) の “可
積分”表現論は一致するので（表現圏が一緒），我われスーパー代数群の研究の立場におい
ては正標数のときの表現論が気になっている．

3.4.1. 一般線型スーパー群 GLm|n の場合. まずスーパー・トーラス T として G = GLm|n

の対角行列全体がとれる（単純にブロック分割を忘れて GLm+n だと思う）．これは Gev =

GLm ×GLn の標準的な分裂極大トーラス T に他ならない：T = T．正ルート系として

4+ = {εi − εj ∈ 4 | −m ⩽ i < j ⩽ n}

を選んだとき，ユニポテント U は G の下三角行列で対角が 1 のもの全体であり，ボレル・
スーパー部分群 B は G の下三角行列となる．
既約 G-表現のパラメータ集合は Brundan–Kujawa [BruKuj03] によって（主に正標数）決

定されており，その結果，偶部 Gev の Λ+ (with respect to Bev) に一致することが示されて
いる：

Λ♭ = Λ+ =
{
(λ−m, . . . , λ−1, λ1, . . . , λn) ∈ Zm+n

∣∣∣ λ−m ⩾ · · · ⩾ λ−1, λ1 ⩾ · · · ⩾ λn
}
.
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注意 3.6. 実は [Shi20] により，連結・分裂準簡約スーパー群 G が “良いパラボリック・スー
パー部分群 P”を持てば，具体的なルート系の挙動などを考察することなくやや一般的に
Λ♭ = Λ+ が成り立つことが示されている．いまの G = GLm|n の場合は，

P(R) :=

{(
A O

C D

)
∈ GLm|n(R)

}
(R は可換スーパー代数)

を取ればよい．他にも本稿では定義を省略するがperiplectic スーパー群も同様に良いパラ
ボリックをもつので，Λ♭ = Λ+ が成り立つことが分かっている．

3.4.2. Queer スーパー群 Qn の場合. まず G = Qn のスーパー・トーラス T として

T(R) =

{(
A B

−B A

)
∈ Qn(R)

∣∣∣∣∣ A,B は対角行列
}

(R は可換スーパー代数)

がとれる．もちろん T = Tev は Gev = GLn の対角行列全体であるので，T 6= T に注意す
る．正ルート系として

4+ = {εi − εj ∈ 4 | 1 ⩽ i < j ⩽ n}

を選んだとき，G のボレル・スーパー部分群 B は

B(R) =

{(
A B

−B A

)
∈ Qn(R)

∣∣∣∣∣ A,B は下三角行列
}

(R は可換スーパー代数)

となる．
既約 G-表現のパラメータ集合は Brundan–Kleshchev [BruKle03] によって（主に正標数）

決定されており，
Λ♭ =

{
(λ1, . . . , λn) ∈ Λ+

∣∣∣ λi = λi+1 =⇒ p | λi
}
,

where Λ+ = {(λ1, . . . , λn) ∈ Zn | λ1 ⩾ · · · ⩾ λn}.

となっている．もちろん Λ+ は Gev = GLn の支配的整ウェイト (with respect to Bev) 全体
の集合．これは p = 0 のときも p | λi ⇔ λi = 0 と解釈して成立する．
このように基礎体の標数に依存しているところが非スーパーとの大きな違いである．

3.4.3. 直交斜交スーパー群 SPO2n|ℓ の場合. まず偶部が

(SPO2n|ℓ)ev = Sp2m × SOℓ

となることに注意する（これが名前の由来であろう）．するとスーパー・トーラス T は
Sp2m, SOℓ それぞれの分裂極大トーラスを並べればよく，T = Tev をみたす．例 3.3 で与え
たルート系の順序 4+ = 4+

0 ∪ 4+
1 に応じたボレル・スーパー部分群 B を考えることがで

きる．
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既約 G-表現のパラメータ集合は Shu–Wang [ShuWan08] によって（主に正標数）決定さ
れている．先に結果を提示すると，` = 2m+ 1 の場合は，

Λ♭ =
{
(λ−n, . . . , λ−1, λ1, . . . , λm) ∈ Λ+

∣∣∣ λ−1 ⩾ ȷp(λ1, . . . , λm)
}
,

Λ+ =
{
(λ−n, . . . , λm) ∈ Zn+m

∣∣∣ λ−n ⩾ · · · ⩾ λ−1 ⩾ 0, λ1 ⩾ · · · ⩾ λm ⩾ 0
}

であり，` = 2m の場合は，

Λ♭ =
{
(λ−n, . . . , λ−1, λ1, . . . , λm) ∈ Λ+

∣∣∣ λ−1 ⩾ ȷp(λ1, . . . , λm−1, |λm|)
}
,

Λ+ =
{
(λ−n, . . . , λm) ∈ Zn+m

∣∣∣ λ−n ⩾ · · · ⩾ λ−1 ⩾ 0, λ1 ⩾ · · · ⩾ λm−1 ⩾ |λm|
}

となる．もちろん Λ+ は Gev = Sp2n × SOℓ の支配的整ウェイト全体 (with respect to Bev)

である．
上記で，分割 µ に対して ȷp(µ) は，p = 0 のときは µ の長さ `(µ) とし，p > 0 のときは µ

の中の p-removable cell の個数としている．ここで p-removable cell とは，次で定義され
るものである：まず µ をヤング図形でみたときに右下側の端の箱たちを rim というが，そ
の一番下から始めて p 個の箱たちを第一 p-segment と呼び，第一 p-segment の終わりから
strictly に右側の一番下から始めて p 個の箱たちを第二 p-segment と呼ぶ．これを繰り返す
ことで p-segments が得られる．ただし最後は箱の個数が p 個より少なくても構わないもの
とする．その各 p-segments の箱の中で「列の終わりに位置しているが，p-segment の p 個
目ではない」ものを p-removable cell と呼ぶ．

例 3.7. ここでは µ = (5, 4, 3, 3, 1, 1) のときを考える．もし p = 0 ならば定義から ȷp(µ) =

`(µ) = 6 である．もし p = 5 ならば，µ の rim ◦，p-segments •，p-removable cells × は，
それぞれ（段階的に）以下のようになる：

◦ ◦
◦ ◦
◦

◦ ◦ ◦
◦
◦

• •
◦ •
◦

• • •
•
•

• ×
◦ ×
◦

• • •
×
×

よって，この場合は ȷp(µ) = 4 となる． □

3.4.4. 例外型 Chevalley スーパー群の場合. Kac による有限次元単純リー・スーパー代数の
分類のうち例外型と呼ばれる D(2, 1;α), F(3|1), G(3) から構成される（simply-connected な）
Chevalley スーパー群の表現論は [CheShuWan19] でされており，それぞれの場合で Λ♭ を具
体的に書き下すことができている．
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3.5. 奇鏡映. 非スーパーの場合，簡約群の表現論（既約表現のパラメータ集合の決定を含む）
を研究するあたり，そのワイル群（ルート系による鏡映のなす群）の作用は重要なツール・
記述言語となるのであった．対してスーパーの場合は，一般的なスーパー代数群の設定（例
えば我われの連結・分裂準簡約スーパー群など）ではワイル群のような便利な言語は未だ見
つかっていない．ただし，個別の具体的なスーパー代数群に対しては，例えばワイル亜群の
ようなものを考えることができ，これを用いて表現論を展開することができている．例えば
前セクション 3.4 の各スーパー代数群 G の既約表現のパラメータの決定では，その偶部 Gev

のワイル群に奇鏡映と呼ばれる operation を追加しその “作用”による挙動を調べることが
本質的役割を果たしていた．
ここで奇鏡映とは，複素数体上定義された basic リー・スーパー代数 g に対して定義され

る次の操作のことである．ルート系 4 の一つ固定した単純ルート系 Ψ をとるとき，奇単純
ルート γ ∈ Ψ ∩ 41 であって等方的なもの（i.e., (γ, γ) = 0 なもの，言い換えれば 2γ /∈ 4
なもの）に対して，

Ψγ := {−γ} ∪ {α ∈ Ψ \ {γ} | (α, γ) = 0} ∪ {α + γ | α ∈ Ψ, (α, γ) 6= 0}

とおくとき，これがまた4の単純ルート系になることが知られている．正ルートの方も，Ψに
対応する正ルート系を 4+ とかくとき，Ψγ に対応する正ルート系は 4+

γ := {−γ}∪4+\{γ}
となる．伴ってボレルも b = h⊕⊕α∈4+ gα が bγ := h⊕⊕α∈4+

γ
gα へとうつる．この操作

rγ(Ψ) = Ψγ, rγ(4+) = 4+
γ , rγ(b) = bγ

を奇鏡映と呼ぶ．もちろん定義から −γ ∈ Ψγ であって r−γ(rγ(Ψ)) = Ψ が成り立つ．際立っ
た性質として次の結果が知られている [CheWan12, Proposition 1.32]．

事実 3.8. 任意の単純ルート系たち Ψ,Ψ′ に対して，上手い（偶）鏡映たちと奇鏡映たち
r1, . . . , rℓ が存在して Ψ′ = r1 · · · rℓ(Ψ) が成り立つ．

この事実により，通常のワイル群と奇鏡映をあわせれば単純ルート系（= ボレル）の全て
の取り替えが可能になることが分かる．

例 3.9. 例えば g = Lie(SPO2n|2m+1) with m = n = 2 の場合を考える．正ルート系としては
例 3.3 のもの

4+
0 = {ε−2 ± ε−1, ε1 ± ε2, 2ε−2, 2ε−1, ε1, ε2},

4+
1 = {ε−2 ± ε1, ε−2 ± ε2, ε−1 ± ε1, ε−1 ± ε2, ε−2, ε−1}

をとる．このときの単純ルート系は Ψ := {ε−2 − ε−1, γ := ε−1 − ε1, ε1 − ε2, ε2} となり，γ =

ε−1 − ε1 がこの中の唯一の等方的な単純奇ルートである．ただし（スーパー対称性が考慮さ



16 柴田 大樹（岡山理科大学 理学部）

れた）ペアリングは

(εi, εj) =


1 if − n ⩽ i = j ⩽ −1,
−1 if 1 ⩽ i = j ⩽ m,

0 otherwise

である．この γ で奇鏡映を行えば，

Ψγ = rγ(Ψ) = {γ′ := ε−2 − ε1,−γ, γ′′ := ε−1 − ε2, ε2}

となることが分かる．ここでは −γ, γ′, γ′′ が等方的な単純奇ルートになるので，らさに γ′, γ′′

で新しい奇鏡映を行うことができる（もちろん −γ で奇鏡映をすると Ψ に戻る）．その結
果は

Ψγγ′ = rγ′(Ψγ) = {−γ′, ε−2 − ε−1, γ
′′, ε2}, Ψγγ′′ = rγ′′(Ψγ) = {γ′, ε1 − ε2,−γ′′, ε2}

となる．それぞれ γ′′, γ′ で奇鏡映ができるが，その結果は

Ψγγ′γ′′ = rγ′′(Ψγγ′) = rγ′(Ψγγ′′) = {−γ′, γ′′′ := ε−2 − ε2,−γ′′, ε−1}

と一致する．最後にこれを γ′′′ で奇鏡映すると

Ψγγ′γ′′γ′′′ = rγ′′′(Ψγγ′γ′′) = {ε1 − ε2,−γ′′′, ε−2 − ε−1, ε−1}

を得る．これで全てのパターンが尽くされたことになり，それらを並べれば

Ψ Ψγ

Ψγγ′

Ψγγ′′

Ψγγ′γ′′ Ψγγ′γ′′γ′′′
rγ

//

rγ′
))RR

RRRR
RR

rγ′′ 55llllllll

rγ′

))RRR
RRR

rγ′′

55llllll

rγ′′′
//

という図形を得たことになる． □

通常の（偶）鏡映とこの奇鏡映という操作を考えることで，単純ルート系を全てのパター
ンで取り換えられるということは，リー・レベルでのヴァーマ加群において最高ウェイトの
条件を可能な限り全ていじることができるということになる．より詳しく述べると，ボレル
b ⊂ g をとり固定するとき，ヴァーマ加群 U(g) ⊗U(b) kλ の単純商を Vb(λ) とかくとき，こ
のボレルに対応する単純ルート系の中で等方的な単純奇ルート γ をとれば，

Vb(λ) ∼=

Vbγ (λ− γ) if (λ, γ) 6= 0,

Vbγ (λ) if (λ, γ) = 0

なる同型が存在する．本質的にこの手法を用いることで，前セクション 3.4 の結果が証明さ
れている（もちろん基礎体の標数がゼロのときは既に知られていた）．
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例 3.10. 例 3.9 の設定・記号のもとで，もしウェイト λ = (λ−2, λ−1, λ1, λ2) が「(λ, γ), (λ−
γ, γ′), (λ− γ − γ′, γ′′), (λ− γ − γ′ − γ′′, γ′′′) がすべてゼロではない」という条件をみたした
ら（一番最悪のケースを考えている），上の事実から

Vb(λ) ∼= Vbγ (λ−γ) ∼= Vbγγ′ (λ−γ−γ
′) ∼= Vbγγ′γ′′ (λ−γ−γ

′−γ′′) ∼= Vbγγ′γ′′γ′′′ (λ−γ−γ
′−γ′′−γ′′′)

という同型の列を得る．最右辺のウェイトを書き下せば

λ− (γ + γ′ + γ′′ + γ′′′) = (λ−2 − 2, λ−1 − 2, λ1 + 2, λ2 + 2)

となるので，ここで最高ウェイト条件を考えれば，新しい条件として λ−1 − 2 ⩾ 0 つまり
λ−1 ⩾ 2 が出てくる．この 2 が ȷp(λ1, λ2) の正体である． □

3.6. 主結果. 本研究ではリー・レベルの話を経由せずに，直接的に誘導表現の挙動を奇鏡映
により把握するという手法を取り，既約表現のパラメータ集合 Λ♭ をルート系の言葉で記述
することを目標とする．そのために誘導表現への奇鏡映の “作用”がどうなるかを知らなけ
ればならない．
その記述のためには扱うスーパー代数群のクラスを連結・分裂準簡約スーパー群からさら

に絞る必要がある．具体的には，扱う対象は連結・分裂準簡約スーパー群 G であって，“単
純”ルート系が考えられる状況であり，(i) γ ∈ 41, dim(gγ) = 1 をみたし，(ii) −4+ = 4−

をみたし，⊕α∈4\{0} gα (⊂ g = Lie(G)) の “良い”Chevalley 基底

{Xα (∈ gα0 )}α∈40 ∪ {Yγ (∈ gγ1)}γ∈41

が存在することなど，ルート系に常識的な条件を課す．これまでの GLm|n,Qn,SPO2n|ℓ など
はこの条件を満たす．(i) の条件から，Yγ はスカラー倍を除き一つに決まることに注意する．
また (ii) の条件から，各 γ ∈ 41 に対して Y±γ を考えることができる．これで

Kγ := [Yγ, Y−γ] ∈ h0
とおく．
この準備のもとで次の主張を示すことができている [S.] (in progress)．

定理 3.11. 固定した正ルート系 4+ と対応するボレル・スーパー部分群 B について．任意
の等方的単純奇ルート γ ∈ 41 に対して，同型

H0
B
(λ) ∼=

H0
Bγ
(λ− γ) if λ(Kγ) 6= 0 in k,

H0
Bγ
(λ) if λ(Kγ) = 0 in k.

が成り立つ．ここで，Bγ は γ による B の奇隣接するボレル・スーパー部分群である．つま
り，Bγ に対応する正ルート系が 4+

γ = {−γ} ∪ 4+ \ {γ} で与えられるようなものである．
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このとき，定義から 4+
0 = (4+

γ )0 かつ Bev = (Bγ)ev が成り立っている（つまり偶部は不
変）ことに注意する．
いま包含 Λ♭ ⊂ Λ+ が言えていたことを思い出せば，これは十分に偶部 Gev のワイル群の

作用（偶鏡映）から来る条件は考慮されていると理解できる．従って，あとは奇鏡映から来
る条件で削れば（少なくとも）よいのではないか，と考えるのは自然である．そこで，考え
られる限りの全ての奇鏡映のパターンで条件を削ることをやってみる．
以下で G のボレル・スーパー部分群 B を一つとり固定する．これに対応する単純ルート

系から始め，考えられる奇鏡映の一つの列

B
γ1⇝ B1

γ2⇝ B2
γ3⇝ · · · γN⇝ BN .

を S(B) と書くことにする．ウェイト λ ∈ Λ をとり固定する．この S(B) に対して，再帰的
に以下の量を定義する：

λ(0) := λ, c
(0)
λ := 0, λ(i):=λ

(i−1) − c(i)λ γi, c
(i)
λ :=

1 if λ(i−1)(Kγi) 6= 0 in k,

0 if λ(i−1)(Kγi) = 0 in k.

すると定理 3.11 から，同型の列 H0
B
(λ) ∼= H0

B1
(λ(1)) ∼= · · · ∼= H0

BN
(λ(N)) を得る．従って，も

し λ ∈ Λ♭ ならば，奇鏡映が偶部を変えていなかったことと Λ♭ ⊂ Λ+ を思い出せば，新しい
条件

1 ⩽ ∀r ⩽ N, ∀α ∈ 4+
0 , 〈λ−

r∑
i=1

c
(i)
λ γi, α

∨〉 ⩾ 0.

を得たことになる．
そこで，B から始まる奇鏡映の列 S(B) = (B

γ1⇝ B1
γ2⇝ · · · γN⇝ BN) に対して，

ΛS(B) :=

{
λ ∈ Λ+

∣∣∣∣∣ 1 ⩽ ∀r ⩽ N, ∀α ∈ 4+
0 , 〈λ, α∨〉 ⩾

r∑
i=1

c
(i)
λ γi, α

∨〉
}

とおくことで，次の結果が従う．

定理 3.12. 既約表現のパラメータ集合 Λ♭は Λ⋆ :=
⋂

S(B){ΛS(B) | B は B から始まる奇鏡映の列}
の部分集合である．ここで S(B) は奇鏡映の列のうち “最長”の道を動く．

このようにひとまずは奇ルートの情報をすべて使うような条件で書き下すことができた．
今後は適切なスーパー代数群のクラスを設定し，そのクラスでパラメータ集合と Λ⋆ が等し
いか否かを精査する（条件を精査する）必要がある．

3.7. 簡単な例. 以下では基礎体 k を標数 p = 0 の代数閉体とする．このセクションでは具
体例を通して，定理 3.12 で Λ♭ = Λ⋆ であることをみる．
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3.7.1. SPO2n|2m+1 with n = m = 2 の場合. 例 3.9 の設定を使う．つまり単純ルート系とし
て Ψ = {ε−2 − ε−1, γ := ε−1 − ε1, ε1 − ε2, ε2} をとる．この場合，ちょっとした考察から，奇
鏡映の列として重複の無い一番最長なもの

S(B) = (B
γ⇝ Bγ

γ′⇝ Bγγ′
γ′′⇝ Bγγ′γ′′

γ′′′⇝ Bγγ′γ′′γ′′′)

をとれば Λ⋆ = ΛS(B) になることが分かる．
各 −n ⩽ i, j ⩽ m with i, j 6= 0 に対して，マイナスの位置は中央のカナメから数えるとい

う意味にしておき行列単位を Ei,j と書くことにする．これで γ = εi − εj with i = −1, j = 1

に対して，その Chevalley 基底として

Yγ := Ej+m,i + Ei−n,j = E3,−1 + E−3,1 =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


がとれ，マイナスの方は Y−γ = Ej,i−n − Ei,j+m = E1,−3 − E−1,3 が取れる（see [ShuWan08,

§3.3]）．すると，計算により

Kγ = [Yγ, Y−γ] = diag(0, 1, 0,−1 | 1, 0,−1, 0, 0)

とわかる．
以下でウェイト λ = (λ−2, λ−1, λ1, λ2) ∈ Λ⋆ をとり固定する．少なくとも λ ∈ Λ+ なので，

λ−2 ⩾ λ−1 ⩾ 0 かつ λ1 ⩾ λ2 ⩾ 0 が成り立っていることに注意する．目標は λ ∈ Λ♭ を示す
ことである．ただし Λ♭ はセクション 3.4.3 の結果を知っているという立場をとる．つまり，
目標を示すためには条件

(3.2) λ−1 ⩾ `(λ1, λ2) (= ȷp=0(λ1, λ2))

を示せば十分である．実直に場合分けをたくさん行う．
(1) まず λ(Kγ) = λ−1 + λ1 であることに注意する．もし λ(Kγ) = 0 であったら，条件か
ら λ−1 = λ1 = 0 でなくてはならない．従って，特に λ2 = 0 を強いるので，このと
き `(λ1, λ2) = 0 となり，条件 (3.2) はOKと分かる．

(2) 以下で λ(Kγ) 6= 0 の場合を考える．まず γ′ := ε−2 − ε1 ∈ Ψγ の Chevalley 基底を考
えて（γ のときと同様）計算すれば Kγ′ = [Yγ′ , Y−γ′ ] = diag(1, 0,−1, 0 | 1, 0,−1, 0, 0)
となり，

(λ− γ)(Kγ′) = λ−2 + λ1 + 1
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となる．いま λ−2, λ1 ⩾ 0 なのでこれはゼロになりえない．そこでさらに進めて，
γ′′ := ε−1 − ε2 ∈ Ψγγ′ の Chevalley 基底を考えて計算すればKγ′′ = [Yγ′′ , Y−γ′′ ] =

diag(0, 1, 0,−1 | 0, 1, 0,−1, 0) となり，

(λ− γ − γ′)(Kγ′′) = λ−1 − 1 + λ2

となる．
(3) もし (λ− γ − γ′)(Kγ′′) = 0 であったら，条件から λ−1 = 1 かつ λ2 = 0 でなくては
ならない．従って，`(λ1, λ2) = `(λ1) ⩽ 1 = λ−1 と分かり，条件 (3.2) はOK．

(4) 以下で (λ−γ−γ′)(Kγ′′) 6= 0の場合を考える．まず γ′′′ := ε−2−ε2 ∈ Ψγγ′γ′′ の Cheval-

ley 基底を考えて計算すればKγ′′′ = [Yγ′′′ , Y−γ′′′ ] = diag(1, 0,−1, 0 | 0, 1, 0,−1, 0) と
なり，

(λ− γ − γ′ − γ′′)(Kγ′′′) = λ−2 + λ2 − 2

となる．
(5) もし (λ − γ − γ′ − γ′′)(Kγ′′′) = 0 なら，B γ⇝ Bγ

γ′⇝ Bγγ′
γ′′⇝ Bγγ′γ′′ で奇鏡映の

列が止まったということになる．このときの ΛS(B) の条件は ∀α ∈ 4+
0 に対して，

〈λ, α∨〉 ⩾ 〈γ + γ′ + γ′′, α∨〉 となる．値を具体的に入れてチェックしてみると，新しい
条件として 2λ−1 ⩾ 4（α = 2ε−1 の箇所）を得る．従って，λ−1 ⩾ 2 ⩾ `(λ1, λ2) とな
り，条件 (3.2) はOK．

(6) もし (λ− γ − γ′ − γ′′)(Kγ′′′) 6= 0 なら，奇鏡映の列は B
γ⇝ Bγ

γ′⇝ Bγγ′
γ′′⇝ Bγγ′γ′′

γ′′′⇝
Bγγ′γ′′γ′′′ の全て動いたことになる．この場合でも上記と同様に不等号で比較を行え
ば良いのだが，新しい条件は出てこず，この場合も条件 (3.2) はOKと分かる．

以上の考察から，Λ♭ = Λ⋆ が成り立つことが分かった．

3.7.2. Q3 の場合. セクション 3.4.2 の設定を使う．この場合，偶・奇のルートが一致してい
るので正確には定義をせねばならないが，ひとまずは “単純ルート系”として

Ψ := {ε1 − ε2, ε2 − ε3} ⊂ 4+
0 = 4+

1 = {ε1 − ε2, ε1 − ε3, ε2 − ε3}

をとる．これで γ := ε1−ε2 に対する “奇鏡映”を形式的に考えると，Ψγ = {−γ, γ′ := ε1−ε3}
を得る．これは通常の GL3 での鏡映を考えていることに他ならない．さらに γ′ での “奇鏡
映”をすればΨγγ′′ = {ε2 − ε3,−γ′} を得る．
さて，任意に λ = (λ1, λ2, λ3) ∈ Λ⋆ をとり固定する．もちろん λ ∈ Λ+ だから λ1 ⩾ λ2 ⩾ λ3

に注意する．これが λ ∈ Λ♭ になることを，セクション 3.4.2 の Λ♭ の結果を用いて示してみ
る．いまの場合は，条件の対偶でみて例えば，λ1 6= 0 =⇒ λ1 6= λ2 がいえたらよい（他も同
様）．計算により

λ(Kγ) = λ1 + λ2
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と分かる．もし λ(Kγ) = 0 であれば，λ1 6= 0 と仮定していたので，これは λ1 6= λ2 を意味
するので OK．そうでない場合 λ(Kγ) 6= 0 は，ここまでの ΛB の条件を考えることで，

λ1 − λ2 = 〈λ, (ε1 − ε2)∨〉 ⩾ 〈λ, (ε1 − ε2)∨〉 = 2

を得る．従ってこの場合も λ1 6= λ2 と分かる．
さらに奇鏡映を行ってもこれ以上条件が出てこないことが確かめられるので，結局 λ ∈ Λ♭

であることが分かった．以上から，Λ♭ = Λ⋆ が示された．
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ユニタリ群上の Whittaker 周期の市野-池田型公式について

森本　和輝
(神戸大学大学院理学研究科)

概 要

LapidとMaoはWhittaker周期と随伴 L関数の特殊値とを結ぶ明示公式 (市野-池田型公式)を予想し
た。本稿では、Lapid-Mao予想のユニタリ群の場合の証明について説明する。

1 イントロダクション

タイトルにある市野-池田型公式とは、L関数の特殊値と保型形式の周期とを結ぶ明示公式の定式化の一つで
ある。Lapid-Mao予想では、Whittaker周期と呼ばれる周期についての市野-池田型公式を予想している。こ
の章では、 Lapid-Mao予想の元となった正則モジュラー形式の内積と L関数の特殊値とを結ぶ明示公式につ
いて振り返っておく。
f を重さ k、レベル SL2(Z)の正則モジュラー形式とする。つまり、f はH := {x+ iy ∈ C : y > 0}上の正

則関数で次の条件を満たす

• f
(
az + b

cz + d

)
= (cz + d)kf(z),

(
a b

c d

)
∈ SL2(Z)

• f(z) =
∞∑
n=0

af (n)e
2πinz の形の Fourier展開をもつ

さらに、af (0) = 0の時、f をカスプ形式と呼ぶ。重さ k、レベル SL2(Z)の正則モジュラー形式全体をMk(1)、
またカスプ形式全体を Sk(1)と書く。Mk(1)には Hecke環と呼ばれる多元環が作用する。f ∈ Mk(1)がすべ
てのHecke環の元に関して固有形式となるとき、f をHecke固有形式とよぶ。Hecke固有形式の Fourier係数
af (1)はゼロでないので、af (1) = 1となるように正規化できる。
f ∈ Sk(1)からはさまざまなL関数が定義できる。例えば、f の標準L関数L(s, f)(s ∈ C)は次で定義される

L(s, f) =
∞∑
n=1

af (n)

ns
.

L関数 L(s, f)は Re(s)≫ 0で絶対収束し、全平面に正則関数に解析接続できる。さらに、f が正規化された
Hecke固有形式の場合には、L関数は次の無限積表示を持つ

L(s, f) =
∏
p

(1− af (p)p−s + pk−1−2s)−1.

また、一般的に L関数は適当な関数等式を満たす。今の場合には、Λ(s, f) := 2(2π)−sΓ(s)L(s, f)とおくと、

Λ(s, f) = (
√
−1)kΛ(k − s, f)

という関数等式を満たす。この L関数を標準 L関数と呼ぶ理由を説明しておく。以下 f ∈ Sk(1)は正規化され
たHecke固有形式とする。今、L関数の局所因子を次のように分解しておくと

1− af (p)p−s + pk−1−2s = (1− αf (p)p
k−1
2

−s)(1− αf (p)−1p
k−1
2

−s) af (p) ∈ C×,

1



L関数は次のように書ける

L(s, f) =
∏
p

det

(
I2 − p

k−1
2

−sstd

((
αf (p)

αf (p)
−1

)))−1

.

ここで、stdはGL(2,C)の標準表現である。L(s, f)の定義では、GL(2,C)の表現として標準表現を用いたた
め標準L関数と呼ばれる。一般的には、GL(2,C)の表現を取り替えることで f の様々なL関数が定義される。
本稿では随伴表現を用いて定義される随伴L関数について考える。具体的には、以下のようにして f の随伴L

関数が定義できる。まず、正規化されたHecke固有形式 f, g ∈ Sk(1)のRankin-SelbergL関数を次で定義する

L(s, f × g) =
∏
p

det
(
I − pk−1−sstd⊗ std

((
αf (p)

αf (p)
−1

)
⊗
(
αg(p)

αg(p)−1

)))−1

この L関数もRe(s)≫ 0で絶対収束し、C全体に有理型関数に解析接続される。また、

Λ(s, f × g) = 22(2π)−2s+k−1Γ(s)Γ(s− k + 1)L(s, f × g)

とおくと、次の関数等式を満たす

Λ(s, f × g) = Λ(2k − 1− s, f × g).

この時、L(s, f × f) = L(s, f,Ad)と書き、f の随伴 L関数と呼ぶ。
本稿ではモジュラー形式の一般化である保型形式の言葉で主張を述べるため、(L2-)保型形式の定義とモジュ

ラー形式との関係について簡単に説明しておく。

Definition 1.1. F を数体とし、F のアデール環をAF と書く。Gを F 上定義された簡約代数群, ZをGの中
心とし、ωを Z(F )\Z(AF )のユニタリ指標とする。この時、

L2(G,ω) =
{
φ ∈ L2(Z(AF )G(F )\G(AF )), | φ(zg) = ω(z)φ(g), φは滑らか

}
の元を中心指標 ωのL2-保型形式 (または、単に保型形式)と呼ぶ。さらに、Gの任意の真の放物型部分群を取
り、その冪単根基を U と書いたとき、条件

(1.0.1)

∫
U(F )\U(AF )

φ(ug) du = 0 任意の g ∈ G(AF )

を満たすなら φ ∈ L2(G,ω)を中心指標 ωのL2-カスプ形式と呼ぶ。中心指標 ωのL2-カスプ形式のなす空間を
L2
0(G,ω)と書く。また、L

2
0(G) =

⊕
ω

L2
0(G,ω)とおいた時、L

2
0(G)の元を L2-カスプ形式 (または、単にカス

プ形式)と呼ぶ。G(AF )の右移動によりL2
0(G)への作用が定まり、この表現の既約成分を既約カスピダル保型

表現と呼ぶ。

f ∈ Sk(1)からは中心指標が自明な L2-カスプ形式が次のように定義できる。解析同相

SL(2,Z)\SL(2,R) ∋ SL(2,Z)g 7→ GL(2,Q)R×
+gGL(2, Ẑ) ∈ GL(2,Q)R×

+\GL(2,AQ)/GL(2, Ẑ)

を用いると、g ∈ GL(2,A)に対し、g ∈ GL(2,Q)R×
+g∞GL(2, Ẑ)となる g∞ =

(
a b
c d

)
∈ SL(2,R)をとることが

できる。この時、

φf : g 7→ f

(
ai+ b

ci+ d

)
(ci+ d)−k

により、GL(2,AQ)上の関数が定義できる。このφf がGL(2,AQ)上のL2-カスプ形式の例である。f のFourier

係数 af (n)は φf の積分によって次のように書くことができる。指標 ψQ : Q\AQ → C×を次で定義する

ψQ : Q\AQ
∼−→ (R× Ẑ)/Z ∋ (x∞, xf ) 7→ exp(2πix∞)

2



この時、g∞ =
(
a b
c d

)
∈ SL(2,R)とm ∈ N ∪ {0}に対して、∫
Q\A

φf

((
1 u

1

)
g∞

)
ψ−1
Q (mu) du = af (m) exp(−2mπy)(ci+ d)−k

が成り立つ。ここで、x+ iy = ai+b
ci+d、duは vol(Q\AQ, du) = 1となるHaar測度。特に、任意の g ∈ GL(2,A)

に対して、 ∫
Q\A

φf

((
1 x

1

)
g

)
dx = 0

が成り立ち、φf が条件 (1.0.1)を満たすことがわかる。より一般に ψ : Q\AQ → C×を非自明な指標とした時、
φ ∈ L2

0(GL(2))に対して、

Wψ(φ) =

∫
F\AQ

φ

((
1 x

1

))
ψ−1(x) dx

を φの (ψ-)Whittaker周期と呼ぶ。上の議論により、これはモジュラー形式における Fourier係数の一般化と
なっている。次章では、ユニタリ群の場合に類似の積分によりWhittaker周期を定義する。

ρを右移動としたとき
Vf := ⟨ρ(g)φf : g ∈ GL(2,AQ)⟩C

とおくと、f ∈ Sk(1)がHecke固有形式の場合には Vf はGL(2,AQ)の既約表現を与える。この表現を (πf , Vf )

と書くと、(πf , Vf )はGL(2,AQ)の既約カスピダル保型表現である。πf の各素数 pの局所成分 πf,pは、佐武パ
ラメータと呼ばれるCの元に一意的定まる。今の場合には、L関数の定義で用いた αf (p)が佐武パラメータで
ある。従って、πf の佐武パラメータという表現論的情報により、L関数 L(s, f)が定義できる。ただし、保型
表現 πf から定義される L関数 L(s, πf )は関数等式が変換 s 7→ 1− sに対して成り立つように定義される。つ
まり、今の場合

L(s, πf ) := L

(
s+

k − 1

2
, f

)
である。πf の随伴 L関数も同様に定義でき、L(s, πf ,Ad)と書く。また、Λ(s, πf ,Ad)もΛ(s, f,Ad)と同様に
定義する。この時、次の等式が知られている。

Theorem 1.1. f ∈ Sk(1)を正規化されたHecke固有形式とする。この時、次の等式が成り立つ

(1.0.2) ⟨f, f⟩ = 2−k · Ress=1Λ(s, πf ,Ad).

ここで、f, g ∈ Sk(1)に対し、内積 ⟨f, g⟩を次で定義する

⟨f, g⟩ =
∫
SL2(Z)\H

f(z)g(z)yk
dxdy

y2
.

φ, φ′ ∈ L2
0(GL(2))に対して、内積を

⟨φ,φ′⟩ = vol(Z(A)GL(2, F )\GL(2,AF ))−1 ·
∫
Z(A)GL(2,F )\GL(2,AF )

φ(g)φ′(g) dg

により定義すると、

⟨f, f⟩ = π2

3
⟨φf , φf ⟩

という関係が成り立つ。従って、(1.0.2)は

⟨φf , φf ⟩ = c · Ress=1L(s, πf ,Ad)
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と書くことができる。ただし、cは有理数の積と πの冪で表される明示的な定数。より一般に、φf を πf の任
意の元に拡張することを考える。まず、f が正規化されていない場合には、

⟨φf , φf ⟩ = |af (1)|2 · c · Ress=1L(s, πf ,Ad).

が得られる。この明示公式を

(1.0.3)
|af (1)|2

⟨φf , φf ⟩
=

c

Ress=1L(s, πf ,Ad)

と書き直しておくと、この式は f のスカラー倍によらない形になっている。この明示公式において φf を一般
の πf の元、af (1)をWhittaker周期へと一般化した明示公式がこの場合の Lapid-Mao予想である。次節では、
ユニタリ群の場合に Lapid-Mao予想の正確な主張を与える。

2 Lapid-Mao予想

LapidとMao [5]は数体上定義された任意の準分裂代数群とメタプレクティック群に対して、Whittaker周
期と随伴 L関数の特殊値とを結ぶ明示公式を予想した。この章では、ユニタリ群の場合の Lapid-Mao予想の
主張を説明する。

Remark 2.1. 準分裂という条件は、Whittaker周期を定義するために必要な条件である。

2.1 Whittaker周期

F は数体とし、Eを F の 2次拡大とする。Gal(E/F )の非自明な元によるEへの作用をE ∋ x 7→ x̄と書く。
任意の n ∈ Nに対して、F 上定義された準分裂ユニタリ群U(n)を次で定義する

U(n) =

g ∈ ResE/FGLn : tg


1

. .
.

1

 g =


1

. .
.

1


 .

また、U(n)の部分群N を

N =




1 ∗ · · · ∗

. . .
...

. . . ∗
1

 ∈ U(n)


で定義する。この時、U(n)の上三角行列全体からなる部分群は U(n)の Borel部分群であり、N はその冪単
根基である。今、ψN を N(F )\N(AF ) の非退化な指標とする。ここで、U(n)(F ) の対角行列の共役により
N(F )\N(AF )の指標全体に作用が定まるが、この作用による固定部分群がU(n)(F )の中心と一致するような
指標を非退化と呼ぶ。Whittaker周期は以下のように定義される。

Definition 2.1. φをU(n)(AF )のカスプ形式とする。この時、

WψN (φ) =

∫
N(F )\N(AF )

φ(n)ψ−1
N (n) dn

を φの ψN -Whittaker周期、または単にWhittaker周期と呼ぶ。(π, Vπ)をU(n)(AF )の既約カスピダル保型表
現とした時、WψN (·)が Vπ 上恒等的にゼロでないなら、(π, Vπ)は ψN -generic (または、単に generic)である
という。
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(π, Vπ)をU(n)(AF )の既約カスピダル保型表現とする。線形写像 Vπ → C : φ 7→WψN (φ)は

HomN(AF )(π, ψN )

の元を与える。この時、F の任意の素点 vに対し、

dimCHomN(Fv)(πv, ψN,v) ≤ 1

が成り立つ。ここで、Fv を F の vでの局所化、πv、ψN,v は πと ψの v-成分である。πv が genericな時、つ
まりHomN(Fv)(πv, ψN,v) ̸= 0である時、Frobeniusの相互律により、

dimCHomU(n)(Fv)(πv, Ind
U(n)(Fv)
N(Fv)

ψN,v) = 1

が成り立つ。従って、Ind
U(n)(Fv)
N(Fv)

ψN,vにおける πvの一意的な実現が存在する。この πvの実現をWψN,v(πv)と
書き、πv の (ψN,v-)Whittakerモデルと呼ぶ。また、局所的な一意性から

dimCHomN(AF )(π, ψN ) ≤ 1

が従う。この重複度 1定理により、次章で定義する (正規化された)局所Whittaker周期を用いると、次を満た
す定数 Cπ ∈ Cが存在することがわかる :

(2.1.1) |WψN (φ)|
2 = Cπ ·

∏
v

(φv の (正規化された)局所Whittaker周期)

が任意の φ = ⊗φv ∈ Vπ に対して成り立つ。Lapid-Mao予想では、WψN (·)が Vπ 上で恒等的にゼロでない
(π, Vπ)に対して、このCπが明示的な定数とL関数の特殊値で書けることを予想している。次章では、正規化
された局所Whittakerを定義することで Lapid-Mao予想の主張を正確に述べる。

Remark 2.2. SO(n+1)のカスプ形式を SO(n)に制限し、SO(n)のカスプ形式との内積をとることで定義さ
れる周期はGross-Prasad周期と呼ばれる。この周期についての重複度 1定理により、(2.1.1)のような局所周期
への分解が成り立つ。市野篤史氏と池田保氏 [4]は、緩増加なカスピダル保型表現に対して局所Gross-Prasad

周期を定義し、この時のCπがL-関数の特殊値と明示的な定数により記述できることを予想した。周期とL関
数の特殊値とを結ぶ明示公式は様々な形で証明されていたが、このように大域的な周期の局所周期への分解の
定数倍に L関数の特殊値が現れるという形の定式化が [4]において初めて与えられた。LapidとMaoの予想は
この市野-池田予想のWhittaker周期の場合の類似である。

2.2 局所Whittaker周期

vを F の素点とする。(−,−)v ∈ HomU(n)(Fv)(πv ⊗ π∨v ,C) = HomU(n)(Fv)(πv ⊗ πv,C) を πvの行列係数とす
る。vが有限素点の時、次のようにして φv ∈ πv の局所Whittaker周期を定義する

Wv(φv) :=

∫ st

N(Fv)
(πv(n)φv, φv)vψ

−1
N,v(n) dn.

ここで、
∫ st は安定積分、つまり、十分大きな N(Fv)のコンパクト開部分群 N0 で,任意の N0 ⊂ N1 となる

N(Fv)のコンパクト開部分群N1に対して、∫
N0

(πv(n)φv, φv)vψ
−1
N,v(n) dn =

∫
N1

(πv(n)φv, φv)vψ
−1
N,v(n) dn

となるものが存在する時、この共通の値を
∫ stで表す。安定積分が定義されることは Lapid-Mao [5, Proposi-

tion 2.3]で証明されている。一方で、vがアルキメデス素点の場合には、まず πvを二乗可積分表現 σvによる放
物型誘導表現の部分表現とみなす。この時、Jacquet積分により πvのWhittakerモデルは σvのWhittakerモデ
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ルにより構成できる。また、σvについては上記の積分は絶対収束するため、このことから σvの局所Whittaker

周期を上記のように定義でき、Jacquet積分と組み合わせることで πvの局所Whittaker周期を定義される。詳
細については Lapid-Mao[5, Section 2]を参照してもらいたい。また、HomN(Fv)(πv, ψN,v) ̸= 0なら、Wv(·)が
恒等的にゼロでないことが [5, Proposition 2.10, Section 2.5]で示されている。
上記で説明したように局所Whittaker周期の無限積を考えるので、収束性が問題となるが次の事実によりそ

れは可能である。

Proposition 2.1 (Proposition 2.14 in [5]). vは 2を割らない有限素点とし、Evは Fvの不分岐二次拡大、ま
たは Ev = Fv ⊕ Fv とする。πv は genericであるとする。また、πv, ψN,v は不分岐、つまり最大コンパクト部
分群により不変なゼロでないベクトルを持つとする。φ◦

v ̸= 0を最大コンパクト部分群により不変なベクトル
とした時、

Wv(φ
◦
v) =

∏n
j=1 L(j, χ

j
Ev

)

L(1, πv,Ad)
(φ◦

v, φ
◦
v)

が成り立つ。ただし、L(1, πv,Ad)は πv の局所随伴 L-因子、χEv は局所類体論により Ev/Fv に対応する F×
v

の指標、dnはOv を Fv の整数環とした時、vol(N(Ov)) = 1となるように正規化した測度。

0 ̸= φv ∈ πv に対し、正規化された局所Whittaker周期を

W#
v (φv) =

L(1, πv,Ad)∏n
j=1 L(j, χ

j
Ev

)
· Wv(φv)

(φv, φv)v

で定義する。genericな πを考えた時、この Propositionにより任意のゼロでない元 φ = ⊗vφv ∈ Vπ に対し、
ほとんどすべての素点 vでW#

v (φv) = 1が成り立つ。従って、局所周期の無限積∏
v

W#
v (φv)

が定義できる。ユニタリ群の場合の Lapid-Mao予想の主張は次のように述べられる。

Conjecture 2.1. (π, Vπ)をU(n)(AF )の既約カスピダル保型表現で、ψN -genericであるとする、つまりWψN (·)
が Vπ 上の非自明なものとする。πの内積 (−,−)を

(φ,φ′) = vol(U(n)(F )\U(n)(AF ))−1 ·
∫
U(n)(F )\U(n)(AF )

φ(g)φ′(g) dg, φ, φ′ ∈ Vπ

で定義する。また、(−,−)vを (−,−) =
∏
v(−,−)vとなるように選ぶ。この時、任意のゼロでないφ = ⊗φv ∈ π

に対して、
|WψN (φ)|2

(φ,φ)
= 21−k ·

∏n
j=1 L(j, χ

j
E)

L(1, π,Ad)

∏
v

W ♯
v(φv)

が成り立つ。ここで、kは πから定まる或る自然数、N(AF )には玉河測度を、N(Fv)には局所玉河測度を用
いる。

Remark 2.3. Πを πのGL(n,AE)へのベースチェンジリフトとする。この時、適当なGL(ni,AE)の既約カ
スピダル保型表現Πiを用いて、Π = ⊞ki=1Πiと書ける。ここで、現れる kが予想における kである。

Remark 2.4. 式 (1.0.3)と同様の明示公式を得るためには、局所Whittaker周期W ♯
v(φv)を具体的に計算すれ

ば良い。ただし、直接的にこの積分を計算することは容易ではない。例えば、Chen-市野 [2]はGSp(4)の場合
に、πが Sp(4, Ẑ)-不変なベクトルを持つときに、(1.0.3)の類似の明示公式を証明している。彼らは、Lapid-Mao

予想とは異なる形の明示公式を証明し、直接計算を避けてエンドスコピックな場合への還元を用いることによ
り、実素点での局所積分を計算し明示公式を証明している。

LapidとMao [5]は F 上の任意の準分裂代数群とメタプレクティック群について、同様の予想を定式化して
いる。次の場合にこの予想は知られている。
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• U(1),U(2), SO(3),SO(4),GL(n) (Lapid-Mao [5])

• U(2n+ 1)、πが緩増加 (Beuzart–Plessis-Chaudouard [1])

• U(2n), F は総実、π∞は二乗可積分表現、有限分裂素点では πv は不分岐、または二乗可積分表現 ([9])

• S̃p(n), F は総実、π∞は二乗可積分表現 (Lapid-Mao [7])

• GSp(4), (古澤-森本 [3]. [3]では緩増加な場合にのみ証明しているが、一般の場合に簡単に拡張できる)

本稿の主定理は次の結果である。

Theorem 2.1 ([11]). ψN -genericな U(n)の任意の既約カスピダル保型表現に対して Conjecture 2.1は成り
立つ。

Remark 2.5. nが奇数でπが緩増加の場合には、この結果はBeuzart–Plessis-Chaudouard [1]によりすでに証
明されていたが、Theorem 2.1では、奇数の場合でも緩増加の仮定は必要としない。ただし、一般化Ramanujan

予想を仮定すると、ψN -genericな既約カスピダル保型表現は緩増加なので、この仮定の下では、奇数の場合の
Theorem 2.1は [1]に含まれる。

3 Theorem 2.1の証明の概略

この章では、Theorem 2.1の証明の概略を説明する。

3.1 局所等式への還元

LapidとMao [6]は、Conjecture 2.1が局所体上の適当な等式へと帰着できることを証明した。この章では、
この局所等式への帰着について説明する。
LapidとMao [6]は志村型積分と呼ばれる πvの局所ゼータ積分を用いて、WψN,v(πv)上の内積を定義した。

この内積を [−,−, ]v と書く。この時、Whittakerモデルの一意性により、適当な cπv ∈ C×が存在して、次を
満たす ∫ st

N(Fv)
[πv(n)Wv,W

′
v]vψ

−1
N,v(n) dn = cπvWv(e)W ′

v(e), Wv,W
′
v ∈WψN,v(πv).

ただし、[−,−, ]v の定義に用いられる測度や dnは ψN から定まる良い測度を選ぶ ([9, Section 2.4]を参照)。
LapidとMaoは保型降下法と呼ばれる保型表現の構成法を用いることで次を証明した。

Theorem 3.1 (Theorem 5.5(nが偶数)、Theorem 8.6(nが奇数) in [6]). Conjecture 2.1と同じ記号を用いる。
この時、ほとんどすべての素点 vにおいて、cπv = 1が成り立つ。また

|WψN (φ)|2

(φ,φ)
=

(∏
v

c−1
πv

)
· 21−k ·

∏n
j=1 L(j, χ

j
E)

L(1, π,Ad)

∏
v

W ♯
v(φv)

が任意のゼロでない φ = ⊗vφv ∈ Vπ に対して成り立つ。

Theorem 3.1により、
(∏

v c
−1
πv

)
= 1が成り立てば、Conjecture 2.1が π に対して成り立つ。より詳しく、

LapidとMaoは次の等式を予想した。

Conjecture 3.1. 任意の素点 vに対し、cπv = ωπv(−1)が成り立つ。

Conjecture 3.1が示されれば、
(∏

v c
−1
πv

)
= 1がわかる。実際、nが偶数の場合には、Theorem 2.1は次の定

理から従う。

Theorem 3.2 ([9, 11]). nを偶数とする。任意の有限素点と実素点において、Conjecture 3.1が成り立つ。ま
た、複素素点 vにおいては、cπvcπv̄ = ωπv(−1)ωπv̄(−1)が成り立つ。特に、

(∏
v c

−1
πv

)
= 1が成り立つ。
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3.2 Theorem 3.2とTheorem 2.1の証明の概略

最初に次数が 2nの場合を考える。vが有限素点の場合には、証明は [7]の類似の議論により与えられる。も
う少し詳しく説明すると、収束性の問題を無視した場合、Conjecture 3.1は Fourier逆変換を繰り返し用いる
ことにより証明できる。また、この議論はモデルの変換公式 ([8, 10])と呼ばれる積分の関係式を用いることに
より正当化できる。

vが無限素点の場合には異なる手法を用いる。簡単のために、vが分裂実素点の場合にアイデアを説明する。
この場合には、πv は次のように書ける

πv = χ1 × · · · × χr × (ξ1| · |s1 × ξ−1
1 | · |

−s1)× · · · × (ξk| · |sk × ξ−1
k | · |

−sk).

ここで、a×bは a, bをLevi部分群の表現にもつ放物型誘導表現を表す、ξはR×のユニタリ指標、χiはGL(1,R)
またはGL(2,R) の離散系列表現 (の極限), si ∈ Cは |Re(si)| < 1

2 を満たす。この時、次が示せる。

Lemma 3.1. |Re(si)| < 1
2 を動かした時、cπv と ωπv(−1)は siに関して正則である。

従って、十分多くの siに対して、Conjecture 3.1を示せばよい。そのために、ai ∈ Rに対しGL(2n,R)の
表現 πv[a1, . . . , ak]を考える

πv[a1, . . . , ak] := χ1 × · · · × χr × (ξ1| · |
√
−1a1 × ξ−1

1 | · |
−
√
−1a1)× · · · × (ξk| · |

√
−1ak × ξ−1

k | · |
−
√
−1ak).

この表現の多くは次のように大域化可能である。

Lemma 3.2. F = Q, EをQの実二次拡大とする。この時、ψN -genericなU(2n)(AQ)の緩増加な既約カスピダ
ル保型表現 (=:π′[a1, . . . , ak])でその実素点での成分が πv[a1, . . . , ak]となるものが存在するような (a1, . . . , ak)

の集合は Rkの稠密な部分集合である。

この補題により、π′ := π′[a1, . . . , ak]について Conjecture 2.1が成り立てば、Theorem 3.1により∏
v

cπ′
v
= 1

が成り立つ。さらに、有限素点の場合の結果を用いることで

(
∏
v ̸=∞

ωπ′
v
(−1))× cπ′

∞ = 1

がわかる。つまり、
cπ′

∞ = ωπ′
∞(−1)

が成り立つ。従って、上で述べたように siについての正則性から

cπv = ωπv(−1)

が成り立つ。以上から、 Theorem 3.2の証明は、π′についてのConjecture 2.1へと帰着された。さらに、テー
タリフトと呼ばれる保型表現の構成方法を用いると次が証明できる。

Proposition 3.1. π′のU(2n+1)(AQ)へのテータリフト π′0は適当なデータを取れば、緩増加な既約カスピダ
ル保型表現を与える。またその時、π′に対してConjecture 2.1が成り立つことと、π′0に対してConjecture 2.1

が成り立つことは同値である。

Proposition 3.1により、Theorem 3.2の証明は π′0についてのConjecture 2.1 へと帰着されるが、前章で述
べたようにこの場合はBeuzart-PlessisとChaudouard [1]により証明されているため、Theorem 3.2の証明が
完了する。複素素点においても同様の議論によりTheorem 3.2が証明でき、nが偶数の場合のTheorem 2.1の
証明が完了する。最後に、2n+ 1の場合のTheorem 2.1は、Proposition 3.1と同様の議論により 2n+ 2の場
合へと帰着できるので、いま証明した偶数の場合から従う。
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アソシエーションスキームや対称空間に付随
する多変数多項式について

栗原　大武
山口大学大学院創成科学研究科

1 はじめに
アソシエーションスキームは，有限集合 X とある種の正則性をもつ

X ×X の分割からなる組合せ構造である．アソシエーションスキームの
例として，Hammingスキームや Johnsonスキームとよばれるものがあり，
これらは古典的な符号理論やデザイン理論と深いかかわりがある．そして
これらのアソシエーションスキームは P かつQ多項式性と呼ばれる性質
をもつ．P かつQ多項式アソシエーションスキームには，Askey-Wilson

多項式系（およびその極限）が付随することが知られている．これまで，
多変数版の Askey-Wilson多項式系の関する研究は多く行われてきたが，
P およびQ多項式アソシエーションスキームの多変数化（高階数化）に
関する枠組みは確立されていなかった．しかし近年，Bernard-Crampé-

d’Andecy-Vinet-Zaimi [3]によって 2変数の場合の定義が提案され，この
流れを汲み，筆者と坂内英一氏（九州大学名誉教授），Da Zhao氏（East

China University of Science and Technology），Yan Zhu氏（Shanghai

University for Science and Technology）との共同研究 [2]により，一般の
単項式順序を用いることで，より自然で扱いやすい形でアソシエーション
スキームの多変数 P およびQ多項式性を定義した．またこの定義に基づ
き，これまで知られていた多くのアソシエーションスキームが多変数 P

およびQ多項式アソシエーションスキームになることを示した．さらに，
筆者と東谷章弘氏（大阪大学）との共同研究 [10]でアソシエーションス
キームが非原始的という条件を単項式順序の言葉で特徴付けることができ
た．またごく最近，コンパクト対称空間が [2]の定義の意味で多変数Q多
項式性をもつことが明らかになったため，この点についても本稿の最後に
少しではあるが言及する．



2 アソシエーションスキーム
2.1 アソシエーションスキームの定義と例
まずはアソシエーションスキームの基本的事項を与える．詳しくは坂
内-坂内-伊藤 [21]を参照されたい．なお，過去の代数学シンポジウムでも
アソシエーションスキームについての講演がいくつか行われている．2004

年以降の報告集はwebから容易にアクセスができるので花木 [22, 28]，坂
内 [23, 30]，田中 [24, 29]，伊藤 [27, 31]，吉田 [25]，水川 [26]も是非参照
していただきたい．
X, I を有限集合とし，R : X ×X → I を全射な写像とする．各 i ∈ I

に対して，関係行列Aiを次で定める: Aiの行と列はXによって添え字づ
けられた |X|次正方行列で，Aiの各成分は

(Ai)xy =

1 R(x, y) = iのとき;

0 それ以外

である．このときRが全射であることから

(A1)
∑

i∈I Ai = JX (JX : 全 1行列)，Ai1 ◦Ai2 = δi1i2Ai1 (◦: 成分毎積)

が成り立つことに注意する．

定義 2.1. X = (X,R, I) = (X,R) = (X, {Ai}i∈I)が以下の条件を満たす
とき，Xをアソシエーションスキームという：

(A2) Ai0 = IX（IX は単位行列）を満たす i0 ∈ I が存在する;

(A3) 各 i ∈ I に対して，ATi = AiT を満たす iT ∈ I が存在する;

(A4) 各 i1, i2 ∈ I に対して，Ai1Ai2 =
∑

i3∈I p
i3
i1i2

Ai3 を満たす非負整数
pi3i1i2 が存在する;

(A4)の整数 {pi3i1i2}i1,i2,i3∈I を Xの交叉数という．また定数 d := |I| − 1

のことを Xのクラスという．さらに

(A5) 各 i1, i2 ∈ Iに対して，Ai1Ai2 = Ai2Ai1（つまり pi3i1i2 = pi3i2i1）を満
たすとき，Xは可換であるという．

(A6) 各 i ∈ I に対して，iT = i（つまり Aiは対称行列）を満たすとき，
Xは対称であるという．なお，Xは対称ならば可換であることは容
易に示される．



定義 2.2. 2つのアソシエーションスキーム X1 = (X1,R1, I1)と X2 =

(X2,R2, I2) に対して，以下の条件を満たす 2つの全単射 f : X1 → X2と
g : I1 → I2 が存在するとき，X1と X2は同型であるという：

任意の x, y ∈ X1に対して，R2(f(x), f(y)) = g(R1(x, y)).

このとき，2つのアソシエーションスキームについて

任意の i1, i2, i3 ∈ I1に対して，pg(i3)g(i1)g(i2)
= pi3i1i2 (1)

が成り立ち，交叉数は同型により保存される．一方で，(1)を満たす全単
射 gが存在するとき，X1とX2は代数的に同型であるという．一般的に代
数的に同型であっても同型とは限らない．これについて後の例 2.7で具体
例を挙げる．

以下でアソシエーションスキームの例をいくつか挙げる．

例 2.3 (Hammingスキーム). q, nを自然数とする．また F を q元集合と
し，X := Fnとおく．I = {0, 1, . . . , n}とするとき，全射R : X×X → I
を次のように定義する．

R(x, y) = |{i ∈ {1, . . . , n} | xi ̸= yi}| (Hamming距離)

このとき，X = (X,R, I)は対称アソシエーションスキームになり，これ
をHammingスキームH(n, q)と呼ぶ．

例 2.4 (Johnsonスキーム). n, k を n ≥ 2k をみたす自然数とし，X を
{1, 2, . . . , n}の k元部分集合からなる集合とする．I = {0, 1, . . . , k}とす
るとき，全射R : X ×X → I を次のように定義する．

R(x, y) = k − |x ∩ y| (差集合距離)

このとき，X = (X,R, I)は対称アソシエーションスキームになり，これ
を Johnsonスキーム J(n, k)と呼ぶ．

例 2.5 (群アソシエーションスキーム). Gを有限群とし，{Ci}i∈I をGの
共役類（IはGの共役類を表すラベルの集合）とする．全射R : G×G→ I
を y−1x ∈ CiのときR(x, y) = iと定める．このとき，X = (G,R, I)は
可換アソシエーションスキームになり，これを群アソシエーションスキー
ムと呼ぶ．

例 2.6 (Schur的アソシエーションスキーム). Gを有限群とし，Gは有限
集合Xに推移的に作用しているものとする．このとき，GはX ×Xにも
g(x, y) := (gx, gy)により自然に作用する．このGによるX ×X の軌道



分解をX×X =
⊔
i∈I Riとする．全射R : X×X → Iを (x, y) ∈ Riのと

きR(x, y) = iと定める．このとき，X = (X,R, I)はアソシエーションス
キームになり，これを Schur的アソシエーションスキームと呼ぶ．なお，
固定した x0 ∈ X に対してK := {g ∈ G | gx0 = x0}とおくとき，X のこ
とを等質空間としてG/Kと表すこともある．X = (G/K,R, I)が可換で
あるとき，(G,K)をGelfand対という．例 2.3, 2.4, 2.5で与えたアソシ
エーションスキームはすべて Schur的アソシエーションスキームであり，
それぞれGelfand対 (Sq ≀Sn,Sn)，(Sn,Sk ×Sn−k)，(G×G, diag(G))
に対応する．

例 2.7 (Shrikhandeグラフ). 最後の例として，Schur的アソシエーショ
ンスキームでないものを挙げる．以下のグラフはトーラス上に実現された
ものとし，これを Shrikhandeグラフと呼ぶ．

このグラフは直径が 2であり，以下のようにしてできるアソシエーショ
ンスキーム X = (X, ∂, I)は非 Schur的であることが知られている: グラ
フの頂点集合（16頂点からなる）をX とし，∂ : X ×X → I := {0, 1, 2}
をグラフの距離関数とする．
なお，このアソシエーションスキームはHammingスキームH(2, 4)と
代数的には同型であるが，同型ではない．

2.2 Bose-Mesner代数と指標表
この節では，アソシエーションスキームX = (X,R, I)は常に可換であ
るとする．Xの {Ai}i∈Iで生成される代数をBose-Mesner代数といい，A
で表す．このとき，Aの自然な基底として {Ai}i∈I がとれるが，行列の可
換性 (A5)よりAは原始冪等元からなる別の基底 {Ej}j∈J（J は添え字集
合）を持ち，さらにEj0 = 1

|X|JXとなる j0 ∈ J が存在する．なお {Ai}i∈I
と {Ej}j∈J は Aの基底なので，|I| = |J |が成り立つことに注意する．
また (A1)より Aは成分毎積 ◦で閉じる．従って (|X|Ej1) ◦ (|X|Ej2) =



∑
j3∈J q

j3
j1j2
|X|Ej3 を満たす実数（実は非負になる）qj3j1j2 が存在する．こ

の qj3j1j2 を XのKrein数という．
Xの Bose-Mesner代数 Aの 2つの基底 {Ai}iI と {Ej}j∈J の変換

Ai =
∑
j∈J

Pi(j)Ej , |X|Ej =
∑
i∈I

Qj(i)Ai

の係数から得られる正方行列 P = (Pi(j))，Q = (Qj(j))をそれぞれ第 1

固有行列，第 2固有行列と呼ぶ．慣例的に P の一番左の列を i0に関する
列とし，一番上の行を j0に関する行とする．同様に，Qの一番左の列を
j0に関する列とし，一番上の行を i0に関する行とする．
Xが群アソシエーションスキームであるとき，P は「本質的に」Gの指

標表と等しい．これより一般的な可換アソシエーションスキームについて
も P のことを指標表ということもある．

2.3 P 多項式・Q多項式アソシエーションスキーム
P 多項式・Q多項式アソシエーションスキームは Delsarte [8]により

符号理論やデザイン理論を統一して扱うために導入された．主要なアソ
シエーションスキームの多くは P かつQ多項式アソシエーションスキー
ムになっている．

定義 2.8. クラス dの対称アソシエーションスキーム X = (X, {Ai}i∈I)
が P 多項式アソシエーションスキームであるとは次を満たすことである:

{Ai}i∈I の添え字集合 Iを {0, 1, . . . , d}におきかえて {A0, A1, . . . , Ad}と
するとき，各 i ∈ {0, 1, 2, . . . , d}に対して，Ai = vi(A1)を満たす次数 iの
1変数多項式 vi(x) ∈ C[x]が存在する．
同様に，クラス dの対称アソシエーションスキーム X = (X, {Ai}i∈I)

の原始冪等元の基底を {Ej}j∈J とするとき，Xが Q多項式アソシエー
ションスキームであるとは次を満たすことである: {Ej}j∈J の添え字集
合 J を {0, 1, . . . , d}におきかえて {E0, E1, . . . , Ed}とするとき，各 j ∈
{0, 1, 2, . . . , d}に対して，|X|Ej = v∗j (|X|E1)（積は成分毎積 ◦）を満たす
次数 jの 1変数多項式 v∗j (x) ∈ C[x]が存在する．

例 2.9 (Hammingスキーム). HammingスキームH(n, q)はクラス nの
P かつQ多項式アソシエーションスキームである．{vi}ni=0と {v∗i }ni=0は
等しくなり，この多項式系はKrawtchouk多項式と呼ばれている．

例 2.10 (Johnsonスキーム). Johnsonスキーム J(n, k)はクラス kの P

かつQ多項式アソシエーションスキームである．{vi}ki=0は双対Hahn多
項式，{v∗i }ki=0はHahn多項式と呼ばれている．



P 多項式・Q多項式アソシエーションスキームにはいくつかの同値条件
が知られている．以下では P 多項式アソシエーションスキームの同値条
件を与える．Q多項式アソシエーションスキームの同値条件については，
{Ai}di=0を {Ej}dj=0に，P をQに置き換えれば同様のことが言える．

命題 2.11. クラス dの対称アソシエーションスキーム X = (X, {Ai}di=0)

に対して以下は同値である．

(i) Xは P 多項式アソシエーションスキームである．

(ii) 各 iに対して次の 3項間漸化式が成り立つ:

A1Ai = pi−1
1i Ai−1 + pi1iAi + pi+1

1i Ai+1 (2)

なお，i = 0, dのときに現れる p−1
10 A−1や pd+1

1d Ad+1は 0とみなす．

(iii) Xの第 1固有行列 P の第 1列の成分を P1(j) = θj（j ∈ J）とお
くとき，j1, j2 ∈ J が j1 ̸= j2 ならば，θj1 ̸= θj2 であり，P の第 i

列（i = 0, 1, . . . , d）の成分が i次多項式 viを用いて Pi(j) = vi(θj)

（j ∈ J）と書ける．

(iii)の同値条件こそが，「P 多項式」の由来である．また (ii)の 3項間
漸化式 (2)から {Ai}di=0がA1を隣接行列にもつ有限グラフの距離行列と
一致することもわかる．このようなグラフを (X,A1)を距離正則グラフと
いう．
P 多項式アソシエーションスキームの定義よりA1は d+ 1個の相異な
る固有値 θ0, θ1, . . . , θdを持つ．またA1の最小多項式wd+1の次数は d+1

であり，
wd+1(A1) =

d∏
i=0

(A1 − θiIX) = 0 (3)

を満たす．
P 多項式・Q多項式アソシエーションスキームに付随する多項式 {vi}di=0

および {v∗j }dj=0は 3項間漸化式 (2)から直交多項式系になる．特にP かつ
Q多項式アソシエーションスキームの {vi}di=0, {v∗j }dj=0 は 1変数 Askey-

Wilson直交多項式系と呼ばれる由緒正しい多項式系（およびその親戚）
であることが知られている．1 変数 Askey-Wilson 直交多項式系を拡張
した多変数 Askey-Wilson 直交多項式系もいくつか知られている．例え
ば先行研究として，Mizukawa–Tanaka [13]，Gasper–Rahman [9]，Iliev–

Terwillger [12]，Tratnik [15, 16, 17, 18] などがある．自然な流れとして，
多変数 Askey-Wilson 直交多項式系が付随しているアソシエーションス
キームの定義をどのように与えればよいかという問題が考えられ，その答



えが長年渇望されていた．2024年にBernard, Crampé, d’Andecy, Vinet,

Zaimi [3] が (a, b)-compatibleという概念を導入し，(a, b)型の 2変数P 多
項式・Q多項式アソシエーションスキームの定義を提唱した．また [3]で
は多くのアソシエーションスキームが 2変数 P 多項式・Q多項式アソシ
エーションスキームになっていることも示した．この研究に触発されて，
Bannai, Kurihara, Zhao, Zhu [2]では一般的な形で多変数 P 多項式・Q
多項式アソシエーションスキームの定義が与えられた．次の節でこれらの
定義について述べていく．

3 多変数多項式アソシエーションスキーム
この節ではまず単項式順序について簡単に説明し，その後，[2]による単

項式順序≤に関する多変数 P 多項式・Q多項式アソシエーションスキー
ムの定義を与える．なお，[3]による (a, b)型の 2変数 P 多項式・Q多項
式アソシエーションスキームの定義も重要であるが，この原稿では割愛
する．
Nℓ := {(n1, n2, . . . , nℓ) | niは非負整数 }とし，ϵi ∈ Nℓを第 i成分のみ

1，それ以外の成分は 0のベクトルとする．Nℓ上の単項式順序≤とは，以
下の 3条件を満たすものである．
(i) ≤は全順序である．
(ii) α, β, γ ∈ Nℓに対して，α ≤ βならば，α+ γ ≤ β + γが成り立つ．
(iii) ≤ は整列順序である．すなわち任意の空でない Nℓの部分集合は≤

に関して最小元を持つ．
単項式順序の例として，辞書式順序≤lex，重み付き辞書式順序≤grlexなど
がある．
定義 3.1 ([2]). ϵi ∈ Nℓを i番目の成分のみ 1，それ以外の成分は 0のベク
トルとする．Dを ϵ1, ϵ2, . . . , ϵℓを含むNℓの部分集合とし，≤をNℓ上の単
項式順序とする．可換アソシエーションスキーム X = (X, {Ai}i∈I)がD
上の≤に関する ℓ変数 P 多項式アソシエーションスキームであるとは次
を満たすことである:

(i) (n1, n2, . . . , nℓ) ∈ D かつ 0 ≤ mi ≤ ni（i = 1, 2, . . . , ℓ）ならば，
(m1,m2, . . . ,mℓ) ∈ Dである．

(ii) Xの隣接行列 {Ai}i∈I の添え字集合をDにおき換えて {Aα}α∈D と
するとき，各 α ∈ Dに対して，Aα = vα(Aϵ1 , Aϵ2 , . . . , Aϵℓ) を満た
す ≤に関して最高次数 αの ℓ変数多項式 vα(x)が存在し，さらに
vα(x)の各単項式 xβ は β ∈ Dを満たす．



(iii) 各α ∈ Dと i = 1, 2, . . . , ℓに対して，AϵiAα（(ii)より最高次数α+ϵi

の多項式）は {Aβ | β ∈ D, β ≤ α+ ϵi} の一次結合で表せる．

上の定義において，ℓ = 1とすると，自動的にDは (i)より {0, 1, . . . , d}
の形になり，(ii)はAiは 1変数の i次の多項式 vi(x)で表されることを意
味する．これは定義 2.8の P 多項式アソシエーションスキームの定義と
一致する．また P 多項式アソシエーションスキームの場合，(iii)は (3)よ
り自動的に成り立つ．したがって定義 3.1は P 多項式アソシエーション
スキームの定義を拡張したものであることがわかる．以降，多変数 P 多
項式アソシエーションスキームの観点から，P 多項式アソシエーションス
キームのことを 1変数 P 多項式アソシエーションスキームと呼ぶことも
ある．
ℓ変数Q多項式アソシエーションスキームの定義は定義 3.1において隣
接行列を原始冪等元に置き換えたものとして与えられる．
以下では一番簡単な多変数多項式アソシエーションスキームの例とし
て，直積アソシエーションスキームについて述べる．

例 3.2. k = 1, 2, . . . , ℓに対して，X(k) = (X(k), {A(k)
i }i∈I(k)) をクラス dk

の可換アソシエーションスキームとする．X(k)の直積を関係行列が X(k)

のクロネッカー積

A(n1,n2,...,nℓ) := A(1)
n1
⊗A(2)

n2
⊗ · · · ⊗ A(ℓ)

nℓ
for (n1, n2, . . . , nℓ) ∈ D

（ただしD := I(1)×I(2)×· · ·×I(ℓ)とする）により定まるアソシエーショ
ンスキームとし，⊗ℓ

k=1X
(k)と書く．このとき次が成り立つ:

(i) X(k)がすべてP 多項式アソシエーションスキームならば，⊗ℓ
k=1X

(k)

はNℓ上の任意の単項式順序≤に関する ℓ変数 P 多項式アソシエー
ションスキームである．

(ii) X(k)がすべてQ多項式アソシエーションスキームならば，⊗ℓ
k=1X

(k)

はNℓ上の任意の単項式順序≤に関する ℓ変数Q多項式アソシエー
ションスキームである．

注意 3.3. すべての可換アソシエーションスキームは多変数 P（resp. Q）
多項式アソシエーションスキームの構造をもつ．X = (X, {Ri}i=0,1,...,d)

に対して，例えばD = {o, ϵ1, . . . , ϵd}, A0 = Ao，Ai = Aϵi とおく．この
ときXはD上の重み付き辞書的順序≤grlexについての d変数 P 多項式ア
ソシエーションスキームになる．Xを d変数Q多項式アソシエーション
スキームと見なす方法も同様である．したがって多変数多項式アソシエー
ションスキームの構造はできるだけ ℓの値が小さいものがよいといえる．



多変数 P 多項式・Q多項式アソシエーションスキームの例は，例 3.2や
注意 3.3のように直ちに確かめられるものがあるが，一般的に，与えられ
たアソシエーションスキームがどのような多変数 P 多項式・Q多項式ア
ソシエーションスキームになるかどうかを判定するのは難しい．[2]や [1]

において，[3]の例をすべて含む形で多くアソシエーションスキームが多
変数多項式アソシエーションスキームになることを示した．詳細は [2, 1]

を参照していただきたい．ここでは n拡張 Hammingスキームと非 2元
ジョンソンスキームの定義を述べ，どのような多変数 P 多項式・Q多項
式アソシエーションスキームの構造を紹介する．

例 3.4 (n拡張Hammingスキーム). n, ℓを自然数とし，X = (X,R, I =

{0, 1, . . . , ℓ})をクラス ℓの可換アソシエーションスキームとする．Z :=

Xn，x = (x1, . . . xn),y = (y1, . . . yn) ∈ Z と i ∈ I に対して ni(x,y) =

|{k | R(xk, yk) = i}|とおく．D := {(n1, n2, . . . , nℓ) ∈ Nℓ |
∑

i ni ≤ n}
とするとき，S : Z × Z → Dを

S(x,y) = (n1(x,y), n2(x,y), . . . , nℓ(x,y))

で定めると H(n,X) := (Z,S,D)は可換アソシエーションスキームにな
り，これを Xに関する n拡張 Hammingスキームという．[2]において，
H(n,X)は重み付き辞書式順序≤grlexに関するD上の ℓ変数 P かつQ多
項式アソシエーションスキームであることが示された．
なお，Xが完全グラフKq（つまりクラス 1のアソシエーションスキー
ム）のときH(n,Kq)は通常のHammingスキームH(n, q)であるので，こ
の結果は Hammingスキームが 1変数 P かつQ多項式アソシエーション
スキームであることを含意する．

例 3.5 (非2元Johnsonスキーム). rを2以上の自然数とし，K = {0, 1, . . . , r−
1}とおく．0 ≤ k ≤ nを満たす整数 n, kを固定したとき，x ∈ Knに対
して w(x) := |{i | xi ̸= 0}|，X = {x ∈ Kn | w(x) = k} とする．
D := {(i, j) | 0 ≤ i ≤ k − j, 0 ≤ j ≤ min{k, n − k}} とおき，写像
R : X ×X → D; R(x,y) = (i, j)であることを

|{i | xi ̸= 0, yi ̸= 0}| = k − j, |{i | xi = yi ̸= 0}| = k − i− j

として定めると，X = (X,R,D)は対称アソシエーションスキームになる．
これを非 2元ジョンソンスキームという．[3]において，このXは型 (1, 0)

の 2変数 P 多項式アソシエーションスキームになること，[2]において，
Xが≤grlexに関する 2変数 P 多項式アソシエーションスキームになるこ
とが示された．さらに [6]において，n ≥ 2k − 1のとき型 (0, 1/2)の 2変
数Q多項式アソシエーションスキームになることも示された．[1]におい



て，全ての n, kに対して Xが定義 3.1の意味で ≤grlexに関する 2変数Q

多項式アソシエーションスキームになることが示された．
なお，この結果は多項式順序を≤grlexを≤lexに取り換えても同様に成
立する．

この節の最後に多変数多項式アソシエーションスキームに関するいくつ
かの関連する問題を挙げる．

問題 3.6. アソシエーションスキームXは高々 2つまでしか 1変数P（resp.

Q）多項式アソシエーションスキームの構造を持たないことが知られてい
る．一方で，Xに多変数 P（resp. Q）多項式アソシエーションスキーム
の構造を入れるとき，ℓ，D，≤の選び方があり，一般的に多くの可能性
があるが，ある意味で構造の分類はできるのだろうか．

問題 3.7. 2.3節で 1変数 P かつQ多項式アソシエーションスキームに付
随する直交多項式系はAskey-Wilson多項式系列により分類できることを
述べたが，ℓ変数多項式 P かつQ多項式アソシエーションスキームに付
随する多変数多項式列もAskey-Wilson多項式系列のように分類できるの
だろうか？

問題 3.8. 問題 3.6と 3.7が解決されたとき，ℓ変数多項式 P かつQ多項
式アソシエーションスキームの分類できるのだろうか？なお，この問題は
1変数 P かつQ多項式アソシエーションスキームの場合でもいまだに未
解決である．

4 多変数多項式アソシエーションスキームの同値条件
命題 2.11では，1変数 P 多項式アソシエーションスキームの同値条件
を示した．この結果の拡張として，多変数 P 多項式アソシエーションス
キームの同値条件が [2]や Higashitani-Kurihara [10]において示された．
以下，Dと書けば D ⊂ Nℓのことで，ϵ1, ϵ2, . . . , ϵℓ ∈ Dであり，定義 3.1

(i)を満たすとする．また Nℓ上の単項式順序≤を固定しておく．

4.1 隣接関係式を用いた多変数多項式アソシエーションスキーム
の同値条件

まず P 多項式アソシエーションスキームの 3項間漸化式 (2)という性
質について，多変数 P 多項式アソシエーションスキームについて拡張し
た結果について述べる．



命題 4.1 ([2]). 可換アソシエーションスキーム X = (X, {Aα}α∈D) につ
いて以下は同値である．

(i) XはD上の≤に関する ℓ変数 P 多項式アソシエーションスキーム
である．

(ii) 各 i = 1, 2, . . . , ℓと α ∈ Dに対して，pβϵi,α ̸= 0ならば β ≤ α+ ϵiが
成り立つ．さらに α+ ϵi ∈ Dのとき，pα+ϵiϵi,α ̸= 0が成り立つ．

命題 4.1の交叉数をKrein数に取り換えることで，多変数Q多項式アソ
シエーションスキームの同値条件を得ることに注意する．

注意 4.2. 命題 4.1の (ii)の交叉数 pβϵi,αの条件は

AϵiAα =
∑

β∈D,β≤α+ϵi

pβϵi,αAβ (4)

と同値である．なおXが対称かつ ℓ = 1の場合，これらの条件 (4)とXの
対称性から P 多項式アソシエーションスキームの 3項間漸化式 (2)が導
かれる．

4.2 固有行列を用いた多変数多項式アソシエーションスキームの
同値条件

次に第 1固有行列 P を用いた多変数 P 多項式アソシエーションスキー
ムの同値条件を述べる．

命題 4.3 ([10]). 可換アソシエーションスキーム X = (X, {Aα}α∈D)に
対して，Xの Bose-Mesner代数の原始冪等元の基底を {Ej}j∈J とする．
i = 1, 2, . . . , ℓと j ∈ J に対して，θϵi(j) := Pϵi(j) とおく．このとき次は
同値：

(i) XはD上の≤に関する ℓ変数 P 多項式アソシエーションスキーム
である．

(ii) 次が成り立つ：

(a) 各 α ∈ Dと j ∈ J に対して，

Pα(j) = vα(θϵ1(j), θϵ2(j), . . . , θϵℓ(j))

を満たす ≤に関して最高次数 αの ℓ変数多項式 vα(x)が存在
し，さらに vα(x)の各単項式 xβ は β ∈ Dを満たす．



(b) α + ϵi /∈ Dである α ∈ D，i = 1, 2, . . . , ℓと j ∈ J に対して，
wα+ϵi(θϵ1(j), θϵ2(j), . . . , θϵℓ(j)) = 0 を満たす ≤に関して最高
次数α+ϵiの ℓ変数多項式wα+ϵi(x)が存在し，さらにwα+ϵi(x)

の最高次数以外の各単項式 xβ は β ∈ Dを満たす．

(a)の意味としては，P の ϵi列（i = 1, 2, . . . , ℓ）と次数 αの多変数多項
式 vαを使って P の α列を表現できるものと言うことである．また，(b)

は ℓ = 1の場合は自動的に満たされるので 1変数P 多項式アソシエーショ
ンスキームの同値条件には現れない．なおこのとき，α + ϵi /∈ Dとなる
α+ ϵiは d+1のことであり，wd+1(x)は (3)に現れるA1の最小多項式と
一致する．
最後に命題 4.3の P を Qに取り換えれば多変数 Q多項式アソシエー
ションスキームの同値条件が同様に得られることにも注意する．

5 アソシエーションスキームとGröbner基底・消去
理論

X = (X, {Aα}α∈D)を ≤に関する D 上の ℓ変数 P 多項式アソシエー
ションスキームとする．命題 4.3 (ii) (b)で定まる多項式からなる集合を

G := {wα+ϵi(x) | α ∈ D, i = 1, 2, . . . , ℓ, α+ ϵi /∈ D}

とおくと，G は C上の ℓ変数多項式環 C[x1, x2, . . . , xℓ] = C[x]の部分集
合である．I ⊂ C[x]を Gで生成されるイデアルとする．

命題 5.1 ([2]). 次が成立する：

(i) Gは≤に関する I のGröbner基底である．

(ii) Xの Bose-Mesner代数 Aは代数として C[x]/I と同型である．

ℓ変数Q多項式アソシエーションスキームに対しても，命題 5.1は同様
に成立する．
最近 Higashitani-Kurihara [10]において，非原始的アソシエーション
スキームと消去理論の関係が示された．まず原始的および非原始的アソ
シエーションスキームの定義を与える．アソシエーションスキーム X =

(X,R, I) に対して，ある空でない真部分集合 C ⊂ I がX 上の同値関係
R−1(C)を定めるとき，Xは非原始的であるといい，そうでないとき，X

は原始的であるという．次に連立方程式の消去理論で重要な役割を果たす
s消去型単項式順序の定義を与える．1 ≤ s < ℓを満たす自然数 sに対し
て Nℓ上の単項式順序≤が s消去型であるとは，α ∈ Nsが α ̸= 0である



とき，任意の β1, β2 ∈ Nℓ−sに対して，(α, β1) > (0, β2) が成り立つこと
である．s消去型単項式順序の代表例として，辞書式順序≤lexがある．

定理 5.2 ([10]). 可換アソシエーションスキームXに対して，次は同値で
ある．

(i) Xは非原始的である．

(ii) XはあるD ⊂ Nℓと s消去型単項式順序≤に関する ℓ変数 P 多項式
アソシエーションスキームの構造をもつ．

定理 5.2から以下の系が従う．

系 5.3 ([10]). d1, . . . , dℓを自然数とし，D := {0, 1, . . . , d1}×· · ·×{0, 1, . . . , dℓ}
とする．また X = (X, {Aα}α∈D)を可換アソシエーションスキームとす
る．このとき次は同値である．

(i) X はクラス di の可換 P 多項式アソシエーションスキーム（i =

1, 2, . . . , ℓ）の直積と同型である．

(ii) Xは Nℓ 上の任意の単項式順序 ≤に関する ℓ変数 P 多項式アソシ
エーションスキームである．

なお，この系において (i) =⇒ (ii)の部分はすでに例 3.2で示されてお
り，(ii) =⇒ (i)の部分が定理 5.2から得られるものである．

6 その他関連すること
6.1 m距離正則グラフ
[2]の定義を用いて，最近Bernard, Crampé, Vinet, Zaimi, Zhang [4]に
よって，距離正則グラフの多変数多項式版であるm距離正則グラフの概
念が定義された．これは，従来の距離正則グラフの概念を，複数の「距離」
を持つように一般化したものである．
有限グラフの辺集合を m 個の集合 Γ1, . . . ,Γmに分割する（辺の色の塗
分けと思ってもよい）．このとき 2頂点間のm距離を，各 Γi の辺を何本
通るかの組 (n1, . . . , nm) で定義する．

定義 6.1 ([4]). 連結無向グラフがm距離正則であるとは，その辺のm分
割 {Γi | i = 1, . . . ,m} と単項式順序が存在し，全てのm距離の集合 D に
おいて ϵ1, . . . , ϵm が含まれ，かつ対応するアソシエーションスキームが
m変数 P 多項式となるときをいう．



なお，[4]ではm距離正則グラフの例もいくつか与えられており，m距
離正則グラフとm変数 P 多項式アソシエーションスキームが一対一に対
応することが示されている．
距離正則グラフの理論は非常に豊かであり，多くの深い結果が知られて
いる．例えば，Brouwer-Cohen-Neumaier [5]には距離正則グラフに関す
る多くの結果がまとめられている．これらの結果がm距離正則グラフに
対してどこまで一般化されるのかは興味深い問題である．

問題 6.2. m距離正則グラフに対して，通常の距離正則グラフで成り立つ
ことがどこまで一般化されるのか？例えば，以下のような問題が考えら
れる．

(i) 自然数列 k = (k1, k2, . . . , km)を固定したとき，次数 kをもつm-距
離正則グラフは高々有限個か？

(ii) 次数 {kα}α∈Dは多項式順序≤に関して unimodalityが成り立つか？

6.2 A2-Leonard対
特別な2変数多項式アソシエーションスキームとA2-Leonard対の関係を
述べる．A2-Leonard対は liev-Terwilliger [12]により導入された Leonard

対の 2変数化版である．ここではA2-Leonard対の定義については触れな
い．詳しくは [12]を参考にしてほしい．[12]ではA2-Leonard対の例をい
くつか紹介し，論文中に他にもA2-Leonard対の例はあるのだろうかとい
う問いを残していた．[1]では次の定理を得た．

定理 6.3 ([1]). 非 2元 Johnsonスキームと attenuated spacesから得られ
るアソシエーションスキームからA2-Leonard対は得られる．

上記の定理に現れるアソシエーションスキームの 2変数多項式系はいず
れもTratnik型の直交多項式系である．その後，Crampé-Zaimi [7]によっ
てTratnik型の直交多項式系をもつ 2変数多項式アソシエーションスキー
ムと A2-Leonard対の関係が調べられた．なお，Tratnik型の直交多項式
系をもつ 2変数多項式アソシエーションスキームの単項式順序として，辞
書式順序が入るので，定理 5.2が適用でき，これらのアソシエーションス
キームは非原始的であることが分かる．

6.3 対称空間と多変数多項式アソシエーションスキーム
以前より P かつQ多項式アソシエーションスキームは階数 1のコンパ
クト対称空間の有限集合版として対応すると考えられてきた．なお，逆に



コンパクト対称空間を含むコンパクトな連続空間を連続版のアソシエー
ションスキームとして扱う試みもある．詳しくはVoit [19]やNakada [14]

を参照されたい．
Vretare [20], Hoogenboom [11]によって，以下のような階数 ℓのコンパ
クト対称空間 U/K の球関数に付随する多変数多項式の研究が行われた．

命題 6.4. 単連結などいくつかの条件をつけた階数 ℓのコンパクト対称
空間 U/K の fundamental weight を µ1, . . . , µℓ とする．最高ウエイト
λ =

∑ℓ
i=1miµi に対する球関数 φλ は自然な単項式順序に関して次数

α = (m1, . . . ,mℓ)の多項式Pαを用いてφλ = Pα(φµ1 , . . . , φµℓ)と表せる．

例えば，単位球面Snの場合はPαはGegenbauer多項式に対応し，Grass-

mann多様体Grℓ(Kn)の場合は一般 Jacobi多項式に対応する．[20]や [11]

では，命題 6.4の Pαの項の情報が詳細に記述されているため，それをも
とに以下のような多変数Q多項式アソシエーションスキームの関係性が
導かれる．

定理 6.5. 上記の U/K の球関数は ℓ変数 Q多項式アソシエーションス
キームの同値条件である命題 4.3 (ii) (a)を満たす．

なお，U/K の球関数Pαの添え字αはNℓ全体を動くため，U/Kは命題
4.3 (ii) (b)を自動的に満たす．よって上記の定理により，U/K は有限集
合ではないが，連続版のNℓ上の ℓ変数Q多項式アソシエーションスキー
ムとみなせることが分かる．
一方で，階数 ℓのコンパクト対称空間 U/Kを「連続版の ℓ変数 P 多項
式アソシエーションスキーム」とみなすことはできるだろうか．U/K に
対して，R : U/K × U/K → I として，像 I がRℓのコンパクトな部分集
合となるようなものが自然に定義できる．これは例えば，単位球面 Snの
場合R(x, y)は内積 x · y ∈ [−1, 1]に対応し，Grassmann多様体Grℓ(Kn)

の場合R(x, y)は principal angles (θ1, . . . , θℓ) ∈ [0, 1]ℓに対応する．この
とき，I は離散的な集合ではないため，[2]の多変数 P 多項式アソシエー
ションスキーム定義にそのまま当てはめることはできない．したがって
「連続版の多変数 P 多項式アソシエーションスキーム」の適切な定義が望
まれる．
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