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HIAZ TR EOI L VY 2 & 4 USHEINEED i 2858 B
D = B &

HA &

dee
1 8=

ARETIE, ZIRENR K FORRITEZTREZERT 52D T 5, FHTH D 23720 R
D, MERIGEMEEE U, EBEICERERTH 2 LIRET %,

IV ¥ a kA UHEEIMEEOME ORI, Auslander-Bridger [3] 12X 23V v ¥ a X
A Y RTEH 0 DINREDOWIFEIC L T#l D, ZDE, Enochs-Jenda [15] IC&->T, TLra
A VRITH 0 OHIEEZ —fRILT AT T L V> 2 &4 VHHEIIEENEA SNz ZD%
PR, L vyakf UEENERIL Y 2k vRERY —REBICBWTHE NS
LTOHREZH-TWE ZICHEKRLTWS, LV aRAf UEHIMERE, & MmEE
4l Xidhszeddb, KT, ZIURMPEK-ITL YT a & U THE5EITE, MK
Cohen-Macaulay fIEF [6] 1IZ—E(T 5,

XTC, ZIWRA LDV V¥ a kA UHEIEED 125 Gproj A 1%, S8 A-INEEZ S5
WMRET 2D X572y RBEDWHEE DD, L7ehioT, ZDLEE Gproj A IZiZ=
HEORENHRICAS, ZOL %, ZEE GprojA 75 A OFERE Dy (A) ~NOEFEFR
2 = MEREFIFEL, COMFEL=MEREICZS I, ADPEK-TL YT akA
VTHZIEWFAMTHZ ZePHLENTNS [5, HROZILBROREmICBY 2 £ i
HEDO—D2IZ, ZILRICHES 284 0E (INEEE, ToRE, FrRERY) OMIEMRIAL D
%, L7edioT, ZiERE Gproj A O=FMENEDMIHIL, ZTIROKXRBmMICHT 2 EHER
HEED—D YW B,

ZhETI, [7,8, 10, 12, 22, 26, 29-31, 33, 34, 36, 38, 40, 41] 72 ¥ D% { DWFEEIC
£ o T, Gproj A D=ABEREENRE SN TELD, ZOZLNEK- TLr ok EZ5C
BEMRELTWS, ZHICH LU OEETIE, AK-ITLryaif 23 ReRWEITR
DOHTH, BRMBHOTA M r =2 LTEHINSHEZTTRICEEIEE > TV 5, 5
B%, Ringel [35] 1%, RDEANLREDZ 7 2D—DTHZHLUZICER AT LT, GprojA
HH2FREDOHCASHILZTCROZENMFE Y U TEBAMETH LI ZRL TV, F
7z, (1) A 29 gentle ZITIRDIGE (23], (ii) A 23 overlap Z #7272 WHIHZ TLIR DG [13)],
(iil) A SABRICAE 4 1 DEK-TL > ¥ 2 X4 Y HIBZTTEROEE [32) ITBWT S
PEATED, WINDEAES, GprojA 23 3 HOASARIIZITROLEMEIE Y LTHE
HAJRETH B Z eI TW5B,

ARETIE, RERZBOWTARTOHE RSB X0 Z0HEAFHEENLZ0E, K
ZI K (SHIPEAR S FEM2ERR) & ORFEIFRIC L > TR SR [20) 28T %, EE
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4.2 TR 2 K512, xR, BARORITRERETEOBRIEZ ITROSGEITH I
WHET 32D koTW5,

2 %

ARETE, AETHEL RIBREZHENT 2, £7, B2 %EMT 2,

ZIEERA LT, A ODRIEEFRZ AP, ADkfoavr—oEkz AK) TtF£F, A-Et
DE% mod A, H52 A-MEED S 72 % mod A DITHGE 77 % proj A TS, A-IIEE M DA
WRIC% idy M TETI,

ARETIE, REUTEZZURIEXRBTEZTTREZERT 250 35, KEUTZ Artin Z
TEEROEEGMICOWTIZ, (16, 17) 2B E N0 KBTEZTTER A = @5 Mi ITH LT,
At = A-IIEEDPE mod?A R TED %,

o MGIITHNS & AMBEM = D, cp M; T %0
o KEUTZ=A-MBEM, NITHLT, M»5 N NOHEEEZRTED? .

Hom% (M, N) := {f € Homp (M, N) | f(M;) C N; (Vi € Z)}

TEU & FRENNEED & 72 % modZ A DFETGH /T % projZA & F¥ . T & A-INEE M DX
Bt & AR gridy M TRT, TBUTE A-INBEM 2 BEE ISR LT, M(i); := My,
&b, MO 7 N M(i) € mod?A ZEDH %, ZAIZED, B> 7 VT (4) -
mod?A — mod?A DEE %, T 7 FETFIR, 5Ee&h0 K-##F7% modZA o H CUFE R
THb,

EAEXIINLT, X OREY | X| TKRT, £/, X OILTELNDS K-X7 MLZEM%E
KX TET, Fiz, X = {2} P—TtRETH25EITE, KX ZHIZ Kz 2 F L,
BCokfioavr—oBEiEEE c*) tRT, IMEE C Lok TRE b —E%
K(C), BREERDITHE M E—E% LP(C) TRT, 7—~VLE ADHFEXRE%R DP(A)
T#£ 3, Krull-Schmidt B C 12X LT, C DEBFNROFABELIKOES % indC TR
Bl Z1E, ZICE A K % proj A, mod A LI & ZICE A 1IZxHE % projZA, modZA iX
Krull-Schmidt B TH» %, &€ + & —ELEREIZOWTIE [28, 42] %, Krull-Schmidt [
WZOWTIX 27, 37] 22 STz,

2.1 JdL>SasAaUHrmss

REITIX, TV aX A UHHEMERCET2EAFEHD S S, AFICE#EDOH 2 DI
SWTHIAT 3, SMicoVTIE, [9] 2BBE A0,
LT a XA UEHEINBEDERD SIHRD 5,

E&E 2.1 ([15]). (1) 8 A-MEED & 72 2 IEERIRE IR
Poi“'—>P1d—l>P0d—0>P,1d;1>Pi2_>...

73 totally acyclic TH 2 &1, S/ A-MEED 572 281K Homy (P, A) H3IETRIR
W22 &%V,



(2) A-BIEEM HTL Y2221 VBTS2 L1E, 52 totally acyclic BIK Pu 23F1E
LT M 250 RM5 do : Py — Py OFiKerdy & AENC 2 L &k 0,

AR 2.2, OV VY a4 VB AIEE M I LT, M = Kerdy % A727F totally acyclic
BIK Py 13 M @ complete resolution & X135, Z®d complete resolution {&, HE k
Y —& K(proj A) IZBWT, FARZRWT—ERNICEE % [14].

ADBK-TL>2aR14> (6,21 TH 2 X, ADFHNIEYE L TOASKITid) A, idpyos A
MEDBIARTHLZ20S, 2D X, FRXidy A =idpee A DD LD [39]s Bl ZIX,
KIBRITEWERTH 3 X5 RZITRIIEK-TL YT a kL VYETXRTH S, /2, HOA
HZTBRIZidAA =0 DEK- TV a XA UETTER AR S0,

TL YT aRA U A IO 72 F mod A DITHH T E % Gproj A £ &3, Gproj A lx
K-##J¢7 Krull-Schmidt ETH 35, ¥£7z, EEOHFEMEIEZIL Va2 x4 VHENTDH
bbb, K SR P LT, ROIEEIREIAR totally acyclic TH 3 :

0

0 id
P =0 -

Pb: - —>0—>P
Lo T, ROEEEBRAMD LD !
proj A C Gproj A C mod A

ZZT, GprojA = modA D DI OZ ¥, APHCAHFHZILIRTH S Z L IXFETDH
%o —71, projA = Gproj A DS DD L %, AlX CM-free TH 5 W5, FIZIX, KK
RICDERTH % & 5 2Z LRI CM-free TH %, BRI L V> 2 &4 VHF A-INEE
DRBFEDO BN ERTH 3 £ &, Al CM-finite TH % 2\ 5, EEHRIEHR A-IMEEDFE
RO ERNIEICERTH 52005, CM-free ZILIRIZ CM-finie TH %,

HIEERE mod A DZEE mod A ZXRTED S

o WRIT A-IEEL T3,
o AMIBEM N IZHLT, M»o NANDODHEEEZRXTEDS .

Hom, (M, N) := Homy (M, N)/{ S INEE % @i 3 % 41 }

T VY a R4 UE A-INEED 572 % mod A DT 7B % GprojA ¥R, TDL X,
mod A, Gproj A IF K-##J£72 Krull-Schmidt ET» D,

indmod A = indmod A \ indprojA, ind Gproj A = ind Gproj A \ ind proj A

N RTASH

Gproj A &, SHENREEDGFHEMFRRIC—HT 2L 50 7uR=v2AETH S, Lk
35T, Happel [19] DEH XD, ZDLEE Gproj A ITIZ=AEDOHEPHRICA S, A D
FiEE, $7bB, mod A DHFENRE DP(mod A) DFELERE P (proj A) IZ X % Verdier
7 DP(mod A)/KP(proj A) % Dsg(mod A) TET, RIE TR X 512, LEE Gproj A »°
HHRFERE Dyg(mod A) NO=FE & L TOHDIABDHITHFIEL, O DIALD =FE[F
HCHBZLy, ADEK TLYY 2 XA VETRTHS 2 L HAMETH S 5], A DEK
LT aRkAL U THDHLEE, FoND5=AREFME Gproj A = Dg(mod A) (& Buchweitz 73
6] WZBWTHERL L 72 Z AUt & 750,




2.2 G-HEERF

AHITIE, [1] 1Ko T G-HERFOEREZARND & & HIT, ARTHW L EAFIHZM
N5 5, BB, REZELT, BIEITANT K-EE, BEFEIRNT K-HEEFE T 5,

B CeRERM A G — Aut(C) Ol (C,A) Z G-ERZ b2, H20WidG-Bt L3
G-EICtLaec GIIMLT, ar:=A(a)(z) £BL., GOHAITE 1, C DEZFEAFZ 1¢
TRTE, A1) =1 B D LD, GAEH A: G — Aut(C) WERTH % &1k, HAITTR
WEaeGEHEreCITHMUT, ar £z HEDIDLER VI, THIZ, A: G — Aut(C)
DPRABRTHZ L, Ko,y e CIIMLT, {a€ G |Home(ax,y) #0} DEREEGTH
HEEZRVD,

F:C—=C%GEC= (A »olEC ~DOBEFLT 5, FOD invariance adjuster &
X, RD20D5%&M 27T XS BBERFEDE ¢ = (¢o: F = FA(Q))aec TH S -

(1) ¢1: F = FI3F OEFEARZR 1r TH %,

(2) o, feGITHMLT, XOMFORRIFAHICKS :
P FA()
B

F
¢,BO¢J ld} A(Ot)

FA(Ba) —— FA(B)A(0).

ZorE, Ml (F¢) 2 G-AEEF L L2, &M (1) 13%&M (2) 26 EBICHES [1, Remark
1.2]o ¥72, [1, Lemma 14] &b, G-AZEFF = (F,¢):C—>C LBAFH:C' — " THt
LT, Hp:= (Hoa)acg B, (HF, Hp) ¥ G-AEBEFITR 5,

F=(F¢):C—C%GAEEFLTE, 2,y CITHNLT, XD 220D KHAHEE
BEZD

Fz(,l) : @ Homc(ax,y) — Homc/(F(m),F(y)), (fa)aeG — Z F(fa) : ¢a(m);

aeG aeG

F() : @ Home(x, By) — Home: (F(z), F(y)),  (f8)sea = »_ da-1(By) - F(f3)

BeEG BeG
Z ZT,
F(fa) - ¢a(z) : F(x) = F(y)
1% po(z) : F(z) > FA(a)(z) & F(fa): Floz) — Fly) D&KTHD,
¢p-1(By) - F(fs) : F(x) = F(y)

X F(fg) : Fa) = F(By) & dg-1(By) : F(By) = FA(B™)(By) = F(y) DERTH %, [1,
Proposition 1.6] X b, F{) BA%IcH2 vy, F2) BAAETHS 2 L ZFAMTH 5.,

BFF:C— CrPRABTHLLIF, BEDY € O THLTHS 2z € CHFELT
Flz)=d THd &2V,

E&E 2.3. F:C—C % GAELHEFLT 5,
(1) F 25 G-BiBTHB L, & oyeClenLT F) sRAMTHz L2205,



(2) FHAG-HEBTH2LI1E, FHGHiHEI OMETHI L2205,
ETE 2.4.C=(C,A) 2G-Er¥2,
(1) COGRRE2EERBC/G ZRTERT S :

o MFIICONFELT 5,
e 0,y cCITHLT, 220y ODHEEGZRXTED S :

Home ¢ (2, y) := €D Home(az, y)
aclG

e gt fix oy gy —2INLT, fFgDEREXRTEDS .

fo=1 Y g5 AB)(fa)

a,BeG
Ba=y aeG

ZZT, g AB)(fa) EAB)(fa) : Bax = A(B)(az) — A(B)(y) & gp: By — 2
DEMRZERT,
(2) IBEBF P:C > C/GERTEDS :

o XfR 2 IIXMLT, Pz):=2 73 5,
o 9 [IHLT, P(f) = (alaca EF 2.
G-l C = (CA) »HEAoNEE, Fae GIIMLT, RTEZX2HARAEL ¢, =
(baw)zec : P — PA(a) TRT :
¢a,x = (55,04 idaz)ﬁEG € HomC/G(P($)7PA(a)($)) = @Homc(ﬁx,ax)
BeG
ZDEE, ¢:= (da)acc T P D invariance adjuster £ 7% %, [1, Proposition 2.6] I X D,
P=(P¢):C—C/GEG-HEREFTDHS, £72, [1, Theorem 2.9] 25, PIIC 6D G-
NEEFOLRILTEEBNTHE 2, T4bb, FED GAZBEFE = (E,¢):C—C 12
MNUT(E, %) =(HP,H¢) Ziti/l=3BF H:C/G — C' Bicle—DFET 2 b b,
I, G-BECITNLT, GHRAECEFAR ¢ :C - CIZXoTEREINZEHHTH 2
L, WUEE C/G % C/p TET,

2.3 PSS OAL > a1 UHNEmMEE
REITIE, AR THWAIXEET L a4 VHEINBEOREAREIE 2 MRS 5, AHi

T, A=@;oMi ZRENEZITLRE T %,

EF 2.1 1BV, S8 AMEEZ T 415 A-MBRCiE 22 2 22 T, REEHGE3
Lo>afAa U558 A8 [11]) ZERTE 5, KENTE2aL 0> 2 &4 VHE A NFDR
JHE % Gproj”?A TET ¥, #2.1H LRI, CGproj?A & K-##Z7 Krull-Schmidt [T 5
D, W& proj’A C Gproj”?A C mod?A 1§51 3,



ADPRBSEEAR-—AL a4 THD 2, A DRHEINBEE U TOXREST = AGX
JCgr.idy A, gridyep A 3 DICHRTH 2L EE2 VI, ADBPKRBITEEK-TL Y a4
VTHiHIl, BHEDZITIHE LT) ADPEK-ITLYT a2k THEILIFFAMETD
% [32, Section 2.1] D Z LA TIE, KBUTEEK-TL Y2 X4 THBI L
Y, BK-OL YT aRAUTHB I BXAILERW,

T, Gproj’A = mod?A DD iioZ vy, ADHCANKZITETH 2 Z L FAETDH
%, %72, projZA = GprojZA S D LD ¥ %, A % graded CM-free TH 3 ¥ \5, {TE
DBF I € ZIWTR LT, S 7 PET (1) : modZA — modZA 1%, JEUS 25 A-INEEE
73 % &5 AR (4) : GprojZA — Gproj?A Z#E3 %, A% graded CM-finite
THselx, BRNRRENMNEZaL VY 2 &4 V58 A-IEEORIZEO ARSI S 7 +
ZROTHRTH 2L 2205, A=, \i FIEXBUSETH 555, [38, Propositions
2.16 and 2.18] IC & D, KOHRHEL D LD

ind proj“A = {P(i) | P € indproj A, i € Z}

L7255 T, graded CM-free 72 REU = Z IR 13 graded CM-finite TH 5,

THUS & INEEE modZA DLEE mod?A %, ZENMELE mod A L FABICERL, KK
MEITL S a X4 VEEMEED S mod?A DTGB % GprojZA THT, Tk X,
mod”A, GprojZA i3 %I K-##J 72 Krull-Schmidt B T3 b,

ind mod?A = ind mod?A \ ind projZA,  ind GprojZA = ind GprojZA \ ind projZA

DD LD,

GprojZAlZ, TS ZEHEMBE 2 HENR e T2 X597 a2 RBETHD, Lo T,
Z DLSERE Gproj” A ICIZ =MABEDREA A 5. ARTIX, Gproj”A % A OREUT S LEE &
MERZ 2T 5, COLE, JEUS X LEE GprojZA 7 & IS & K5 FE Dy (modZA) :=
DP(mod?A)/KP(proj2A) ND=fAE r L TOHEDAANRHEIFEL, ZOEFI=AMEFH
HTHBZLY, ADEK-ITLYS 2R THBILHREEICE S,

F:mod?A — mod A Z SHET L § 5, Fl35eeh > KRBT TH %, (17, Propo-
sition 1.3) & D, KEfFE A-IIBE M ISR LT, M € proj’A TH2Z ¥k, FM € projA
TH5ZBFAMETH2, X5, [11, Lemma 4.5] &b, M € Gproj?A THB ¥ &,
FM € GprojA TH 5 Z bRAMETH %5, U EDHERICEY, F:mod?A — mod A1 K-
TRIEBEF

Fg : GprojZA — GprojA B LU Fg : GprojZ?A — Gproj A

ZFHET 5, F:mod?A — mod A 3R RDT, Fol3=AEETFICR 3,

EEDOE i c Z TR LT, XE 7 FETF (4) : GprojZA — GprojZA 355 A-InEE%
HET 2, ZOZehs, REBLILOXES 7 FETF (i) : GprojZA — Gproj?A 7€
FXxNb, KBS 7 VAT (1) ko TERIN2KEREE G T35, Gproj?A BXU
GprojZAiZ BICG-Blr 2%, WTFRDBEIBWTH, 0 GEHIZAE»ORATER
TH 5, RFAERMEICOWTIE, REU = AMEE M, N2 L TRDILDRD 2 DDFHEK D
LEMNMNS:

Hom(FM,FN) = @) Hom% (M, N(i)), Hom,(FM,FN) = Hom? (M, N(i))
1€Z 1€EZ



INBIZDOVTIE, 2R, [20, Lemma 1.1] Z 2 X720,

ET, F:mod’A — modAZ F = Fo (i) 2’25, ZOLE, F#% Fg, FglTEE#
ZTHE 5N 2 %K% invariance adjuster ICIRHT 2 Z 8T, Fo B Fo 2 G-AREMFT
HBZebhrd, LD 2200%FANS, OO G-RIERFTHS Z e B, [16,
Corollary 3.4] &b, 55 A-MEHEZ T XT gradable TH 2506, ROFMEZIF 5,

8 2.5. XD 3 DDO&MHEFEMTDH 3,
(1) Fg : Gproj’A — Gproj A I3FI%ETH %,
(2) Fg : Gproj“A — Gproj A 13 G-WBMEFTH 3,

(3) Fg : Gproj“A — Gproj A lZ G-HBMFTH %,

Fg : GprojZA — GprojA 7’ G-HBEFTH 2 L INET %, T %, [EHEEF P .
Cproj“A — GprojZA/(1) ZFWT, (G-AZLEFL L) Fg=HP %®ifil-$ X5 k7=71
DOEFEE H : GprojZA/(1) = Gproj A BFEET 3 :

GprojZA fa Gproj A

N

GpronA/(l)

Gproj A Z=AAETH 255, EFEH : Gproj?A/(1) = Gproj A ZRH$T 22 2T, #l
iEE Gproj?A/(1) I =ABO#EEE ANE e BN TE S, ZOL E, H:Gproj?A/(1) =
Gproj A Z=MEET, L7=-> C=MAERIMEE %%, Fg: Gproj?A — Gproj A 1Z=f4E
BFTH 205, FHERTF P Gproj“A — Gproj?A/(1) b =AEEF L 42 5,

2.4 HIBEZTR

HIAZ TR IZRFA72 bound quiver algebra T®H %, [2] IZfi > T bound quiver algebra @
EFREZIBND,

Quiver &3, 220DEE Qo, Q1 £ 220DERs,t: Q1 — Qo B2 2HQ = (Qo, Q1, 5, 1)
DZETH%, QyDiLk QDIER, Q1 DILE QDKL L5, Ka € QXL Ts(a) € Qo
%a DA, ta) € Qo % a DALV, Kac Q) 2K s(a) = tla) TRITZ LI
XoT, QZAMAZI 7 LTRIIRTE %, ¥72, Qo,Q1 D DIHERTHSL %, Q%
AR quiver ¥ X%, AT, quiver IFHR quiver ZEKT2dDE T 3,

Q % quiver £ 3%, B n > 1 1MNLT, t(a) = s(air1) (1 <i <n) BAHTRDY]
p=ai---a, ERXn®dpath W5, path p DEX n % I(p) TERL, 4% s(p) := s(a1),
Rz tp) == tlan) EED D, FIHR T € Qo WX LT, £ 0D trivial path ¢; ZEA
L, s(e)=i=t(e;) LEDD, £ 1LLED path % nontrivial path & K&, path 2k
DEEG % B, X n D path 2ROEE %R B,, & nA LD path 2RDEEZ B>, &R
T, BX 1D path RIS T, By = Q1 DD ILD, M & D —E3 % nontrivial
path % cycle & X3, cyclec 2% multiplicity-free TH 2 1%, ()" =cZALT LI%
cycle d EEBEm > 2PFELRNWI EZ WD,

K K & quiver Q IZF LT, path algebra KQ XD XS IZEHRT 5 !



o N7 MLVERIE LT, KQ:=KBYED5,

e 2D0Dpathp=ay - -an, =01 by DEpq ZRDXIIWED S : t(a,) = s(by) D
E&pg:=ay---apby-by &L, tlay) #s(b) DEZpg:=0&7F 3,

COLE, 1kg = icq, & PDILD, Q1 DILTHERE NS KQ OWMffll4 77 1% JT
£5, EOBEKN > 112U T, W4 770 JV & By DI TEREINS, KQ D]
A 7717 admissible TH 321, JVNCIC J22AET L5 N > 208FET 3
& Z%\W9H, admissible £ 7 7 UEHHIA 77 v e UTHRERTH %, path algebra KQ
@ admissible 1 77V [ 12 X 2FIRZITTIR KQ/I % bound quiver algebra £\ 5, path
algebra 1X K EHRXITTH % L 1ZR 572 \0A, bound quiver algebra 1312 K _EHRXK
TLTH 5, B TH 20, EEE K »PRBHEARTH 258123, EEOZTRIIX, 5
bound quiver algebra ICFRHFEMEIZR 2 Z & FI 6N TWS, ET, bound quiver algebra
KQ/I WHIESTTITH S L 1%, [ path TERINTLS L2503,

Chen-Shen-Zhou [13] 235 2 72 HIEZ LR FOEBK T L > 2 2 X 4 U SHEIIREOMIEE
2L LI,

LUR, RETIEA=KQ/I #HIHZILIRE § %, paht p 2’ nonzero TH2 k%, p&I
DD IDE &, Thbb, BARALZEMNRERE KQ - KQ/I=A X5 pDBp+IH0
THWE %5, nonzero path £KIX A O K-FHEE 72T, RELOENDZWED, AD
JTLp+ 1 2HIZp tEL, T, bdoMEEHICB W TEEREEZ /-3 perfect path
DEFRT BN S,

EFE 2.6 ([13]). (1) nonzero path D# (p, q) 23 perfect TH 3 XX, KD 3 DD5ZMD
fi7zzshdeZ22W0S !
(i) p,q ¥ ¥ HIZ nontrivial TH Y, t(p) = s(q) B W pg € I D LD,

(ii) t(p) = s(¢') 22 pq € I %7z nonzero path ¢ I LT, ¢ = q¢" i/ s
path ¢ SFET %,

(iii) t(p') = s(q) 22D p'q € I Z W7z 3 nonzero path p 1T LT, p' = p'p &7 d
path p” DIEET 5,

(2) nonzero path O (p1,...,pn,Pnt1 = p1) 2 perfect path sequence TH 3 & I3,
1<i<niZNUT, M (pi,pir1) 3 perfect pair TH B & X W9,

(3) perfect path sequence 2341 % nonzero path % prefect path & X5,

(4) perfect path sequence (pi1,...,Pn,pnt1 = p1) BRBINTH B 21E, pi #p; (1 <i#
J<n)BRDIUDOE EZ NI,

perfect path 2KDEE % Py £ 3, nonzero path DEEUIERTH 2720, Py IFHIR
£ETH D,
EE 2.7 ([13]). p € Py & pA € ind Gproj A IZXGE ¥ % X 5 L eHS Py — ind Gproj A
DEET %,

ZDOEMD»S, A D CM-Afinite THBZ DD, £z, PA = 0 THsZtle, AN
CM-free TH 2 ZEDEMETHZ2 Z bbb,



RKacQ WL Tdega=12EDHB LT, ANITXBUTZZILROMEE ALd, Z
DEE, A=@@;50Ni &A= KB; (i >0) Zi#fi7=Fo nonzero path p l3XE I(p) D A DF
RILTH B0 0, pWERT 2K ENEE pA FREBUT = A-IMEETH D, Reiizd

pA=EHpAi, pAi = ,
il K{pglqeByp,pag I} (i>1(p))

[32, Section 4.2] IZBWT, XROFERAMBF LN TV
ind Gproj”A = {pA(i) | pe Py, i € Z}

U, ADgraded CM-finite TH 2 Z & 7213 TR <, HifiCTES LI LZEB L NLDEH]
BT F : GprojZA — Gproj A 73 G-#BHETTH 2 2L & RLTWVWS, 72721, GprojZAlT
EF LTV BEEG X, I 7 FETF (1) : GprojZA — GprojZA 2 & » TAE X 1L 2 K [EIEE
ThH3, COHEELHEZ, BIBBIVPEA4ETIE, 2PN 2 2E B Gproj”A B
£ U2 OHi3EE GprojZA/(1) O=MABEMEEZTNS, Thuckb, (B D) REE Gproj A
D=FEMEETET %,

3 BIEZGREORBMAESIL Va1 U HENBEOREE

DIR, ARTIX, A=KQ/I ZHIEZILRY $5, ROXBE 1L EDD I LT, ANIIX
B EZTROMEE AN TWZ e 2BWEZ S5, KETWE, HEEHEHWT, ZETE
%5 B GprojZA D =MAEEZRET 5,

T #=AEr L, ST D7 VAT T2, T OEMETTHL Z=MAEH59E % thick
BABE VWS, TeT HNLT, X ZETEH/ND thick H57H thick T £ RF, T € T 2ME
WRTHZ LI, RD2ODEHBELHH IO EZ2 WS .

(i) Homy (T, 2'T) = 0 (i #0)
(ii) thickT =T

THRENTH 2 13, TH7axX=y REOREEIZ=AEFEICR S & 2205,
(972 Krull-Schmidt A T 2MENR T € T v 22 %, T & HOHERAE Endr (T) ©
SERIERE KCP (proj End(T)) ORI =AEFENTFEIET 5 [11, 24, 38].

AEIDEMRZ DR D T DI BRI EAT 5,

perfect path p € Py I LT, phH4EF % perfect path sequence (p1 :=p, ..., Pn, Pni1 =
p1) ZEB L, Fpr--puld cycle I8R5, TOEE, pr---p, =™ (Im > 1) Bifi/zT
multiplicity-free cycle ¢ %, p IC{4FE9 % underlying cycle LY, ¢, TRT, ZD ¢,
I perfect path sequence DHYD FFIZ & 6T —EINITEE 5, KEBEFUC X - THFEIN S
underlying cycle DFfEEEADEEZ C(A) TR,

2 DD perfect path p,g ITN LT, p=qr AT pathr € BOFETIEE, p>=gq
DK, TDEE, (Py, =) ZHIEFEETHD, (T 2 Hasse quiver H(Py, =) & linear
quiver DM 7% %, Z I T, linear quiver X XD % L7z quiver TH 3 :

l1—2—..-—n-1—7n



L7225 T, Hasse quiver H(Py, =) iZi& sink T7R2HDHRKDIBERUITIIIR B BROIHRDIFEET
%, Hasse quiver H(Py, =) O sink {ZXfJ5 3 % perfect path % co-elementary path &\
5, co-elementary path 2KDEE%Z EQ TR,

RD 2 DDFREDKD LD,

i 3.1 ([20, Theorem 2.11]). (1) fEE®D perfect path p € PA I LT, % co-elementary
patth”"’T”EE(/:Xoiﬁﬁﬁby p=r1 Tni))EEOJAOo k—@c}:jfx ﬁ’ii#%mf
Hb,

(2) ri,...,rp € EQ %2, HEED 1 <i,j <niTHLTCA) DILELTe, = ¢, KD
LD K 575 co-elementary path £ 35, ZDE X, FEri---r, D nonzero THHIIZ,
r1 -+ -1 W& perfect path T 5,

B-TF& 3.2 (20, Proposition-Definition 2.12]). fEE D underlying cycle ¢ € C(A) IZXF L
T, % co-elementary path ry,...,m, € EL DMFEL, c=r1 -1 DD IILD, TDK
IBARIF—EHITDD, |c|:=n KT,

AR 3.3. Lo2o0@m#ELD, ce C(A) 2 perfect path TH S Z & &, ¢ ¥ nonzero TH
E)CZGS’(H{E“C%ZQ

c=r11p € C(A) % underlying cycle & 5%, 7272L, %% r; lX co-elementary path T
Hd, TOLE, EEPA(c) %
Pa(c):={pePr|p=m},

TR T, € Gproj”A %

P A,

pGPA(C)

WR T € GprojZA %

7= H 1.0 (1)

ceC(A) 0<i<l(c)
LD B, ERED, T IEC(N) DEEREROMD HIHKET 5 2 L hbhd, £72, [20,
Lemma 3.4] DFEBHIZ X D, 22D underlying cycle c1,co € C(A) 2R LT, C(A) Dt L
Ter=c THdHRR 6@:, |PA(61)’ = “P’A(CQ)‘ ERRBZEDBbIB
[20, Theorem 3.8] DFFH, B XU [20, Lemma 3.7] IC & D, ROMWENEF SN 5,

W8 3.4. (1) TERINST € GprojZ A IHMERRTH D, RDOZLE L LTOFRA

End}(T) = ] (KA)U
ceC(A)

DPIFET b0 72721, A IRD linear quiver TH 5 .
Ac:l1—2— - = |Pa(0)]

GprojZ A 1Z 7 Krull-Schmidt ZAETH bH, HOHERAER End (T) 3 KIBXOTE
RTH200, ROEHZEZ, CHADPARFHOTHRTDH 5,




TEIE 3.5 ([20, Theorem 3.8]). HIHZILER A XA LC, RO=MAEFRIEIFET 5 :

GprojZA = H DP(mod KA,) ()
ceC(A)

AR 3.6. EH351E, HK- T YT akA YHEZITRICNS % Lu-Zhu OFER (32, Propo-
sition 4.3.4] ZAEEDBIEZITTIRICHINET 25D TH %, 2T 5 L, [32, Proposition 4.3.4]
T, ARy aXAf YEEZITTR AN LT, »23ERERFAELZ TR H BFE
L C=ABEF#E Gproj”A = D (mod H) EET 2 Z EARENTWVWS, X 5IC, Hf#A
K 2RRBIPARTH 23551213, o =AEFREIZIEEIC X 2#5% (18, Theorem 7.3] DIF
BrlLtlohaZ eI LTE L.

Bl 3.7. Q XD quiver £ T3

Dt %, 1231, 0323123, 45, A54 L:iofé’ihﬁé ﬂ% KQ @ admissible £ 5:\‘711/%\_” 1 83_50
Z 2T, ao31 W& path ajasasa; ZEK 3. D assi03, ass, ass ICOWTHRETH S, 7,
LURIZZET % nonzero path D23 GEEIEHUC X > T—E 3T % b DEERW) /) perfect
path sequence DI RXTTH 5 :

(a1, ags1, a3, aizs, a1), (a4, as, as)
. N
L7 o T, Py ={a1, ags1, azs, a123, as, as} DL DILD, Fiz,
Ca1 — Ca123 — (1123, Ca231 = CCL23 = a2317 Ca4 = CL45, C(ls = (154
“C%Z)i)’fo, C(A) = {a123, (Z45} bbb, X 5@:,
H(Pp,=): a3 —— a1 a231 — a23 a4 as

TH205, [Palars)| =2, [Palags)| =1 87%5, LEhoT, EH3512&D, =MAME
[ fiEL

Gproj?A = D" (mod K(1 — 2))(3) x D (modK)(z)

21%%,

4 BEZIREOIL>D 24210 VHENBEORER

H24HDORETBN & 512, AETIE, HUEE GprojZA/ (1) O =4 BRSO gl % @
UC, ZEE Gproj A O =fEREERET %,
3.4 &),

T= @ @ T.(i) € GprojZA

ceC(A) 0<i<l(c)



1 GprojZA = thick T %7z L, [20, Theorem 3.8] DFEH X D,
HomR (Te(i), Te(5)) = 0 (0 <i#j <i(c))
THEH06, ROEFEXZES !

Gproj”A = J[ [ thickZ.(d)
ceC(A) 0<i<l(c)
72721, & thick T.(i) 36 FHERE DP(mod KA,) W =ABEFETH 5,
HBeelCA) icZ LT, B> 7 METF (4) : GprojZA — GprojZA % thick T, i<
HIR 2 Z v, FEFAE (i) : thick T, — (thickT.)(i) #1%%, ZIZT, (thickT.)(i) {¥XT
E % B GprojZA OFEMETETH %

(thick T,)(i) == {X (i) | X € thickT,,i € Z}

D E, (thickT,)(i) = thick T.(i) 238 D 3D, [20, Lemma 3.9] & b, ®%i j € Z 1%t
LT, thickT.(i) = thickT,(j) THBZ ¥, i =j (mod l(c)) TH2ZLVFEETDH 5,
Kz, BCEFRA (1(c)) : thick T. — thick T, 215%, Z ZT, thick T, ® Auslander-Reiten
translation % 7. T&$ &, [20, Proposition 3.11] X D, thick T, ® HC.FEFfEE L TDRA
Ue) = I ptetes 5 C e 2R LTH L,

GprojfZA DRMED T 7 2 X 1ITH LT, KTHZ 53 HEE GprojZA/(1) O el sy A
% P(X)T&RT:

P(X) = {P(X)| X € X}

HBeeCA) i ZITHLT, X7 FTF (i) : Gproj?A — GprojZA »EE T 2 HA
[E[FRZY (i) : GprojZA/(1) — GprojZA/(1) XHEHEEFTH 205, XOEXREH 3 :

P(thick T,(i)) = P((thick T.)(i)) = P(thick T,)(i) = P(thick T,

[20, Lemma 4.1] X D, P(thick T.) = thick P(T.) TH 225, RO =MAEL L TONED
IS 5 .
Gproj”A/(1) = [[ P(thickT) (2)
ceC(A)
X T, £ P(thick T.) I22WT, K& 7 FBETF (I(e)) : thick T. — thick T, 23T % 1K
F#%E G, 235, ZDr &, EHERT P Gproj?A — GprojZA/(1) 2SFFEE T 2 BT

P, : thick T, — P(thick T,)

& G- AEEFICR S, X5, [20, Lemma 4.2] DFEAD S, P, : thick T, — P(thick T,)
B GAMEAFTHE I ebh b, LdoT, RO=MEFEIFIET S !

P(thick T,) = thick T,./(I(c)) = DP(mod K A.) /7' (3)

Z 2T, DP(mod KA,.)/7I 1% Keller [25] OEKRTO=MAHIEETH 5, (2) & (3) ZiA
HbeszrT, ZAEFHE

Gproj A = GpronA/(l) = H Db(mod KAC)/HCI (4)
ceC(A)




HEoN 5,
FeeC(A)ITHLT, RTEE2ERLECAFTLZITRE A, TKRT !

A=K (1 w M) /J\IP’A(C)|+1

ZDEE, Py, & nonzero path ZRDIEFIT—HL, C(A:) & TLRELRD, THITEY =
QRN ILDe C(Ae) ={c} & T 2L, || =[] 22D [Pr ()] = [Pa(c)| THEH D, A
WXLT 4) Z#HT 22T, XO=ABEFREIFEONS :

mod A. = Gproj A, = DP(mod KA.)/7!°
UEzge®2 T, ROEHENIGEOND, TOADBAKRFOERRTDH %,
TEIE 4.1 ([20, Theorem 4.3]). HIHZILER AT LT, RO=MABEFRIESFET 5 !

Gproj A = H mod A,
ceC(A)

AE 4.2 (1) EH41 &Y, HIEZIUEA LoV vy a X4 YHEMEEO 13 7EHE
GprojA 1%, HOASHILZILERT = Hch(A) Ac DLENMEEE mod I W& = FE [FIE
THHZehbhrbd,

(2) 4.1, FLZITRINT 2 Ringel [35] DAER, gentle ZITERIINT T % Kalck [23]
DA, overlap Z Rz IR WHIHZ TLIRITHTS % Chen-Shen-Zhou [13] DAER, ASTRK
TEDEAR L DEK-T L > 2 &4 YHRIEZITTERICN S % Lu-Zhu [32) OfR%Z, (EE
DODHIEZITLERDOGE IR T2 b D KoTWb, 7z, HixDOMERIE,
BOARRITZ D DREK-IL V> a4 VRIEZITTIROR EE O = A BEMG 2 RE
TE5HDTHDZ ML LTEL,

Bl 4.3. A= KQ/I ZH3.7 L RICHEZILIRE T2, ZDLE, C(A) DEeERERE LT
{a123,a45} ZEXD &, |aras| = |aas| = 2 22D [Pa(ar23)| = 2, [Palass)| = 1 TH 205, &
Ha41 kb, XO=MEFREZS2 :

Gproj A &~ mod K (1:22)/J* x mod K (1:2)/J?

EAf

FIOMRRBEES VARV LBV TGHEOEERB D L2, HEEAOBERITD X
DIEHH L B9, Bre, L2 JWIEL 23 WE LIl AeA 1 cE, ELSERLE L
FiFE3,
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Fano B A-D E il o K-2@

ey KRR *

1 Intro

B ORI ERAR X CRIZER —Kx 88X 2%H D% Fano ZRE L V5. REZHAK

DB VT, Fano ZRAREKE L DR TH D, RSN TE T,

—7 T, BB M7 ¥ TlE Kihler-Einstein Gt &% > a > 87 MEREZREOMALE <
RANTER., 20 X5 BERRIEERPEERIGE, BHICR 256, Fano DHBED 3 D
DBZEDD B, #iD 2 2% Aubin, Yau 12 & Dﬁfﬁ’ﬁnﬁ”é N7z, ¥, % Fano ODHEITI,
Kahler—Einstein &t & %2 Fano Z#KIE, K-R UV ZEM & FIIH 2 RBERA 220 72 S TR
SFHNE, W 2 EMEIIC Chen—Donaldson—Sun[CDS15], Tian[Tial5] 512 & D GERH X
Nz, £/, ZoXEE kit KRR Z D Fano 2Rk (Q-Fano ZHRAK) 12 b Lk S 7z ([Lil9)],
[LXZ22]). iz kb, 5x 57 Fano ZHEAAT Kahler-Einstein At & ZFO0RET 5, &\
5 EDENCEL D A D BB L 72 o 7.

KRB 72 ERACIT T E 7D, K-R VU ZEMDERIZ, test FLiL & FEEN % Fano ZH{KADIR{L %
2 TEZTZ®D LT Donaldson-—APRZE R EMIINE LR ZH o TREINT VR, ERZDD
D56 K-ZEWZHET 2 2 LIIREICB R 72, ZOROKABRADEBIC K D, BIUETIE 6-F

Z& Y IMIN 5, Fano ZRME LORTFHIMED & E % 2 M EE T K-ZEMIIFEoO o nk. 2

DARZERDFHBIINETD 25, YW N2 LIRPUIK E L BN, BRI Fano ZRAD
K-ZEWEDREDP K E (EATETVS. FlZIE, ROMBEIHELTH %:

FA 1.1, [Xu25] Xg C PRH 2080 d 0IFRRBIE T3 <d<n+1235. ZOLE, X, 1%
K-ZEL7 5.

Z Df#EIX Donaldson % Z D JEAIZ B S LT Wz K 572238, Bl 213 [Xu25] IIFHRINCEH
PRTWDS. AT e LTE, X1 C PP o KA@M a-FRER WS & D DFHT % i - T
RENTz [Che0l], [Fujl9al. 72, X,, CP"H B K-RETH S Z LI [AZ22] 1Tk D, -FLREY
W5 b DOFHi % “Abban-Zhuang O 1K L I 2 Efi 2B/ E L TRE Nz, £7z, Fermat 8
BT Xy = (28 +---+ ng =0) C PP o K-Z@Etid [Zhu2l] ISk hRE N Zhe “K-ZE
PED openness” [BLX22] 226, —fRD Xg B K-ZETHB L BHES.

MR KAEGIAEIIZERL #UEHIR E-mail: tarosano@math.kobe-u.ac.jp



AT AR Fano 2RAD—>TH 3, EAN = Fano BHIH & MIEN2 HDITOWT, &
BHHEH LS TE SR ([ST24], [LST25], [ST25)) DWW TR 3. JFike LT, LoidE o
FEHATE X, 1 % X, B & Fermat @il 0 K-ZE 2R B b5 2 B8 25, &
AT EDGEORED H 2 DT, ZHOFHHb AN,

2 EAHIETEHEICOWVWT

FFTIWEREDDICSH, BAN ZHEHEICOVWTEAL LS.
EE 2.1. ag,...,an € Lo THo T, ged(ag, ..., iy a,) =11 =0,...,7) £RD2bD%EH
Z5. ZDEE,

P(ag,...,an) == ProjClzg,...,z,] ({HU degz; = a; (Vi))

EBVWT, ThzBEAHMIEFRZER & X

AU (o, an) = (L., 1) OEHCIZEE OGN PP &2 355, Z WL ORC I3 R
AR, EE BES (2 £0) C Plag, ... an) (i = 0,...,n) KM LT

(2 #0) ~C"/p, (ag, ..., ds ... 0n)

DD LD (T2 THIBIE p,, ~ Z/a;Z D C* NDEH (ag, ..., di, ..., an) 2 HEF BTEHIC
X B MBS RE (L (a0, i, ..., 0,)HRE) THE). Pi=[0,...,1,....00 ePDOIL %
a%(ao, ey Gy )RR BIER. SingP C P2 P ORESESL T, LFD LS it
B23T %= % [DD85, Proposition 7]:

SingP= [ {z =0]jen\J},
Jyas>1
2L JE0#JTCn:={0,...,n} Tay:=ged{a; |j€J} £722DDEHK.
F7=, C* OFEF CX A CH\ {0} IS LT, Plag, .. ., an) ~ C*1\ {0}/C* %2 2£E T 55
CYWRHERETS. &), HE . CtHIN\ {0} - POEZS. ZOEABHBTRVE 2 AT
BEDPET B,

fl 2.2, (i) P(1,1,2,3) I3FRA P :=[0:0:1:00 & P3:=[0:0:0:1] ZHD. FEfE, &
(1,1, 1)-FRAT, Pyid £(1,1,2)-FRETH 2.
(i) P(1,1,1,2,2) OFFREEEIE (20 = 21 = 20 = 0) =2 P 243, EE Pt P&
$(1,1,1,0)-Fr R CIANI R R AT H 5.

XTC, EAMEHEMEIIRDES>RDIDTH 5.

EE 2.3. ag,...,0, € Lso ZEFR 2.1 DFMZHMIZTHDE L, d €Ly £FTH. ZODEE X
DEXR Fy € Clz, ..., 2,] (7272 L deg z; = d;) 2 HHF

Xg = (F1=0) CPlag,...,a,) =P



BEFES. I EAMTETEMEm (WHS) 5.
MUTROREZRZE W WHS & 2 5 Z 2%\,

RE 2.4. (i) X4 C PlX quasi-smooth, 2% b 77 1(X,) C C*1\ {0} 2IERFE.
(ii) Xq C P& well-formed, 2% D X,; N SingP — Xy ORI 2 ML L.

Z DIRGE 2725 WHS Xy i3I0 RWHEE 27z 3.

BE 2.5. (i) X 3EREREDOAERFD, Sing Xg = SingPNX, ¥ &%, £, SingPNXy = ()
THHI L Xg HIFRRICH S 2 LIFFME.
(i) FEFEHERF —Kx, WL, Ox(—Kx,) = Ox (3.} a;—d) 23D LD, FHT, Xg A3 Fano
Thdzrr, Ix,:=> rqa;,—d>0¥2%2ZIEFAME (Ix, % Xq ® Fano {88 T
2.
(iii) dim Xy > 376, C1Xy =7Z- Ox,(1) ~ Z.
(iv) Ox,(1)" = mjo

Bl 2.6. (i) —fMD Xg C P(1,1,2,3) 1FXE 1 EFREE del Pezzo HHHI & 72 5. EEE,
[0,0,1,0],[0,0,0,1] ¢ Xg EHNZ DT, X¢ 3IERiRL 25, /2, ~Kx = Ox(7T—6) =
Ox (1) 2w, Ox(1)2 = 25 =1 BIES.
(i) (—f&D)X10 C P(1,1,1,1,2,5) i Fano 6% 1 JEFFE Fano 4-fold ¥ 72 5.
(iii) (—#D)Xe C P(1,1,1,2,2) & Q-Fano 3-fold 2% b, 3 5o $(1,1,1)-FEEEdD. FE
B, SingP N X = Sing Xg C P(2,2) ~P': 3 fidh k3.

FHZE 2.7. [IF00], [CCCO9] b x5 ¥ 95D (d;ap,...,as) T Xgq C Plag,...,as) DARIGRFE R
D AHFFD quasi-smooth Q-Fano 3-fold WHS Tlx, =142 bDHHEET 5.

ZDEDIZ, WHS 2F 2% Z 2 TZL D Fano ZRAEDHIMERTZ 5.

3 K-REMICEHTSIAEE

K-(RV, ) ZEME, test Bifz & FHEN 2 X DiRbEE 2T, Z1h 57E ¥ % Donaldson——
ARAEREFEN 282> TERIND. 22 TIEZOERCIFANL V. HHIC “SORR
WKOWTHERT 2. e L b —BoBHAEIE [Xu2s], [KMIS] 4 ¥ %S

EE 3.1. X 2IFRREREZMRAEL L, D = Y d;D;, RN Q-FF (d; € Qs0) & T 5.
p: X = X % (X,D) @ “log resolution”, D% D u X FHIANE G T, X 2IERER2D
p Y (Supp D) UExc = |JEi(7272 L Excpu € X & p OBISMES) 2EATERZ% (SNC) FHF &
75bDLFT5H. T E, JlERK

K¢ =p"(KEx+D)+ )Y a;E; (Ja; €Q)



B D 3D, # (X, D) 23 1c (resp. klt, canonical, terminal) T®H % & 1%, {EED u & i IXL
a; > —1 (resp. a; > —1,a; >0,a; >0) &R5H5I T 5.

il 3.2. (i) C; C P? % nodal cubic curve &5 3 &, (P?,C1) i lc.
(i) Cy € P? % cuspidal cubic curve £33 &, (P?, C2) & not lc 7243, (P?, 2C3) i3 le.

IR 3.3. X ZIEBRMBEZHRIE, D 2 X LOMRN Q-IHFT Kx + D: Q-Cartier £7%223dD
T2¥, (X,D): le/klt ¥\ 5 HERAFRIC log resolution p: X — X L DIEARZ M - TERT
3.

K-ZEMc BT 2 G2 BRERY LT, UTD a- RERY 5 5.
EE 3.4. X ZIFRRGHEZHAR (FLXERSEZHRAT Kt RESDOARODH D) T 5.
(i) D % X Eo#F Q-(Cartier) HF L3 5.
let(X, D) == sup{A > 0| (X, AD) : lc}

EBE, Iz X @ DICET % Ic threshold &\ 5.
(i) L% X LOBERFLT 5.

(X, L) = inf{lct(X, D) |0 < VD ~g L}
rBE (X,L) D a-REEL A,
DIROEHED S a-AERIF K-ZEN L BET 5.

EIE 3.5. ([Tia87], [0S12], [Fuj19a]) X % Q-Fano Z#kkL L, a(X) == a(X, - Kx) £BX.

dim X
. 7— _)—'—' .
(i) 04(X)>7di X1 otfoXbiKtcd'%
im X
i o X DR, =T RIE.
(1)) 612 X DIFRRL S o(X) 0 X+1“C¥3XbiK E

B3.6. (1) Xpp1 CPUHLRIERERAR (n+ DB L 5 &, a(Xop1) > 525 4 [CheOl]
CEDRENT. ko T LEOEH (i) 5 Xp1 i K-REL RS

(i) n>2Ta(P) = A5 < 725 7275, PP I3 K-RVLE (FHC K-HLE) TH 5.

IR D 0-AZEIZE D, Q-Fano ZHRIAD K-ZEMSRHEOT 61 5.

EE 3.7. ([FO18], [BJ20]) X ZIFRPRAEZARIA (K73 IER kit SRE2HHA) & L, L 2 X
DEERTFET 5.

(i) m € Z=o T N, :=dimc H(X,mL) > 0% 2% bD% &z %. D » m-basis type Q-FEF
i, LFoED Q-HFo Z &

1 O
D= — . =0),
mNm;(s )



HL, s1,...,8N,, € HY(X,mL) I C-EELT3. (2Ot %, QFEFAMO0< D ~g L
RO LD Z L ICHER.)

(ii) 6, (X, L) := inf{let(X, D) | 0 < VD ~g L : m-basis type} £ B &, BH {6,n(X,L)}m
WIS 2 Z 228 [BJ20] I &K D/RENz. 22T

5(X,L) = lim 6,(X,L)

m— o0

YED, S(X,L) % (X,L) D -FEE L MR,

TERE 3.8. m € Zso WL, §(X,mL) = L6(X,L) BERL VIS,
DIFOMWHEICE D, -FEEIZ K-ZEL RO 3.

EI 3.9. ([Fuj19b], [Li17], [FO18], [BJ20]) X % Q-Fano ZHkkr L, §(X) :=§(X,—Kx) &
BL.
D E, X 2 KWE (resp. K-HLE)THHZ LY, 6(X)>1 (resp. > 1) ZFAETH 5.

4 Fano WHS @ K-ZEMH

D7 arTIEEISRWIRD, Plag,...,an11) ZEFE 2.1 O XS5 REAN & G52
L, Xq C Plag,...,ant1) % quasi-smooth well-formed Fano WHS ¥ § 5. fiHD7=®
ap < ... < apy1 ELTHL. FWZ Fano 6 Ix, B 1 DFEREZ D LITT 5.

FATHIZEE LTI, RD LS 7R2bD03H o T

(i) dim Xy =2 Dr &: X, DIERREPD Ix, = 1 OREE, Xy EXED 1,2,3 @ del Pezzo i
T %. Tian 75 KE HROFEERL TV, X kit 220 Iy, =1 D& ZiZ, [JKO1] 23
VA MELZ BEEUNADEEICE KE SFREOFELZ /R L. &E&MIC [CPS21] Ik b,
Ix, =1 D583 Xg BK-ZKETHD RSN, =T, Ix, =2 DHFEIT KA

itﬁ{ﬂip [KW21] 12k D om0 Tuna.

(i) dim Xy =3 0¥ Z=: X, 23R REOBE, WHS & 7% % Fano 3-fold 132 < 1372\23, 4 KiEE
HETE [Cheltsov, BEH], 3 X [LX19] % X6 C P(1,1,1,1, 3)[AGP06] 7 ¥ ® K-ZEMH:
Fbbo T, Xy 28 terminal FIR GO AR D, Ix, = 1 DHE, Xy “—l ORI
[Che09], birationally superrigid @ii'% 13 [KOW23|, 2 L T - 735E1F [CO24] 12X D
K- ZEWIRE N,

(ili) dim X4 >4 Ok &: [JKO ELROFRERL: Ix, =150 “laga; > d %513, Xy
W K-ZE. LA L, 2OHEIE X 3IERRIE R 5720,

FE 4.1, X DIFRE Fano 22513, ap = a1 = 1 22D a;|d(Vi) 2D ged(ai, aj) =1 (Vi # j).

£ o T, K7 Fano WHS T Ix, = 1 DB ED K-ZEWDHEE D Fano WHS @ K-ZE M
WCHD M AIRD 7z & Z ORE L 72 o 7z, Tasin K & OIFIFSE [ST24] THINHZAE 2 B W75



B0 K-ZEWE a-AFEEEHWTORL TV,
9, SHOEME L LT FO—EKN#EE (Fano W 3MRE LWV TORBRES .

EE 4.2, [ST25] X = X4 C P(ag, - .,ant1) & quasi-smooth 52 well-formed 7% WHS &5 5.
HB0<r<n+1DHFEL ar > 12D a,|d ZHzT LT 5L, RO,

(i) 8(Xa, Ox,(1)) > PFLar

(i) E5120 < Iy, < [+ Dar

"on>37%561F, Xq & K-&ZEX Q-Fano 28Ky 72 5.

(i) 2Dz L, (i) ZZDRETH 5. EBE, Ox(—Kx) = Ox(Ix) THDh,

3(X, ~Kx) = 7-8(X,0x(1) > 1

(1) EIRE»PBHED . FEBILOHEEFR NI D [AZ22] TORMBRE I DDOLZDT, X4 D
K-ZEWEDHES . (i) QAR THHT 5.
EH 4.2 OIS LT, IERE Fano WHS 123 L TIXRDAER 2157,

% 4.3. [ST25] X4 C P(ag, ..., ant1) ZIEFRFE Fano WHS T Ix, = 1,2 i TdD T2 &,
X3 KZETH 5.

ZORERIZ, (d;ag, ... ant1) B Ix = 1,2 ORFCRER Iy, < 0D piide 5 2 v 21 4.1
S o THIFINCHERR ST 2 Z 8T, B 42 00085
% 7z, terminal Fano 3-fold WHS IZBI LT3, ROER 4.2 DIk LTEHN 5.

% 4.4. [ST25] X4 C P(ag,...,aq4) D3 terminal quasi-smooth Q-Fano 3-fold WHS T Ix, =1
%2 E57 95D (ag,...,a4;d) DIH S2FIHNL, 2 0<r <4ADBFEEL 1< a.|d DD

4 s N A e RVAYARD
; > 1AL (ThED, 82/ D X, O K-ZEWESHES )

ZDHRD BRI ZIXRDNES

B 4.5. (i) Xe CP(1,1,1,2,2) B K-ZE. FEE 206 00 2 =2>1TdH3.
(i) X5 C P(1,1,1,1,2) @ K-&EWIZHR 4.4 22 51308072023, [CO24] 12 & D K- Mo
WEINT, ZThzE&TiKo T 13 (AF) ohaE S [CO24) 12 &k D K-ZEMD R S
7.

5 Abban-Zhuang @&

FEMDFEIIC B W TEERZE 2R3, Abban-Zhuang D5k [AZ22] IZOWTE#HAT 5. Z
DIEFKRFE2I2IE, adjunction 2 > T S-AEBDFHEZERXITTOHERRET 5, LWVHIBHD
TH2%. TR -FERBZLUTDLSITERT 5.



E& 5.1. X ZIFRRESEZERA (X3 kIt 2K e U, L 2 X LOBERT, 2 e X &
T25. mMEZLsoT|ImL #0725 BbDITHL,

Imz(X, L) :=sup{A > 0| (X,AD) : “lc at 2” (VD : m-basis type)}
EBL. 2D E, BN {60 (L) EICR L (cf.[BJ20]),

5.(X, L) = lim 6 0(X, L)

m—ro0

EBVWT (X,L) D 2 1B 2B -AEE L AR,

S-AERIFHFPMEZE-> TRld T2 dTED

FE 5.2 (-AZEEORT/MEIC X 258, (X, L) BLUze X ZEFK51TODDLT 3.
(i) A4 (B)

. . X

XD = W SR

MWL, 7272 L B3 X FROERTF (0% 0 5 3 IERZHAE X 526 QS AEFS 1 X —

X2BHoTECXPERTERZHD) 2. £/, Ax(E) :=1+ordp(Kg — p*Kx)

& “log discrepancy” THH, “S-AER”S(L; E) \FLLRTEZ %

1

S(L;E) = vol(Z) /OOO vol(u*L — zE)dx.

(vol i (R-) HF-OHHETH 3.)

(i) 6,(X, L) ITBIL TIE,
_ : Ax(E)
= inf

E: W7/ X,zecx (E) S(L; E)

d:(X, L)

DL, AL B3 X FZEORFT ex(E) = p(E) C X 2z 2800 %EL .

(iii) ko (i), (i) & E2 X FZEORFZ2H W O TRTH 5205, Th% “log discrepancy 23
AR 2MEY 2815 LRRO TRICH 2D, F3MME v ThIMEZHEB T2 5005 %
[BJ20]. kT, 8(X,L) = mind, (X, L) BHD VD, ¥z, 6(X,L) > 1 6,(X, L) > 1
Ve X)THdZEedbiES.

PUN ORI 2 AEFERIT I D, S-AEBDFHII 2 EITTDHEEICRETE 5.

EIB 5.3. [AZ22] X % kit ¥ ZHAR L, L # X LOBERT, v € X v 5%. 3
r€HE|L TEtFRERDADE “well-formed”(H N Sing X C H DRZATE > 2) 12d DHBEHN
23%. ZOLELRHHMAL (HL n:=dim X ):

BIZX, P @ K-FLEWDBUTO XS IREBIZFLNS.



Bl 5.4. zePrl,z€eH;€|0pm()|(j=1,...,n—1) Z—HDOILL T 3.
T2, P"O>H, D---DH N---NHp_1 3z EWISREEDTZHIRDT N TE 2. Zhe @
53 &b,

(O (1) 2 2

BEond. KoT, (P, —Kpn) > 127D, P" O K-FLEWEDEOLNS.

5. (", Opn (1)) > 5.(0i (1) =+ 1

% 5.5. [AZ722] X % IFFF BT ZARIK (F7203 kit ST 2RRIK) ¥ U, L% X FOBERT, r € X
E55. %%k, j=1,...n—11THL, BB rec Hj € |mjL| TH>T,

Hi2H NHy 2---2H N---NHp 1 =C

MHETIEMDPD “well-formed” (FiiZ CI3IFRFEINIR) L7225 b DHHN D LT 5.

ZDrxE, LURDIARIL:
n+1
ml...mnil.Ln.

0:(X,L) >

R 5.6. [AZ22] 1%, X LORFZITRL, X EZEOHEFITH LT - FLERE KT 2 15K
ZHENL LTz, 7272, Z DBEITE BT ERER" O S-NAEREEZ 2REDD 5.

6 I 4.2(7) OIEF
D=0, Xy C Plag,...,ant1) ZIFFE Fano WHS & L, a9 < ... <an11 2 LTEL. Z
@t % apg = a1 =+ = Q¢y—1 = 1 Ztﬁ% c1 € Z>1 iﬁkih“C, az|d (\V/l) i7§ﬁbﬁofb\7': (E%n\

. Day, \
41). RLEVOR, EEO 2 € X ITH L 6,(X, 0x(1)) > W LRBIETHBN, 2
DIHEHIE LTHHT 3.

(Case 1) x ¢ Bs|Ox(1)| = (20 =" =26-1=0) C X D& Z:
OR35SV R NOE 3 D RTASS

Fik6.1. j=nn—1,...,21C0L, x € Hj € |Ox(a;)| THoT, & Zriki=bH
Hng...anm...mHQZC

PETIEMICE 2 S DHFET 2 (RS C I3IERFEARTR).

G=n+1EELT, j=nDrbiE->TVI I LIFEREINLV.) ZheRb5 &b, LN
Fehro T2 AEXEE S

n+1 (n+1)an+1
x ) ]- Z = .
5 (X OX( )) CLQ"'CLn'Ox(l)"

(Case 2) x € Bs|Ox(1)| D& =:



¥3,D2k>c Ca Dk BHOEIE v, A0 2DOMFEE. 5L, H5 Hy, € |Ox(ag)| T
x & Hp D Sing H, 28 0 KL 722 b DN E. kD, m: W — Xy % H, THlES 357
4578 & 5 5. WIZEKRINZX, Hy D ER»5EE % WHS

W C Plag,...,1,...,apn+1) (ap D321 IICTR2o723D)

YLTHKTE 3. ye W Tr(y) =2 L R2DEEB L, KO
FiR 6.2. 6,(X,0x(1)) > 6,(W, Ow(1)).
(IR LR DIRRE I T RN R OIS, FEE, X EZORT E T

r €cx(E) 2BR2bDIINL, 5 W LEORTF E Ty € cw(E') 725D DBHEEL,

Ax(FE) Aw (E") -
> D= XN 5.
S(Ox(1): E) = SOy (1) ) )
SHED, 6,(Ow (1)) % L HFHETE UL 4. 2 LT,y ¢ Bs|Ow(1)| L TX 3 2 L ICHEE,

T2k, TR6.1DPZDREHMALL,

W23H{2---23HNn---NH,_,=C"3y
72 5 IERZRARDINBEN S (C" IZIEFFRIIFR). T2 &, R 5.5 POLIFAVRE S:

(n+1) _ (ot Dann
6y, (W, 0w (1)) > ag Ay - ay - Ow ()" d -

7 EOMMDFERE
%3, Brieskorn-Pham %! ® Fano WHS ® K-ZEWHNULFD LS ICE X 5.
T 7.1. [ST24] a;ld »2 ged(ai,a;) =1 (Vi #7) 723 (d;ao, ..., ant1) € Z05% BB BRI,
X =Xg:= (P +- 42z =0) CPlag, ..., ant1)

BFZD. 72l dji=d/aj, d#1,22 L, Ix,=> a;—d>0tTF 3.
TOrE Xg X K-ZELRS.

REBHD R 7 v F. ROKIAD & 512, 7IiHHE %

m:Plag,...,anp1) = P(d,...,d) ~ P (g2 ] e [0 zi’fl}
DOFHET S
P(ao,...,an+1) —W>P(d,,d) ~ pntl > [’U)() el U)nJrﬂ .

Xd—TrX>L:(w0++wn+1:O) DLzz(u)z:O)



T2, Li7zbD rx i =7lx: X = LOFIEHF LR, ROFBENRDFAL:

n+1

Kx,=m"(Kr+AL), (7L AL =Y (1- =)L)

1=0

ZIT, Xy DWK-RVEE < (L, Ap) HK-RVLE]) 7558605 [LZ22], [Zhu2l] iIZX DIES D
T, (L,AL) ® K-RVLEMICHENIFET 5. (L, AL) & “log Fano B FHEALE" & XN 50
R Y, [Fuj2l] 2o T K-R Y LEMEDIFNZFHTHETEZ 5. 35 &, X 13IFKE Fano
TP & 2 KEHAILANDDDTHLDT, Ix < (n+1)ag=n+1TH2Z»b6 X O K-K
VEEERHMES . Zhedilic, HORBE Aut(Xy) DERTH 3 Z ¥ R8T, K-LEWEMIRE
9. O

THED, LIRBAES:

R 7.2. Xy CPlag,...,an11) Z—MDIEFE Fano WHS ¥ L, X4 & P" B XU 2 XEHIE TR
WeT3. Z0rE Xy BK&ZELRD.

L7z & 5 72 (well-formed & 1ZFR & 721> )Brieskorn-Pham 2 ® Fano WHS ® K-R V) ZZE DG
HE LT, 5 Rl EOFERITTOEKE (3B & O Brieskorn BRI & MHEN 2 =% V' F v 7 EKH)) 238%
FRIEDED Einstein st &2 FFA T2 2 & 3 EH L Liu, Tasin & ORI [LST25] TRI iz,

SHROFED—DL LT, XD 5.

FH 7.3. [ST25] X4 C P(ag,...,ant1) % quasi-smooth well-formed Fano WHS T Ix, = 1 7%
20553, 2O X, Xql% K-&Z5E.

AR RE LT, XD 2 (0D, 2 DDANDOEADET 1 DHE).

EIE 7.4. [CFST] Xq C P(1,...,1,a,b) & quasi-smooth well-formed Fano WHS T Ix =17
2D T3 ZOLE, X 13 K-&E.

Flzix, X; cP(1,1,1,2,3) O K-LZEMHEZ 26505, 71272, 3 2L EDOEAD 1 TRV
BERIEREHTD 5.

BT EF
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THE CLASSIFICATION OF NONCOMMUTATIVE PROJECTIVE
PLANES AND NONCOMMUTATIVE QUADRICS

NS

e

HHOMRE G 2 TS o 2IliEReAE e NHRERICODE D BE#HA L L ET. %
72, B0 EREESY VRO T LA DOBMBIC RN P E o 2 BIEEDAET, FIC, 2V RY Y
LEEEDOFHBRAEEICZOHEBMED LT, E<HEHILBL EFET.

1. EA

AFRZIEL T, k 2EED 0 TH2REBINEAKE U, KRB 13X ot THEIRAER A TY
%k EOEEIES EREEERT 20 35, Thbb, REE2TEBMREE (2, ..., 2,)
DEIRELTREINDZ DD TS, TN EREA WK LUT, KB EH ANBEO R $E %
GrMod A ¥ K3 . A & A DREBUT ZHRHFRETH % 21X, GrMod A & GrMod A’ 23 [FIE &
RBZEERVD. AL ADBTBNERBTHI &, A2 A LRL, BT E=HREFEETDH
2% GrMod A= GrMod A’ ¥ RT DD T 5. k LD n— 1 RICHHEZERZ PP 2R T

FERTHLRBERAF L 1IIREBCRMZD 7 4 7 7 R FEE VW TIEI R L R T 2 08T
H D, 1987 F1T Artin-Schelter 12 K o TIERJHZIEAIRBOBEE S EA X N, 3 RILDGE
DETE I ERALIEICHERKT .

EE 1 ([1]). KB 2RI A 2 dRIT Artin-Schelter IEBIE (DUT, B2 AS IERIRE
FLY) &iE, ROEMFEMITEERND:

(i) gldimA =d < oo (A DKEXIL),

(i) GKdim A := inf{av € R | dimy (D>} ; 4;) <n® Vn >0} < oo,

(iii) Ext’(k, A) = { lg 8 ; zg’ (Gorenstein 5&1F)

RE L Z WA Z 30U, AS IERIRBUIZIHEARE D IERT AL T H 5. FRE, n[#i/s AS
IERRENIZ EARE e RS 2 REFRICTH 5. Lo L, IEr#ik ASIERIRENZZ < H D
Z DRI ANATON T WA, Artin-Schelter (& 3 0T AS IERIRE 2 T 2 Z & 2ilA
7273, B e B S FHIIRTEM TH o /2. ARGTIE, 30T AS IEHIRE D77 3H & 1X, 3 KIT AS
IERREBDOBARRZIRE L, 205 2 REUT 2= AREFEI R N RES = AR RME % FRu T o8
TEHIEEER®RTAHDE TS, —J, Artin-Schelter IZXDEELAEREE 2 /2.

FI 2. ([1, Theorem 1.5]) FEE®D 3 Xt AS IEAIMENI KD WFh & KEUT =B R ¢
%5

k<x’y7z>/(fluf27f3>a k<x7y>/(gla92)
Z :Ta fi € k:(:v,y, Z>27 g; € k<$ay>3 TH5.

R 3 ARD 2 KT RITH B 745 b D% 3RIT 2R AS EAMKE L X O, BB 240
SRKERTCH B2 5HD% 3RIT IR AS FARE L L2

Artin-Tate-Van den Bergh [2] & 3 X7 AS IERIRE 2 RBGRMAFZDOFELZHOTRD L5
WA U 7.

1
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EE 3 ([2)). EED 3t ASFRIRENE, A *F—2 E e Z0HARMES 0 € Aut E >
LRLM(E,0) 2D 13 IXEDRH 3.

(1) 3XTL2 X ASTEHIRE D & &, F OIS FEH P2 B S £ 7213 P2 NOD 3 KEIFRD
WENDLTH !

A% O & 6(

(2) SXITL3RASTEHIRE D & X, FE DIEMIISZEMRMOERE P! x P! HE 7213 P! x P!
N DXREL (2,2) Eﬁﬂf?ODL\?‘ﬂZP“C%%

St

EF 3B LT, 3L 2K AS IEHIHJ@&@% £ 3XILIXRAS IEHIRE OB E L TKRE
SBRRZENDZ. 3TIL2KAS EHIRBDEGE, EXL P2 HE 7213 P2 AD 3 KifRD W
IO E, Db —2FE3XRIL2 R Calabl Yau AS IEEMJQKQGJ(T}T}?'Z) H A[FRE
Boc Auty, EDTFET 5. —71, 3L 3 R AS IERIRBDIGE, P! x PL ADINKEL (2,2)
HEARDHIZ1E, Calabi-Yau ¥ Z A%, 3 X7 3 X AS [ERIRE & ﬂm“a“ A (E, o) DIFELR
WIGE DD 5. Artin-Tate-Van den Bergh I & o TH X & U7 R, RBERMF03FE
AR EE I 5 BRI BRI FIEE D185 2 L 2R3 2 M CIEFE ICHERIER
TH5. LrLEDS, 3T AS IERIREICHIET 280 (E,0) DYV A MIEGEZ 6N TEL T,
Artin-Schletr ﬁlniﬁ%\t/\*ﬁbiﬁ?% ELTRERTH - 7.

E& 4 ([5]). K& S 2 dRIT Calabi-Yau RE (LT, Bz CYRELELT) L&, ROSKM:
Zi/lz T ERWVD:

(i) pdge S =d < o0,

.. i e\ S (Z = d)7 e Y

(i) Extg.(S,9¢) = 0 (i #d). (5 Seite LTC)
ZIT,8=8PR,579%.

3T AS IERIR B O 3 EMEICOWT, CY RETH 2 HE I T TIOENTER L TY
% ([13], [14]). &K HAVZ, 3 KT AS TERIFE O S I 5 OV, BEZTIEsNMRE
BT HZETH5. Mn@v\]m;( Wi 1 I & O SLRIBFSE [7), [8], BEREH FIC & O LRI
28 [11], TG FR e TR TF R DR 9], ReTr [12] TSN ERICHE ST VT NS,

2. RMAREL L 3 0T AS IERIREL

Z OETIE, BARMOBAZEN L, 3 XE AS IEHIRE O RO RHIZ oW T
BT 3. SARIREOE S 2 5N RE S (R OBIRR OB IE LT, By 2 K8
SATE 3 KABD — D DIEICHHAS . A= klrr, ... 20)/(R) B m KNI CH B b %,

La={p1,-.pn) € @) [ g(pr,-..,pm) =0 Vg € R}
ETEDD.
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2.1. $MAHY 2 RAAE & 3 IT 2 % AS IERIKEL
E& 5 ([12, Definition 4.3]). A = k(zy,...,2,)/(R) B2 XKE T 5. §HE2ZHREE C P!
Y ZOHAFERES o € Auty, EH» 5725 (B, o) Z%MHE X3
(1) ADS(Gl) Z#T=T 213, D3RO (B, 0) BEFELT
La={(p,o(p)) €eP"' xP"" |p€ E}
DBRDIDEEEWVWS. ZDL X, P(A) = (E,0) tEL.
(2) A% (G2) ZMI=T 13, D 2RMIH (E, 0) BFEELT
R={f€k(x,...,zn)2 | f(p,o(p)) =0 VpeE}

DD DEEEWVS. ZDLE, A= A(E,0) £ EL.
(3) ADBEIM 2R TH 2 21X, A (G1), (G2) Ziifi/=L A = A(P(A)) B D LD
rERVD.

KHBR SN ZT 5 &, By 2 KRB RMHE (B, 0) & —xf—I128in s % 2 %MK
BMTH2. THEHI LD, EEDITIC2 R AS FAEUIEM 2 RIRETH 2. XoT, ¥
SEEIAND 3 KEER Bt L, 20 BORRIEE Aut, E2RET 3 Z e TEUR, B2 X
REDZEM (G2) ZHWT 3XIT 2 K AS IERIRBOBGRR 2 EHETHE T 2 Z e 3 AJEE L 12 5.

EI 6 ([12, Theorem 4.7]). A= A(E,0), A = A(E', o) Z&%MR 2 XB 55, 2T,
E,E cPv! ocAut, B, o' € Aut, E' &5 5.
(1) A= A THBREADFEME, P 0O HCRREERZHIRL TEON2 EDo B/
DRI EG 7 H3FAE L T, MK

DAL 725 22 TH 5.
(2) GrMod A = GrMod A’ TH 2 E+75&MFE, P! 0 HERRE/RZHIR L TE S
N3 ED»5 B NOEBEGDOH {1} e PEEL T, EED i € ZIZOWTHK

E-". g

E—F
Ti+1

DAL B TH 5.

A=AE, o) ZRAM 2B L, E L B 3SHERETH %, Thbb P o HERA
BEBRrHIRLTEONE EDo B NORMER r DFEET 2L T5. 2O X o =707}
v, A= AE, ) FRMA 28 TH D, KX

E—">F

E—T>E/
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DAY 2%, XoT, M6 (1) &b A= A i3, IR 2 REE REUT =
REFEBEFROTHET 2 & 212, HEAETHLZ E L B 2A—HLTLWI L EEKT
%. FHIHE NG 3 R IEHR OGS 2RO THE—E D ICEX 5. Lh o T, 3
RIC2 R AS FHIREZ DT 272D DFIEILITOEY TH 5.

Step 0 E DERFERE —DREIET 5.

Step 1 £ @ HCFRIAEE Auty, E ZIRET 5.

Step 2 FHCFARELG 0 € Auty, BN LT, 54 (G2) Z AW TERMP 2 RIE AE,0) D
BR 2 ES 5.

Step 3 B 6 (1) ZHWT, ZET 2RI L 72 5 7 D DB+ 752 KD 5.

Step 4 FEF6 (2) ZHWT, X EHRHRE L 72 5 70 D RE+ 7742 RD 5.

WG T I & DILFIBFZE [7], [8], O [10] 1B W T, 3 KT 2 K AS IERIRE 0 BR R D 5E
2RV RN 252 BT 2 BRI OB = AREFE & 72 2 B2 5272, 77
ARG R OFEMIL [7, Theorem 3.1, Theorem 3.2] ZZ X7\, £/ 3ETIX B 23552 FiH
HNOEHBRRTH 25HICOVWTHE LSRR T 5.

2.2. MRy 3 AL 3 RT3 R AS IEEBIREL. 3 00 2 X AS IERIRE o T, BRI
I & o TEA XN 2 RO S EE 2% E 2 B2 Lz, 300 3 X AS IERIR
BOBGE D RANTIEEZ WS 72012, #1013 RRBOMEEEAT 3.

ECPvixPrl Z2HEEZRAE L, o PPl x Pl 5 Pl 285 i A DEE L T35
(i=1,2). EDHCHMEE Auty E ODEES A EEZRD XS IZED 5

AuthE ={o € Auty E | (mo)(p,q) = m(p,q) Y(p,q) € E}.
—fB, Aty B X Aut, E OO E 722 23RS 20,

Bl 7. E =P xP' 2F3%. (pqg € EXL, (rns) =cc At{ E3%. ZDr&
r = (mo)(p,q) = ma(p,q) = ¢ YLD, ZZT, HCABER Y € Auty EZ v(p,q) = (¢,p
CEDDB L,

)
Aut$ E = {(idp x p)v | p € Aut, Pt}
Y15, XoT,idg ¢ Auti ETH 279, Autl F X Aut, E DD E TRV,

E# 8 ([11, Definition 3.3]). A = k{zy,...,2,)/(R) % 3XRE LT 5.
(0) $ (E,0) PBAIMNETH 2 213, EC P x P PHEZHATHD, 0 c Autb E
THdHEEERWVD.
(1) AP (GL) ZHBI=T L3, 2RI (B, 0) BDFELT
La={(p.q, (m0)(p,q)) € P" ' xP" ' xP"' | (p,q) € E}
DD DEEERNVD, ZDL X P(A) = (E,0) t#HL.
(2) AP (G2) ZBI=T L3, 2RI (B, 0) FELT
R = {f € k<x17 v 7'Tn>3 | f<p7Q7 (71—20-)(297 Q)) = 0 v(p7 q) € E}
DD DLEE VWS, ZDL &, A= AE,0) £ EL.
(3) ADESEIR 3 RRBTH 2 L1d, A (Gl), (G2) ®iirzL A = A(P(A)) B D 2o
LEERWNS.

HEE LS OELHTIE D 2 5% MA 2 R M CHRE L RS2 HWA Z L ITEET 5.
BTy 2 KRB e RECBR DK, BHHE 722 0 ZHIBR L TWBATTH 5. AT
X, 33 X AS [EHIRE D DFENICH T2 Z e B RHICBEVWTWA 12D I D X5 REFRL
LTWas. &3 LD, fEED 3Kt 3 X AS IERIREBUIAERTH) 3 RRETH 5.
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EI 9 ([11, Theorem 3.5, Theorem 3.6]). A = A(E,0), A" = A(E', o) %&%MH 3 XK &
T3, 22T, BB CP I xP o c AntY E, o c AwtS E' ¥ 5 5.
(1) A2 A THEZRETHEME, H2P - OHCFEBESR T BEEL T, (rx7)(E) = E'
27z L, MR

DAL 252 TH 5.
(2) GrMod A = GrMod A’ T® 3 RE+ 7753, P! O HERBEBR DY {1, ez B
BIELT, EEDi € ZIZOWT (1; x 7i1)(E) = E' &7z L, K3

Ti XTi+1

E—F

E/

DAL B3 TH 5.

A= A(E, o) ZRMAM3XRE e L, 2P 0 HCFBIER T BFIEL T, (rx7)(E) = E
ZWiieT e ZOE o=(xr)o(rixr ) eBlt, A= AL, o) FEMH 3K
RETH b, KK

E > g

E——F
DR 25, Ko T, EHI (1) kD A=A iR5.
T 10 ([11, Definition 3.7]). E, B’ C P*! x Pr! ZEHE2HA L 33
(1) Ex E'2EfETH 221X, H2 P OoHCHEREER 1, n MFELT, (nxn)(E) =
1NN AIRVACR -2 AN
(2) EX E'D2-FfETH 2 2%, 2P OHCFRER r BFIEL T, (Tx7)(E) = E
N A RVASRE-Z AN
L7ehio T, 3 RT3 RAS IEHIRE 2 0T 27D OFIHIILLTOMED TH 5.
Step 0 £ % 2-FfEZFRVTHHEET 5.
Step 1 & E Z 22 Auty E#ET 3.
Step 2 FHAMAEE R 0 € Aut{ Fiaxt LT, &M (G2) &AWV TR 3 XREAE, o) D
BRI 2 TES 5.
Step 3 EH 9 (1) ZHWT, KENT BRI L 1 272D OMBEDFEMEERD 5.
Step 4 EF9 (2) ZHWT, KET 2 HRHFEL & 2720 DB+ 354 EZRD 5.
EDP x P A 7213 P! x P NORREL (2,2) BIFROHTHRITH 2 HBE BT 5 3
RIE 3 X AS IERIMRBO A FIITER L TV 5.
FEIE 11 ([11, Theorem 4.9, Theorem 4.10], [9, Theorem 4.2, Theorem 4.3]). A = A(E,0) %
SHKIL3IRXASIEERIREE §5. 22T, BEIZP' x P HEF P x P NOXCREL (2,2) #h
MOFTUFOWT LTS
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RN /

1) ADBRADTERR YV A 252,
2) KBUS BRI & 73 2 B+ 5, U
3) TEUT = ARERENE E 72 2 B+ &2 52 7.

3. FEFTHBRRICAIG S % 3 Rt 2 K AS IERIEK

ARRDmIRIZ, E D P> NORHIIHRT D 255 D 3 Xt 2 X AS IERIRE D 715k R 2 4
N5, 22T, E=V(f), f=22+9y°+2° = 3ayz (\® # 1) W5 Hesse IERZHH
5. P2 NORMAMFREISHEEEEZ R T ZOFRNTRILTE 5. BT £ 13Tk
0:=(1,-1,0) & LTIEHOMENAS. (EED E DK p = (a,b,c) N LT, EDIEZE
FAWTpZR3 WD translation 0, € Aut E 2§60 5. E D j-FERE I
o 2T03(N 4-8)?

](E> T (/\3_1)3

DI TH23. PPNOFHIIR E & E' DHHEEIET H 2 W E+05&MHE j(E) = j(E) &%
%5Z 2 TH5 ([6, Theorem IV 4.1 (b)]).

BRMAHERERET 272012, j(BE) T8 EOHCHME Aut, E 2 IETS. 22T
translation DRRDRTEEL T = {0, c AWE |pe E} £ BE, EDFILo = (1,-1,0)
WXt LT,

(
(
(

Auty(E,0) :={oc € Aut F | o(0) = o}
3%, T & Auty(E,0) 1F Auty E DETHTH D, Autp(E, o) I3MBEROKEFE L 725
([6, Corollary TV 4.7]).

EIE 12 ([7, Theorem 4.6]). Auty(E,0) DEBIT T IEFRXD LS ITHEZAHN5:

r(a,b,¢) = (b.a,¢) ((B) #0,18088),
7(a,b,c) = (b, a,ce) A =0D5%HHE),
7(a,b,c) = (ag® + be + c,ae + be* + c,a + b+ ¢) (A =1+V3DEHAH).

7L, e 31 DJFMHIFRE T 5.

J(E) = 0,122 DFER, ZRZNAN =01+ V3DEIRXANZEEL TVWE I L ICHERT
5. WITHNOLEDERTTIIPP0H 2 HARMNESRY £ LIZHIRT 22 TEons. Z
T,

Auty(P? E) = {¢ € Aut, P? | ¢|p € Auty, B}
EEDD. EnP?NOBHIRDSEE, 2 BARAER 0 € Auty, E 23 P O HARE /R
NERABER S, ZOREEROHEFIEME—E D IZEE 52 DT, Aut,(P? E) Z Auty E OFT
BHEARTIEDNTES. FHIT, Autp(E,0) 1Z Auty (P2 E) OFIEETH 5. E O HCIFABIEE
Auty, EIE T & Auty(E,0) DFERICAR L 72 5:
Aut, E =T x Auty(E, o).

Lo T, HOFRMER o € Auty, B 1&

o= O'pTi

ERINS. fofL,pE EVG‘Z@D,Z'EZMVG%%.
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o € Auty, E 2 translation 0, IZ—H L TW3HE, A = A(E,0,) & 3 Xt Sklyanin fRE &
FIEN2dbDTHY, ABRALTTIZTHroTWVS:

ayz + bzy + cx?
A= A(E,0,) = k{z,y,2)/ | azx+brz+cy* |.
axy + byx + c2?

72720, p = (a,b,c) iF abc # 02D (a3 + b3 + ¢)? # (3abe)® Zii7zF &5 5. RTHY 2 KK
BA(E, o,7") OBIfRIUZ, 3 2KJT Sklyanin KB DEIHRZ twist 5 Z & THLNS.

I 13 ([7, Theorem 4.9]). E % P2 NOBHIIRE L, 0 = 0,7" € Aut, E 2§ 5. 72721,
p=(a,b,c) & abc #0D (a® +b* + ) # (3abe)® ZhilzT e L, i€ Z) &35, TDLE,
B 2 I A(E, 0,77) 1

at'(y)z + b7 (2)y + et (x)x
k{z,y,2)/ | at'(z)z + b7 (x)z + cT'(y)y
ati(z)y + b (y)x + c7'(2)2
WCRBA 2 RBREIR e 72 5

Bl 14. j(E) #0,12° D& =, Auty(E,0) DEBIT T X, 7(a,b,¢) = (bya,c) Lo THEZ BN
5. WA, T OMENI2TH S, EHL 15 XD, BAIH 2 KR AE, 0,7) 1F

axz + bzy + cyx
k(x,y,z)/ | azx+byz + cry
ay® + bx? + c2?
WCRET = REFRL 72 5.

EDREpliZBVWT, np=p+---+p=o0%&iiizddbDen-b—=3> IR n-b—2
VRO TEER En)| £ RL, Tn| = {0, € Aut, £ |p € E[n|} £ 3 5. EH13IZBWV
Tp=(a,b,c) D abc#0ZHi/zT & LTWkD, ZHidpd¢ E3] LAETH 5.

%8 15 ([12, Lemma 5.3]). E % P2 NOMEMEfRE 52, 2ok %,
Auty, (P, EYNT = T3]
DD ALD.

p=(a,b,c)H¥abc =0 %73, Thbbpe E3] TH2HE, fid15 XD translation o,
FP2OHAHMBERIIER T2 N TES. 2O X, B (E,0,) 22554 (G2) &
HWTHE LN S A(E, 0,) ERMAIHE (P2, 0,) WRIGT 2 B0 2 KKE L 72 2. L7zdi- T,
P2 NOFEHHR E & ZDHCRMER 0 = 0,7 2572 2 %BH (F, o) 12T 2 &MY
QRREZTARD & 22X, p¢ BB T 20EDDH 5. /@15 XD, ROFRZE5.

EI 16 ([7, Theorem 4.12]). £ %% P2 NotEHhf e 2. ot &,
Aut,(P?, E) = T[3] x Aut,(E, 0)
DI LD,
EHG6 (1) EH 16 KD, KB ZREFRETH 2 -0 DHESFRMEVELNS.

EHE 17 ([7, Theorem 4.16]). E % P* NORHEIFRE L, p,g € E\ E[3], i,j € Zj; £ 5 5.
D ZE, AE,o,m") 2 A(E,0,7) THBIRBETIFMEZ, i =D, H53-b—>arv
reEBleleZi WHFIELTqg="1(p)+r—71(r) BRDILDODI L TH 5.
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B 18. £ ST FHEINOAEMERE L, (F) #0,122 235, p=(a,b,c) e E\E[3] £ 3 3.
DL E, RD=DDREMNE2REEEZ 5.

ayz + bzy + cx?
A=klz,y,2)) | azz+bxz+cy® |,
ary + byx + c2?

byz + azy + cx?
bry + ayx + cz?

A =k(z,y,z)/ ( bzx + axz + cy?

arz + bzy + cyx
A" =k(x,y,2)/ | azx+byz+cxy |.

ay? + ba? + c2?
A AA D XS IERHBREBD A RO e IR Z W TR E ATV S & &, KEUS & EUF
RTHon50%HET LI RBHELVHETH L. —J7, A, A, A Z2TRMAP 2 XX
BTHy, e A= AE,0,),A = A(E,0.()), A" = A(E,0,7) ERENDE. £oT, &
B 1TOHEREEZHV Y, AXATHEZEWRENS. T, 7 DI R Z e p
AL A KROA A BB ERBIARTRNZ EDEBITRENS.

EHG6 (2) &M 16 & D, KB EHRHFMET D 2 2D DHERMFREON L.

EHE 19 ([7, Theorem 4.20]). E % P* NORHEIFRE L, p,g € E\ E[3], i,j € Z; £ 5 5.
2Dt =, GrMod A(E,0,7") =2 GrMod A(E, 0,77) T 3 E+ M, p— 1777 (p) € E|3]
MO, H23-b—YarreEBl e WHFELTqg="1(p) +r BWDILDILTH5.

5 20. B Z S FHNOREMEIRRE L, j(E) #£0,12° 233, p=(a,b,c) € E\E[3] £ § 5.
ZDOLE RO=DDOXBMNERBEEZ 5.

ayz + bzy + cx?
A= AE,o,) =k{r,y,2)/ | azzx+brz+cy® |,
axy + byx + cz?

byz + azy + cx?
A = AE,0,p)) = k(z,y,2)/ | bza +azz+cy® |,
2

bxry + ayx + cz

arz + bzy + cyx
A" = A(E,o0,7) = k{z,y,2)/ | azx+byz+cxy |.
ay? + bx? + c2?
AROT & BRAIC & o TH X S 72 R ERBDIREAT S FRAFRIE & 72 2 5 8 5 222 HE
T2 ERIFEICHLWHETH .
(1) A AWZOWT: A= A(E,0,), A = A(E,0,)) &D,i=j=0T»5DT, EH
19 DM 2723, WwRIZ, GrMod A =2 GrMod A’ £ 72 %.
(2) A A7iZDOWT: A" = A(E,0,7) &, GrMod A = GrMod A” & 73 % B+ 7151
Ep—71(p) €E[B|THS. 1DMNEDN2THEZ b6, p—71(p) € E[3]1E2p € E[3)
WKFAETH 2. Lizh->T,pc El6]\ E[3] D& %, GrMod A = GrMod A” /2% .

—fRATFRATAY 2 BN AS ERIMRET H 2 L IER & 7200, RO RIS FEA DM

R E ¥ BRGNS o 55 7% 2 %M (B, o) 105 T 2 B 2 RREA(E, 0) 23 AS 1E
AT H 2 7D DHIEFRNE G52 5.
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EHE 21 ([8, Theorem 4.3]). £ % P* NotgHE#RE L, p € E\ E[3], i € Z;; £ T 5.
A= AE,o,7) ZRMH 2B T2, 2oL X, RIFMETDH 5.

(1) AWZ3XRIL2 R ASIERIRETH % .

(2) p—T'(p) € E[3].

(3) GrMod A = GrMod A(E, 0,).

EH21 XD, 3KIT Sklyanin FRENE 3 KT 2 R AS IEAIKETH 5. X 512 3 XJT Sklyanin
RENZ Calabi-Yau fREACT  H 2. Ko T, EH 19 &M 21 XD, FH-FHERAOHEM R £
CHORMEER o = 0,7 2572 2 %A (E, o) 105 2 %AH) 2 XREA(E, o) 233 K
TE2 KX AS IERIRET ® 5752 513, 3 XL 2 K Calabi-Yau AS IERIRELA(E, 0,) & REUT = 7%
HIEMEE 72 5. & h—IZ, ROMEIRELNS.

TEIE 22 ([8, Theorem 4.4]). FEED 3XTT2 K ASTEHIREL A TR LT, 2 32X CY
ASTERIEL S D31EE L T, GrMod A = GrMod S 23 b i7o.

Artin-Zhang [4] 12 X o TIEATHUREE X & — L Proj,,, A OBERYEA X, Z O ENEH R
SLENTe. ADitk— & — AS IERIRECT & 2 IEA[#aS 2 2 ¥ — A Proj,,, A 13IFAI#RS 222 0 <
BHHHREZEME & MR, R RBOREICB 1T 2 HERIAINRD—DTH 5. K2, AD33
XKt 2 R AS IEAIMRE D & % | Proj,,. A IFIEATHEE2T-H (noncommutative projective plane)
RN, A D3 RIT 3K AS IERIED & =, Proj,,. A FIEAT#A P! x P! (noncommutative
quadric) & FHIN 5. EB 22 X D, (EEOIERRSFH Proj,. A&, % 32Xt 2 X CY
AS IERIMREBUCATRE S 2 IERTHA 52 Proj,,. S L IFAMHAE R ¥ —2 2 LTHE 1 5.
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SEH SR I

._[

. fryraxrsay

AR TIEHE R |ISXZ24] DAFERD S5 B, 77 4 Y HiEID)I[1-Silverman FARIZDW
TOHDOEMPN L. BB, ARETIEHDDRVIED Q LTHRT 2D T 5.
AR BEZEA X FOBCHEMER [ X --» X 2EZ 5. RIBER " = fofo---of
(D fDER) D, nZREL L TWoHOEMX OB KELZHZAEREYL LTH
FRBE BMTILE WD ZODAEENERSIND. WIE IR R V7R MR
ZRETHY, BEFZEIEBEZHCEGRNEAERTHS. TN HOERL ATWL

2.
EHE 11 X 2HEZREY L, f: X - X 2XENECEHE®RY T2, HZ XD
BEHT LTS, X0 (H—) JERECE

§p := lim ((f")*H - HdimX—l)%

n—oo

CREDD. ZOMRIIFEICIRL, 5618 H OO TS0,
X P ROEFHEZRETH 25332 A Y o OWAEBEER 1Y --» Y %
FAWT 6p :=0,-10p0p EEDD. TDEFKIT p DHLD FTITHK S 720,

EE 1.2. X 2HEZRIKL L, f: X --» X 2XENECEREGSR - T5. HZ XD
BERFLL, gy : X(Q) - REZ HH»PLEFZ20MNE SBT3, 2 € X(Q) T
Os(x) = {z, f(z), f2(2),.. } ERTEZHDIINL, fDz TORMKEE

3=

ar(z) = lim hj(f"(z))

n—o0

YEDD. TIThi; =max{hg, 1} LEDTWVWS. ZOMRNEICTHEET 2013500 -
TWRWAY H OELD IR S 7w,

X DR DMESFHEZIRIAT D 2 55 3HEZHRAY DPODONEHER 1Y --»Y %
FAWT ap(z) == -top0u (1 (2) EEDD. ZDEFRIE p DHLD JTITHK S 720,

FI2ERE e B OB OEARN 2 BURICOWTIRR S OB RO TFHETH 3.

F#8 1.3 (JI[1-Silverman 48 (KSC), cf. [KS16]). X % Q LOMEREZEIKL L, f
X - X 2XEMNHCEEER Y $5. XOQAMHM 2 IZOWT, ¢ fHIE O () =
{z, f(x), fA(x),...} DERARETHD X NTRZETHLL35. ZDL ZMR o (x)iF
PERL, E5I12di(f) = ap(x) DD LD,

1



2 SRHSIA
KSCIIRIERDBIRES DS, 2 DIFEIWTOWTH D IO Z A5 TWS, KSCIZ
DWTORBNTAGRICOWT, ARETHNT 2R EEDD DRV DZ2FEFTHL.
X DFELWERICOWTIX [Mat23] Z S 1720,
o Gzl o H AT (IMSS18], [MZ19]).
o 17 —~ULZERIK Lo B OA ([KS14], [MS20]).
o A2 DHCFH (|Kaw06]).
ARRTIET 7 4 vithE o HEARFHTN S5 KSCZHD EiJs. 2OXH5%R7 74
YHIE OB DO WTIX [GZ08] TREL K #ARLNT WS, ZDOMAEEZEH TS T
[JSXZ24] IZB W TR RE M.

EIE 1.4. X Z0EAEVNERTTHAIEADIERRT 74 Vi e L, f: X — X Z2HRS
255, OS5k FIT L KSCHR D L-D.

MR, ZOEMOIFHOMER2Z AT\ 5.

2. 77 4 VEMKDa T M
77 4 VERARD a7 MUIZOWTHEICBX LWL TEBIZ .

E&E2.1. X 2774 VZEKLT 5.
(1) X 2FEE L LTEUHEZRE X 2 X 0a v 7 Mee 5 5.
(2) XDaryy MeX IR TH 2 &, ThREohkar iy Merwns.
(3) X Day 7 MEX IFRRTHD, X\ X PHEMEMRLEARFTHL X, Z
NrEaigohrizary ML ES.

a7 MezHWT, RRBERADEE L AZRTDH 2 I/ NERTER S
ns.

EE 2.2. X ZIEOORMEGFEZHEKL T2, Xouigohizar 7 MEX ZHD,
D=XsmX &75.
E(X) = K(Ky-{-D)

Z X OMBHNERTTEES. 2T X Da > 7 MEDOELD J5 125 720,
ROMEIFBETHNS.

iRl 2.3 ([JSXZ24, Lemma 2.2]). X 2R 7 7 4 Vi L X 2 X 00 75 H7%
av R MEe T3, ZoeED=X\XZEERTFOATHS.

3. Gn 7747 —a v

SV INETCHIEE DI/ R Y 7 4 VHIEICH L TIXG,, 774 7L — a VO
EPEETHS. ZZTIEG, 774 7L —2 3 vBEUG,, RITOWTH D \LOHWKE
HTwz 9,
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8 3.1 (Suzuki’s formula, cf. [Suz77],|Gur97]). 7 : X — B ZIFFER T 7 1 Y HHiHI D &
R RN D 2T, —& 7 7 A N=—DBI b DL T 5.
(1) e(X) =e(B)e(F)+ > (e(Fs) —e(F)) B& U e(Fy) > e(F) B HILD. TITF
T D=7 74—, {F}, 37 DRE7 7 A N—D2k T 5.
(2) % sTe(F,) =e(F)PHRHIDOETE. ZORFF A £EG, THD, &
Tsupp F, = F 2D 7D,

8 3.2 (|[JSXZ24, Proposition 2.10]). 7 : X — B #3ERER 7 7 4 i 5 IERFER 7
7 4 VHBEANDO2H 75, 1 DK T 7 AN—DREG,, KFAETHIZ L, {7 b)) =
mE Y BT DEBET 7 A N—D2Ke T 5. 2ok ZIERRIRD S OHRS B — B
T, By:=B\{by,....b,} FEZTX—NTX xpgBOIEMLX 2E25¢ X - XhHT
X—HTHY, X' - B WG, Re%22dDHPEN5.

EE 3.3. 7: X —» BZIRRT 7 4 ViED> 5 IFREMRAND G, KT 5. X DOnH
TWEOPar T MEX  BOWELPRay 2 MU BC B TP 774 7L —
Yarvrm: X > BREET23DRW-o/- %, X\ X OKFEEZLE 582D 7
DU 725 %, 7lX untwisted TH 2 EF 5.

thRE 3.4 (|JSXZ24, Lemma 2.7]). 7: X — B ZIERER 7 7 1 Vil 2> & IERFR AR D
GCpHET2. ZOL ZIERFRMRE B oD X—NVE B - BAH->T, X' =X xpB
358 X' — B X untwisted 7% G, R 72 5.

il 3.5 (|[JSXZ24, Lemma 2.7|). 7 : X — B Z IR R 7 7 4 Vi D> & IFFFEBHFRAN D
G RET5.
(1) R(X) = K(B).
(2) 7 & untwisted T BIZIFRR T 7 4« VAR E 5. 2o 20 I dEHWARG,, R
ThHd.

PR 3.6 ([JSXZ24, Corollary 2.8]). m: X — B ZIERE 7 7 4 > D & IERF R AR
DG, KeT3. ZORBIET 74 VHIRETH 5.

4. Q b—7 X

CITQHF—7ROWEEERLTBL. THIFHEZHRICBIT 2 Q 7 — 124k
KD7 7 4 Y ZRRIZBIT 5 analogue TH 5.

EE 4.1. JFRRT 7 4 YERAE X B -7 206 DHERT X -G 2RO &, X
ZQh—FR2WI,

R 4.2 ([JSXZ24, Lemma 2.21]). X2 Q b—7 A3 3. ZOLERH L —F A0 5
DERZZ—nFa7r: T - X THHYREWMZTODODFHET S -

TEORB = ADSDERZ X =G T - X 1T L X = r: T - T
Trn=rorT ZltiTHONRGFET 3.

DX n: T — X% XDORE b RBATLESR.



4 SEFT 21
5. 77 4 Y HHHE D H A RS DS

DUR oI &Y, SEHVNEIoTHAIEADIFRR T 7 4 im0 B AR Z & D
fHRZIPICIRE T2 e TES.

M 5.1 ([JSXZ24, Theorem 1.9]). X ZIFRRY 74 VHiEiE L, f: X — X %Z deg(f) >
2 Ziifi7- 3 AR E 3 5.
(1) R(X)=2¥t3%. 2Ot Z fI3AERMNBOBCRETH 3.
2)RX)=12F5%. ZORXIEG 7747 —>aryn: X - BOMERRD,
BOHEBRNMBOHCHRE g B> Tgor=mo f R D IO,
(3)RX)=0%2F%. ZOrEXx— LY r: G2 - X BIUOHRE ¢: G2, - G2,
MHoTmrog=form DEHILD.

AEAA D . (1) 1 [1it82, Theorem 11.6, Theorem 11.12] DRHIIRIGETH 5.

) XEuZiEohrim X Dar Ry ML, D= X\X 232 RELD k(Kx+D) =
1 TH%. Ky+D =P+ N % Zariski #fp 35 PIFFEETHS. LoTHIK
FWVsIIHL [sP 1774 7L —>av7w: X — BT B IEFRFEGEIRT (B) =1
THHEIBBORFEETE. X0 fldg: B> B%#E3%. B=n(X)23T5¢k
BLoHCH g=glp: B~ B%f8%. ZIZT, tD7 74— FiEs(F) =0 %k
. XoTr: X > BO— 774 N=13G,, KFAMTHD, e(X)=0r7%45. Suzuki’s
formula i2&D 1 DETDT7 7 A XN—DHRIWEG,, KFAHTH 5.

{771(b) = mF}_, (r >0) %7 : X - BOEHEI7AN—D2KET%. By =
B\{by,....b}, Xo=n"Y(By) £55. ZDLERET 7 A N—2ROEHEED fI K
BETHBIeh 5 g(By) CByTHbB. ZIZTXy— ByWG,, RTH2Zr»oamE3.5
EDRBy) =r(Xo) >R(X)=18%RD, (B =1%18%. ®@ZxiTg|p, (L Tg) FH
[RABOBECHEBETH 5.

(3) —H, HEIEAPCTH2LRET 2. 5, e(X) =002 > 21OV THI(X,C)=0
B D> TVWBEDTH(X) > 1THh3. X EZuZEohrik X Dary,y ML,
D=X\X 255, MM Hodge to de Rham A2 b LR

EP? = HY(X,Q%(log D)) = H""(X,C)
DE BILZEEZS
1 <bi(X) = hUX, Q:(log D)) + h'(X,0%) = r°(X, Q(log D)) + ho(X, QL) < 29(X).

XoTqgX)#0THD, quasi-Albanese map a: X — SIFIEFHATD 5.
0T —=S—> A= 0% 7 —NABREKS ORE N =T AT &7 —~OLERK AN
DRfRET 5.
S=A2DdmA=2TH2LRETS. T5& X ZHEYNCEHDEL THEHG G :
X - ADPEOLNEDTThen v(Kx) = k(X)=082%%. L2L, k(Kx+D)=F(X)=0
O DEmE23 XD BERFTHD, FETHS. LoTIDr—RFEI 520,
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KiZdimS =1, dmA=1%F/~&EdimS =dimT =2 ThH 3 LIRET 2. THLFLD
BECBUTB =S8, A& T/Ty (T, CTE1IRTEHD b—7R) LEDL. F %’
T: X 2>BO—RIZ7AN—TF5. BHEAFEXLDRE)=0R2DTrEG, 77
ATV —a>rTH?. Suzuki’s formula 2B 7 DIEED 7 7 4 N—DHEIXG,, I[Z[FHT
H5.

X' X X

BN

B B’ B
" @

MmEH3.2 X D AR ¢ : B — BhHoT XxgB OEHELE X' 322 X' - XIZTX—
DX = (XxpB') = B'3G, Rei5. ai@35 XD R(B)=FrX')=rX')=0
TH23. §oTB =G 2D pldLX—LTH5. mE3ABLIOMEIS & ERS
V:B" B BHoTX" =X xpB 32X - X IEZLX—1»DX" - B"IZH
HZ G, Rekd., ZOLEX"2G2 ROTG?, 26 X ANDZX—LHENELNE.
IHEQRBVTH G 26 X ANDITX—LEHEBRTZ2IeNTES. 2Fh X &
Qr—FRTH53.

7:G2 = X BB —5 AT T3 (of fiH4.2). TEHEHE4212ED g: G2 —
G2 CTrmog=fom &2 bDVEHIET 5. O

B 1.4 O, R(X) =1 £721% 2 DG A EIFBEPEISFELZVDOTOK. ®(X) =0
DEGERRDARKIF 5N 5.

ZZTgl3ERYE, n3=X—HHTH2. O E—EMLD 5, = §; HOMEED
2 € G2(Q)ITML ay(z) = ap(r(z)) DD LD, ko TREAIX X = G2, DHEICIRAE X
N30, &b—MIcE7 —~OLZRRIRI LT KSC 2EEFH X LTV 3 (cf. [MS20]) DT
I CHEEFAD D 5. O
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72 7@ EEED ¢- &Y

o F- AEEEE KA R

BE=

B EHEECE © (i3 ¢ OFRE Lo SBEHEEB ICIZ WL 02 0HAALNS. 2k 21, BRIk
Lo BEHEBORMELERICENS ¢ DE ¢ 2HRAKNIC kL ICBERZ 32 2T, HEBORTS
EHAG O L., 20 XD BREME, ERZHEASLHKHIRS MAGoMEOREEICHEHNS.

¥ 72, HMEEOTEOIMAEE M Z 7 1TRIGL, ZoMbE@E L TS S 712&o S HIRIK L
DFEFHEENGONS. IO DEREOREZIHRNIE, 77 70BAZHAD ¢ LWL AR ENLIME
PHT IS, REHEHTIE, ZhoD ¢ BRI T 2 REEEZEN L, ZOHFMICEBIT 5850
DR EHRE T 2. AKIL, FEEFR, WHEK, SKEEZRKEOHLFRFFRICHE L.

1 EFEicE

KK Lo ¢ Xe~2 bVl K OB REOBYHE GRAIC 1 OEAR7 FVZER) o%fEh A% (R
D) BEERBEVS. BEEHEBOMEICBNT, FICEELLDRMU T TERIN IR EIEFES
L(A) 245142 ER (A1) TH 3.

LMy{ﬂI{BQA}
HeB

XA = Y pX™ X e zt).

XeL(A)

L(A) BHEEIEFIC LD, 27200 = K 2Bt T2 LIRS L k5. £, BHE2EAOERNC
B BB u(X) B TFD & 5 RN ER SIS L(A) LOBTH D, XEYEREMINS.

{1 (if X =0);

n(X) =4 - Z p(Y) (otherwise).

Y<X

VTR A OFHESERIE, A ORZEE M(A) = KO\ Uy H OWEE KB LS HATERTH 5.

Example 1.1. K=R Ot &, % M(A) O&ZER-E S ZHEE VS . BEOMEEBE (—1) x(A,-1) &
—H3 % (Zaslavsky [8]).

Example 1.2. K=C 0¥ &, #iZ%M M(A) OR7 > HLZHERE, (—t)'x(A —t71) c—HF 3% (Orlik-
Solomon [5]).

Example 1.3. K=TF, Dt %, #iZE M(A) DToMEEE (A, q) IT—HT 3.

KB FHEEEO BREDERICOVWTHHATS. S =Kz1,...,2] £BE, Der(S) TKER S Ey



DORTEGERT. HPHLE A OREHRT FILBOBRITMEE D(A) 2ITDO XS ICERT 5.
D(A) :={6 € Der(S) | 0(arr) € Sayg (VH e A)}.
72720, ag ¥ Kerag = H e R5EX5BEFRIRXNTHS. D(A) IR E S NBEofEEZ D, D(A)

ASMEL LTHHTH» 2 &, A2BHBFEREL VWS, Z0 X512, BFHLEDHHEOERIIN
BHTH 27, RIZETFHACED XX DM G ERE & LR ERRH 2.

Theorem 1.4 (SFEDODEEM (7). A zHHEVHEEL T2, ot X, FEZEKX x(A¢) 13 Z]t] 1<
BWTC, LD L5121 XKADHITHRT 5.
X(At) = (t —di) - (t —do).

7L, di,...,de & D(A) OFKEEOIICTH 3.

2 HAHECE C BIRIF LD 2B FEEE D BT

R @ x; = x; CERSNZETHEED S K 2B ZEBEREL W, B, TRT. %7, F,OFTXTO
VD 5% 2 LB 2BFERB L W, An(F) TRT. —RERGXZ5TH22, B & An(F,) @
ENTIZ WL O OB R THMESALNZ L WS 2 2 ATVL.

%7, ERZEA (BYHOER 1 KXo WFEET 5. MMELE B, 0OERZEHK Q(Br) € Rlay, ..., x4
iZ, X<HshTWwW3 Vandermonde DITHIRTH 3.

1z a3 x[i_l

1 xo 23 xéfl
QB)= [] (@j—=)=] : :
1<i<j<e : : :

1z a2 mﬁ_l

REFHERCE A (F,) OERZER Q (Aai(F)) € Fylrr, ..., 2] 1& Moore 175IDTHIRTSH 5.

x oz 2 .. af
2 £—1
! xe xd I . 2l
A (F H H (114 +eimamior + ;) = | )
i=1cy,..., ci—1€F, . .
2 £—1
xry xf xl ... xf

WHHE AR EHOCTRBICRT e TE 23 E, THEKOE U TV S, ERRDEBNRLZDTH
Lo boRIBETH 2 LB 52, Moore 75D ¢* 2NN kICEEHZ % ¥, Vandermonde 1755315
LRBZZICHERLTEBL.
K2 ERICERET 5
X(Be,t) =t(t—1)---(t =L+ 1).
X(Aan(Fo) t) = (t=1)(t —q)--- (t—¢" ).
LARoTOT, 22Th ¢F ZIURINC K ICEERA S ¥ (An(FL), 1) 6 (Brt) HEBNE. S5I2,
X(A}Q,f) = f(f — 1) 1= #6[.
X(Aan(Fh),q") = (¢ = 1)(¢" —q) -+ (¢" — ¢" ") = # GL,(F,)



Lo TWT, FEZHXOME LT, B & Aw(F,) OFite RIHOMBHAESET 201, KUckdL
ZATH5.
By ¥ Aa(FY) 3icHERETH D, HEL LTZhZh

d 14
{Zx?ak ke{O,l,...,£—1}}’ {ngkak

i=1 i=1

ke{O,l,...,E—l}}

DEND. ZOHED Aa(F)) ORED ¢ RN b ICBERZ 2L, B, ORENE LIS 2V Bfk
iﬁﬁkbﬁ’)flﬂf, KVC%)T/L‘\H%VC@%)

3 J3T7BBLED -EH
FARBCLE B, O BB TANT [ ={1,... (} 2 ERES L T284 777 G = (), Eg) ZHWVT,
AGIZ{{xi—Z‘jZO}gRE‘{i,j}EEg}

DETRTZENTES. Ag I 5 7EBBLWVS. 77 7HE A OWHEIEX, 777 G OM&EmMIEE
CRIRL TV, 2, A OFMEZHERN x(Ag, t) & G OFEZIER (G, t) LT 3. £z, AcH
HETH2Zry, GHRa—XLVI57THBILIIFEMETH 5.

PETHLE A (F) OMIBET, 777 G LHBRCHET 2 L5 DEIEZLNRVES S H. 7
7L TUHRDERY 77 Ky #8258, Ak, =B b 8o TWaDT, %2777 K 12i& Aa(F))
EMIEZELDDERTHS. 22T, 777 GDIZ V=27 {iy,...,ir} T T4y, ...,z DOIR52EFHE
B2 2L T, JSTEEBD ¢-BF AL ZLURD XS ITEHRT 5.

AL = U {{ailmil—i—---—&—a“xir=O}Q]Ff;|(ail,...,air)EIFZ\{O}}.
{i1ynin}: GOZY—2

AL OWER, 797 GoMEeBEGBLTWS Zeniffansg. EE 77 7EE A © BHMEDFEH
ERFERRICLT, AL PEHTHE 2L GRa—KXANT 77 THL I eHEMETHZ I LDFEATE 5.
T, AL oFMEZIEA L G OROAZHEAN M »BEREH 272555, BALZHAOERZEVWH L TA
22, EED k€ Zso ITRL,

NG k) = #{ (un o yu) € {1, kY | i 535G D30 = u; # 0y }
MDD > TWS., TOREIETGEDIV—FVDFETUTDEIICEWVIEZ SN TES.

{itye.yip} DG DIV =2
= Uiy, ..U, FHWICHER S

AL OFREZIAKICOWT D, B &5 RERAFTRETH 5.

x(G,k):#{ (Ugy ..., up) 6{1,...,k}£

X(AG, d") k {it,...,ip} NG DIV —2
- 1) { u, ..., ) € P(FE)* = Uiy, uy, & Fy B 1 AT }

G2 K3 RIBRFFEES 27 7 % & £720 (triangle-free) & ZiE, do 2 BWIEBFR D

Proposition 3.1. G &% triangle-free D & &=,

=#{ (... wm) ePEN | ij B G OB = 1w #7; }.



£oT,

_Aq ,qk
X((q _G 1)g) =x(G, [k]q)
REL, [Klo=#P(F5) = L1 13 -BBTH3. L,

:HA%J)=(Q—1VX<GZ;:1).

Example 3.2. A7 7 7 C, DR BZHERAIZ
X(Cet) = (t= 1) + (D)t - 1)
THb. L>4DrE, Ol triangle-free 72D T,

t—1
qg—1
Remark 3.3. G 77 triangle-free T/ W& =X, Proposition 3.1 XL LWV, 72 2, G=K; DY
&, x(Ks,t) =t(t —1)(t —2) 2D,

AL 1) = (g — 1)'x (c ) —(t— )+ (“D)'q— )t — ).

m—lfx<Km;_i)=(P—UU—®U—2Q+D

Y7o TWT, iU
X(A%, 1) =t —=1)(t —q)(t — ¢°)
YIZER S,

BB k], BB D ¢-BETH 2. D% D, limgq[k]g = kB D Lo TWS. G2 triangle-free D &
X ¢DPEBETHZZLIEIENT ¢ 1ITEDF2BRE2EZTABD L,

- x(AG ) _
%1_{1% W = {}1_{% X(G, [klq) = x(G. k)

Yo TWb., GWEETT7 K, DY =X, Proposition 3.1 IXEH T X720 28,

XA, d") (" =D =) (" — ¢

= [Klq([Klg = [tg) -~ ([Klg = [€ = 1]g)

(¢—-1)¢ (¢— 1)

ERoTWVWBEND,
. x(A%e, ¢
EW:k(k—1).--(k—£+1):X(Kz,k)

DD o TNV,

. x(AG, ¢%) . 5 o = .
Question 3.4. WqukEﬁ?‘Zv&Lﬁiﬁf:%?#. F7z, BLEIRDS
- x(ALdF)
=4S AIRYASY RN i



Question 3.4 IZEZ 2DIFHLVWEEDLNE D, DTOED LB THIUIK D LD Z L HFEATE 5.
Theorem 3.5 ([4]). k € Z~o WXL,

AL g
W = x(G,k) (mod g—1).
[4] T, MR Z PAGD R T MEEDEEROFLER L IOV THMNTNE DT, FOITHWELEZ

720,

4 XHERMMEICEEE T B EERT

257 G = ([, Eqg) DFBEZEX%

ERTE, a; >0 (0<4<0)DEDILD. Read [6] W XREF ag,a1,...,0, (ZEIENTHZ, 2FD, 54
7537?‘T£LVC, a0§~--§ai>---2ag Z%ﬁgbfl f?zﬁﬁ”ao,al,...,a@ ﬁ)im’%ﬂgf%éit%ﬂ?‘ﬂdi, i“j

BUTHB L, Thbb
ai > a;_1ai41 (1<i<i-1)

L% 2 mtid K. June Huh 2] 3R EZIHA O REGI ONEL M % 8 N E O RECR A7 1 F12
FRWCHFRA L 2. @FEEE (B30I —ic~v bnA F) OFFEZERIINEMTH 2 Z RSN
7 [1,2, 3] &,

l
(AL 1) = 3 (-1 ()t
1=0
PELELE, EEOBKE (I LT, a;(q) >0 (0<i < £), 5, 8 ao(q), a1(q), .. ., ar(q) IS
MTH 3.

Example 4.1. G =C, DHEEEEZ 5.

XAL ) =(t—9*+ (-1t —q)
=t* —4qt® + 6¢°t* + (=3¢> = 3¢° + 3¢ — 1)t +3¢° — 3¢° + ¢.

BT ¢ BT 2 Z2HATL o TV S, B BE ¢=1TT A 7—BHEHLTAS L,

as(q) =1

az(q) =4+4(¢—1)

az(q) =6+12(¢— 1) +6(¢ — 1)

ar(q) =4+12(q—1) +12(q — 1)* +3(g — 1)?
ao(q) =1+4(g—1)+6(¢—1)*+3(¢ - 1)°



ERoTWT, FEBIIITARTIETHS. THEERDORBFE ¢ 1T L Tai(q) >0 872528 XD HIRNGEMA
ThHb. 51T, ai(q)? —ai—1(q)air1(q) DFHELTAZ L,

a1(q)? — ao(q)az(q) = 10 +60(q — 1) + 150(q — 1)* + 198(q — 1)® + 144(q — 1)* +54(q¢ — 1)° +9(¢ — 1)°
az(q)” — a1(q)as(q) = 20+ 80(q — 1) + 120(g — 1)* + 84(q — 1)* + 24(¢ — 1)*
as(q)? — az(q)as(q) = 10 +20(q — 1) + 10(q — 1)

DEIFEBIFTARTIETH D, THEEROREE ¢ LT, alq),...,a4(q) BXEMTH S V55
L DBRWEIETH 3.

Question 4.2. a;(q) 1¥ ¢ KT 2ZHEAL A5, £, bLZIRS a;(q) ® ailq)® — ai—1(q)aiy1(q)
Zq=1T74 7—EHLZL ZORBUITTIERES S 2.

R

OB, BI0EREES VRS LATOHEBHE W KEEERERE WS, Y353 h5 0%
WE L7z, AHZLERHTE (FREES:JP23H00081) OB EZ T TV 7.

BE R

[1] K. Adiprasito, J. Huh, and E. Katz, Hodge theory for combinatorial geometries, Annals of Mathe-
matics 188 (2018), no. 2.
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of the American Mathematical Society 25 (2012), no. 3, 907-927.

[3] J. Huh and E. Katz, Log-concavity of characteristic polynomials and the Bergman fan of matroids,
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Quasi-F-splitting and singularities in mixed characteristic

GEIIFH - BB RE)

1 ZU®DIZ

K5 T 1%, Bhatt-Ma-Patakfalvi-Schwede-Tucker-Waldron-Witaszek (2 & > TE A X 1172 per-
fectoid purity ([1]) %5 5T, BEBUZB T D H 72 RE OIS TH 5 quasi-F-splitting Z 77T
U 7=. 1#1Z quasi-F-splitting & perfectoid purity & DR, & OZF 4% i\ 72 perfectoid purity
D 7= PIEIRITHE R Z Y T2, ARETIE, ZOHMADHILNE 725 quasi- F-splitting D AR
PEE &, £ D “height” OBARKIZREIREHNZDNWTIAENRS.

2 REBIZHITAREN

URCIXFEH p 2EET 5. (R,m) % Noether fiER& Up em ZIRET 5. £72,R/pR LD
Frobenius BV AERNTH 5 &35, Xk [I] TIX, EEHIZE TS F-pure DREEHFHLL & U
T perfectoid pure H3E A X 7z,
2.1 perfectoid pure DiEF%

EF 2.1. R W perfectoid pure TdH 5 & 1X,perfectoid ~DERDFILK R — B MFIETHI L %
WS . X 5IZ,R D Gorenstein TH BGE, iFBE I N5 top local cohomology D E-AR

Hr(iimR(R) N HﬁimR(B)

DVEHTHEZ L LFAMETHS.
R EREB DG, 58210 Ryt 13 perfectoid R-algebra OB DIENR L7225, Lz > TR

MY perfectoid pure TH D Z & & R — Ryt WAL RTH S Z L IEFAMETH D, ZTHIF X HIT
Frobenius B O & [FME & 7 5. & o TIEEEER DG E perfectoid pure TH S Z & & F-pure T
HbZLIF—HT 5.
2.2 RO FIzonWT
k ZEE p DiKkE U, =D Witt B2 EDOEAM RS

A= W(k)[[z1,...,zN]]
EEZDBICARATTINVELR=A/I T35 ZDLE

Ay = A[pl/poo,a:}/poo, . ,:L‘}\{poo]

1T A EOHIHZR perfectoid THBD. S 51T Ao /IAx D perfectoid 1t (A /I Aco)perta PIFAE
U, R := (Aoo/TAx)perta £ < &, THIE R LD perfectoid TH 5. £72,R M perfectoid pure
THHI2E R— Ry WHHLKTHBZEDFEMETH B ZEDFOENT NS,



UM U (Aco/TAco)perta DE % B/RIIZELE S 2 D3O TH L <, I = (21 + 29) DX D74
B GETH o THHHBIIREETH 5. T D72 perfectoid purity % FEERIZHIET 5 Z & 138
LWweEBEZoNTE, 22T, ZORNHEZFEET 572D ITEEHIRD quasi- F-splitting % & A
L7z,

3 Quasi-F-splitting
3.1 Witt R L L HESZ

quasi-F-splitting Z €& 3 212X R ED Witt IPEETH 5. IEAEE TR S 2 WERD Witt Bt
HEEZHIEEHED BRI TIXR VD, ABFSETIEZ 2 EER&RE 2H S .
B AW U, Witt B& W, (A) iJ/J\—FOD‘@E’E(ﬁtT.

1. Wh(A) REAL LT A" THB.
2. ghost component & IFEX4 2 e (R
0 Wa(A) = A", (a0, an_1) — (ag,a’ + par,...)

% Z,A DS p-torsion free 72 51X o IFHLFIZIR B,

3. BRYMEFIR f: A — B hoiFEIng
Wall) : Wa(d) = Wa(B)  (do0r..ranr) o (flao).. Flanr))

IFBRYERBLIZ 75 5.

X 50, MR F Wiyt (R) — Wa(R) BFAEL, 21T & - TRD pushout MR %55

Wii1(R) L F.Wh(R)

I 1

R ———— E.Wn(R)/pWn(R) =: Qrp
l L
R:= R/pR.
ZOMARIZLD R— Qprn, MO0, T O, EL.
EF 3.1. o R M n-quasi-F-split &% &g, AR RNBFHERETHL I L2V,
e R M quasi-F-split 1, 5 n>1 T R D n-quasi-F-split £725Z 2%\ .

o quasi-F-splitting height %
ht(R) := inf{n > 1| R is n-qFS},
LEDD (FAELZRITNIX ht( ) =00) .
WL DD S HE 2N
e R M l-quasi-F-split THDZ & & R D F-pure MEIXIAH.
o FEBOEGE, ZNIEETK 2] 12 &5 F-splitting height O —#%4k.
o Witt BROBIFMEIZ L D ht(R) > ht(R).
o Bl R =17Z,[z]/(2? —p) IZ p >3 T quasi-F-split T .

2



4 FEH
EH 4.1. R 252X DD p-torsion free £ § 5. H U R D quasi-F-split 72 51X, R X perfectoid
pure TH 5. FHZ R W quasi-F-split 72 51X R 1 perfectoid pure TH 5.
n=10DHEX M ITLEERTHY, ZOEEIZZTO - BlIZR>TWS,
PAUR T, AEHIZ XD perfectoid pure TH D Z & D3O THER S 7% R 9.
4.1 FEHIZEET 54

il 4.1.
R = Zp[.%‘, Y, Z]/(m?) + y3 + ZS)‘

e p=1 (mod 3) : R & F-pure. £->7T 1-qFS, U72%3> T perfectoid pure ([1]) .
e p=2 (mod 3) : R & 2-quasi-F-split. &> T perfectoid pure.

e p = 3: quasi-F-split T\, perfectoid purity (X HEKR L TIX R TD - 7208, Fok
perfectoid pure ThH 5 Z & WRIN7z [9].

il 4.2.
R = Zoz,y, z,w]/(w? 4+ zyz(z + y + 2)).

D& E R IX 2-quasi-F-split TH O, L72D > T perfectoid pure TH 5. —H T R X quasi-F-
split TIXRWRIZERVPBLETH 5.

5 G

B0 MIREFEY VRV T LADOBBREDER, FFICEBEHOKEE2 5 X T EI =7 a s I A,
EAEOEAREE AR S OB A DL D ESE L BT E 3. AL JSPS BIAFE
JP24K16889 D% 3% 177~ DTY .
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ROELHEMICE T 5 AT 7 LM

I

Bm=
BROBIGHICE T 2 A7+ 7 AHERICOWTHBT 2. AETIEBoBE O E 17 2 WiE
EMERMT, TR —F —BROFA T T NDEGDHEPTH 5 Gabriel A7+ 7 4L Ziegler
ARY &7 LIRS RENCER 2 o TRHT 2. A I K EoFEPE [KN22] T o
7o % — 8 —RE LDV AMBEO /IS b i 5,

1 ELU&IC

BEmIC BT, AHEBRO Zariski A7 b 7 A0 AL E LTH S LB MAHZERIZ LIELIE
ART FILEWENG, AR LT LDERIZZDOIRICIE. THEEGIET 255, Wit —5 —5
IZBWTIZE S DEERD Zariski AT b T LT 5720, ROIBEFH D) EL W ET VT —A
EBZ5. —HT, AR 7 L0MEEMEE O - FRITH 27 —~OVEICHIRRT 5 2 &
T, EAMHAER EONHERC A X — A Lo EOE 2 EICbEHTE S L9k D, I 5ITE L
DEFEDARY + 7 L%2FEZ 5 LT, MEEOET VL DEEZICBRT 2. AfETI Gabriel
ARY b I L E Ziegler A7 F 7L, BLXOZNGIKEZBRT2 AR F 7 0ICER2KD, &
W INAFE R 2L, BN ) K EORFEFRONE [KN22] TR 62— —RE LD
HEIR AMBE O B il 5

B

B 70 MY v R Y A CHEOKE 252 T & > HEEAOERICEH#F L BT E 7.
AWF%EIZ, JSPS RHFE: JP21H04994, JP24K06693, & Xk ONSCGERFEE R H 5 LA pFFEHl s o %%
fif DHEHETZE JPMXP0723833165 DK 2 %172 DT,

2 AIAR—Y—=IRD Zariski ART N F Ln

B RIS LT, ZDFEA T TINVEERDESTH S Zariski A7 b7 L% Spec R THT, Z
DEAIC Zariski fifH & MERERE 2 AL TRAMNZNRE BT EIFA X —LRICE VL THERN A
EZSITHDLN, —IT, FEATTNVOEGDOWTES L, L2 DOWTEORIC 1% 1 ME23d 5 2
EPHIGNT WS, 2D X)) BHIEONENE S Z 2REND TSRS Gabriel DEHTH 5, 7

* Pl © KPR SRR BB A TR
A=)V 7 FL A ! ryo.kanda.math@gmail.com



FnSie gl - HEEZ HEfi T 5.

—Mic, THREIFRS VB RIS LT, £ RIMEERAEO B (Hix R¥ERT) 2 ModR T
9. GRFR R EO L TE (i3 R #ERE) %2 mod R TXY. I I T M »ERERTR
(finitely presented) T®H % L 1X, R™ — R — M — 0 (m,n (ZIEATEE) LwvI)meilziiol
EThHYH, RPAF—F—BHOBAICIIERENTHZ Z L LFAMETH 3.

Mod R IZMEETH H, FEDHD kernel & cokernel ZHi s, HERBIEHIK D ZHODT, 77—
RVETH2, ROBPEX—FV—BOLE, H20IFE0)—RICHEERD & X, ARFRNBED LT
mod R & 7 —~ LV & %2 % [

T—=)BE A LT, Me AT, MDBPADNRTHALZILEEZERT, XYCAT, XDPADHR
W IETH B Ea2RT, TN X P ADHNRDELNTHZEFE->THHUI ETHS. Kl
IR W TIETERRTE 2 RICERE & L 52 LI2T 5.

—C, T=_NLEOWR M e AITHLT, M OEBHIR (subobject) « BIRMR (quotient
object) DWEZPERI NS, BRRICNT S ModR, BIOAHF—F—BR RICNT S modRIZE
WL, 2SI FERTINEE - BIARMEEFOME RIS BT 5.

TE 21 A7 —_LBEEL, 0£XCALT S,

(1) X DEBAMHR (resp. FIRMR) THLUTWS LIE, EEO M e X 12 LT, M DEEDH
TG (resp. FIRMNR) DX KBTI EZ V),

(2) X DK (extension) THUTWS L1, ARBIATEEOEELIN0 - L —- M — N —0
LT, LLNEXBOIEMcXDPHDIEDIEE V),

(3) X 25 A D Serre BB TH % L1, X B A B THAWR, FHRHMR, IBATHE T2 2
EHWT

AMAER RICX LT, #HA & C Spec R L (specialization) THIULTWS, & 2%\ I3
HLRARE TH 5 L 1E, & BFEA T T NVOEERRE ) EIMEFIZBI L T upper set &> T3 Z
&, 2F0, FREOEATTNADIpCqIicLT, pedBblEqedIRD IO LE VS,

EI 2.2 (Gabriel [Gab62]). R Zw#fir— & —BRE T2 L &, XD L) LuU&EBFRz RO

H5
{mod R ® Serre &ii77 } == {Spec R DFR(LEASES }
w w
X — Unrex Supp M

WEBRIE P — {M emodR|SuppM C d} THLZ6N %,
COEMIZINFTIHAIN T LHE4 DFTEDOSEOWFIR (D12) EFA25DTHD,
BFEFEFTIZRD L) LB EZ N TEX

(1) Tz — 5 —BICh AR EL 3,

*1 8% R ’AEE (right coherent) TH % L 13, R DIEREDOFRAEELAA T 72 (GmEe LC) FRFERTHBZ L
W), RVEEPETH I EI1E, modR 2 ModR DT —~ LB E 222 L LRAMBTHY, X512 modR M
(NTERIZ) 77—V E 22 2 L EbFfETH 2, Fil 2L [Her0T, §1.3) 22,

2



(2) Serre FAEHMAOIHIEEEZ 2.
(3) £ DIEC, mod R UADBOMA HikEEE 2.

WD AETH LIS IE BRI D 208, 2 2 TRAREMWLOARFOMF T D DICHRE L
TELT 2. £ oAt TIE, Gabriel [Gab62] F &3, T R.2 OGRS F—F — 2% — 24
X O DB coh X d Serre MBI L THH DO EEZRL TS (ZDHA, SpecR D
RboYELZDEIAX—L X OEEATH D), F, XROTTHMT 2 IFWHEAO—BIL b
DPITH 5.

RIS, EHR.2) & [ U AR — & —B RISHT % mod RSOV T[2)| oAk 5523 5. &8 2.2
DXFIGZ BT 5 &, Serre HRITHE & 1ZR S 22\ WEIE X C mod RIS L TH, (Jyer Supp M 1F
FIRLEASE A TH 5. WS, FIRMLPHES L IXR S 2 ity @ C Spec R IZH L TH, X)iEd %
B8 % Serre HTE L 72> TWBH DT, ZOREKTLELR —BIZE v, Lo LEINIGOML %
BZ5HIET, RDOLI I MLTES :

EIE 2.3 (Takahashi [Tak08]). R Z2r#fax—F —BRE$5 L &, RD L) LuE&GBEfRz ORI

W5
{mod R ® torsionfree class} =% {Spec R DT HEA}
w w
X — Unrex Ass M

WEHIE S {MemodR | AssM C P} THZALNS,

Z 2T X C mod R 7 torsionfree class TH % &1, X DI MBELIERTHE TCwar 2tz w
9. (H % torsion pair (T, F) IZBl 5 F % torsionfree class & K52 EHL 0D, 2 I TOEHE
L13F%n %) X C modR % Serre T TH B & F1d, Uprer Ass M = e Supp M 13K
LR G L % 570, EH 2.3 DERPOHIR E U CTERM 2.2 DRHHNH{LN S,

BOHYIZ, torsion class EREIRMNR EIJLRKTEHU 7227 7 AL L CERI NS DY, mod RICEWTIE
W3 L b torsion class & torsionfree class 12 1 X 1 I RE 3, B, mod R @ torsion class 137
AT Serre A% 5 2 EBFBENT WS, (2 DHEFEIE [SWIIT, Theorem 2] THHRMIZR S 41
Tw3H, ZRUENIC SN THRL I TH2.)

Saito [Sai25, Theorem A] 1ZJAV2 7 AD =8 —AF — 24 X 12t LT @8 2.3 % ML %
B, T DEAIE coh X D torsionfree class T line bundle 27 >~ VL § 2 EETEHLE T3 D &,
X DEEGOEWAEEGDI 1R 1 ITNIET %, Iyama-Kimura [IK24] TIZIER#A +— & —R%E (&
2 IIBIB) 1ITH LT, torsion class & & U torsionfree class ZHF% L T 5%,

DA E LT, ERE DI BISBRORIGC BT 3 BEAMED 1 >Tth 5. RF
s & LC, XD Hopkins-Neeman DEHPEHTH 5,

EIHE 2.4 (Hopkins [Hop87], Neeman [Nee92]). R ZH[#far—4 =B 2L &, XD LX) Haé
BIRZ RO BRI D %

{KP(proj R) @ thick #B57E } =5 {Spec R DFIRLEALES }

22T KP(proj R) 3 ARERSEMEO LT HAE FE—ETHY, I =ABEOMEE RO,
thick #5rE & 13 (ZABOEKTD) 5K, > 7 T [n] (n € Z), EMRETCHL BB THh

3



%. ZOifi%id Thomason [Tho97] (2 X > T, quasi-compact quasi-separated A ¥ — L2 —fAL S
ncns,

A FUERE DP (mod R) ® X OVRFEE D*8(R) @ thick frE O I: X L <, WSRO RE R
BT B FEELZFED 1 2 ThH 5, #ilZIE Stevenson [Steld] 12 & % hypersurface £ & O complete
intersection IZ D W TCDFERBIFEHATH 523, AR TIEFMICIZIZE AS 20,

DL RIS AR 7RI FICHRAINEED 2§, 8 X2 UABET 28k 7% & oiorE o8
TH DD, AIRAERKE IZRS 2 WMEEOE Mod R ICBIT 25 5BONE DL H 5. Hil 2 I1XEH 2.2 12
DU, Gabriel HE2%, Mod R DJRFHLITE (Serre H7rE T dH > THIRME & 13RS 2 EA
THHU b D) & Spec R DFFIRLPHE GO 1 X L ICHIET 522 L 2R LT3,

3 FAHIRDARI MF L

ZDETI, Wi —F BRIV TD Serre MAE O (EHR.2) %, FEAHBIC LT
22 %#EZL, EHRATEIRDOEA T AZMOTHEL DT, FEAHBRICENTHHEA T
TLERAVWES ETEDRARLRFEETH ST,

AL ZRS R WEBR RICNL T, 4TIV C RIE, Wll4 77V (RIR C I %iilitz 3k
) 2E®T2bDLET S,

EE3.L. R2ERLET D, ATT7VPCRPFRATFIV (prime ideal) TH 2 L1, [LEDOATT
NI, JCRIZNLT IJCPARSEZICPERIZIJCPPENIDIERZ VY, 1L, TED
a,bE RIZHLT, aRbC P%uoldac P EiZbec PP IOZ L LFAMETH 3.

R DFEA T T NEED LR THESA%Z Spec R TET,

FMTIE Tabe Pbldae PERIFbe Py EWIFMEOEZONDS, ZOFKMIR EiloH
ATTNVDOERLDEICHS, ZOE%ZZTAT 7NV P C RIZTEEFRAT 7V (completely
prime ideal) & XldN5, FA T 7NV ERRRA T T NMFOTNO EELETH 20, FA T 7V
IZIERD &) AR DH 5

(1) fEEDBE RA01D R LD 1ODFEA T T NERD, EBE, Zorn OFIEX D HRKA 7703
HIEL, ZNREFEATT7NVTH S, —T, BRFEA T T NVEEFELRCI LS 5, HlZIL, &
K LD n RIEFTHBR M, (K) 1%, n>20DLE, SBR[ TT7VERZV., ({T7VIF0
EM(K)DATHYH, WINBBEEFZEATTLTERY, n=1DLZEFNERK Z0bD%D
T, 0B RFEATTNLTHS.)

(2) FATT7NVOMRBIHFHAZETH S, Thabb, B RS PFHEHAM (ModR £ Mod S 23 &
LCHfE) TH2%61E, ROATTNE SDATT7IVIEHRIC TX LISRIGL, DXtk
WEBRE LA T 7 NLVDOEERODT, SpecR & Spec S IFARIC 1T/ 1 ITH)IET 5, —4,
TRRA T TNOBRIIHRAAL TR, FEEE, RO n > 212 LT, KK & M, (K) &
HRHEMTH 52, K DEREA T TN 0 2RO J, M,(K) Z%ERA T 7V ER 20,

nE, FLF7L (GAFT7IL « EATFT7L) SN LT, BEATT7LVOMaE2#22 A5 5
2 (Bl 7218 [Reyl0]), EFIC\BL DAY T—2 avhibh, LHOHEAFT7LOME L RS Lk



RSO XCARY =¥/ AY

T, SEMBEOE A EO N E 2 ZFICB VTR 20T, BOHIKNS {, FRHREAMETH
2HFEAFTN (EEBI BZUBRETHZ L) IcBbnD, L LEBICE, RPIR—Y—B
TH>TH, TITT7IVRTRLSABBERBSHEL :

Bl 3.2. K 280D EL, Weyl R R = A)(K) = K(z,y)/(zy —yr — 1) 252 5. RIZ
F—=8 =B (Ex—%—B»roH%—%—5) Thh, HiliER (0 & RUNDIEAWHEA 77L&k
72h\) ThHhD, 0 BME—DFEATTNTHY, BREATTNVTEHS, —J, RBETIVT 4V
BRTHUET VT4 VERTH W, R DOKRIEXRILE Gabriel-Rentschler DEKRTO Krull Xjtid & b

Krull X628 0 D ffit— % —BRIZ 7V T 4 VEBRTH o7, ZOIEAHZ—% —B R I2E T,
FATTNVOEEKTO Krull X7tld 0 TH A ICHHb 6T, RIZTAT 4 VETIERYL, koT, E
SHERAEMBFEED T Serre WA IE R Z2&EE R\, TDIEDH, SpecR = {0} DWAEET
1%, mod R @ Serre #i3B% DT 22 LIETERLI L0 %, (Spec R DT HEAIZ 2 DK
(772435, mod R @ Serre &5 3 DM BAFFET %)

X o TIEHAD A, mod R DB % DT 5 L W) BA» 51, AT T7ILVDOES Spec R 13
WU AR P 7L EIRE AR\, ZICHR—% —BICBIT 2 ROIERWNLFFRIEAL X ).

EE 3.3 (Matlis [Math8]). Rz it —% —BlL T2 L%, ROBHHIEDH 5 :

Spec R =% {EBEKIBEA R IEED [RIBIH }
w w
p > Er(R/p)
CZTER(M) X RINEEM OBACHTH 5. WEHIE, EFEREAMBETIZW LT, AssT = {p}
E%bpeSpecRZMIBIEL I ETHAGNS,

FIFIEAHa R — & —BUC B W TIRER B3 13T L oD 3T, el B2z DRI L o T
W5, ZITREZEAT, FATTNVDOEETIE AL, ERNEANBORAMEHOESZ A7 |
FHERBZTILICLE). BOMEROIDICK D - MINBEREE L TEL.

7= UETH T, ERONROBEOWEM (R 255, EER EAZTcHY, ERNRE
FFo Xk 9 % b D% Grothendieck B & k5. fFRDER R I LT, Mod R %% Grothendieck P& TH %
CERBEZITPA, EEOAF—L X LT, #EHEE DB QCoh X 1 Grothendieck & TH
208, N ROFEENIEAWHTH D, Z4Ud 2000 EEIC Gabber 12 & > THEH S 1172 ([Con00,
Lemma 2.1.7], [Bral8, Appendix] ZZ). Grothendieck EIZE T, fEEDOXNR M 1B A TG
M c E(M) %¥b, ZoRMEIR EIcEEs.

*2 2 ZCHl C BT B EMR (direct limit) &1, CICBITBIHR (HAHEEGDS C ~DHET) ORMWIRD 2 & #1F
T, TV C ILB W CIBBRATER L X, AEOERES T (ZBLAZLZDD) KL T, HmRE & 28F
lim: C! - CEETHBI L2V, EMRE D ~ORMRE LT, 74V 7—BEroDBETFORMRTH 271
LT —RIBIR (filtered colimit) 23% 223, {LED 7 4 V¥ —EiZ, H 3NE%% 5 D final functor Z > DT, JNEHKR
BPTEETH LI EIET7 4 NVY —RBRITERTHZ L LFAMTHS. ([AR94, Theorem 1.5] ¥ X O [ANS2] %*
)



E&H 3.4. G % Grothendieck Bl & § 3.
SpG :={ G ITB T 2 EPKIB ANR D FETH }

LED, Ik G D Gabriel ARY T AL k5.

R — 5 — B RISH LT, EHB.3 & D, Sp(ModR) & Spec R DIIC HA % 2 M1 5 3
TR D3I Supp M % Ass M 72 EDBAEDBHEIZ 2 505, RO KX IHITERT 2 LA —
& =B EDOMBEICANT % Supp M BL W Ass M O— b3 o s -

EE 3.5. § % Grothendieck Bl 2%, MeGIZHLT, RDIIHIICEHRT S :
(1) SuppM :={1 € SpG | Hom(M,I)#0}.
(2) AssM :={Ie€SpG|Ix E(M) DEMAT}.

Gabriel IZ & % Serre 53D 438 (#LR.2) I3 Spec R DRI A % V7228, JERHa0
BHEZOERIGERVPHIETH S, I,J €SpGIlchL T

I<J <= TEOMcGIcxL T, I €SuppM %5iXJ e SuppM

EED D E, ZHUITHER— & —BR RN T % Spec R DEERIRDO L& > Tw5, ZDBR
< 1F—MUTHINETF (partial preorder) TdH %75, G HRFT:—4 —Ifch i < 13LIEF (partial
order) £7%%. L2 L, ZOMEFIZBIT % upper set (3463 L Serre B E 10 1 1B L 7%
v, ([Pap02, Example 4.7] £ £ O [Kan15, Example 3.4] THEF 51T 240TlE, IEF I EHA
7203, BUTICRR % Ziegler MAHIZBEHAHClE RV DT, Ikl % 3.)
RODICEZDZNEHITEARIROEROBEETH 5 ¢

EE 3.6. ¢ ZHFNEEE Grothendieck B & L, cohG ZHBENRD L THIE LT 5. PPl L ¥,
SpG I

{SuppM | M € cohG }
ZRAEAEDOIK L TN EE S, ZONH%E Ziegler i E X O, ZDFEA%, Ziegler BHESR
SN

ZOfiHIE, W —% —BE RIS % Spec R @ Zariki (7O —MRAL TR, FEEE, 2HGH
Spec R = Sp(Mod R) 12 &k >T, Sp(Mod R) ® Ziegler %313, Spec R DFIRLEASE A & —3
5. Lo TIOHRE, Ziegler FHEG O MIRMEDMME T b Ziegler BEA £ & 273, —HKD
Grothendieck BICE W T, ZNDRFTF—F —TH->Th, Ziegler AL A D IERRE D Heidi 5 77 1%
Ziegler BEEA £ 13RS %> ([Pap02, Example 4.7], [Kanl5, Example 3.4]).

B CITHERZEAL LTERL TV, WHBID Zariski A7 + 7 20—l & & 20k %E ARG AR T
Gabriel 27 7 L L X 3ifBELH 3.

*4 Grothendieck I8 G ’BFi®—4 — (locally noetherian) TH % & 1%, 2—% =R GEINRICEHT 2 585 %
W72 THR) SR INROKET, GZERTI2LDVEFET LI L2V,

*5 Grothendieck I8 G 2’BFE#E (locally coherent) TH % &1, G DIEEDNRIMENROIEMIE (H 2 \»Wid7 4
WY —RIGR) ERBTH S EE S, BN GUIGHEBE IO AR R —#72208, E&EF [Her9T, §1]) 2. #lz
1I¥ R 2RO & %, Mod R I3RFTERETH 3,

*6 [Her97] T, ARICET 5 Gabriel 27 + 5 M2 Z Dz Az b D% Ziegler ART R FLE KATV S,
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EE 3.7 (Herzog [Her97], Krause [Krad7]). G % JmFmi#i#; Grothendieck L 325 L E, XD LI
BUGBIRE RO RH DD 5

{coh G @ Serre #i57E } = {SpG D Ziegler BHEA }
w w

X — Unrex Supp M
WEBIE P s {M € cohG |SuppM C @} THZ LN,

T, EHBIIDBICHERL LIS, HFR—F—BRRICHLT, HEATFTT7NLVDEA SpecR &
Gabriel 2X7 k5 4 Sp(Mod R) 13469 Ld 1R LITHIGEL &\, L L, RO X )T M
NDOHRGEGRENEL ZEDTES EED P € Spec RICN LT, 72721 2D Ix(P) € Sp(Mod R)
(BRI AL RIMBEORBE) &, 771 DOIEES np DHFEL T, Eg(R/P) 2 I(P)"F L
2. Wiz, LD I € Sp(Mod R) I8t LT, AssI (Wil 77 L 0Bk cobitkEA 77 1) 1%

REGLRLZDT, ZO 1 KEMNBEES I LDTE 3,

RO F—4 —BiDT, EHB.HOBICERL B <12k D Sp(Mod R) 13 LIEFHEA & 7%

%. —J7, Spec R 3% A 77 NOUEGERIC K D FIHFEATD 5.
EE 3.8 Hr—F—EBRRICHLT, LEDOHETERINLIEHRE

Sp(Mod R) # Spec R

EBLE, XD
1) ¢ £ Y FPEFEGOHERTITH L, (I <J%oE o(I) C (). ¢ b )

2 =id. BT, o BRHETHY, ¢ FHHTH 2.

(1)
(2) ¢
(3) fEE&D I € Sp(Mod R) & P € Spec RICH LT, ¢(P)< I P C () LFMETH 3.
(4) p BXUy RT3 2 LT, BINLOESGDOROSEST

Min(Sp(Mod R)) # Min(Spec R)
BRoNns,

il £ b, Sp(Mod R) Dt/NTOMEEIE Spec R DA/INTOMEE E —H L, RDF—% —
o NS IRARTHZ. 0o 1 HEATHS EVIMEE, -y —BIcNT 577 7
AV AF— LD —BALL 7R & . —7, BB ZMw25Z £ T, R % Sp(ModR) O
BIRTHAY (reduced) THHZ L L, SpecR DEHRTHNITH L I LA ZNETNERT 52 VT
¥, WHEOBEs GEAMARERIC L) —BT 2. @B E X2k v BEHIE - #ftkic
B9 2ikimiE, H LMD —F — L EMDEEM 27§ Grothendieck IR L TfT9H 2 L 23T
¥ % ([Kan22, Theorem 1.1]).

EILB.8 D & WHWISHEMRTH 5 Z LI, R2F FBN IR (right fully bounded noetherian
ring) TH2B I L EFETH S Z EDBASN TS0, JEH EREELFBIRD 22— —RETH 2 :
RZEZWHa:—Y B L, AZ R BGRA L, R»6 ADHLADOBRERBIOM) L35, AW



RINBEE L THRERTH 2 L &, AZRK—9— RRE (Noether R-algebra) & X5, ZaUIHIC
AR RRBCH>CTR—F—BITHH L XD S, EEMCROIEETH 2.

e 3.9. 21— ¥ — R A ICRL T,

Sp(Mod A) # Spec A

WBHWISHEGESRTH S, (DFED, AIZGFBNBTHS, 22— —NRBOEROELNHMELD, A
3 FBNETHH3,)

EHBI LD, 2= — RMRE AICHLT, modA D Serre #5713 Sp(Mod A) @ Ziegler B
FAL 1R L ISIET 228, ZhudmEB.91c k5T, Spec A DRFRILEASES (Spec A @ upper
set) & 1% 1ICHET 5.

ST, WHAERD Zariski A X7 + 7 AR OBEBELWHICHFERH 5. ThbE, AHAEOM D
BHERT R — S 13544 Spec S — Spec R Z#FE L, Spec ZAHEREAD 2 TE > s E£E2ED L
TH (H2VERAX—L2EORTE) ~OREBRTLAZ. 20k HETEZIEAHEIC LT
SHIREFT 2 2 L IZERRRBED, BEaN6, A TTILVOHELE SpecR & Gabriel X7 k7 A
Sp(Mod R) 3TN BEFMEZEL I 2\, 2D LIEROFD» S50 %

#l 3.10. K Z{f& LT, BRUEMAY

f'KXKg[K 0] [K K

0 K| 7 |K K] = Mz(K)
%% 2%, Spec(K x K) = (Spec K) U (Spec K) = { P, P} 13 2 HEAGTH D, My(K) 13 K &E7%
Bﬂﬁ]fﬁti@“@ Spec My(K) 13 1 REEAGTH 5. &> THER Spec Mo (K) — Spec(K x K) (X1 5
B0 2 HEANDERE R DD, Spec(K x K) D 2 moOBEIINELRDT, i LbHRR
ﬁ&?‘biﬁ%%%ﬂs&)% EIFTER W,
FBE, Spec WEGDENDORERAFTH S LIRET 2 ERDEIICFEVHEL S, K x K DG
AV 2 5 HOBRHERBY (a,b) — (b,a) &, M(K) @QE"REE@L

b

Kx K —15 My(K)

!

Kx K —L My(K)

2EZDE, AR

BEoNn s, BT (LREL %) Spec 2§ 5 &,

(P, Py} &L (4

I

(P, Py} &0 {4y



ER DD, KT ENDERIZ2 K2 AUVEZ 558 5DT, Specf Z#EDXIITERLTD
FECTHS. Kx K & My(K) b x— —REAEDT, M LEO##RIE Spec % Gabriel A2
JFILICESHITHHILT .

D EoiE#HTIX, A7 P I LDRHHEHAETH A Z EZRENITHOTWAED, THZHEL R
BAETYH, XD X)) LRERRH 5 -

EHE 3.11 (Reyes’s No-Go Theorem [Rey12, Theorem 1.1]). F 2SE2AED 7§ B2 6 EERAED
BIBENORZEMETFTH Y, Zhz BRI 2 TBICHRL 72 O3 Zariski A7+ 7 AlT—
$Y 5 LT D, COLE, (FEOn >3 IHLT, F(M,(C)) =0 25D 7o,

M, (C) FFEFITEEARR 2 JEAMER (C & ARHFIE) CTHS70, ZDART LT LA0EES L L
2 DIFHBPIRENIC RS, FiL, BEEATTN (abe P%bidac P £k be P) &ko
BIEAEART P I LEZEZIZLDODEFNHBRART 7 20011 >T0EH, n> 21K LT
M,(C)=0Th3,

EE 3.12. BRFEATTVOROVICEA T 7L ZMIRE LR, 7YYL =A[EDRX
787 HIZBWTHHAMTH 5. Balmer [Bal0s] (FRFRT >~V V=BT 2 A7 7 L2E
&L, WO»DT ¥/l thick OEONEZM T 2RGE2E5Z7. SOART 7 LIFHHE
TlE Balmer A7 F 74 EXIENTED, ZOARARY FJ L% oM tt-geometry (tensor
trinagular geometry) & XXt T2 (Balmer HE I X 23 [Bal20] 236 %).

WFRT >V IV=AE T ISR LT, thick #8@B Z C T TH->T, TR®Z CI Ziii7$bD% thick
TOVIWATTILE LB, thick 7YYL T7LVP CT %K (prime) TH2 L, XY P
BolE X ePEBY e P &ilifcd 22w, T OF thick 7Y VA T7VEEKDESRZ T
D Balmer ARV N FLL L5, Thbb, WHBIINT 2INERSH, A T7N, AT T7LOM
RS, XWET ¥V IOV=AEBEICE T S thick B, 4770, FATT7IVCHIELTW 5,

—7J, finite tensor category D X 512, WFREIZRS L WEELZ T VYL MAELH B, ZDY
A LED Balmer A7 b7 L DERZZDEEM 2 (LA F7VERMA 771§ 3)
LB FEA T 7 NVOMRITHIET %43, Nakano-Vashaw-Yakimov [NVY22] 1%, 3% thick 7 ¥ V)V
ATFT7NVO5M2 XQT QY e Phoid X e P£713Y € PICAHEL 7 JEWH# Balmer 2 X7
Mo LERBEZ, 20K [NVY24) 28T, finite tensor category ? 2+ € v ¥ —B o BEwITH L
(categorical center) & DPBIRZEZEEL TV 2,

8, THEE RIS T 2 G 5REEE DP(mod R) R %M D8(R), FEAHABIOERE D X 9 12,
TYYNVIEERZRO LIZRO B VEELZZMBELH L. COBAEDART +J A1F Matsui [Mat21]
2L > T, #Fthick Hi7EZHOTERINTED, Matsui ARV ML E LN TWS, TV YL
EEr2E O >=ABICH L T, —M%IC Matsui A7 F 7 A1% Balmer A7 F 74 K0 LEMELRE
W% Ff>. Hirano-Ouchi [HO22] 13 #M#H#R £ 12X L T, DP(coh E) ® Matsui A7 + 7 L%k
EL T3,



4 BAFBEDARI I L

RERLT . 220k, ARERGMBERED % TE mod R 55 7 —~~VEERKD 7 T Ab ~
DIENBETF2AED % §HE (mod R,Ab) 2E 2 (Zhz AW TIIHICEFEL £ 5), Zd Gabriel
ARY b T HICDWTEET S, mod R IF—MRICMBER ZFi7 v VNS vy B722%, Ab D3RR
Bz TREV) BETH2720, (modR,Ab) b "TRKEWw, BETHS I LITHEET 2.

BT F € (mod R, Ab) BERRERTH % & 13,

Hom(M;, —) — Hom(My,—) — F =0
(Mo, M; € mod R) 9524 % > L2, HRFEREFELAED LT (mod R, Ab) D%
&% fp(mod R, Ab) £ %7,

ER 4.1 EEOB RICXW LT, (modR,Ab) 3 mATH#EE Grothendieck 8 TdH % (Auslander
[Aus66]). Z DHEENREAD % 7B L fp(mod R, Ab) TH 5.

L7eo>TEMB.7 LD, fp(mod R, Ab) @ Serre #i77 13 Sp(mod R, Ab) D Ziegler A & 1
xF LICHTE g %,

HIRFRA R MBEOE mod R DBITFE &, GWFRAE R MEEDE mod RP OBIFE iz, X
® X 9 73 Auslander-Gruson-Jensen 3Xd23% % .

EE 4.2 (Auslander [Aus86], Gruson-Jensen [GJ81]). B RICXT LT, KA [FfE
d: fp(mod R, Ab) = fp(mod R°P, Ab)

BHD X HIZEE B F € fp(mod R, Ab) ISR L T, dF € fp(mod R, Ab) %, £ L € mod RP

XL T
(dF)(L) := Hom(F,— ®g L)

EBLZLETED S, dOEBIF O FRIRDIETERI NS,
CORERMEIX, XDXH TV VBT E Hom T2 ANz % ¢

o fEED N € modRP IZHN LT, d(—®r N) = Hompg(N,—).
o fEED M € modRIZNL T, d(Homg(M,—)) =M Qg —.

KA X > T Serre @47 B1X Serre S EICE 2 0, EHB.T L EHE LY AL DbE S
ETRBFSND ¢
% 4.3. Sp(mod R, Ab) @ Ziegler Fl%E& &, Sp(mod R°P, Ab) ® Ziegler B, 1% 1 ITHIG
ER-R

DI L5, Sp(modR,Ab) & Sp(mod R°P, Ab) ORICFMHELR DD 5 D Tld e\ o & WIFF
L7 %50, ZHIFEZEDOHMBRY KERTH 2. b L Sp(mod R, Ab) 23 Ziegler fzAHIZEH L

*TROP 13, ROMZMICL TEHRINLREER (opposite ring) 2#7. 5 RP A2 EZ 22 & LE RINBEEEZ
52 LIRFAICTH 5.
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T Ty 22 (FEED 2 MM HNICEBITRE) TH B 61E, 2O ERAEBITHEY D, —MIC
Sp(mod R, Ab) & Ty ERITIdAR W I RS TWw 5, iz [Pre0d, §5.4] 2SI Nz,

1

SEE 4.4, ER A2 ZBITEICE T 2 EB2 28, MEEDE FIOLVHEERICE T 2 BOHEDIFFETH H 5.

B RIZXWLT, ppformula & XN, RMEFEOILOME HHMAKE T2 o 2525 L,
EROMBE M TN LT, ¢ 2l L) BMBFEOTLOMDES Fy(M) C M™ EE D, T
M"™ OMEH R E %%, FAUEEOHHELEZRD 2 DD pp-formula ¢, ¢ 2%, {LED R N
M TN LT Fy(M) C Fp(M) 27§ & &, #H ¢/¢ % pp-pair & K5, fEED pp-pair ¢/ I
LT, WIE M — Fy(M)/Fyp(M) 3HRFRET mod R — Ab 270, TXTOHRERHET
mod R — Ab ZFAMZERNT I DB THRE 3.

% pp-formula ¢ XL T, %D elementary dual & X iX#1 % pp-formula D¢ 23%E £ 5. pp-pair
/Y ISR LTIE, ZD dual £ LT DY/Do #5252 ENTE, oG ER L2 o RZER %
L PRI oW TR [Pre9) 22 S N0, ([KN22, §8] ICfiii#@ i L o 3dH 5.)

—#iz, MEFED AR b7 4 Sp(ModR) & ) bBIFBED A7 7 4 Sp(mod R, Ab) DFH?
IE2 I KRE WD, MEANMEOMZZH VS L, BFEOARY P 7 a2 o FETHRT S 2
ERTE S,

EE 4.5 REBRLT 3,

(1) 45 R Mo F5E 45
0O—-L—+M-—N-—=0

MHESERF (pure exact sequence) TH 3 &1, EEDLE RIMBEW IR LT, HEI N 25
O0—>LRpW >MpW - NrW —0

D AT —_RUBED) FRIITHE xRV,

(2) A RINEE Q 2HBAIMEE (pure-injective module) TH 2 &%, EEDFH R MEEDHisE 25
0-L—-M-—=N=0
I LT, SFEINLS
0 — Hompg(N, Q) — Homg(M, Q) — Hompg(L,Q) — 0

23 (7 —=_NVEED) ERINTH D Z Lz,
EFE D HHIC, EEOBAMBIHEAMETH 3.
Bl 4.6. RETHBEE L, A% (ML F—y—LbRo5AV) RAFEL, E2BA RIMBEL
T%. RO AMEE M ICHLT,

M* := Hompg(M, E) € Mod A°?

AL A MEETH % ([Pre09) Proposition 4.3.29] Z£H#).

Bz, K 2, ADVHIRYOE K (R 0H5 L %, K-dual % (=) = Homg (—, K) TET &, fF
HD M e modA (HRXITMEE) 1ITxf LT, WM M == M*™* FEET 2 DT, M 3HMEANEET
b5,
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ER 4.7. fLEDO M € Mod R IZHML T, BIF M ®p —: mod R°P — Ab %5 %2 2 %Iiid, EFER
BT Mod R — (mod R°P, Ab) 2@ 5. Zn%HIRT 22 &0, MEAL RIMEED 7% 3857
&, BANGRD 642 (mod RP, Ab) DO O FEA S 512 ([Pre0d) §12.1.1] 2 SHH).

L7ed>C, EEERME AL R MBEOFRAE L, (mod R°P, Ab) DEIEIFE AN RO FIAHIZ 1
W 1LICHIET 2, BEDHTEAIZBITEO 222 & 5 4 Sp(mod R°P, Ab) 1ol & 7\,

R A R MBEORBEIOHEAZ, R D Ziegler ART M S L L L5.[F

Blld6l 2o banskHic, GA0NKE RICNLT, —fic, MBAMBEIIEFICSHEET S
DT, RD Ziegler A7 b7 AR EZRET 2 2 L3RS TIE R\, —5T, BAMBEIME AN
BEOREH 723547 DT, Matlis DR (EBE[3.3) 13t — & —B RICH L T, Ziegler A% k3
LD FEAT TN ERO TG L b L AR s, ZoEBENBEAMBE DK, EH4.2 0
KR Z TR S 15807 1%, ERERMZ ANTETH > THIE (lat) THE2 DD TH % ¢

EHE 4.8 (Herzog [Her93, Corollary 9.6]). R %4 +—% =Bt T3 [P|lco L &, EENBEAL R
It FIAE &, BB AL R MO R IZ 18 1 12 d 5,

Auslander-Gruson-Jensen B (EBH ' Sp(mod R, Ab) & Sp(mod R°P, Ab) DD 4 Hik
ZHET 50 TEZ\vAS, Herzog 1&, EREHIBANBEL 2 THIH ORI THEA &, EHPKFHEIE
MIFED 72 T RE DI T RA DRI IZREHIFFES NS Z L 2m L, EHUY 2™k, L2502
DRIGIF BRI TR 7 dp o T e 00, IERERY A AMBES BRI ED X ) BB TH 2 L v [
DR Tz,

SR A D HBICBIT 2 6 TR R IZ 2 U ES vy, WiR —8 —BOB&IE, T
DEIIFEIBTES Z AN T,

EE 4.9 (Enochs [Eno84]). R ZAl#fir—% —BiL 42 L &,

M = H Homp(Er(p), Er(p)®7?)
peSpec R

DD MEEDS, AL A R MFEORIEHOTRTTH S, I TH B, 3EATHY, ZORER
M ORBJEIC k> T—RICEE 5. (Eg(p)®Pr &, Er(p) PatE—% B, DBELFERMLZLD
ZHY.)

L7eh3o T, IEBER AR A R INHEED [F B IR

Hom p(Er(p), Er(p)) = Ry
(p € SpecR) E\WVHBTHS. T TR, E R, D p itz

Kanda-Nakamura [KN22] Tl3 Z DRz JEraze 2 — & —RBuUc—Mb L 7=, FRZIBX3 7%
DOUENZ L L), RzWHxr—% -8, AzZzx—%—RIR&ELL, f: R— AzfH8Ez25 4

By b EIE Ziegler [ZieB] MBFDE TNV HEHDO XM CTHEA L & TH %. Herzog [Herd7| |3 Jm ik
Grothendieck [ C D IEMEAIB AN RO RABMBE2E D 2 TMHEMEZ C D Ziegler A7 F 7L EXATWVDS
B, ZHUIEE ZREZALDDOTHS, Thbb, (Herzog DEWKTD) (mod R°P, Ab) &, (Ziegler DEWKT
D) R D Ziegler A7 b J L EFA—HTES., ZN51E Mod R D Ziegler A7 b7 ATl I EICHER,

*9 [Her03] Tld & h —MARRITHBRT 5, F7, FEER R — 2 —BREX V02— —R¥) <L TiE, ¢
WA AZEMBE & FHARR U NN (flat cotorsion module) R UME& L %2 ([KN22, §2.1] &),
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ZEERAIE T2 L E, MEOFEAT TV P CAICKHLT, PNR:=f"YP)IZ ROFEATT N
L%, %1, @EBY XY ABEFBNETHY, PISHIGT 2 EBERNB AL ANEE T4(P) T
&Nz,

EHE 4.10 (Kanda-Nakamura [KN22, Theorem 1.1, Proposition 5.4]). R Zz W[#ix—% —8, A %
F——RIREETZLE,
M= [ Homgr(Ia(P),Er(R/(PNR))*r)

PeSpec A
DI OMEEDS, FHMB AL A MFEORAMEDTNTTH L. 22 TH Bp BEATHY, 20l
Bix M OFRBEHIC L > T—RICET 5.

L7eh3o T, EBERPHHAIRE AL A o [ A1

Taor (P) :=Hompg(Ia(P), Er(P N R))

(P €Specld) tWwIHETH 3.

EERIE AINEE T4 (P) & IR PR ANRE Taoo (P) OXIEAS, Herzog DX (& HE D
BN 2525 2 b5, £, Wir—7 —BROGHEOMME LT, 5%tz v TiE
WER AR A A 2GR 2 2L bTE 5

8 4.11 (Kanda-Nakamura [KN22| Proposition 5.2]). R ZF[#ix—% —8, A% %—%— R
BET B, EEDp e SpecRICH LT, £ AMBEDERERI iR

—

A= P Tan(P)”
PeSpec A
PNR=p

DEAET 2. 22T, Ay 1x A, O p G cd Y, S np & Ea(A/P) 2 I4(P)* 12 k>
REINS,

M4J2R%ﬂ@i—7—%kt,Tiﬁﬁﬂ%A_(ﬁ ;)%%iék,Au%—&—Rﬁﬁ

—~ (R, 0
A, = 22P —
' <m>@<&>

DI AMEEE L CoOEMK I 2 5 2 2 0T, B FHME AL A IEEo B

(%) ()

THb. % peSpecRITNLT,

(p € SpecR) T, ¥XRTLHZALNS,

SE R
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— AU RE B T D ER 7 Z AR ICEE 3 5
WL DD DFER

frril fE (ARSI BILEAER)

1 FL®IC

ARNEEE 70 EREFE Y VR W 40 (2025 48 A 26-29 H, JUNKEAPE
779 CBOVTUT> ZBHONEBEE T D12bDTH 5.

1960 AU/ MRIGEIE A e WO BERZE A L7z, Lang 1%, #HREM
AR RTH 2 WHELRENC S WIRZ 63, 20 FREZIER
L7z, ZOTRIERMRTH 573, Lang DTREZ@ELC T, AWAHMHEICEE S
LMEORBIEELEZEZ 2 Z DK D L5122 5. /IRENh % E
AL, WL ObDEIFFEWHEEZIER L. 205 50—o05hHE
FTHREMINZ DT, ZOTIRIE, GHEZERINDKED K = W\ generic
RFEHEIINHTH A S, tWHBDTHE. ZHhoREEL%E Ein
1% 90 FEEENICEERA L /2. ZOHEZEDNAIX, Ein DFEERD Z DR DO FE
WKHET2dDTH 3.

2

BEHRZER X I3/ REEERE © M Xh 2 B EFR S0, Zhd
FEREIC 72 2 2 & X /MR TH 2 b b, HEFHE C 26 X A
DIFHIERDEEER L7 vwe &, X 1Z Brody WHHIFITH 2 £ Wbl
5. /IR 72 & Brody WHEHTH 5. X a7 v Ok T
RO H, ZODMEMMEIXFEEICAR S (cf. [Kob9s]). BIRa > 7 b
BExEITHKS DT, VMK & Brody) % XAlE$HEINEIN E WS,

Bl B gDa> T ) —< Y EHBPNHIN <= g > 2.



1 KITCDLGEFEEZM RIS T B 2 Ath it & RECRAIIES T H
5N =T 20, SRITOGEF—H LRV, EEE, Xouhi 2 U
FOIFFREEFE LR X O 1 A blow-upX #E 252, X EP &
LD THEIPI TR .

Lang l3 XD T % U7z [Lang]. B RMEMHEE T H 2 Wl E2MR
BINICEWRZ 6N THAS, LWHTHETH .

F48 2.1 (Lang TH). IR BMRFH LR X AU < X O2T
D subvariety 1 —MA.

COTE21EIARBRTDHS. HIGNTWAHFERE LT, X 2o &
& =) W HILD (cf. [Lang, p190]) . F7z, X D7 —~LZHEEKD
WA2MHETHZ %, TH21IEIEDILD (of [Kaw]).

/PRI [Kob70] TROFREZ L7 (EHICIZRIEY LTIRRLTE) .

FA8 2.2, ERFFZZEE P NDREIDIK Z W generic 7RI AT 222

TR 2.2 BN DIX 1970 7228, FRINCIIFFZZE L, £ 5%< 2010
AEARIZ Siu [Siu], Brotbek [Brot] 12 & o THEMNER E 7.

TR22N0 DNHIR WO Hr %2, T 2.1 OWNIREE O REHY
SWHX TEEMIZIICL->T, TH220RBIREEZ S Z DT
20, ZORBIRIX 1990 FETAICEn Ik > TREHX ATV, 22
TlE Voisin I XK 2B I N TEHEZHENT 5.

EIE 2.1 ([Ein], [V96], [V98]). X C P" % very general 7% d 2RI &
L, YCX%XODkZRXIT subvariety &5 5.

(1) d>2n— k%o Y 3—HETH 3.

(2) d>2m—k—17%5Y ORMBKIIETH2. Thbb, ¥ -V
DRRLBEO L ZEH(Y,K;) £0TH 5.

EH2.1(1) P22 ORBIICHEY T 250 TH 5. EH2.1(2) &b
K2, ¥ d > 2n —2 D very general 7RI X C P 3G BRI % F77-
BN 5. AU best possible TH B, FHFE, K& d < 2n —3
DEHHE X line 2 & 5.

RELFETIIER 2.1 D2 DBROEMZ R TW»L.



3 Green-Griffiths-Lang F48 ¥ Z D EhR

B DA ED AICE R ZRELTCLE S &, Hifii ¥ TTiHIKb-
TLESDTH S0, REERMAANCIE, EF2.1 TR AN DL
5750, LWIDIREIKS ZMETHL. ZoFMMEDOREL 2R
% 7212 Green-Criffiths-Lang A% EWH L THL.

F#8 3.1 (Green-Griffiths-Lang T48). IFRFRERIREZHRIA X 23—
Dr &, Zariski BARETDEE Z C X PEEL, TEOIEEMEENE
B Co>XDBRC)ITZIZTEENS.

THE3113 X\ Z 2 Brody WMHIE S oTWwW5s. X\ ZIdary 2t
TIEREVDLS, X\ ZIHLTFH212YTEH 2 Z 2 IEHRZVDT
H5, X\ ZWZH LU TERCTE21 24 TEDOTELNLZ RO TR
PDPREINTVS (K5IZEHFIITEADNS) .

TR & IFRRERFHEZRIA X B —RELD & =, Zariski A EH( 758
BZCXDREL, ZIZEENRWEED subvariety Y C X 13—y
TH3.

FOZoDFRZE, X D7 —NNUVEEK A DD LKL ER, Z =
(X ITEENDED 7 —NVEZRRRDEATHREIOMNIEES) & LT L THRIL
35 (cf. [Kaw]).

EM2.1(1) Kb, KEd>2n— 1D very general ZREHHHE X C P12
MLTIE, PHSIZIZ=0LTHLTRI Db, KEEAIZHET
554 %k LTd > 3n—2+3 DEED, KD Clemens-Ran 12 X 2 EHIZ X
DPAE SV DIIDZ D5,

EIHE 3.1 ([CR)). X C P" % very general 7% d XigghE & L, Z :=
(X WCEEND line DFER) £ BL. Y C X & kRIT subvariety £ 5 5.
(1) d> 3L L2 TY BRIUTRVWES, Y CZTH5.
(2) d>3E + 1 CTY ORMERA 07425, YCZTH%.

EF3.1(2) &b, K d > 3 D very general 72 EHIEH X C P NOFH
B O Z = (X ICEEN2 line DFIER) ITEENZ 200 5.
INRZF T, CHED line 2 523700 57 0AH, Riedl-Yang [RY]
X C BED line TH S Z & %Z/RL7%. Coskun-Riedl [CR22] ¥4 LA
KNOFHliZ 8% LT, d > 2% Dk ZIT very general 7% d KEMEH X C P"



NOEHRIRRIZ line TH B Z & 2R L7z, ZDOFHMMIZIZIX best possible
ThHhb. EE, XEd< 37” — 1 OEHE X C P I3 conic Z& 3. &l
H N DA HBFRICOWTIZRD Voisin IC X 2 THE2RH 2 Z L IZIEREL T
BL.

T8 3.2 ([V03]). KEd > n+2 D very general 727 8HIH X C P" NOFH
BRI ERTH 5.

ROFTIE, EH31 2 ODFAICHES ELMREMENT 5.

4 WO DHER

9, EH3 TR ADEINEI L BREIBEEITOVWTEZTAS. X
DEMIIEH3.1(2) O—{tTH 3.

I 4.1 ([A23)). d> 2+ B2E ¥ 972 X C P" % very general 7% d X
FEHHTE, Y C X & kEROCD subvariety £ 35, TDLE, Y ORMFER
MO0RD, YIiXline conic DMIEESTH 5.

% 4.2, THd > HE D very general 72 EHITE X C P WA HEFX
line £721% conic TH 5.

AR, EH31(1) O— X T HE.

EM 4.1 D d TR 527D best possible 22 ¥ 5 X730 5 W,
conic DXIZ T | AEEITRIE twisted cubic TH 2 X HITEZXT, X
TLEMET 2, K < 3 O twisted cubic 28T L RSN
5. ZZTRDIEDKITIRS.

fRE 4.3. IH8 > g > 2 ¥ %, very general ZREMIH X C P" AT,
line *X° conic N D EHAHIRDFET B0 ?

F7z, EM A1 TIEAGD, YV C (X IZTEEN S line X conic DFIER)
T34 L, Y HED line X conic DHMEFTH 5 £ FiRENALTW5E. £Z
TROEEH AL TL 5.

RIRE 4.4. XE d > n + 2 D very general 73 aHHHE N DRMFEE 0 D
subvariety (X uniruled 7> ?



RIZEH 3.1 OMNBIRIZOWTIHNT 5. FTIETH & OB 5
b B .

FR dloe. X ZIFRIBEERMNE LSRR, D c X zHMIEHZEZRT L L,
Kx+DMbigThsE3 5. ZOrE, Zariski BAREIRNEE Z C X
TFEL, DUZIZEFHRWEED subvariety Y € X &L, xf(Y,YND)
IR —RITH 5.

Z T DHI—f) 20, g Y — Y 2550 (Y, YND) @ log resolution
DEE, Kop+g ' (YND)DbigeWWsZ&TH5.
X =P DHBEI, FITROZ BN TVWS.

EIE 4.5 ([PR]). D C P % very general 7% d XK@ & 3 5. d>2n+
2 - kD& X, kRIC subvariety Y C P* 23 DIZEENR VI HIE, Xf
(Y, Y N D) EER—ETH 5.

Thbb, TOBERZ=0TTEMEINHDIoTVS. Z=0t
BN 25EIRET 5, LOFEMIX best possible TH 5. EFE, d=2n
DX, linel CP"T|IND| <22 R22bDNFEETZIHHSNT
W3,

Chen-Riedl-Yeong 1% d = 2n D& Z N7z,

EH 4.6 ([CRY]). d=2n & L, D CP"% very general 7% d ZXEahH &
T5. ZOLE, ZariskiPABRESDRE Z CP"HBFEL, DUZKZE
FNRNVERDIRC Cc PP LT, FFK

29(C) — 2+ ™ (CND)|>adegC

DE DD, T2 Tpu:C — CIRFRILT,

1 n>3
a =
% n =2,
THb. /2, n =20 ZX, Z = (union of bitangent and flex lines to D)
N5,
RASEH 3.1 DRI T H % .

EIE 4.7 ([A24]). D C P" % very general 7% d Kf@HIH, Y C P" % D
CEENIRV kERIC subvariety £ L, g: Y = Y 2R (Y,Y N D) D log
resolution &3 5.



(1) d>2E 4202 &, LKy +g (Y ND) D big TIRWIED, V
FIND| <2 F7FICDERBEHRICPLEONEATDHS.

(mdz@$+1®t%,%Lm(iom;+y%Ymm»:o&a,
YIZ[IND| <1 721 CDER3ERICPZbOMEST
b%.

IN&D, D C P = X very general 72X d > - ERITH O
L E,

Z = (union of lines that intersect D in at most 2 points)

LT, THEMEHEDIDOZEHNTD5.

5 &EBAODHLE

ZOHEITIE, EH4.1 EH AT DFFHDRA ¥ PR, WTho
FFBHD EFE 3.1 DR FHIC o T3, Z LT, FEH 3.1 DI Ein
DOEM (BFH 2.1 DNEDAERN 1T BL RoTWVWEHD) ZHEX
BbDTH5. FZTEFIE, En OFEHOIFHOAEZ BT Z ¢
29 5.

Ein O EH

X C P" %3 very general 2 X8 d > 2n+ 1 — k OfBHIAIO &, X D
EE D k XIT subvariety Y € X 13— TH 5.

Ein OEMOFEHOEE. FEBHD 7 4 7 7 1% normal bundle O IE{EM: %7~
T TH3. SCH(P,O())\ {0} % Zariski FIES L $ 2 (S 1ZL
T oMM THEIE L TN KIDET) . X C P x S ZXE d DIEFR
B D universal family £ 3 5. Y C X % k XJT subvariety @ family

£35%. Yy c X cP'xS—p»

N

EWOIRHTH B, DD, YIS Esmooth2$5. /2, XY
X P Lk smooth 8ARET 2. ALY, C X, (s€S) B BHTHSZ



LERLIZWV. ZD7HIC
H(Y;, Ky, (1)) # 0 (1)
2Ry, FEasl
0 — Ty, = Tx.,|v, = Ny,/x, = 0,
Al))
Ky, = Kx,|y, ® det Ny, x. = Oy,(d —n — 1) @ det Ny, /x,

218%. (1) Z/R3ICiE det Ny, x, ® Oy,(d —n —2) > 0 Z/REid k.
Ny,/x, = Ny/x|, TH2 I LITERT 5. HELRS

0— Ty = Tx|ly = Nyx — 0,
BHBD, WE X & VIEP L smooth EIRELTWEDT,
0 — Ty/pn — Txpr|y = Nyjx — 0,
2135, BRI LT LT, Pt EONRY PR ME, Z5ERS
0 — Mk, — H(P", O(k)) @ Opn — Opn(k) — 0.

&:iofﬁ%‘ﬁj%. j_%t, TX/HIan*Mdn (\_)_fciZD 71’:7‘:\‘1/, qXC
P'x S =P ThHb. XoT, FixlxeH

¢ M, |y

2195, \_@éﬁﬂt%ﬁ T ML 27 L TWBIEEED S Ny » DIEEN
PEZHLWVWOIDITITHS. P Eicest

— Ny/x (2)

HY(P", O(d — 1)) @ Mpn — M. (3)
BHBHDT, 2) 3)&D (Z7 A=Y IZHIRLT) 24
H(P",O(d — 1)) @ Mg |y, — Ny,/x,. (4)

2185, Mb, ® Opa(1) 1Z globally generated 72D T, LOEHFMHELD
Ny,/x,®0(1) % globally generated & 72%. SMEAZHE ST, (det Ny, x,)®
O(n—1—k) % globally generated £72%. WEn—1-k<d-n—-2 (.
d>m+1—k) KOT,

(detNys/Xs) &® Oys(d— n — 2) 2 0
B, TR LIEDPoZeTHS. [



Clemens-Ran 13 Ein Dz FE I B CEM 3.1 ZFEIH L 7=, FERHOHR
HUIRDIRT D 5.

e HL X, DY, D —RAITIZRVWE T 5L, general 7254y € Y 1T L
T, canonical ICE X % (n—2) XILORRIER L, C |Z,(1)| C |Opx(1)]
(ZHUTy 282 line [, ITHIET2) ZHROIF2ZeHATES. &
HIT, l,NX,| <2 731, C X, BWDIUDIEHRED.

o 3DMDEY 2 F 1 ZE[H

X C P d d X, 1103 line, pldms }

X,p,l
{( ’p’)fiffb, pGlﬂXﬁ)O |lﬂX|:2(Ol"1)

ZEZBILITED [, C X, THEILZRT.

RRICER 4.1 @B 4.7 DFEFHDO R A ~ b ZfHEISEN S, Wiho
EFDFEH b HAMNCIE, ETilbR7z Clemens-Ran O & H D FERA % F 5L
T2DT, ARIRBVTHICHE L R 5HMmICOVWTREITEKRT 5.

EM 4.1 OFEIATIE X, DY, ORMFEED 0 & D ZF,| general iy €
Y, WX LT, canonical IZEE 2 My 25 2 KEHIHEHOMIER L, C
1Z,(2)| C |Opn(2)] ZARDT 2. My ZilB2@BFHOMERIIRy 2B
BRI 22 & MBS 208, —iRICI3 iy &l % 2 JGEBHE DFRIER D ¢
EEUDRE e MNIGT 2 LI TERL. 2 ZADRSDEAX, R
L, DEERES Bs(L,) ZiR5Z & T, My%Zil5 coniczZDOlF5Z
YRTED.

FER 4.7 DFEFATIE, TR

D cPrx S—P"
ychy/ l
S

2FEZB. (Y, Y,ND,) BRI —EITIE R Ve X, general Ry € Y,
IR LT, canonical ICEF S lineyel, CP"ZRDOITZIENTES.
Z Z % TlX Clemens-Ran Difam & [F U2 DTH 5703, Clemens-Ran DFEE
HHE Eg b, 4.7 TET 7V A VI |, N D,| OFHliME H 720D
TH5.

Chen-Riedl-Yeong [CRY] 1ZRD Z & 2L L 7.



Chen-Riedl-Yeong MERE |  general B v,y € Y, I L, S =E
W (l,,y) and (I, y) EOXEd DT 1, N Dy, I, N D AXFAETH %

Yy < Yy
m m
ly ~ ly/
U u

I,ND, < l,ND,

Z 2 CEM 4.7 OFEHTIE AN FERR (lo, po) £ Z D EOXRE d DA+
Ey C %%LT, 3OMDEY 2 7 A 2=

(D.p.1) D C P& d xiEaihi, [ 13 line, pld | DT,
PN p) FOBETF 1IN D (o, po) FORT By b RME [

BEZDIEITED |l,NDs| <2%EFL Z2IT72%. X [A24] TIEFZD
EY 2T EE DY Mue 2 ORERTF O AN EEE T TH 5.
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AWFZEE, JSPS BHFE JP22K03232. DB ZZ T TWET.
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Gauss @R MEF—T7 L ZD7 7 — ILVHFEHR

REF iz *

1 BRI« &R

MHBLSE ] 5 FHEEIE 17 I Wallis 12 Xk o> Tlib b 7. Sk

1—a: Zx

L, NEREDY T ana™ THREM apy/a, B0 @ﬁfﬁ%ff‘% % b O % BRARE L
A BIRE, NERIE (1 —2)7, ZEMEIH Liv(z) = 300, & (ke N), 1585 e®, =
BIEL sin o 72 EI3 BT TR E 5.

MBI R D K S HONNHBEBOBETH D, MAD I EFXER[ETHNLDAKRL T,
VAR R (r O ERY) THEERKEZR7 L5, BRMBEEGR ORI
Euler, Gauss, Kummer, Ramanujan 523K X R EHRZ LTE D, BRABEIEGR L Féar 0D D
R

1.1 Gauss B {AIEAEK
BWHE a,b,c (c € Lep) BT XA —R 2T % Gauss BEABEBIIXTEREINS:

cox) = a’b'az = 3 (a)n(b)nxn
Flo i) =2 (52 ) = 3 (Gt

n=0

Z 2T, Pochhammer 525 (LRERNE)

(a)n = ) = [[(a+9).

=0
Z ORI 2| < 1 TR LT Gauss BEABEKEED 2. AHC, p @ (¢ 8) ONF (537) <
7 X — 4% b O—RUBRABI  F, (50 0) RIS (p = g+ 1 OWEBERLTH ).
R

o REHY: BHFR

* FEERFREGE LA SPE otsubo@math.s.chiba-u.ac.jp



o MRHTHY: W iR DR
o EMIH: DR

VWS T=f—K 245, ZhPERMEEGERZIEFICEIRDDICL TV, @RMEKDE
KRV TIE, Bl 21X [9, Chapters 15, 16] 22§ 5.
1.2 BREAMDARER

Gauss HRMBIEL F(a,b;c;x) 1% 2 BEOEMD TR

[DID+c—1)—x(D+a)(D+b)y=0, D= :1:%

DIFETH 5. THUIRDESITHET 2:
i2+ E_a+b+lfc i_ ab Y= 0.
dzx? x 1—x dr  z(1—x)
FoT,2=0,1,c0 DIEAIRERKTH D, b 5 DD
F(a,bja+b+1—¢1—1x)

THABNG. FF, B Fla,bic;x) 13 P — {0,1,00) L0 MBMICHITHES <N 2.
WA HBREROHENC XD, IS OLRARPHARDSRENS. Bl 212

F(2a,2b;a+b+1;2) = F (a,b;a+ b+ 1;1 — (1 — 2z)?) . (Gauss)
da+5 2+ 5 1—z\°

1 Sap ( 4a,4a + 1; x| =F 1; ;64 :

(1+ 8x) ( a,4a + 1; 5 ,:c> (a,a+ 5 ;6 x(l—&—&x) ) (Goursat)

fhDFHE AR ZN S DFEHICOVTIE, [11] 2B T 5.

1.3 BRABRKOESRT

HO B RN—2BEE Re(s),Re(s;) >0 DL ERXTERINS:

> dt ! dt
IT'(s) := e " —, B(si,s :—/ t°r (1 —t)°? .
(s) /0 ; (s1,82) ; (1—-1) T

N— Z B v~ BEBUC R -

I'(s1)l'(s2)
F(Sl + 52)

Gauss EEMBEIKIZIRD Euler BDFEHRTZ D D: Re(c) > Re(b) >0 D& &,

B(Sl, 52> =

dt
t(1—t)

B(b,c —b)F(a,b;c;x) = /01(1 —xt) "4 (1 — )t
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ZZT, (1—2) = 1Fy(a;z) THD I LIWTHERT 5. LERBKIC, 1 Fo(z) ITX— X772 BRI
WHEL T, g41F,(z) 215 %.

FOEAFRT =1 £ LTR=XEEZH > ~BEBICH#T 5 Z £ T, Euler-Gauss O
X (FAREARK) 215%: Re(c—a—b) >0 DL &,

I'(e)'(c—a—Db)
I'(c—a)l(c—b)

F(a,bje;1) =

EIChH, 2L ORHRENKPH SN TWS. fil Z21:

F(2a,b;2a —b+1;-1) = ggz _T_ ?)—;(1(31:(621 B (Re(b) < 1). (Kummer)

19 1 1 1 3 1 1 5 13 1 1 37 1
W_4F<1’8’8’16>_2F(1’2’2’16>_5F<1’8’8’16>_6F<1’4’4’16>’

(Bailey-Borwein-Plouffe 1995)

BEE % 100 KMTETHET 2 DICHVW LN (Twao, 2022)

1.4 BERRAIZRICHITIERNGFTE

REUR LORBERR (F7213EF—7) O L BEEEGRICB T 2 OHNBRNRO—DOTH 5.
& I Z DER RIS BIT 2 FFEEIC O W T, Birch-Swinnerton-Dyer, Deligne, Beilinson, Bloch-
Kato 512K 2 PN D 223, FTANITHRIN TV AHNIDR L, — kIR T e —Fid3Hoh
TWVWRY. IO TR, L BBORKEYL W TR RZ AR F 21— X -2 0%
AL R TIRT 2D TH D, Dirichlet OEFTHEHARE LT 2HDTH 3.

L B OFRRMER A, L ¥ 2 L — & — (F71% Mahler #lEE, Abel-Jacobi Bfg) H3iEE&(BEEL
ZHWTERRE N FH N O SR TVS.

e Riemann ¥ — X% :
=1 1,1,...,1
e Dirichlet L B8# : #5#% x: (Z/NZ)* — C* iR LT

Lix. k) = Z X(Z)

n

a

X(CL) 777"'a£
= F N> ON ).
2 gk ’“(;3,+1,...,;§+1’ >

0<a<N

o Fermat HifRD L BIFORRER L ¥ 2L — X —D—Bi& 3F5(1) Ttk T & 3 ([13] 2HK).
o Q LOMEMEIIR £ : y? = 2® + 42 #F X % (4 X Fermat HfROBETH D, Z[V/—1] ICHEE
FEEHD). E O (IEMEICIE hi(E) ©) L BEIERD Euler i TERSI N5

s _ogy—1
LEs)= ] @Q=ap+0">) ;5 ap=1+p—#EF,).
p # 2: B



ZDEE, XPBPHOENTWS:

1 11 1 i,z
Lualyzgzz(y2>::22F1<45%1>.
4

(Damerell 1970)

1

5,1,1,1

PRE Rt
335’1>
27274

é

2

) (Zudilin 2013 [16))
M Eofliers, $EEEREZSDOEF—T7DREM%Z 7 >~ Tl § % Gross-Deligne
T OFL» S b, ERMABEEGH X Lo THEAD—2D 7 T u—F %252 2D TlEd R W 2
HFTB2eMWTES.

2 BRIFLOERFIREK
21 B8

=20

AR LD BERMBIRNE 1980 FAD SIS N TE L. ENTIERMIIERKZ L DD DH -
7z. BRAE EO@ERMBARBITIE N O DERED D %: Koblitz (’83), Greene (’87), Katz (790),
McCarthy (’12), O. ('24) =& (205 DB DOBEFRIZOWTIX [12, Remark 2.13] Z2508).

BHDES [12] OFHE LT R o 0 %:
o ERBIUMHHEICEWT, C Lo@RMBEKL OBELNHLLTH 5.

o —EMRMBI ,F, Tp#q+1 DHFED LS RIFEAE (GHA) 0bDHRIBITINZ 5.
ZHRFETIX, Kummer OETAERMIBIE F, OSSR o7-.

o JEHIZIEWS 7 2D Z BRI O ARMEL GEEARZ &) SRRKICKZ 5:
Nakagawa [7], [8], Ito-Kumabe-Nakagawa-Nemoto [6] 7 &

AIRA b DEEEIRU,

o ZHNIK, TR,

o BSFROBUL L 72 5 R,
o BT,

DETIZBWVWT, C Lo e BLOMEZ & D, IR TR, EREBXRZHEICZ D—E%ZH
Y%,



2.2  Gauss fl& Jacobi #

HIRIK_EORERMBEENX, > ~BEE - X— X% L Gauss 1 + Jacobi #1 & OFELUIFE D WT W
5. LUNTIE, F 2 g oFRIEL U, IEARZINERERE : F - C* Z[EET % (HEEEH O
).

FIETEIR @, i € FX = Hom(F*,C*) 124t LT, Gauss M, Jacobi M1z X TEFKT 5:

= b®et), Glere2) ==Y er1t)e(1—t) €C

teF telF

(FEE L p(0) = ¢;(0) =0 EED D). H o ~<BHB - N— X DER

> -t dt ! s s
I'(s) = e 't* —, B(s1,s2)= [ t2(1—1)%
0 t 0
DOFELNCHEEL LS. 72, 0o DF Gauss 1%
9°(p) =gle) (p#1), ¢°(1)=¢q

YEDD (g(1) =1 ICHER). ZOLERDBEDIID (p=p1):

t1—1)

99 @) = o(—Da, jlprpn) = TEILD (o).

9°(p14p2)
FKHBLNZZLL TR DFELUTEEREL £ 5:
. T . F(Sl)F(SQ)
L(s)I'(1—s) = pr— B(s1,82) = T(1+50)°

2.3 HBRAE_L®D Gauss BB

RIR=K o,y € FX, ZH A €F %5 F LD Gauss BEAEHE R TERT 2

Fla i) = = 3 (55000 (e,

Z 2T, (o ©%) Pochhammer i 5

AR 2.1.

o ZHUITF H 5 CADBEKED, EBIZHNE Qug_1) ICHE L .
o KT A—ZIFHEROBTHZ: FX ~Z/(¢— 1)Z ~ 1 Z/Z C Q/Z.
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o C LOEERMBIKICBNWT, 10D FX—&ZD +1 ¥ 7 MI 1 BEOWOERRICHILNT 5.
B z1E, (D +a)F(a,b;c;z) = aF(a+ 1,b;c;z). AREK EOBSAREICEWT, 2ov 7
MCHET 2 DIFHW — BOBRHEAITWS] .

X DR ANRICIRE T 20007255 2R T, Bl ZIXLLURD D 32D,
o Gauss DN DFEDL:
F(o?, 8% aB; ) = F (o, B;a8;1 — (1 — 20)%) .

(TEE: Goursat DEHAKOFALUT F/2720.)
o Euler BfET ZRDHHLL:

—5(B, BY)F(c, ;v A) = Y (1 = A)B(£)By(1 — t).

telF
@E,iE’r: 6(1 - )\) = 1F()(Oé; )\)
e Euler-Gauss F1Za= o 1L
9°(7)g(apy)
F(a,B;7;1) = ==
(B8 1) = a9 (By)

PLE@ &5 280, FEIERIR o8BI R 2 2 O @R MBI L THHZ RS hTtwy
5. Z0ZtiE, ZhoOEROIELEERT 2 bIC, HEBOEF—7) OFELZHFEES.

3 HBRETEF—7
31 EF—Trik

Kk LIRS ABERADE D 5D & K X7 V2R (char K = 0) OEAND 3k

EnY—-HFeEX5:
H: SmProj(k)°® — Vect(K).

N7 MVZERV BEETF e c End(V), 2 = ¢ 2O & SRV =eV @ (1 —e)V 21583,
— 4T, k £ K {## (Chow) EF— 7 DB Mot (k, K) ~DEF — 7BFHFET 5

h: SmProj(k) — Mot (k, K),
h(f: X = Y) = Graph(f) € Hom(h(X),h(Y)) := CHaim x (X X Y) ®z K.

T IT, CHy(X) & X Lo d ReREMY A4 2 (modulo FHFEE) ORITHTDH 5.
Mot (k, K) ®—DOW5IE =241

M = (X € SmProj(k), e € CHaim x (X X X)®z K (e* =€), n € Z)

TH5 (B e IRAHMC X 3).



Fw) akeEny -G H X, RIBEFEEHT 5.
Mot (k, K)°® — Vect(K).

LA k 2MREUARD & %12, Betti R (MAHRA1), de Rham IR (MR 0), T4 —
JLEIR (Galois Bl R¥%2£ 2 5. £F—7 M OFEMIZ M @ Betti-de Rham F¥i» 5, L B
Bl MOLEZ—NVERNLEES.

32 EF—T70H

ZHA X € SmProj(k) ICHIRY —~ULEE G BEF L TW3 £ 5 5. Bt K[G] (K & +5K)
12BN,

1= ex, XX = (x, )X, X = ,1G| S xg)g (G =Hom(G,K*)).
x€@G geG

%@ﬁﬂé Graph: K[G] — CHdimx(X X X) ®Z K L:J: D, %?*7@%@@%?&5

h(X) = P (X)X, hX)X:=(X,eX,0).
xeé
f 3.1 (Artin €5 —7). k= Q, X = SpecQ(pun) (F731K), G = Gal(Q(un)/Q) ~ (Z/NZ)*
DX,
h (SpecQ(un)) = €D h (Spec Q(un))X .

xe@
%, Dedekind ¥ — & Bt D Dirichlet L BIEAND DR L X3 5:
CQ(/—LN) = H L(X? S)‘

x: (Z/NZ)* »CX
Bl 3.2 (Fermat €F— 7). N M5k k = Q(ux) £ED N X Fermat #iff Xy : 2V + ¢V =1
(X (N —1)(N —2)/2 TH2) 2, B G =pyi PERMEHT . ZOEF—713, 16I%
XuP(&,n) =€’ (a,b € Z/NZ) i & > THIRT %
hMXN) =ho(XN) D h1(Xn) D heo(Xn), hi1(Xn)= @ ng’b.
a,b€Z/NZ,a,b,a+b#0

51T, a,b,a+b£0 DL X!

e de Rham aREDY— Hap(XEP) 13 1 XIET, M5 1R Wl = a9yb Idg:N DIEDAE
T 5.

o FMOARBMNZIMANIN— R [[wy’ =B (&, 2). 22T, () = (Vi ¥V1—1).

2|

)

=
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o (TR —aRETY— Hy(XE") X1 XTETHY, k DELAF TN pt N THNLT,
Frobenius 7t Frob, € Gal(Q/k) & Jacobi fil j(¢% ,, ¢%,) ETIEAL, L B%IZ Jacobi
1 Hecke L BE%K

L(jgf’b’ 8) = H (1 - j(@?\l,w @?\f,p)Qp_s)il
ptN

= 2T, Fy & p B BEAI, ox, € FX & p 0B 3 N RRKIEH, ¢, = |F,|.

D&, R=xEEE Jacobi MIFHICHEIT 220 TR, HBOEF—TDEGEZIRET
H5. BB RXR—2BEBOBOBEBERTE, BXUOZ o LT % Gauss F - Jacobi
DEOBRIK B, (IFIFRT) EF—T7DOEMICHFS £HD (O.-Yamazaki [15]). I Z1X, 7>
~ B D Legendre-Gauss FAI, 3B XU Gauss F1dD Davenport-Hasse FEAF

F(ns) _ n(s—1 fomes F(S+ %) nay __  .a n g(¢a+b)
T(n) = n" )H)T(Hf;)’ 9(eN") = e (n) H X (n|N)

b
beZ/NZ,nb=0 9(¢y)

ZFRb LF2HDIEIRXTH 5.

FIE 3.3 ([15, Theorem 7.2]). BEK Lk DIFEBII N b RTHY, uy Ck 255 EEDO n | N
WX LT,

Xy~ Q) Xy (a€Z/NZ-{0}).
beZ/N7Z,nb=0

Z 2T, (n— 1) KIC Fermat BIZHRIK 2 + - + 2l =n KT 2EF—7TH2. O

Z 5 DFEIATIE Katsura-Shioda DRSS &, Terasoma 12 & 2 ARBO S 2 E B2 5L E %
R7=F. £/, Hfi72BH T Voevodsky €£F— 7 OBERZ HW 5.

Bl 3.4 (REERDEF —7). LA TG(N) DEY 25 —#hiif Xo(N) 2EZ2%. EBpI NI
XLUT, 4
Xo(pN) = Xo(N) x Xo(N); (E,C) — ((E,Cn),(E/C,,C/Cyp)),
(E 3EMEER, C C B 3N pN OKEESEE, Cy 1& C O N R UHESEE)
DRI% Hecke B
T, € End(h(Xo(N))) = CH; (Xo(N) x Xo(N)) @z K
ZEDD. IhoiIZED, ®REERDEF— T \DfE

hi(Xo(N)) = o, M(f).
FE€S2(To(N)): IEM Hecke MKFEA
%13% (Deligne-Scholl). €F—7 M(f) DL EZX - - IKREBI—IZ2RTTHY, [ =
Yo Lang™ DX E,M(f) O L BEBIIRE L B
L(f,s)= [] @ —app +p" %)

p: T



(p| N BT 2% Euler HFIZEELE) & —HT 5.

3.3 B%EEF—7

FELD Artin €5 — 7, Fermat €F— 7 I3EH 1 DEF—7 (A[HEF—7) THo7%h3, Gauss
HEMEF — 7 3RUEADEF — 7 L AKICHER 2 DEF—T7TH 5.
AT, AHE A B,C 287 X=X $ % Gauss BEMBKT, C =1 0545

F(A,B;1;)\) = f:lnB)

KRBT BEF— 7 BHFINHEN TS, ZOBBLIR—FZBEHO 1 NNSX—2ER L ALRT I eh

TZ 5:

1 (1-e(4)(1—e(B))

27i 1-e(A+ B)

R, ARIAF Lo I Jacobi MIDERTH %: (a,p) # (1,1) D &
F(a,B;1;1) = j(a, B).

TR k& chark{ N, 22D uy Ck AT T5. A€k —{0,1} LT, k LoOE%
R REAR %

F(A, B;1;1) = — B(A,B), e(r):= ™7,

Xnac: (1—1:N)(1—yN) = zVyV
TEDZ (IEWEICE, 207 7 4 VilifE P x PLICBVWTHEMELIZd D). 2ok &:

o B Gy = p3 DMERT 3.

o JERF RS T, ML (N - 1)2

o P —{0,1,00} LOMIRIEEED 2.

e \=11ZBWT, N X Fermat Hiff & SRR OFNEL T 5.

FE 3.5. N =20t %, Legendre f5MiHHR E) : v? = —u(l —u)(1 — \u) "NORHPEET %:

I‘Q Ty
XQ,)\_>E)\; (U,U) = (_1_:1:27 (1_1‘2)y2> .

FLHBENT WS X951, Ey DAMBHEMNEDTTH D, Gauss BARMBEE F(1/2,1/2;1;)0),
F(1/2,1/2:1:1 = \) 1255,

Fermat € F— 7 OG5 L FERIC, BRI Xy ~NOBE Gn = pi OEFAZ VT, B
EF—T\ONEZ155:

hXNA) = ho(Xna) & hi(Xna) @ ha(Xna),  hi(Xwa) = D X3
(a,b)€(Z/NZ)?,a,b#0
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N HDEF— 7D Betti-de Rham EHB LU0 —LFEH e LTEnzh, C LD Gauss i
RABER & BIRIK LD Gauss @RMBEBDBENS. DR, a,be {1,...,N—1} &L, A=a/N,
B=b/N 5. KAKD IO 2

e de Rham I RERY— Hyr(Xy ) 2 RITT, ROWI 1 TR0 ERZ 723

a,b a,b dz™ ab Ny, .ab
wy =z m, Ny =1 -y )wy -

o Wi DHEBEAMOAREMRENE F(A,B; N XU F(A,B;A+ B;1—-)) Thb,
ny' DEE LF(A,B; ;) BXU LF(A,B;A+B;1—)\) Th3.

o X3\ &Pl —{0,1,00} EDEF—TfkY Rt &D Gauss-Manin Bl BAMMH /7
BR [D?—ND+A)(D+B)ly=0(D=X%) ThH3.

o (XX —)LaRERY— Hy( N/\) B2 THY, kD (RW) FATT7pt NIZBI
% Frobenius {EfID b L — I3 F, LOBEMBIEL F(e% . ¢ i ;A mod p) TH2.

o fFE3 2 L BIEUIE (BWEA T 7 UIZBIT 2 Euler KAIF%2FRNT)

-1
11 (1 — F (6% 5,0 ps 1A mod p)p~* + % (1 — A)pl_QS)
pIN

Frobenius M L —ZXADFHEIICIE 2 DO FEDH . —2IF (FBlEO %) AHAOMEKEHZ 2D
DT, Fermat HfRIZ0 3 2 Weil DFELFAIETH 5. B 5 —DI& Frobenius KBTS (BX U %
DERE) % HERAMRBOIG) TERITDDTH D, Fermat Hif 03 % Coleman D /7 L R T
»H5.

AE 3.6. DT X—& A B,C %HD Gauss BRAEF — 7 2 EFRT 51213, BRAHHR

LT

Y +yt =1, 2 +yy =1, Aatad =yl

TERINZ2BDOEHVE. ZOMBIIEEE 1 PMEAL, 4 D0ERE O OEF — 7 DERI
n5s.

3.4 BRAEF—T7OTHENR

C Lo@RMBIENIN LT, UTFOZEMNRIIEANTD 5:
F(A,B;C;0) = (1 -N"4"BF(C - A,C - B;C;)\). (Euler)

F(A,B;C;)) = (1 -\ AF <A C'=B;Ci— A 1> (Pfaff)
o DRRABELDFEET 5: FINNLRIGE ZRWT,
F(a, B;7;A) = aBy(1 = N F(ay, By, 7; ),

F(a, B;7;A) =ay(1 =\ F (a,ﬁ%v; >\i1> :
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Zhoide bICEF — 7 DORBICHD EA3 5
EIE 3.7 (£F — 7MW Euler-Pfaff £#, “C = 1”7 OBA). EED a,b € Z/NZ 3L T,
Mot (k, K) \ZB1F 2 LT DREMNFET %:
XN/\—KN< - NP R XYY -,
Xz\f,\ ~ Kn(l- A" Xy .

22T, Ky(1 =X\ & Kummer 5K k( V1 — \)/k 2B % Artin €5 —7TH 5. O

4 77— I)LEVEER IR
4.1 ZREOHER

o ARRMA Viy = SpecFn. REEHIE X/F, 1ML T Vy = X ®p, Fynv.
MK Viy = Spec Q(un) — FiEMEGRZR L.

Fermat Hiff Viy : 2V + yV =1 — ffHl-Anderson Fifzz &

BV 27— Viy = X(T1(N)) - IEHBEERR 2.

AR Vy = Xy (A € P —{0,1,00}).

#® Vy OREOI—FRER H(Vy) (BIRZMMED 4 77 VKR kD b, 20 ORkR

H(Vao) = lim H(Viy)
N

DR, ML L TOMEPRZILTWEELH 5.

4.2 7T —)LEVEBA{RIREEK
REUR & EOBRMROSHER (Xva)n KHNLT, 7T—ILBREOS —8
HX o0, 2) = @Hft(yN,x\,Z/nZ), Xna=Xn)®:Q
N,n

REZ D, TAUISEIHER
A =Z[[Gw]] = lmZ/mZ[GN]  (Gn = p})
N,n
LomEici 5. 5t Galois B Gal(Q/k) 13 HN (X oo x, Z) B A EHT 2. Hiff Xy, 0
FERE (N — 1)2, o TH 1 Betti B3 2(N — 1)2  2N2 TH 3 Z L B HWHZ 5.

FIE 4.1 (A EHE [2, Corollary 3.4]). fEED A€ k—{0,1} I LT, H (X oo r, Z) 13FERL 2
DEM A MBETH 3. 0
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AE 4.2 ERIZEELTCIERDE T E2EZZ2IHTES. ZOL %,

Aprort = Zil[Gie]] = Bm Z/UZIGy) ~ Zillar, y]] - (BRI = HROR)

17.7
(Cl‘x’al) =1 -, (17<l°°) =1 - Y.

EE 4.3, HY (X oo, Z) D ABEIE {0og, Boo} BER Y, Mokt Galois BED 1-29 4 7L
Cal(Q/k) = GLa(A); o = M(0) s.t. 0(ise, Boo) = (oo, Boo) M (0)
DBEZFES (Le. M(o7) = M(0)-oM(r)). 2O L —2R
F\: Gal(Q/k) — A; o+ trace M (o)
%7 T — LB IR & SN
ZOBBIZETOERK EDORTO Gauss BRMBEAL (C =11) 25T %:

EIE 4.4 (fH5E1EHE [2, Theorem 4.4)). kD uy DE X,k DFEAT TV pt N TAD p BLD
A#0,1 (mod p) TH2BHD, BLY a,b € Z/NZ — {0} I LT,

XN (Fx(Froby)) = 1 ® F(p% ¢ p; 13 A mod p).

~ a,b ~
2T, B A — Z[GN] 22 Z@ Q(un) 12 & 3 Fy(Froby) D TH . 0

43 FFE—ILBIN—ZEK
Fermat H#ROIHR (Xy )y OF F— MR ED S —Hf

H{' (X oo, Z) = lim H{" (X, Z/nZ)
N,n

B OBB ANBETH D, ZORIK v, ZERE, 1-aF A 71
Gal(Q/k) — A* = GL1(A); o0+ B(0) s:t. 0% = B(0)Vs0

HEEF S, Zhd Anderson-Thara D 77— LR —ZB8E ([1], [4]) TH D, ETOHERK oL
TD Jacobi MZMTET2HDTH 5.
CHE TN LRI RDO A\ =1 1B 258K E D2 ITO@ED TH S :

C Lo MmBaE — ~— 2B,

AIRIE LR BIE — Jacobi M1,

R AR - ERMEF — 7 — Fermat Hifit - Fermat €F— 7,
77— VMBI — 77—V — X B
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4.4 TT—IILBBEABEROETRAT

Euler-Pfaff Z#N\KIFEF —T7 DL RALTHEETEIDT, ZOEHTHSHTX—)L - AKE
0y —HOMEEEE, 77— HEEM B D Euler-Plaff Z24/33X [2, Theorem 4.6] % & <:
kDun,a€Z/NZ DL X,

X3 (Fx(0)) = K335 (0)xx" " (Fa(0)),
X&' (Fa(0)) = K% \(0)x% "(Fa_(0)) (0 € Gal(Q/k)).

T 2T, Kni-x & Kummer 5K k( V1 —N)/k 25E®D % Galois HEETH 5.

7 7= VIR MBI O Z BN B IR, ZIUIRHILIC X > THIRK Lo R MBI D Z
NRZEL . WICHIZENEE & Chebotarev ZEEEHIC & - T, AIRAK LB OZ LK H
57 F— VIR AR O EIARDE L e B TE . FlZ1F, Gauss AR (C =1 DFE)

F(24,-2A;1;2) = F (A, —A4;1;1 — (1 — 22)?)
D7 T —=IVhRDIAE D 32D [2, Theorem 4.8]: k D uyn, a € Z/NZ Dt %=

X2 (Fa(0)) = X3 (Fi—-2x2(0)) (0 € Gal(Q/k)).

45 &

SHOME L LT, LT XS 2RMENEITFONS.
BEAEF—TICDOWLT:

o IEHITID— BB MBERL (1 Fy WCHB T % (¢ Kot) £F— 71341 3.6 & FERICHEH T &
3. TOHIRENZ2ME (ARERY—DRITRY) ZRITDEND 5.

o JEIEAIEOEEE, REBZHAED SR T 2 EF — 7 T3 B EF—7 1 1Tk 3D, %
NHWZOWTHREZED V. ZOHETHHERAK LTI, Artin-Schreier fifEz W2 Z
L CEF—TEMRTE 27225 [§] BH).

o I FIFRZWNK (Gauss, Goursat, 2Y) BLXUOEAXEEF — 7 DRIFICHS LT 5.

77— LB MEEKIC DOV T:

o —fb X N/ ERMEAR (B 3.6) ODFFERD 7 T —AHRERY —HD A HHME (FE%4)
ZRY. T2, C Lo 2PF(A+ D,B+ D;C+ D;x) (A,B,C,D € Q) 253 3,
42RO 7 7= NERBEBDERTE 5.

o 7T —IUNR— XD | #ERRT % 7|z, y]) DL iz & (FEE 4.2), Z DEMGEIE
MEHENS (PR T Thara-Kaneko-Yukinari, Anderson, Coleman H3iERH). 77—
JVIKEATTBI R D | #ER Dy D RFARE 2 TR 5 .

e Furusho 12 X % [ fE@EAMBIRL (3] & ORAfRZR

{111

AR5,
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T EE

A YRI T LTOMEDOERE {728 o 7 MEEANDBFRRIIEA 72 UK. AR JSPS #
WiE 24K06682 DRI ZZ 1T TV KT,
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Riemann BRI _EOGHAAG RN & —
~ R

EE—

Abstract

W TR ORF R K D &/ BT IR AR TFE T 3 HBIAE T b BRIt
FENRTDH 5. AKTiE Riemann BRE EOFER DLW TR LT, K
ROET/BITIC X 2 M0 TEROB(LEZE X, RELDET/BITIC X 20 77#
KOBEDEL, AT MBI 2 W T RRDRFTT — % DA DRI
BIZEoTitibE sy & LAEREHERICE 2 PEZHFER L LT, ERERRE
HOMERCL— P ROBEEN LD X 5 M AERXORRA L 204 (B
BTS2 O 2 fifiid 5.

Introduction

MW TR DO EERF R A DRI BWT, FFERAOETREREIEE HMAIC EE
RFEr LTHISNTWET. FIZIX, Gauss DERMMO HERXOFRRLSDOETRICK -
T, Kummer Q&R RS, Hermite-Weber, Airy & W o 7= EE R 2 5
ZROMDAIEADIEOLNSE Z LT L CHIONTVET. AFETIEE A4 NI E 2
MEZEZBZr 2 LT, Airy DO AEREBRA LT, ZhsoMn mEROEILORE
FERRTEERDESITHEDET.

Kummer }—>{ Hermite-Weber ‘

Fi2, 778V —RIX—=R—FFOM HERE LTHISN S Heun DM HERIC
FHLTH, FTOKD XS RIFREDERIC X 2 HEROBIUELSHI SR TED, £/
Fo I —RFELE %8 U 7= Painlevé HIEROBILOBI LD S WA I A TVET.

’ biconfluent Heun ‘

/ \L
’ Heun }—>{ confluent Heun ‘ ’ triconfluent Heun ‘
\ /7

doubly-confluent Heun

7 7% Y — T X —&—|X Riemann EKH_E O HEXOMZED ETIEFEICER
RErEZONTED, LD Gauss DHERIEITZ 7PV — - RTI X=X =0 HDFFE
ROMAF e U THISNTOT, XD Heun DHERIET Z72FV— - RTX—R—% 1

*TIRERFREGHAAIERE BUE - BB AU, kazukiGmath. s. chiba-u.ac. jp




@y O RENXNOMAIF T, 725 LT, I E-3FH-AFNZ Painlevé HRER D EXIT
{LDSHRD B 4 ot D% b OEF/ Fu I —(REEAWAEROEEE X, ZOW5E
WETAED7 7PV — « T X=X =R oMM TR OV TORENEED
YR bR LE LT 6.

(2)((11))22F—|(((2))(((AD))]

(2)(11),22,22

(2)(2),(2)(11)
EFoRNIN E-SkFH-HRF DY X o —Fl2ED EiF7-dDTT. EmdfFEOHIIH 5
22.22.22 211

WOWTHHIDLFHALET. ZHUIEARAKLDDED 4 DDA LES Ze N TET,
ST 25 52T Riemann BRA FI2 4 D DM RS2 Hio 4Oy HBERTY.
Thbb, HEROBBTDH 2 BRE4D7EID, HERXORESDEBTDH % 4l A
TWb W5 ES5TT.

X THEER R A EORIEEIXRATE 2 F o I — 178058, BREoBiEls
BICXoTHHEEINZ e 2BVHLEL £ 5. 20 ET4O5ENIRHERD 2 W IkE
J Pe I —1THoEEECERZRITEEZIET. TROE4D79E|

211

3 Z OREERFR S TIIRZER DORITTH 3 4 XTCD 5 B, FEFEEDE Ui D 2
DHY, FOMITFRMHEIERD R 208 1 DT O 4 KT DRZERZ AR L TWVWnd Z
CEERLTVWETS. 25 LERMEAERXOR Rt oFER D 2R 3T HRBO 7 E|
DFE AR RILB L FEN % 5.

HE BT H 5 Gauss ° Heun D HFEERT 2D AFERSZ o720 T, =5 L7=2FH
FERDERE VWS D DIEREZF 22V (FHHEBDER T % &, FRAZS - T
BRETE2) 720, TNETHEDEZOLNTEEBATLE. LirL, 723D —-
RI X =REBEMES D X5 R—ROMH HEXDOMEIELIcONT, Fikiesk (£
Fa I —{THoEEE) OEEEIXT 72TV — 5 X —XDOMEERD 3 BEILAE
mE L TCHRMEINE LI TEF L.

ZDMDFESDFMNCE L CIEFERXZE SR L TH o\, 2k FffliZ N imy 2 AR
THRICEALZT. FIZ1F((2)((11)),22 2 LI HEERESORME AR D ER DI
FE2EL, MO TCAEEEDFERIEZRRLTVET. 20 kd I EoRAUE, xR
7 bV 2222 22 211 ZHiD Fuchs MO AKX H5HAE LT, HEADERIZE 5T
BFoN P HEERBREROMD HTERTE%Z, MIET2ARZ MAIZLK>TETHDT
T, FRMKOKANZ, M ARERTEPRRADERICE > TORNP-TVWD Z & ZEK
LEY.

S TCLOMZBDTWB &, BARBADITEID 40f22,22,22 211 2 HHFELT, Z
DENT T 240 & 2> DAHAE DB RIEEED Z DBIEKADERICH 2 DK UHAL S
e BWET. FEERICE U323, EBEZ o) E-kF-ihic X 2 8o AR 0B
DXL, MO HERXOFRERLADETR & 132 S HALIC, B4 D7E DR 22,22, 22,211
DIHABEDOBHREBRIZ X > THEBR T ZAHEEKET. 20256 RD &S R
ZVUTTAEL & 9.

1 BEOITAIRIM D ITRER e LTEL 2D 7 783 ) — S5 XA —X—%HbL .




Question 0.1. HAE n OBEF720EIOM
ki
myy oo Mgy, M21 oo Mooy wvvy, M1 o oo My, n = Zmi,j, 1= 1,...,7"
j=1

WX LT, BRI 0B ERIA 2 FERRNCS 2 Z e AT & 5. —/7 T I OBAR
BIEXIAZ 5T 5 5 K 572, Riemann IR EOHHGEM T HRERIFLET 075
D M.

Z DRI KEFMERIC X o TEEITER L, G/ [10], [11] I8V TT
M LTIRHENE L., ARTEZOREBEROFEICOWTHH L, F7-Z DfFERIZH
O CTHEZBRN Lie BEOMERCL— M ROAREWNRRE 2R3 2 2FHH L0 e B
ESc

MU FHE OB AT 7288 2 JEF SIS TI DR Z Z 2 i LET. Eouvwi

2

BB n DRI DB | — M TEADRR LD G

LWV SRRSOV THI S TWET. ZOMNEEE X 3B L 72 2 BRI H HIE
BERICK > CTIREXIN-MUFoBEICR D £5.

Problem 0.2 (#H [13]?). m HDRE % & D n FERE Fuchs B 7R, 205
D OAETIRMETHE LN 2 HERN L 2EDOE 2K X (H 2 WIEHEY H57) %Y 4 FfE
BRTEI-72d D X/ ~ ICITHEEEZ ANS Z &

ThOBEBREOEAT /BT X 2M THER) oZKolEL, WMo HRR:zb0
d T/ MW TR0 7 78 H ) — "o X—&— (FEPV2T74) DZEHE) OEWiE
NIRRT 2 LTS ARBL

HRE 0 OB DM DIE(L | > | MO HERDEY 2 7 4 EHOEH

CWOKIOER AR T A L HEE LEY. Zoxine5 2 283 Lie BEO R TIX
X <HIBsN=

HAE n O EIDH | — | GL,, DIBYIEIER T #E

EVWSERTY. ZofGRrS, BAREn OTEIOMDBLIZE T, ZoBRYALRIRE
7B DEUEHIDRI NS DTTD, Tzl TR

HARE n O EIDH DRI | +— | Y B O el &5

! !

EBY 2 74 BEOE | +—— | WM TEXORRELDEIR

EWVWSMIGERE T 2 DDA TOIEIZRD £7.

ZEMNRIC X o TE D ONEED S bD—.



1 AR BMILB

AEHITIEARY PAVROEREZGZ 5T, MO AERd/dzY = A(2)Y, A(z) € M,(C(z))
Dz =0 CHEERRERZROZEIE, 5 g(2) e GL,(C(2) IT X 2EH#T

KA+ (o))l = 2 (A b(C)
Y RGBT 2 B AR TE 3 b b AETH o7 ZBVWHLEL £ 5.
ZOr ERICHER d/dzY = A(2)Y D 2z = 0 DFFTFEIZBISEIZ 24 O FEBFIC K > T—
BINCREOT2 e TEET. TROLBEEZDELATII A D Jordan FEHERID 73
FREAXDRMAIREZRET 2 Z IR DET. ZADLERT HARY MARIEIZZO
A D Jordan Ml DK ZX X, ZNODHEHMA27-2DDFRE DT —XNL5R%D, W
HEXORMAIREDH 2D 7 ~NVOHEN 2 R-THDTT.

XT, ZHZsRk L TAEER R RO ERFEAEZ RO 2 52 5.2 %
D HMER-Turrittin BlEwT 3. #8ME-Turrittin B 1X Babbitt-Varadarajan 12 & > T—f%D
BEREREEIHILRDL 2 IR TV B DT, %56 DFEIT » THIEER R A D RATER
MmMOEEZLEL XD,

G Bt R EBEOMIEREEE LT, g TZD LieTRERL T T, 47 GLy N
DHDIAB p: G — GLy ZEELET. R ZHRMATEEOR CL:], 533U
Laurent ffBUK C(z)) DWIThhre LET. DL ZERie: G(R) —» g(R) TH-T

ilocta)) = (o0)) o) (g€ GIR))

Zii7zTHOBEELET (BRIF 2] 2BH). 22T GLy(R) IKIE R OWITHEEIC
Lo Td/d: DERCER SN, EEZ 0 1E G OHEDABIKIFLEEA.

Z 2T g- RO TR Adz, Ae g(R) := g®c R % R LOFXHEIRE G #Ef L
Y, 20 oDBOZ# % ge G(R) 1T LT,

g-Adz:=Ad(g)(A)dz + dg(g) dz (1)

CEDT =BV LT

MEERRRDGEI T — VB TERATI A ZHBUTR D&t A/zdz IWEIRTE
£, MEERERAZROHLED, YUTD HEHER ) IR TR TE 2 205 D0, @5
7], Turrittin[12], Levelt[9]Z & 2l (G = GLy), % LT Babbitt-Varadarajan[2](—
fig DERAPEAREEE) I X 2L LTHIS A TWE Y.

Definition 1.1 (f84E¥). H € g(C((2) EXD LS 1IcRKSNd & %, &R-Turrittin-
Levelt- Babbitt- Varadarajan OI2ZERS, H 25 WIXHIEEEZ IR 5. Thbb, H

1%
k iy dz
Hdz = (; Hiz7'+ H) —
ERIN, B Hi=1,.. . kKIFFEHEMT, [H,H]=0,[H;, Hed) =0 %3

BED Ho 13— RIIXFHMTH 20X WDT, Hyes = Hy + Hyy THHHERS
Hy L BFEE7 Hoyy W2 Jordan 7R THBEF 7.

Theorem 1.2. JEXNWHEHA G 8t Adz (A € g(C((2)) WX LT, ERIKC(1) (17 =
2,q€Ls1) & C(t) LOBEHEIE H € g(C((t) BFFEL T, Adz & C(¢t) Lor—I 2T
HdtWZETZEeNTES.



FOEBIZBWT, Adz DVFRICREURDILR 2 LB 3 IR 2 2 % (¢ =1
DGR, Adzldz =02 FRPERBIHEERBERIICFE VWO ETS. DIRARTITARA
B ORRAIIEICRTEY LET.

C DREMER [ dz \ZW L CARY MATI e MHEN 2 ER T — X2 EHELEL LD, X
R MBI 3 WS v THEEEOER] 282557 —&XTY. LrLls

k
. d
HWz(ZEKWH%»E
y4

=1

CIRECATH H 2B 7 TR ICWATOWETOT, 2o REREGEHEOEE) %
BZTWLZIZLET.

H e g(C(2)) % C(2) FOMERL T2 L, MO H B3 H T L EAITET
Hol=DT, o H INTEL LS 7 Cartan Rt c g FHELET. TD LI
X LT g DL— b 22 ) i

g= td @ga

aed
EFEZ, BiiL—F RN c @2 —D2RDFT. ROBFEOM ) OFRETH 2 H, 13,
WL HIX G(C) DIEHZE 2T, t DREARTHE

D:={Xet|aell IZML Rea(X) =022 Rea(X) =0 DFA Ima(X) = 0}
WA TWB LT, IOWMIES
Iy := {a eIl | a(H;) = 0}
YEDET. HIZIE, G = GLs DA = {ey, ..., eq) BREENLREML— FRE LT,

H, = b (a,b,c FHWIZER3)

C

BEZDE, I = {eg,eq ERDFT. THhEHARBS ORETEWIRZ L 122 R
b, Introduction THIR L7-EGHHEOEEED T —2NEONET. TROEIU X H, D
EHEHEOEREELZR L TVWL A N TEET.

RD Hy_y BiEE 7% Weyl BHEFHT

Dp:={Xet|aellL ML Rea(X) =022 Rea(X) =0 DA Ima(X) = 0}

WASDTWB2 LELED. TIZTH BN XTITH,, #DLITANDZ RS
TEYIWHERELEY. ZLT

Hk,1 = {CM ell ‘ Oé(Hk) = CY(Hk,1> = O}

YERTDE, T H, & H_, O FREGAHE OERE*RI BRI T T.
BURFERRIC UTC Hy, Hyy v,y ... Hy IR L THIL ZERT 2 eBHKZDT, MHRE
L CHHIL— MR T DOEDEES DY)

Hk+1=HDHkD-'~DHQ

HESR, Zhh H2KO “FREEE OBEREOMEFERI IR ET. FLESE
BRI Hyes = Ho + Hyy OREFED Hyy OFEHPLIEZZEZ 22 8 I2R D E3TH, £
DFE Hy, ..., Hy IZEIDZIBRVE ST H2RHELDD FF. U LEOERD S A7 IETER
Hdz DARY "W ERESHEOERE L BERZHTDT —X e LTRD LS ITEEL
FL&D.



Definition 1.3. Hdz % FD X 5 A8 R $25. ZO & HDARY MLE
ZXfsp(H) = (ly; [Hu]) W&o TEDS. TIZT

Hgy: 1, oI, o --- 21
& ETED AL — R OMSEEIIT, [Ha EEETT Hy O
G(C)n,, == {9 € G(C) | Ad(g)(Hy) = Hivi = 1,2,.... k)
X BHEHHETH 5.

ARY MAVBIFRIERD X S ICTHEER L IMAICERT AN TEET. I, o
My, o 21l 2 g DHEFINL— FRDETEEDH], [ c g & 1, < IMITHFEL 7
I RELD Levi S REE LT, L; TH L RIS % G(C) DRI EEY L F
Lio. Jelh2FF T LT, [J]TJOL MFPLEE LET. 2oL &5 (1, o
1 ooy [J]) ZHMRART PILBEIERZ LIZLET.

2 ZAR7 FILEDORH ER{EETU

AREITIFARYZ PRI U THITE WO BMEZBEA L 9. ZHUIRDHETHMY 12X
OREEPOBILEXNIETHZ IR DET.

S = (Hk > Hk—l Do D Ho; [J]) %E%X’\cy ]‘ﬂ/ﬁgt Lij_ é 6&: P[k+1] wC‘;%/El\
{0,1,...k} DREIRERDEEL LET. Py KIRDHOMIIC K o THRIZHIEF
ABZEIWERELET.

aEA{0,1,...k} = Lhulhu---ul, %, T=(lh,....I,) € Py £ELZ L
WKLT, URTEEHICHREZT0e [ THREMELET. 22T, DEDRHSS
;e {0,1,...,k} WIRFDF SN, o oy o - D1y OFAFZ 1T, £ BNV,

S = (g [J]), S = (I; [0]), j # 0

YEDB Y, HETITHLT, ARY AR ST = (L), ., HESRET. Zh
EDEIT e Py ISR T BB O R T

— NI SERIIER OB R AR FE O D, FRRAS L ICEBD AR R
ﬁﬁib,%@ﬁSz@mﬂgd=<mgzﬂgda~:ﬂﬁﬂﬁm> ,,,,, EERE

T. TOBEBEAEDOMT = (T9)i10. a1, Py &> TS OB Z

ST = (S7")ic12...a
LEDDZENTEET. KT, mOMPWIE] ({0} U U {ka})aeD € Plrgsr) WCHIET
%S DFfrE S tEL ZICLTEEET. ZHUIRARY MV SITHIGT 5 THEE
FRRS BT L TE O AEER RS AERD ZARY MBI 5 Z & B HARFX
N3HDTT.

FOEFRTIZEZZDENCH LT, AUARZ FABIBHENTLESHEERH B DT,
EFNOERDESICFA—HLTEBZET. IRART PARIDIS = (5)ic12,..4 2D,
B0 <1 <1 < <1 =k %

@ _ @ @ . ® @ _ 1@
I, = Hzﬁzllu =22 Hzgi) Hz§i>+1 = Hzg“ Ho”,



i=1,2,...,deRBXIITEDET. IO Gy, DEPDRE 615;')“ X Glg%zgw X
e 6194@ PEFELDT, ZOEBMERICKZ2FIEFEEDRE L LT

-1
Si ._ ) L . L

EEZET. WOED DS, DEOMI, T e[, Py BTOBEOFTHELL 2B
5513, 13ST =87 LB hbrbxT.

Ltﬁof¥m$%éfﬁﬂﬁﬁufm,ﬁﬁmiofﬁahéx&7bw@®$@
PRHEHENTWS Z 212725 DT, 0 Hasse IRXEMR AR FLEIDFE S DI 7B
R, 2 VIFHICBITRR, BERR R e ERZ 2L ET.

Bl 2R, A7 MBI E UT ({e12, €34} D {e12, €34} D {e1n, e} D {e1n}; [0]) &F
25, UNo#HREITKRX 25 32, Z4Ud Introduction THIZR L 721 _E-$rH-H
oBILKR Iz h FHA.

({e12,e34} D {e12, ez} D {e12,e34};[0]), ‘

({e12};[0])
/

({e12, esa} O {e12,e34};[0]),
({e12, eza}; [0]),
({e12}; [0])

N

({e12,e34};[0]), -
aad ({e12, esa} > {e12,e34};[0]),
{{e12, eaa}; [0]{)6712}; [o1) ({e12, e34} D {e12};[0D) ‘

({e12,e34} D

3 KEFE

HRART AU L 2 OB L TR Z AT ER L £ L. TRERICIhR
P! FOFEHA GEHONEERERDOMITICK s TERT LI TESTL & 520
ERCZIEMICT 27201 LEfEZLET. DIEP LoROBREST, HHED
7o ow¢g D ELTBEET. S = (S)wp ZHRAXRZ PAVHDHE LET. 2O
Sp(H) = S L BB EHEROMH = (HW)uep € [[,cp 8(C(22) 23D 5T, ROEKTH
ZRFTTF =212 2P EOHA G EHRICBU 2 B R G AN EAE S B, SIXBE
HRFAGETH 2 VWS 2L Ed. HIH G EFROEHUT g EHD 1 B TRES L
ez et BHRIEHAEETH 2 ik, P! LT DICOARREERD g EMD 1 X

ka (a)
R ) e Sy I

WHoT, BT DR ER N ae D TOFEEIH

ka A(a)
D e € O < (e ) /Clal)

7T, LEVWHRZONET. 2L Opw FEERE HO O G(C[[z.]) fEFIC X 281
BEERLET. TOLEd ZSOERLIENET.

SEERIPE D EFRIZ Arinkin[1] Z S,



F72 S BHEENICBHIRRAIRETH 2 L WO DR TO LS ICERLET. HE%
BUMEEG U < [[p Crr LT, ce UIRIEANRIES 2 B g [l 1 TEXD
BV a@e) = Ale) dz DFEL, FED T e [[,cp Prosy KA LT Ve (ce C(T)nU) &
STDEBELEZ 2. THOB, (Vawe)er &S ORI o TREADNRILL TV
 GERDIEEABEZEZ TV L VWA T,

MRARZ PR S ORBIATRENE, Z OREERF R AN DBRT S™8 DHBIATRENE, 2
LTS OPEEIEBATRENE, DFEMETH 2 20 5 RO TR KEFREIC X - TIRHE 1
FL.

Conjecture 3.1 (KK [10, 11]). S = (Sy)acp ZHRARZ A EDIHE T 2. ZDLE
PR AE.

1. S FBEHYEBIATHE.
2. S FAFEm I B BRI HE.
5. Sree (ZREHI R BRI AE.

G =CLy ThoTT7 7tV =87 X —R—DEBD 0~4HDIFEIC, ZOTEN
ELWZEDPKREHFIZXE > TRENTWVET (Remark 6.2 [10], Remark 5.7 [11]).

4 RBEFEFEROTEYDHE

HIETO T 2y 732570 EHOMEI-> T GEBEDEY 2 7 1 ZEMOEF %
EBEZBDEWV) DOPRFEOHEAKIET L., ZOHEHE LT, AHITREITIXGERDRE
FREIREEZ T X b 54 X3 572H1Z, Boalch[3] 127256 > THHEFOFTH Y] D #lE & v
SBDEEAL, ZTORMEFHEYL L TORRIZOWTHHLET.

EH 1.2 TAREIICGERD T — AU X 2 RIAEIZER 1.1 TH 2 =R
Ko THEINET. THROBEEE Hd 1 LT, 207 — I EH#E

Op = {Ad(g)(H) + dc(g) | g € G(C(2))}
D3 G H#ER D /TG RFARE 2 5 2 £3. —75 Boalch 1 [3] T dg(g) ZFTH Y- 72LL T D
EOLHBEEZEAL X L. —fRIZ g e G(C[z]) iTx LTI,
dc(g) € 9(Cll=])) (2)
YTEBZIehs, [EERE

Hdz = (Z Hiz i+ H) % e g(C((2))/C[=])

v g(C((2) 2 &EHIERITB Y- =8B T 5 £ AT 2 2T, g(C(2)/Clz]) LTo
GC[z]) Mtz £ 2 2 £ R (2) £ D do(g) HHDHTBYI SN T,

On = {Ad(g)(H) [ g € G(C[z])} = g(C((2)/C[=])

NELNET. THBARDIEZIEER Hd: OFTBYIDEE L FFREL & 5.

Z 2T G(C[2]) PR ERHDOATIEEE 2 % Z LB TE, TLOF —IEHHE Oy
I D HHEEDSHMILINTVWET. $/ Hdz DIEHEBRIL L WS L TFTIE 04 1T 5
TH — OB X BABEB AR TR NI A X TEBZZ RN TWET,

AEEN [5)




EHIFTHY D HEIIML R TR 2 £ 5 ICHARICHERZRXIC Lie HORFEHHEL LTD
BEERb £ T, leZog ITRLT

Cle]s := CL=] /")
LW CREZEDFT. 612
Clz7Y, := =[] /C[=]

ELTEA L+ 1oz b ERIEZIT 50 - 2B A RO EME2E X 5 &,
CHUTIZBERIZ Clz], IMBEDREEDAD £7.

FHCHEEIY Hd2 32 DS Hdz e g(Clz ™) EARTIENTEET. IHICZ
DrE JERERTV VT

gl (Clz]) x gly(C[=™"1) 2 (X(2),Y(2)) = Res.q (tr (X(2)Y(2))) € C

I2XkoT

LE—HTZZeT
Hdz e g(Clz])"

¥ Hdz % g(C[z]p) DI ZEMDILIE e BRI ET. LizhoT
Op = {Ad*(9)(H) | g € G(C[z]x)} = a(C[z]x)"

Y0, FIHYIDHE Oy FHERXICESE Lie B G(C[2],) ORMAEHIE Y L TOMKRE
oz enbhb g,

5 P'LOREBREGEHROES151ZEM

HifiFERIC D 2 P! OFGREBTERET, fiHEOLD 0¢ D LTEBEXET. 2, =2—a
TaeD%ZEHLE L7=P ORFTEEBEBERL, H=(HY)wp £ LT&rae DTD
AR IEREE OMEEE L £ T,

ZHHYI D WIE Oy ERFEFPLEE L THRICERY Y L7 74 v 7SR RS
ETH, ZOBERRIEDAL 0w Oyw — 8(Clzalpw)* V& G(Cza]x,) fEF O ES &
e i E<HLATVWET. ZITEXLIKHAREE g — g(C[2]r) DIHE
% g(C[2]n)* — g* 1 ZFE—H g(C[2]p)* = 9(C[z]x) D N THEE 4

Res.—o: g(C[2']x) 2 X(2) = Res._oX(2) € g
PHEZZZICERT S L,

*

p: O = g(Cz71];) =% g =~ g

FGO)ERHIC K 2 EBREBRE 52222 DET. ZHUCE>TH= (HY)4p
AR TIIEZ R [,.p Onw O G DIAIERIC X 2 EBI R 54

HH - H (O)H(a) 3 (Xa)aeD — Z K (a) (Xa) € 9*

aeD aeD

5ZZ T Oy = G(Cl2]p@)/G(Cl2]k ) g AHRLTWET.



W3Sy LT 4w 2
My = g (0)/G

HREZDLIENWTEET.

DIV T 4w VENTEBERER pyo DEBEHBRE KT 226, X
@&5&@i@g@ﬁ@ﬂ1%ﬁ,?&b%ﬁ%GzﬁL@ﬁﬁmﬁh@WﬁZ&&T
ZEMTEET.

My = g (0)/G

:{ aaeDEHg (a)

aeD

(a
{w—zz

aeD 1 0

D aep Res.,—0Xo = 0, G
Xa € @H(‘l)a aceD

aeD

) A(a) /G
ZfO(Z )’ E©H(“>’ a€D }

Z 2T My = ug (0)/G TE GIERIC & 2 FH M efli% £ o T0 30D T, fEHORENE
EOWTLRTAR Y bELTBEET. GERVL = Y, Y, A de 0BT

205 0%, FMAY 22 TERAKICET g ORIHESREIZ g DA TH S, L5
SMFTEDZZLICLET. Z LT (1t (0)" T ug'(0) DEHITRAD 5 i 4
ERTIZLIWCLET. T2 R FNAERGmrS, G20l Z THl-7=G/Z OfF
HEEE»OWMBEHCTHZ Z b 2dDT,

My = (g (0)"/G
2L TP OB GEROES 151 TBMEMRI LIcLET,

6 BERERDIAFEECRIETEER

RETTIHIEERICH LTI AEE L HIMHER XN I EEZEAL, GEHGDEY 2
7 A ZERDRIT L DBARICOWTIHL £ 7.

7R T A HETE, )
_ dz
Hdz = (Z H;z 7' + H) ~

i=1
Zzeh, (ly o oy lh]) ZZDARZ PARIE LET. 2Ot ZEHEE Hdz OF
BEEZ .
Irr(H) := Z(dim G —dim L;)
kiofﬁ@i? ZZTC L 3HBWERR R P, < G O Levitifie dob L ET. Z

U G = GLy DA D/MA-Malgrange O NHEE B DFEMBL Y 72 o TWE T,
X5 @T%i%%meW®5$§§%

0(H):=dimG+hr(H) —dimGgy

TEDET. ZELGrIEHDOGRBIBEEMHIHEZDODLET.
CEELER RO H IR




FHEEES § FERBRAFTNBZAZRET LD, RICHIMEER E Xidh 3 KB 2R
ZEPEALET. Wiffio X5 ICADEHEELOMH = (HW),.p 2EZET. ZOL X
H OfIis#~

rig(H) := 2dim G — Z S(H@)
aeD
WEoTEDET. ZHIG = GLy DHE D Katz DRI OB LN H 722 b DT

IO DRERIZEDSTH HIEEFD ZARY FARDBIRIFT 2 L IHFEREE LT
BEET.

TIEZ I, INODTERLL L GEHROEY 2 74 Ot DRI
WTHHLTWE (7.

Z DT DIERKICERE Lie B G(Clz]y) PHEEICOVWTALEFHLTBEEL x5,
Clz]x EHE—fR A 77 A m = (&) Z2HEORFT CRERDT, BREE: C2], —
Clely/mP) =~ C eBL b, WEFGI: C— Cl2], 3Z0YIWE52ET. Zhih Gic
X3 2 G HE TR

1 - Kerm, » G(C[z]x) 2 G(C) > 1

iy

G(Clz]x) = G x G(C[z]x)1 (G(C[z]x)1 := Kermy)
PEONFET. I THERDE KT G(Clz]r)1 D Lie TR
9(Clzlx)1 = g ®c mP

rRDETE, mb) BWEBAFTATHBZ IS, gCl2]y) BHEELe B, XoT
G(Clz]p) 1 FFEHE Lieffe 2 D 9. L7ehio T, 188EBDIFEZ 52 % Z 226 G(Clz]p )
DILERD XS WCHRIICEL 2N TEXT.

Proposition 6.1. g(z) € G(C[z]x)1 I

g(z) = eXit X2 Xz (X1,...k€0)

DB —EBHICEL 2N TES.

Z OBRAD & G(C2]i)1 KB % Hdz OFEEHBERD XS5 2 obT e
TEET.

1

Stabamxﬂkh(ff)=:{ex%zngKJz”‘...€Xu

;&eg} (3)
ZDZehHITBYIDHIE Oy DRITH § FERTRD LS ICHAEINET.
Proposition 6.2. XD EHXHIKIT.

dim Oy = 0(H)
Proof. ZTNETOE ST SIS OTAEAEZ G2 TEEE3. LoFEKX(3) &b

k
dim Stabg(c[z),) = Z dim L; + dim Stabg(H)

i=1



&725DT,

dim Oy = dim G(C|z];) — dim Stabg e, ((H)

=(k+1) -dimG — (i L; + StabG(H)>

i=1

k
= dim G + ) (dim G — dim L;) — dim Stabg(H)
=1

=dim G + Irr(H) — dim Stabg(H) = 6(H).

FIRRICEY 2 74 ZZRIDXITTDRD XS ICEHATE X 7.

Proposition 6.3. fFEEOM H = (HY).cp OEEOFIH g DFBHMEL T g, ICE E N
3%, 2oL EEHERX
i = 2dim Z — rig(H)

DIRILT 5.
HIEICaxX ¥ b L XD I2 6 AERPHINERBIZA RS MABD ARG PTESNE L

7z. L7z23-5 T Proposition6.2, 6.3 DFERXD» 5 X7 MBI G #Hi D /R [RZASES €
Y a7 A BEDITTEIRES 2 BEREALRTH L e BRTINET.

7 REEZEEREORITE AR FILEORIF

F2EITARY MIVENTH LTI WO BIERERICER L F L7 $Wf@%ﬁ%
RIFIEEEOER e LTERHLET. 932 =02 0 ERRES e EZ 25
o JFAEE

k
Hdz = (Z Hiz™" + H) % € g(C((=)/Cll=1)

=1

ZEDET. ZOLZF =03 E+1HICHHRLAZREARLT, ZOMBZBHITS
5ZrBEZEL LS. ZORDICCHIITHUTHERES {0,1,...k} DOEI» O EF
5HARGEEMEZEALES. I Ihu - ubzﬂmw.k}%“ﬁtbf Oely ¥
LTBELT. 2O =

C(I) :={(ao,...,ax) € C**'|a; = a; = I s.t. 4,5 € [}
ELTCH! DR EEZERLEL x5, ZHUT K o TIEHI
c = || c@

ZePr+1]

ZEONET. ZIZTIL,J € Ppyr KALT

C(Z)cC(T) =
DAL T B Z EITIERLE Y.

N
Q



T, c=(cpy...,cp) eCH 2 L+ 1ADRDEA L AR LT, BHUER Hd: DX %
RDESIWCERLET
Hj, Hy_4 Hl) 1
H(c) = + B .
(c) ((z—cl)---(z—ck) (z—c1) (2 — k1) z2—c1 ) z2— ¢
D ZceCHLIIH LT ce C(T) BRB2AENL: Iy u- U, B7/Z—DEED, ¢
BREEGE LT

{co,...,cx} ={cpy,- - cr}

CrEORLZEOESLRDET. LD T BN REEZX 5 2T,
r |I‘|_1
X Hj,(c)
H(c) = L
JZ_;} 1;) (Z—C[j)V'H

LHob LT, MROF R E H(e); = 2,0 224, v HEEL x5, Cor &R
DRI H(c) = 3 (H(c); &, BH2ETERLIEARY MM sp(H) DT € Ppuy

WX B BT
sp(H)*

I
—
2]

o
~—
X
~—
<

é

3

.....

WERD XS ITHIR L F7.

Proposition 7.1. H Z NI, sp(H) B ZDARY My 32, FHiAzat
PRI BAER RS By < CHLDFEE L TUURDE D 32D,

1. $RTDIRMLTCI)nBy # J.

2. ce O(I)nBy 251X, WA H(c) =3 H(c); DEIDE 2 = ¢ ITBIF
ZARNIGFEEETH > T, ZDARY P AT LT

DAL D ALD.
IHICZDE H(e) 3 M ER&ERbET.
Proposition 7.2. Z € P11, c € C(I) "By WKN LT, #0080 H(c) =3 _ H(c);
BUTD XS IAERZRD. TibDB
3 o(H(c);) = o(H)
j=0

DIALT 5.

FkED & 2 I3HEHER O H = (H)ep € [[ep 8(Clz; i) KHLTREZ 2 Z 2D
TEEID, B HY OEHEN S AEREROZ h 5, HE2ROEH LRI EE
oz ek £7.

Proposition 7.3. ce By :=[[, ., Bpw &35 &,
rig(Fi(c)) = rig(H)

DIRALT 5.



8 ETHOMErASOFA

AECIEFEHDORBE (Problem 0.2) IZ—2DfFE* 5.2 % Z & T, KEDTH (Conjecture
3 WBRTEDZ I L R EHLET.

R SEHIE L £, HifiE TOERLLRD XS5 THY D #E Oy O
EREMRT 2P TEET. HBOMED HFFMTAEK LT, 2IHh5IHITX
DEIFTBEYIDHE Oy OB EHK T 22N TEET.

Theorem 8.1. (/5]) ms,: Oup, — By Z L TED Oy ODLFETS. ZDLZce
C(Z) "By 2B 27 74 N—mp (c) &[]}y Onee), PIEZMESLAMTH 2.

ZRY N AR DB < s fFASHEE O BT

(Ck:—i-l @B%E
I
{0,...,k} D7E

158D HuE D2

E512, D=7 (ko +1)-a; ZP' DEHET L LT, fl#DED DIED 5k
B D BERBCFE CICEENR TV LET. H = (H)op| € [[oep 9(Clz; k) %
%iae |D| TORDIGEEREOMHE LET. FREFD T XA —X -2 LTBy =
[Tocip Buw 2EA 2, STHYD PEOEHOM [0 p Opw s, &5H

By - H Onwp,., — H Br-

ag|D| a€|D|

MDEDEISICERTEET.
IOHWHESHITEALLITBU D HEDOEINEER tyw: Oyw — g° DEE DK
TRIENTE, ZOEEIN-EIFEEGHROMIC L > TG RZERER

e || Omp, > Xadapr — ) HOyw as (%a) e 0"

ae| D| a€|D| @
PRI 2N TEET.

Definition 8.2 (E¥ 2 7 4 22 M OZE). L TEDLLEL S NEHREHRD 0T
DENMES (uup,) H(0) £ 2D GLEBD ((prmg) H(0) TR LT

MHBH = MITI}IBH (0)/G7 iIfI,IB%H = ((MH,BH)_1<O))St/G'

tﬁ@% Z :T%ﬁf?g TBy - Ha€|D| ©H(a),IBH(a> — BH - J: of%ﬂ?ﬁ TBy - MHBH — BH’
Ty, Miyp, — Ba ZENETNERINS.

RDTEHHEHDOHEIIH S 2 —DDIEETT. My # J L LT, mpy: Mg, — Bu
DG% By LBEET. £ LTy, Mg, — Bu % mp, 2 OFHESN25H L LET.

Theorem 8.3. ([5]) My # & 3 5.



1. FAZERE My, VEESEBEK (orbifold) DRSS %D

2. Bu 302 & CH OMENZHIETH 2.

3. W ms, : Miyg, — Bu ERHIDASTH S,

4 Tlaeyp CH*t 2T OBEIE [, p C(Z(@) 1ZMKZEM By ¥ TRVRD D 2FFO.
5B M, ML 0ERESZ 5. Thbb

My = 721 (0).

By
N R RVASR
6. EHD ceBulTHL, 774 5— 3L (c) I8 GO EY 2 5 4 %20 My, OB
R EEGEERATH S,

COEHD 6%, FHEEREADOBITICE > TEONS, EFEEEROBITE L TR
K7 MVRIDOBYT, OME EBENIZ GEMDEY 2 74 ZRBPEEINTWE %
RKLTWETS. $7, ZOLROUN s: U > Mg, 23, BfR GEROZLEEZ 52 5
XD ET, EHD 2L 3 X W RFEGETREREHEEEHAT AT, 20X

RO DRI ETENE ZEDRIESINET. Lo T, TOEHEIDAXNEZSZ
ciZikh 9.

RUETE O H % R AR R A RO BN G #E VA IS LT, K&l 3 G#
ﬁ@?ﬁﬁgﬁf (VA(C))CGU; Uc BH Z’)iﬁi\'\‘fﬁﬁj— 5.

1. V) = Va.
2. EBD T = (') aeip| € [ aeip) Plharn)y €€ C(T) nUIRFILT, Ve i3
BERIT, ZoEHEFIEH(c) & —33 5.

TIRDBRBIED T8 I2ixh £7.
Corollary 8.4. KED T Conjecture 3.1 12BWT, =M 1 & &M 2 13FMH.

F 1M 203G 3R EL Z R IZERISHALNLTY. IHICZ I TROHEERZ BV
HLTBE%7.

Theorem 8.5. ([{]) G = GLy D&, &M 31350 1 2EL

CODEMIZG = GLy K GERDEY 2 7 4 ZEMDBHERRIKTERTEZ b,
DL — P ROHAEDODENFEMEZHVWA Z L TRENET. Lo TUEZEDES
¥ G =CGLy DEBEOREDTFHEOBRANESLNF T.

Theorem 8.6. G = GLy D& Conjecture 3.1 13ETH 5.
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Blow-up fXE D ER & 5

EiE ER (A RFEBURRER )

1 FLC®IC

AT, blow-up BRI 2 B EITR 2 B8 3 %, Blow-up (REDERGRIEE ICD
W, 28 51 BREE S VRO T 2B W T, REPUERIHIA R BB Thlow-up XEL
DORHERGR) LT 2 TEREZ TV, 1970 40 & 2000 FARICE 2 BB O E M % B - #f
MENTze A/DFRTIE, ZORNZEZIT, & D DY 2010 FRLUED & EFEITH I TOFEE L
Hbhe LT, MBS D> TE-#PICEAZE X2, 30X Tblow-up I D ATH#ER
Al ORI I 2B T C %, 7238, blow-up fRED Gorenstein 12 LTI,
567 MREES VAR T LBV, IWBEHEKRFORMEE AN ZH#HH [T e —
7y IREOITL Y 2 &4 IO T) ORT, BRI ORRINZHE 5ATW3,

E#& 1.1 (Blow-up f{#). A4 Noether B8 AND A 7 7L TR LT
R(I) = A[It] C Alt]
RI(I) = AlIt,t71] C Alt, ¢ 7]
G(I)=R/\(I)/t7'R'(I) = R(I)/IR(I)

ERED, FNENA T 7N T D Rees FREL, LK Rees L, FEFEREIR 2 W, Zh 5 ZHE8FR
LT, 4 771D blow-up REEMERT, HL, ti2kD, A LORETLERT,

Blow-up fXEUCEEF 2 BEARREIHIZOWTIE, [B, Section 4.5], [64], [92, Chapter 5], [95],
[09], (112, £ 3 T 2 Hi] Fr Il v, REBERMEOBIR T, Rees REAR(D) 134 7
T I DERTC ar, az, . .., ap 2> BEE 2 HHER Spec A --» P D 7T 7 OGO FREE
BERE LTS L, RICERZHNT 29 A ¥ — 4 Proj R(I) 1 Spec A D I D3ESD % H(57
AF— 24 V(I) I o7z blowing up 252 % ([21, IV.2 Blow-ups]),

—77, "HRERGR D XARIC BT 2 Rees RELD IR, D. Rees 12 & % 1956 FDHFFE [79] 12
M2, Reestd, EFRIZIE Rees RKEZ Db DT <, K Rees REGZEA - FZE L, Krull
DR EMDEER D I RIFEAZ 8RS % £ 12, Artin-Rees Offi@EZ R L, 0z HWT
Krull DHIEA 7 7 VEHDRREH%Z 5 2 72, 7238, Artin-Rees D@D LFMIEI L T, Rees
WERD X 51Tk ZHAL TV, Rees HE1E 1954 FFORF R CRUC YL Z S T Wz b
DD, G LTHERUIDIE 19555 HICR > Th B THoTz, & AP, fii [9] 3
HAR X7z 1956 FED F X1 Z2 DA, E. Artin IZHATHE I N HEERICBVWT, [
—DHMEMEREHR LTz 205, ¥ 6D TN X 2 OEE % K HHEE A )
W2t 24, TZUIAA S DT Artin-Rees D TH 5| LEFZX 22 iBRTW3 ([82, pages
563-564)).

2T, A LOZIERIR Aft] & Laurent ZIEHRIR Alt,t 1 ZHARRC Z-XBER e AT L, %
O DIREAFFITE D, blow-up RIS Z-REFROMGE 2 FiD, BlH

R(I) =PI, R() =PI, ¢oy=r/m
n>0 nez n>0

"Rees fREID Z ¥ % blow-up RELE MERTRED H 3. £z, (A,m) ' Noether JFFTERTH 2 HEIIE, 47
7 1B % fiber cone F(I) = R(I)/mR(I) = @, -, " /mI" b blow-up REUCED S Z LMD 5,

1



TH5, HL, n <0 LTIX, I"=AEDD, FHT, AIZRI) ODIREMAFTH 5,
F/2, AT 7N DERIC ar,a0,...,a0 ZEXD, I = (a1,a9,...,ap) ERIL

R(I) = Alait,ast, ..., agt]
DD ILD, HE- T, blow-up RE R(I), R/ (I), G(I) 134T Noether BRTH 5,

2 1.2 (|92, Corollary 1.6, Remark 1.7], [92, Theorem 5.1.4, Proposition 5.1.6]). Noether
BRADOKull Xyt d =dim AFERE U, I # A CRET %, RDFEIRMED LD,

d+1 (3P €SpecAst. I Z P and dimA/P =d)

(1) dimR(I) = { ) ol

2) dimR/(I) = d + 1
(3) dimG(I) <dTHH, (A m) D Noether J{ATERZ 5, dim G(I) = d

FE 1.3. (4, m) 2% Noether JGFIER TR WIHEICIZ, dim G(I) = d F—HITITHAZ L 720,
T R=k[X,Y, Z) 3Kk LoZEARe U, LS S =R\ {(X,Y)U(2)} & X %,
ZZT, A=S"TTR2ELt, AlZNoether RTHH>T,m= (X,Y)Atn=(2)AFE A
NOWKA F 7L TH 3, FRZ, htym=2>1=htyn %3, 1-T

dim G(n) = dimG(nA4,) =dim A, =htan < htgm < dim A

HEohd,
ZZT, R4 =@, M B, RUI)+ BRUI) DXBTEDA TT7NTH %, &E

ProjR(I) = {P € SpecR(I) | P \&XEUT &, R(I)+ € P}

EZDHE, EHE ProjR(I) ITIZAF — L DMEDR A5, BARLY f: ProjR(I) — Spec A
% Spec A DEARE V(I) ZHD & § % blowing-up & M., Noether FIFTER (A, m) DFFE
fRIE 20X, TG f - X — Spec A TH-T, X IERRTH Y, f OFKIR X\ f~1(m) —
Spec A\ {m} BFEMTH 2 Z 2D ([112, 5 3 FH 2 Hi]).

Blowing-up (3R ZAHOEARNTFIETH D, 2 ORI DWW T LUK,
RIBHENPEBEINT VS, — /T, LNOBEBKIZRAF — 24 ProjR(I) DEXREFIRTDH %
R(I) OEGRRIEICD 5, BB, AL HAVIE, TLO@ED TH 5,

HEDER
[Blow-up REDEGERIMEE Z TR 5, j

Blow-up R DBRIEIE 2 TS 5 ET, DT OMREDEY) 2R E I NI RTH 5, KT
Tl&, XD Noether RIFTERDFEE 2 161F & 3 2 BREGERTICHEF 3 %,

~ Noether BFRIRDMEE ™
o FHIFFIR = 2R XIR = Gorenstein )R = Cohen-Macaulay ¥
Buchsbaum B, R¥IHJ Cohen-Macaulay B&

—
o FHIFER — AMHFESN = Cohen-Macaulay IEFER
N

o [EHIFEATER 59 F-IEHI}R = F-AHIR = Cohen-Macaulay IEfR¥R




B UTIERER Y —RBIHRICES K TH D, 8 2 TR R AGRIH A, 28 3171
IEEEOHR A (REZEDOEEICIE, HEiEERIE Cohen-Macaulay BRDUERIBIR &\ 5 REDHE
TH?) DERETDH 5,

BETIZ, blow-up fRE D BRMEE AT X ATHERER O HRZAVERED 1 D & LT, HEE 7 2 il
MLZ R LATE > TV B8, 1970 FFRPIXE E TEZE AL, Rees (REDERGRIIEE OIS
X, WL 0D EMRH BRI AR 2RV T, iGN RBEERORRILIE R BER EICH -2
(106, page 6])o LA RIZ, ZDREHIEBNT 2,

Bl 1.4. Kk EOZIERER A = k[X1, Xo,..., Xy] (d>2) NIZBWT, RETLTERZINS
A 7_\\7}1/[ = (X11X27"'7Xd) }‘E%ié Z, y_\'o)lﬁl;_}lg

X X, - X
R(I)%k[Xl,Xg,...,Xd,Yl,Yg,...,Yd]/12<Y11 Yj Y;)

DD, HLU, I(M) iIZ& D, 75 M @ 2 Z/MTHNRBERDERT 24 T 7 V2K,

HIra 2BV T, Rees KRB R(1) 134THIER & L THLN, ASL (Algebras with Straightening
Law) OPSHATHEZ 54579 ([B, Section 7.2]), #HEEFRAIHED © DEENARETDH 5,
Z DIRIFZIHNIRD Segre 8 k[ X1, Xo|#k[Y1,Ya, ..., Yy THH D (|63, page 197], [8U, page
653]), BEEL0 DR k12 LT, — BB A ZER B LT 3B SN2 ([7, Theorem
(7.6)], (1], [93, page 1166]). BRMEEICHZRAIT 5 &, TD R(I) I& Cohen-Macaulay [FRHI%&
BMTHoT, Kk DIERD 0 TH 255 1T HFMHERA (103, (6.1.5) Corollary (b)]), IEAE
BoGE I F-IERIRF R ([B, Theorem 3.1], [69, Theorem (7.14)]) £ 72 %, DL EDHE
1%, Rees REBDZHRZHHE D 5 DIRKITMET 2 S0 RN RTH 5 Z & 2WEE-> T\ 5,

f 1.5 ([, Proposition 2, Corollary], [97, Theorem 3.1]). Noether B8 A NDIERIF2ay, as, . . .,
ag € A (d >2) WHLT, I= (al,ag,...,ad) Bl

a1 a2 e aq
R(I) =2 A[Y7,Ys, ..., Y,/
(1) Y1,Ya, ..., d]/2<Y1 Yy . Yd)
DD LD, HL, A[Y1,Ys, ..., Yyl ld A LOZBIEAIRZ KT, 5T, AD Cohen-Macaulay
JRFTER7Z X, FEED n > 112X LT, R(I™) 1& Cohen-Macaulay R T & 5,

B, T35 OFERNZ, JFERSCIMNC S | (06, 1.3, a 1.4] IS S T\ 5, 7238, ERIF
DERT 24 77 I OREFEREERIE A/T LOZERBRCFARITH 3 ([6, Theorem 1.1.8]),
IERNBIDAERR T 2 4 7 7 LV DOFEDILK Rees RECRREMEXRBERICEI LTI, [60, Section 4],
[07, Theorem 3.2] ZZM S L7210,

2 Blow-up ft#® Cohen-Macauay 1%

Blow-up fR&® Cohen-Macaulay PEfEHTIZES LT, (106, 25 4 8, 25 7 8] 125El 7 5dab D3
5, FEEZHIUL, Cohen-Macaulay B8 & W5 0, F. S. Macaulay & 1. S. Cohen D
FITHIK T %, 1916 £, Macaulay 13 EOZIHATRIC BV CIHRESEH® (the unmixedness
theorem) 23 D 7D Z & 27~ L ([I1]), 1946 41213, O. Zariski D4 T & - 7z Cohen H3IE
QISR D5 E W REBDIN D 3D Z & ZFERH L 72 ([14]), M k% &I, Cohen-Macaulay
RIZFEAEEH 2 M- TR L TER SN, T, Noether BRI LT, Krull 7T
EIRE (depth) 25— T2t LRfEL 725,

BUF, (A, m) & Noether RfiFRE L, d =dim A &5 5%,

IMIT A-MBEE T3, ADITDH a1, as,... a9 DS M-ERIFITH B 1%, FED 1 <i <dIZHLT, a; 1&
M/(al,az, .. .,ai71)M L DIFERTFTH 07 iR (a17a2,- . -,ad)M # M Ziile3 2 Z2W» I,

3Noether Bt A NTIRESEHDBED 2L, A TT7 A I D n=hta I HOTTERINZ L& TED
PeAssaA/TITHLT, htaP=nTH2ZL%ZWVI,

3



E#& 2.1. AP Cohen-Macaulay IR CTH 5 £ 1E, dim A = depth A DD LD & TH %,

Noether JEFiERAS Cohen-Macaulay TH 3 Z & &, (TEOERWDIERIF % LS Z ¥ 13 [FE
THD, £721DTHIEAFIZ R T X5 RERZEDIX, ZDFEATERIILA T Cohen-Macaulay
BRTHs, B e ZIZNLT, ADMKA 77 mIZBT % « KRrakEn ikt

H}, (A) = lim Ext!y (A/m", A)

#EZ 5k, X
dim A = sup{n € Z | H. (A) # (0)}, depth A =inf{n € Z | H. (A) # (0)}
23 D 2D ([B, Theorem 3.5.7]), - T, A Cohen-Macaulay BRTH % Z ¥ ¥ RDEA:
Hi,(4) = (0) (Vi#d)

WFRMETH %, #3 L D RATERE1ER 5720 Noether 2R A 53 Cohen-Macaulay TH % & 13,
R D p € Spec A 1T LT, RATER A, 25 Cohen-Macaulay TH 2 Z & L ED %,

Rees A& D Cohen-Macaulay HEENTICE VT, ERRZE %2 R7- LD, Hochster-
Roberts IZ K 2 XDHITH %,

5 2.2 (|61, Example 2.2], 34, Example 3.4]). & k L OERFREIR k[ X, Y]] D& ER
A = k[[X2Y, X3, XY]] & Cohen-Macaulay TiZZ\WO23, £ 77V 1 = (X2Y) BT 3
Rees fXEU R (1) 1& Cohen-Macaulay JRTH %,

Bl 2 DlFRs & LT, BHD Cohen-Macaulay MO BRIEM K12 HUA HE TRz RV &
DHES, Hochster-Roberts 236l 2 238/ R L7-HWIX, ZOFHELRIERH T2 Z 2 I12H - 7223,
Bl 22 WA DB D SBED T HRBIZE T, BB, HEEERD Cohen-Macaulay TR WHET
HoTh, 4 T 7 NEHEINTGENIEZ, Rees [XED Cohen-Macaulay B 72 D182 Z & 2R L
TW3, EE THREHEICKD, ZoHREEBICHESh, RogHe LTEbE iz,

I 2.3 ([83, Theorem], [aY, Theorem (1.1)]). XD 2 X FEMETH 5,
(1) Al Buchsbaum B2 TH b, 2D H, (A) = (0) (Vi # 1,d) TH 5,
(2) ADEEDOERA 77 A8Q 12X LT, R(Q) 1 Cohen-Macaulay BRTH %,

FREDEMESZGEDR D IO F ADEROEZRA T 7L Q EEED n > 1ITH LT, R(Q™)
& Cohen-Macaulay 2R TH %,

EF 3, FHIC KD, £ 3 HEEERD 2 0T Noether RFTEIBDSGEITREN, Z DK, £
BE-FHICK - T, MR05E 2 &0 LR OEH DA — b iz, 728, ADSEEE 2
® Buchsbaum FIFTERTH > T, depth A >0 TH 3 L RET 5 &, Hy(A) = (0) (Vi # 1,d)
23 D LD ([33, Theorem 1.1])o FFIZ, il 212 BI 28 A WTEM 23 DM (1) 2z 3
DT, BRAT7NVI = (X2Y) 2B % Rees % R(I) 1% Cohen-Macaulay 3R T %,

EM OB ZHE A2, MRA 77V m TR % Rees (VO IRBIEMNTIZ, B35 o458

THHETH D, ROEHED, FRl, Rees REUD Cohen-Macaulay 4 12BI3 % T#2#E- NHD
EH) THD,

M # (0) IEMRER A-IBEL L, s = dima M 23 %, m DILDF a1,az,...,as B M ODERTH 5 L1,
La(M/(ar,az2,...,a5)M) < co Zfii7z3 2 &V I,

5B A3 dim A = 2, depth A = 1 TH T, BEHE 2 ® Buchsbaum FFERTH 3,

SEHRTEREINEZAL TFTTLDIETH 5,



EIE 2.4 (|50, Theorem (1.1), Remark (3.10)]). (A, m) i& Cohen-Macaulay J&¥gR, d =
dmA>12 L, [ ADmHERL FT7NET 2, ZOLE, RD2HKMFBRATH %,

(1) R(I) & Cohen-Macaulay 2R TdH %,
(2) G(I) %% Cohen-Macaulay BHTH D, 72D a(G(I)) <0 TH 5%,

2T, M=mR(I) + R+ &V, R(I) DXRBUTEMARA T 7 v%RKL
a(G(I)) = sup{n € Z | [Hix(G(I))]a # (0)}

&, GI) D a-FER" (a-invariant) #F T, HL, [HY(G)], &, KEAT = FFTak
T Y —MEEHY(G)) D n RERED % £ T,

FERL A X, (B0, Theorem (1.1)] IZHBWT, KA 77 N DEGEITFEH S N7z 23, FIERSLD
[60, Remark (3.10)] \IZBWT, [FRRDHRIC L D, mHBERA T 7 LOHEIREINS Z &
NENRIN TS,

il 2.5. (A, m) & Cohen-Macaulay RFi¥R, d =dimA>1 ¢35, ADERATT7L QI
F LT, R(Q) 1& Cohen-Macaulay B8 TdH 3,

m-HERA F7V NI LT, I? = QI Zifi7e T ERA T 7V Q CINFET 5% 561F
G(I) %% Cohen-Macaulay 38 2> a(G(I)) <1-—d
DD Do

Bl 2.6. (A,m) 2 XITIERIRFTER, T I138PAL m-HERA T7 02T 5 &, R(I) X Cohen-
Macaulay BT %, EEE, HEAZEL T, A/m = co EIREL TRV ([B0, Lemma (3.8)],
(02, Lemma 8.4.2 (9)]). RIRAEDMETH % 2 ZriERIEFER LOEEEAR m-#ER A 77
X LTI, J. Lipman-B. Tessier OEM ([70, Proposition 5.5], [64, Theorem 5.1], [686,
Theorem 3.1)) I2 &k D, I? = QI 27z TERA 77V Q C I HFIET %, T, B LA 5
5, R(I) % Cohen-Macaulay B & 72 %,

DLk @ ez &b, BRI 208 E 4 Cohen-Macaulay Rees [REDFIZ MR T 2 Z &
MA[EETH %, BB, TP IZB VT, Rees REUR(I) DWEDFEFEREIR G(I) £ Z D a-
TEBEDOZEHNC X DRI N2 Z e R EN, RIICHE > THRD Rees REMFFLDIEE D 1
DY RoT, BHETIX, EHEZ RO L5 IHRENT VWS,

EIE 2.7 ([96, Theorem 7.1]). (A, m) IX Cohen-Macaulay RFfi#R, d = dim A > 1 ¥ 3 %,
I (FABFADATTINTHoT, ol >08F %, TDLE XD 25EMHIIFAMTD %,

(1) R(I) i¥ Cohen-Macaulay BR T ® %,
(2) G(I) %3 Cohen-Macaulay 3R TH D, 2D a(G(I)) < 0 TH %,

B1%, EHEAE, m-M#ERA T 7RSS, hta I >0 THEA4 7 7V I L THILT
%, PHETC, B 5 HiTiR S X 512, Bk-PUHME . ([27, Part II, Theorem (1.1)])
% D. Q. Viet (101, Theorem 1.1]) 12 & % A 7 7LD filtration 2B 3 2 EHAN LIRS 1
B Vit 2 Ve, AT, B A BERRFRTH 256 (X D —#%I2ld pseudo-rational
DEE) WE, B2 a(G(I)) < 0DALT 270, R(1) ® CM M G(I) ® CM Hi[FMHE
TH5] &> Lipman OEH ([69, Theoerm 5]) DEHEINTEH XN 5, 725, Fw X [bU]

"[563, Definition (3.1.4)] ZB I 72\
Sl 2 6 B,




TlE, MR A 770 m ITBET % Rees fREWDIERIER, B2 NIR e R 2 RHM T 52 60
TW3 ([bd, Proposition (4.9), Corollary (4.10)]).

AREI DT, Rees f{REX R(I) @ Cohen-Macaulay T & $5 2 % — 4 Proj R(I) ® Cohen-
Macaulay EOBI#EZ &% T 5, Z 2T, Proj R(I) »% Cohen-Macaulay A ¥ —ALTH 3 L 1F,
EED p € Proj R(I) I LT, RATER R(I), 23 Cohen-Macaulay RIFfERTH 2 Z L 25,

fnd 2.8 ([99, Proposition 3.20]). (A, m) {& Cohen-Macaulay ¥R, d = dim A > 1 &F
50 I (FAWFADATTZNTHoT, htal >0&F 2, ZTDE Z, ProjR(I) A Cohen-
Macaulay T® % 7z & D REA 77513, Proj G(I) % Cohen-Macaulay T %,

I 2.9 (99, Remark 3.21]). A ZR DFRED N, RO & [AEM:

R(I) i% Cohen-Macaulay = G(I) I% Cohen-Macaulay
= ProjR(I) & Cohen-Macaulay
<= ProjG(I) I& Cohen-Macaulay

N ARYASN

3 Blow-up & D Gorenstein 1%

AREITIX, blow-up fRED Gorenstein HIZ DWW T L %, Cohen-Macaulay HEDEE & [F
BkIZ, Gorenstein PEICBI LT, (106, 5 4 &I, 5 6 Hi] \CFE LWL D %, EFEOHEREIC
DWTIE, 09 ZZRE 7w, Gorenstein BROBERIE, 1952 4D D. Gorenstein & & %%
AR OIS ([31)) WCEFEZFH, Z D%, A. Grothendieck 12 & 2 Ao I12BE 3 2 HlEmD
PR A D TR X 41, 1963 4E1Z H. Bass ® H O ASRITIC K& 2 BREmIVRHIAT O DS S
7zo Gorenstein BRODEBL T FIZOWTIE, [B5, T07) IZFEL W,

LR, (A, m) % Noether RIFiEEY L, d =dim A ¥ § %, A-JEEM A LT, idy M I &
D, M OAFRITTZEKT,

EE 3.1 ([3, Theorem and definition]). A 2% Gorenstein B2 CT»H % &1, HCOAFRKITHH
[RTH 2, H1H,idg A <o DD L TH %,

Noether JRIFTER A 3 Gorenstein BT 5 72 DRAEA77551%, A 53 Cohen-Macaulay B
THD, POKyZAPKDIDZEITH B, HL, Kyl A DIEENMBERER T, FTak
EuI—MMEZHWS 2, A D Gorenstein 1413 A % Cohen-Macaulay BRT&H - T, XD[EH

HY (A) = E4(A/m)

MDD Z E TRETT 5%, (HL, EA(A/m) 12 & D, FERIK A/m O ASTEHE (injective
envelope, injective hull) %33, Blow-up fA#® Gorenstein I H Z AT % &, Cohen-
Macaulay TR § 2 FER DM E LT, ROEHEDAL D 37D,

FEIE 3.2 (b0, Theorem (1.2)], [67, Corollary 3.7], [47, Part 11, Corollary (1.4)]). (A, m) IZ
Cohen-Macaulay RIFTER, d =dimA>2 L, [ IFAD m-#ERAL FT7 LT3, ZDL X,
RD 2FEMHIFET D 5,

(1) R(I) %% Gorenstein BHRTH %,
(2) G(I) %% Gorenstein R CTH D, 22D a(G(I)) = -2 TH 5,

I IEHENIRE K 4 288 A DX IE— %450 Z & %84 512, Gorenstein BUIIRFE % i X 7z Cohen-Macaulay
RThseilrch s,




FECDRMESER D T D ¥ &, A lE Gorenstein TR TH 5,

EM B2, EH A ICEDLDE T m-HERA 77 VOHEIIRE L TERE B2, [67
Corollary 3.7], [&7, Part II, Corollary (1.4)] IZZRENTWS X 512, EH B2 D FERIZE, X U
—BDA T TNRA T T AD filtration IZHFEF 2 blow-up fREUX L THMILT %,

fl 3.3. (A, m) I% Cohen-Macaulay ¥R, d =dimA >2 &35, flEmickb, AoBER
AT 7N QXL T, R(Q) i& Cohen-Macaulay R TH o7z, ZDE ZF, R(Q) A’ Gorenstein
IRTHsHZl, AD Gorenstein IR D d=2TH 5 Z LIXFETH 5,

Bl 3.4. (A,m) 232 ZICIEHIRFEROBE, mMERA T 7V [ =m! (> 1) 2EZ DL,
Zariski OEM ([104, Part II, Section 12], [105, Appendix 5, Theorem 2’], [64, Theorem
3TN ICEoT, IIEHATH 2, Hlemick b, R(I) i Cohen-Macaulay B TH %, ZDL
%, R(I) 23 Gorenstein R TH 2 72D DB+ DE M, [=m TH 5,

Bl B3 ICBWT, EEROXIT % 3 U LICH S 20, BONFHIBZIZEWT, (>28F 5L,
ZNHIEVEIN S Rees REUT W I LD Gorenstein TIE 7AW Cohen-Macaulay B & 72 %,

4 Blow-up f#® almost Gorenstein %

Almost Gorenstein ERamDIREIZIX, Al Gorenstein T\ Cohen-Macaulay Bg23, 5> <
LR DB EIFET 200 L\ 5 RIZEEMD D 5, Almost Gorenstein BjiZ, 1997
1T V. Barucci-R. Froberg 12 & D, #5717 1 Xt Cohen-Macaulay J&jATERTHC 0
LTEAINIMZTH S ([2, Definition—Proposition 20]), Z D&, 2013 FiZ, HRkE-FH
[E:Z-T. T. Phuong IZ X = T, TR TIE 2 RE LW 1 RITD Cohen-Macaulay fRyFfER
AN M ADIRR E 7z ([82, Definition 3.1]), 2015 4Fi12ld, 206 1 KITOHERZ &KXt
NIRRT 2 ERDEE-E G- A O EBTIC X - TEA X ([, Definition 3.3]), AHi
TS blow-up fREZIEZ T ® & LT, 1758 ([10, 93]), Stanley-Reisner B ([72]), HEHLER
([i73]), BEHER B 28R (b1, 7)), 2 ZoTIERIRE R AL ([R]) 5, ZI0ITTE S 27 7 R OB
L C, almost Gorenstein E2FEEU AN ST E 72, 723, almost Gorenstein 14 DFEAN]
MEICEI LT, 0] g TERE 0,

ITAE, almost Gorenstein BRafi % MK ¥ L TIE Gorenstein ERimD3 U ICEH SN TED,
nearly Gorenstein 38 ([564]), semi-Gorenstein B ([61]), 2-almost Gorenstein ¥& ([I1]), gen-
eralized Gorenstein B2 ([40]), weakly almost Gorenstein B ([20]), far-flung Gorenstein B
([66]), canonical trace radical 2 ([i7d]), Goto ¥& ([24]) %, Gorenstein kO —f{t.& L TD
2700 T ADRR I N, BN S TWVW5b, 2D & 5I12IE Gorenstein B, T
AMHEBREMIC BT 5 FELMFTHIRD 1 22 L2o0H %, U EDOIRD 27 5 X2 HEMICHE
HDBHE, RDESIT%%, HL, CTRIZE D, canonical trace radical 2R 2 L, min. multi.
WFHNEEE (minimal multiplicity) Z &K 3 %,

CTR <= nearly Gor <= nearly Gor + min. multi. 2-almost Gor

. . — Ed
dim=1 “twins”_ —
=
-

semi-Gor =———= almost Gor =——= generalized Gor = Goto

dim=1 /H\ R
dim<1

far-flung Gor <= nearly Gor + far-flung Gor  weakly almost Gor
Blow-up fREWCEH T 2 &, I3, HIB3 D X512, BZ H % Cohen-Macaulay Rees L
BOHTH, Gorenstein BRIFMENTH D, 245 IE Gorenstein Rees FRILDHIZIE, almost

L0 guAIfE| » UC, (R EOBEERIRI B T oM 5,
119019 4 2 i@t T 3,




Gorenstein BB 2 D182 b DREFNTVT, EHZF->TWa e HEfllxh 3, ZORDH
BIFNZ R LT, almost Gorenstein % fi#H T3 % Z &1, almost Gorenstein gD BRI % 5.
ZABICEEST, ZOERDOZ Y ZMGEE L, B0 2 mMENIC T 2 LT HEERFET
Hb, LLEzix z2, REICIE, £7, [61] 1 X % almost Gorenstein BRDEFRZ AT L 72\,

E# 4.1 ([51, Definition 3.3]). (A4, m) i& Cohen-Macaulay RFfi#R, d = dim A & L, IR A 1%
FEMBE KL 2/ O IRET %, ZDL &, AP almost Gorenstein AFTIRTH % 13, A-
hifte L TomETERS

0—-A—-Ky—C—=0

TH-o>T, FX pua(0) =ed(C) Zifi7zTDONFET L2 20, HL, ua(C) 2k b A-hn

B C OWMUNERROMEBERL, 720 (C) 1 A-MEEC D m BT 2EHELRT, HIH
n+1

2 (C) = lim (d—1)!- ta(C/m"C)

m n—00 nd—1
VC\‘% 6 o

EE D Gorenstein BRi%, R UTENMEEDEIL S 728, almost Gorenstein TR TH 5, —
Ji, & DWIIETEIR A DY Artin BRTHAUI D 372D ([BT, Lemma 3.1 (3)]), EF AT DEIE
95 & ZAZ, almost Gorenstein 3R A 1X, &3 L b Gorenstein BRTH % LIRS VWD D
D, IR AFEENMHE KA NEODIADZ D TE, 20T KA /AD TROVEEZMZ S &
WORIEH D, 5, ERICTADPS Ky KHHEBEZ SN TWDE L L, ZORKE C TKRT,
BB, XD A-fifte L TomETERS

0—-A—-Ky—C—=0

EZDb, C+#(0) DHBE, A-NEE C X Cohen-Macaulay TH-> T, dimyC =d—1TH 5
([61, Lemma 3.1 (2)]) FIRIK A/m DERIATH 2 RE L, FTER A; = A/[(0):4 C] %
IR t, Ay @%U%{Z’S%ﬁﬁﬁﬁféé@f, fl:fl, fg, - 7fd71 S m“(.“l’éo’C, (fl,fg, .. .,fdfl)Al
DA DR A 770 my OMVNMITZ KT D DRI ENTE S, o T, ROAEFEN

em(C) = en, (C) = La(C/(f1, fa, -, fa1)C) 2 €a(C/mC) = ua(C)

BEBNB, BLEED, &(C) > pa(C) TH B, 2T, 5B & (C) = pa(C) A D 175
¥ %, C % Ulrich A-MEEL IR, €5 T, FIRIK A/m HRIKTD 2 558, C 53 Ulrich A-
hEgchsr e

mC = (f1, f2,.. ., fa-1)C

MDD Z EIXFETH 5, KT, BB AD 1 RITDGE, A-MEE C 23 Ulrich TH % 0E
To&ME, O BRIRIK A/m EOXRZ FLVRERTH S, TD X512, almost Gorenstein B
W, A Ky 2 ADRD IO EIFR SRV, 202 C R MVERM (2 20— R{IETH
% Ulrich fi#f) w5 TROWVHEEZHZ 2] L ZEKL TV,

Almost Gorenstein BRD EABNIEZ <AFET 5 ([9, BO, &1, 42, 43, 44, 45, 46, 48, 51, 52,
57, 12, 73, 93)) & hDIEELRHIE LT, 2 0orAHERRASCAHRREA 1 %t Cohen-
Macaulay RIFFERDZETF 515, 723, almost Gorenstein BRafi DR EICEUE - HEER O BFm 23
H5Zth b, almost Gorenstein & 7% 2 BUEFHEROP S IFEICEETH 5 (2, 42)),

I, KEFRITIT % almost Gorenstein EDEFRZAANT %, i, Cohen-Macaulay M,
Gorenstein £ & 272 D | almost Gorenstein PHIZXEIR & FFTEROICE TOERIET 5,



E#& 4.2 (61, Definition 8.1]). R = @, Ry & Cohen-Macaulay KEER, d = dim R & 7§
%, (Ro,m) I3RFTERE L, IR RIIXBIN ZIEEMFE Kr 2RO RET 2, ZOLE, R
almost Gorenstein KEIRTH % 1k, XE R-MMEE L L CTOREELRY

0—R—Kgr(—a) > C—=0

THoT, FR pr(C) =y (C) 27T DONFELET 28 WVWI, HL, a=a(R) 1Tk D,
RO a-AZERPEZRL, M=mR+ R X ROXBUTEKRA T 7NV TH 5, %E, Kr(—a)
& RMEEL LT KR EA—TH 3D, [Kr(—a)]n = [Krln_a (n € Z) 205 KEAHT 2
DB E R-INBEE R T

JRIFTER DG L AR, R D Gorenstein KEFR1Z almost Gorenstein TH 5, £7z, Con
\& Ulrich Rop-IMEECTH D, IEMENEE K 13ZRFATLE AIEATH 2720, ROIREFR & LT almost
Gorenstein TH AU, JAFTER Roy  almost Gorenstein £ 725, o ¥ d, —fRIITZ DM
WAL L 72 ([g4, Theorems 2.7, 2.8], [61, Example 8.8]) 2%, XDHIHRT K 512, almost
Gorenstein BRIZKET ZIR e L TRZEGEICD, MO MEEZHZ TWb,

5l 4.3 ([61, Example 10.5], [93, Theorem 1.1]). fERRIA & EORETLZ BT IFFD m x n
1 X = [X35] (2 <t < min{m,n}) LT, k LOZHAIREZ S = k[X] = k[X; |
1 <i<ml1<j<niZ&bRL, THRXER = S/I(X) 2EZX 5., HL, L(X) &
79 X Ot ZMTINABEDPERT 2 S DA 77 V%K, Hochster-J. A. Eagon ([BR,
Theorem 2, Corollary], [6, Theorem 7.3.1 (c)]) IZ& D, R & Cohen-Macaulay ¥ P,
dimR=mn—(m—(t—1))(n—(t—1)) TH 53, £, THIRIR R 7’ Gorenstein TH 57
DDORBEFDEME, m=nTEHEZ 573 ([01, Theorem (5.5.6)], [B, Theorem 7.3.6 (b)])o
DL E, RD2EMHFFETH 5,

(1) R =k[X]/1(X) I almost Gorenstein XEBIRTDH 2,
(2) m=nTd2h, X7Em#n»Dt=min{m,n} =2TdH53,

B 4.4 ([61, Example 10.8]). HERIK & FOZIERXIEE R = k[ X1, Xo, ..., X4) (d > 1) &EEEL
n > 1128 LT, Veronese £8578 R = k[R,]| #& % %5, R™ 1% R D#li (pure) HOBRZD
T, Cohen-Macaulay BR T % (108, & 7.7, #if 7.7]). F#1Z, R™ 55 Gorenstein BT
52Zrl,d=1%73n|ddRY>oZ LIIFMETD 2 ([32, Examples (1)]). ZDE& X,
RDEHRDK D ILD,

(1) d <2 DFE, R™ 1% almost Gorenstein KEFIRTH % ([51, Corollary 10.6])o

(2) d >3 DA, R™ 73 almost Gorenstein KEFRTH 3 72D DXLE+55MH1F, n | d
FFd=32D2On=2Tdhb,

D EDHEfED TR, blow-up K& D almost Gorenstein TEICBE T 2 /R EHEMNT 5,

EI2 4.5 ([b1, Theorem 8.3], 43, Theorem 1.3], [48, Theorem 1.3]). (A4, m) I& Cohen-
Macaulay JFFTER, d = dim A > 3 & L, B A lX Gorenstein IROMERTIR 325, A D
EXRai,a2,...,a, €m 3<7r <d)ITHNLT, Q= (a1,a9,...,a,) £BL &, XD 25
[FETH 5%,

(1) R(Q) % almost Gorenstein XBIRTDH %,
(2) AIERIREFIERTH D, 22D ay,a9,...,a, 13 A DIEHIEZRO—HTH %,

L2A1% ) a(R) = max{n € Z | [H&(R)]n # 0} = —min{n € Z | [Kg]n # 0} TH %,
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FEFAA X, [61, Theorem 8.3] IZHWT, [39] 1T & % canonical filtration DGR % BREE L,
FEWEER A 3 Gorenstein IR TH D, Q BEFZRA T 7NV TH 25 EIZFEHE Nz, HinT, [43,
Theorem 1.3] 1235 T, Eagon-Northeott #1A&% FWCTHilvy B 170 D& % gt U, 380
ERTEREINE A TT7IVDOEENEIRE Nz, X 51, [A8, Theorem 1.3] T, FAEER
W IRGE DY Gorenstein T£72> & Cohen-Macaulay A\ & #EM X 41, LELOTE T B3 5315
BNTWVWS, —/C, EHIHEICHE T 2RO FPEIIMKAL L TRBRTDH 5,

F#48 4.6 ([2R, Conjecture 1.4]). (A4, m) & Cohen-Macaulay B & L, Gorenstein BRDE
FARY $2, I (FABBADATTLTH>T, htal >32F 5%, TDLE, Rees 1R
B R(I) »% almost Gorenstein KBIRZ 513, A 1% Gorenstein BRTDH %,

IR LT, Rees (REEDREUS MR A 77 M K 2 RIFHMEDRFER & LT almost
Gorenstein HIZRD X 5 1REMS TSN 5,

EIE 4.7 ([43, Theorem 1.3]). (A, m) i Gorenstein ¥ L, d=dimA >3 3%, A
DEDTER a1, a9,...,ar €m 3 <r <d) WXL T, Q= (a1,as,...,a,) B L, RD 2
FFIXFEETSH %,

(1) R(Q)om & almost Gorenstein RIFI¥RTH %,
(2) AZERIRAERTH %,
HL, M=mR(Q)+R(Q)+ &V, R(Q) DRI EHKRA 77 N ERKT,

D CEHEICE D, BATER R(Q)m 2% almost Gorenstein TH - Td, KEIR R(Q)
23 almost Gorenstein IR HBRNWZ EDNED, Tz, 2HHDFERITE VT, EEROXIT
WF3MUEERELTWSD, 2 RITTDIGEIIRD X 51 %,

FE 4.8 ([43, Proposition 2.10]). (A, m) (& Cohen-Macaulay RFi¥R, dmA =235, A
DEFRA T 7L QML T, XD 3FMHIFETD 5,

(1) R(Q) & Gorenstein TR TH %,
(2) Al Gorenstein BRTH %,
(3) R(Q)om & almost Gorenstein JFIERTH 2,

iz, Bl e LB Ea R A, 2 JOTERRATEL (A, m) EOER mHEE 4 77 10 Rees
et SUN

TEIE 4.9 ([24, Theorem 1.3]). (A, m) X 2 XICIEAIRATERTH D, BRIK A/m (3R & 5
%, EEDEPA mHEZREA 770 TIZH LT, R(I) IF almost Gorenstein XEIRTH 5,

EH g OFEFA DI, J. Verma I & % joint reduction number 250 T»H % X 5 & joint
reduction DFETEMEICH % ([T00, Theorem 2.1]), AT, Zariski & ([104, Part II,
Section 12], [105, Appendix 5, Theorem 2’], [64, Theorem 3.7]) 2 & b, 2 XICiERIRATER
LoWAkA FT7NOEIEATH 2, (o T, EHEADLSRDRVPEBIE OGNS,

% 4.10 ([2a, Corollary 1.4]). (A,m)d 2 ZITIERIREFTERTH D, FERIE A/m IR & 5
%, fEE®D (> 1120 LT, R(m’) & almost Gorenstein KEFRTH 3,

BT, EE a9 DINRATREME 2 ER L2, EROMND 50D 5,

E# 4.11 (76, Definition 3.2], [77, Theorem 1.1]). (A, m) % 2 XICEFH ERFHER L L,
FIRAR A/ (ZIRBEHECARE S B ADMIERA TT NI D py 4 T 7VTH 5 LI, Rees
I R(I) »% Cohen-Macaulay IEFIEITH 2 Z L 2\ 9,
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FIREDOIREEART D 5 2 KouBEFH IERAIFRER (A, m) LT, (EEOEEAL m-HEE A 7
TMIEpy AT 7N THHDT, ROEBIIEHIAD 1 DOILRTDH %,

TEIE 4.12 (16, Theorem 1.3]). (A, m) 1% 2 XITHEF5 Gorenstein IEFURATER L L, FIRIK A/m
BREPARTH 2 L IRET 2. ERD pg 4 770 TIZH LT, R(I) & almost Gorenstein
TRERTH 5,

F7, REDTO DGR E LT, ROEEME SN 5,

TEIE 4.13 ([@6, Theorem 1.4]). (A, m) % 2 XJT almost Gorenstein JRFIERTH D, MiNEHE
RO IRET %, RO (> 112 LT, R(m’) 1 almost Gorenstein XEIRTH 3,

% 4.14 (@6, Corollary 1.5]). (A,m) F 2 XnAHREFRLE T2, EED (> 11THLT,
R(m’) 1% almost Gorenstein XEERTH 3,

ZET oExoelb e LT, ROEEHE D D,

EI 4.15 ([@6, Theorem 1.6]). (A, m) FZERAIEATER, d =dimA > 2 & L, FRIK A/m X
R 32, RDOERDILD LD,

(1) R(m®) almost Gorenstein XBIRTH 27D DRETDEME, (=1 Dd=2, ¥
71:_&i E = - 1 T%%o

(2) £>2,d>3DHAE, R(m)on A% almost Gorenstein RIFTER T H % 72 DME+ 775
&, 0 |d—1TH 3,

HL, M =mR(m") + R(m"), 1IZ& D, R(m") DX &AL F7 L EERT,

KRz, £ =2, d =5 DEE, R(m?)on 1X almost Gorenstein RIFFERTH %05, KEFRL LT
R(m?) 1% almost Gorenstein TIX7Z W,

FE 4.16. THITHOREDR, =1 @i%é.\, FEFEFICED, R(mf) = R(m) i& almost
Gorenstein ZEIRTH %, d = 2 DHE, REI0 5, R(m’) 1 almost Gorenstein KEER
THb, MAT, {=d—1DHE, R(m ) \% Gorenstein R T % ([43, Proposition 2.3]).

AREIDRIRIZ, FEFEREFERD almost Gorenstein PEICEE 3 2R 21/ %, Z 2T, Cohen-
Macaulay 38 R IR LT, r(R) 12 & D, R ® Cohen-Macaulay %! % %35,

EIE 4.17 ([b1, Theorem 9.1]). (A, m) I& Cohen-Macaulay JRTBRTH D, FIRAE A/m 1Z
WRE 55, IR AFEENE KL, 2RO RET 5, ADmMERA 77V TITHLT, K
FERENER G(I) 2 almost Gorenstein XBIRTH D, r(G(I)) = r(A) DD IIOR B, Al
almost Gorenstein RFF¥RTH %,

EF T OFEIE, oTicBE 3 2 BEEMIRINIEIC X B, 1 X0TDEE1E, canonical filtration
ZRWV, 2 0t EDGEEX, YN ERITTEESZ LI DA NS,

5 Blow-up f{#DHF]8 Cohen-Macaulay 1%

D RFH) Cohen-Macaulay 413, Cohen-Macaulay EDILEMEZD 1 D TH D, T4,
L OMBACH LT, 1983 4512 R. P. Stanley 12 & » TEH X NMETH 2 (86, 2.9
Definition]), JIFTER_EDMERTNTF 2 EFIE, 1998 4F, P. Schenzel 1 & D, Cohen-Macaulay
filtered module ¥\ 5 HAFFD FTEA X7z ([81, Definition 4.1])s FRFI Cohen-Macaulay
JEE & W S FHEEDSRIFTER E D IIERSN U THRINICER S Mz DI, 2003 4ED (IR, Definition
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4.2] TH %, FRHIH Cohen-Macaulay JIHEOEAREEICE LT, (16, 17, BR, 94, 95] 5§
PHBI N0,

LUR, FRZHT 52 WR D) AREITIE, A 1% Noether B2, M # (0) (3BBRAR A-MEEe L,
s=dimg M < 00 EWET 2, EEDn € ZIZXWH LT, dimg N < n ZHi/=3HAD M @
A MEEN % M, ¥ £3, £E5S(M) = {dimy N | N1Z M © A2 EE, N £ (0)) %
Ez25r,ER

S(M)={dimA/p |p € Assq M }

DD LD, {=H#S(M) &t BZ
S(M)={d1 <dy <---<dy=s}
ERT, F1<i<LWITNLT, D;=My, £BL &, RO M D AR hnEEDH)
Dy:=0)CD1C DG C D =M

PELNS, ZH%E M D dimension filtration £ W5, &1 < i <LIXNLT,C; = D;/D; 4
Zﬁ&)%o 3_5 Z, dlmADl = dlmA Cl = dZ 7‘773}312 Djoo

EE 5.1 ([86, 2.9 Definition], [81, Definition 4.1]). A-HIfE M 23R5|H Cohen-Macaulay
A-MMBECH 2 21X, FED 1 < i < LT, FIRMEE C; ¥ Cohen-Macaulay A-fEFT»H
%2 %\W9, Noether R A 23FRFI Cohen-Macaulay 3R TH % &1, dimA < oo TH D,
D A BEHNRYII Cohen-Macaulay A-MEETHZ Z & ZWV I,

Il 5.2. (A, m) \X Noether JRFiER, M # (0) I3HRAER A-NIEEE T 5, RO TERDHLD LD,
(1) dimy M =17 513, M 1ZRFIH) Cohen-Macaulay A-IIFETH 5,

(2) M 73 Cohen-Macaulay A-MEE7Z 51X, M ZRYH] Cohen-Macaulay A-IIEETH %,
A-JNEE M 75 unmixed™72 513, B 1E LW,

(3) BEin > 1120 LT, M; A3 Cohen-Macaulay A-MEE (1 <i <n) &oIX, @, M; &
RHIHT Cohen-Macaulay A-IIFETH % ([95, Proposition 3.2]).

(4) A LM DA T 7t A x MP2FRFIH Cohen-Macaulay 52T & % 72 DREA575%
Hix, A D3FRFIE Cohen-Macaulay B T®H D, 20D M D3R5 Cohen-Macaulay A-fll
#HTH 2 ([95, Theorem 1.2]),

(5) HOFZE Aut A DR GITN LT, #GIXADHITLE T 5, ZDE X, AD
I Cohen-Macaulay B27z 513, FZERIR AC 1325/ Cohen-Macaulay FRTH 3
([@5, Corollary 3.7])o

1 5.3 ([86, pages 86-87]). k3A L 52, BUARIEIR A IZHIBES % Stanley-Reisner B k[A]
IR LT, A 23 shellable 72 513, k[A] 1ZR51H) Cohen-Macaulay 3R T %,

R 5.4. BIRIIEIK A 23 shellable TH 2 Z & DERICIE, A pure TH D Z L ZIRET %
&3 % (|8, Definition 5.1.11])s D& &, ffffi 3 % Stanley-Reisner B k[A] {& Cohen-
Macaulay BR & 72 % ([6, Theorem 5.1.13])s —J7 T, pure TH 3 Z & & %5H L 72\ shellable
DEFZED DD ([@, 2.1 Definition]), ZDIHEITIE, k[A] 1FFRFIH Cohen-Macaulay BR¥ 72 %,

fned 5.5 ([94, Proposition 2.2]). (A, m) \& Noether J&ER, M # (0) IZHBRAERK A-INEE L
T5, vemid M-IFERFE T2, RD2HMZFETD 5,

BAMED, B A LB M O w5 HLERT L =, %58 Ass; M = Assh; M AED VIO L TH 5,
Mg F7ALDEARFME I LTI, [108, 1.86] 2B N0,
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(1) M 3% Cohen-Macaulay A-MIEFTH 5,

(2) M/xzM 135R%# Cohen-Macaulay A/zA-MIEETH D, 2D {D;/xD;}o<i<e V& M/xM
@ dimension filtration T®H %,

HFE 5.6, i@ B3 (2) = (1) BWT, {D;/zD;}o<i<e ¥ M/xzM @ dimension filtration
THBEWVWHIREIARAIRTH 5, EBE, AL 25T Noether JRFTEER, depthA =1 2§
20, fTED 0 # 2 € AL T, A/rA1ZHRYIM Cohen-Macaulay TH %23, A 1R
Cohen-Macaulay T2\,

M E%ZE 2T, blow-up fRE DRI Cohen-Macaulay %2 &L 5 5, Y 55T,
filtration IZfJBES % blow-up RN HHHAZIRT 2 2 TH %,

E&E 5.7 (4 7 71O filtration [T 2 blow-up KE). TRA DA T 7 NVDE F = {F, }nez
D ADA T 7D filtration TH 5 L1, KD 3 54

(1) EEDn € ZIZX LT, F, D Fuiq
(2) EED m,n € ZIZHN LT, FuF, C Frgn
(3) Fo=A
i3 TH BT, BADAF 7D filtration F = {F), }nez IHNBEL T, IEFR

R(F) =) Fut" C A
n>0

RI(F) = Fut" C Aft,t™"]
nel

G(F) =R/ (F)/t7'R'(F)

MEZD, ZNZN F D Rees VI, LK Rees &, FEFEREIREFER, HL, tI1IT& D,
At@z:ﬁﬁ%i%j_o j—% (27 R(f) = @nZOFn; R’(f) =~ @nEZFn "G\jéowc’ G(F) o
D50 Fn/Foy1 DD 3D,

HE 58 BRADA T 7LD filtration F = {F}uez LT, i = ATHS5Z L, G(F)
NEERTHZ ZLEFAETH %,

Bl 5.9. KICETF 24 T 7V F, ITK DR F = {F,}nez D34 7 71D filtration DFITH %,
(1) ADAT 7NV LT, F,=1I" (A 77 LDHR)
(2) p € Spec AWK LT, F, =p™ =p"4, N A (BATFTTADT VR v V)
(3) ADAFTAITEHLT, F, =17 (4 F7 L OBEDEE)
(4) ADAF7AIEHLT, F, = I (4 77 L DOFED Ratliff-Rush Bl
(5) ZKBIRR =D, 50 R DEE, Fy =35, Ri

FEFRED EFEEIC, B A DA 7 7LD filtration 1230 < A-ERMEED filtration %KD X
SICEANT 5,

154 21X, Nagata’s bad example [75, Appendix Al] 23 %,

16(1) (XBERESRR G(F) B2 5 FTRARAEZEETH D, (2) 1 blow-up OB B % A5 725 D%
HTH %, (3) &, FED n € ZITHLTF, = (0) ¥\5 HIAX filtration ZHEFR L, %72 blow-up fRE%E A-
RE e AT hDIciidnTn3,
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F#& 5.10. F = {F,}nez 1R A DA T 7LD filtration £ 35, M 1T A-MEEE T %, M D
A-FRITIMEEDIE M = { M, }pez 25 M O A3 IBED F-filtration TH 2 &1, RD 3 5&lF

(1) EEDn e ZIZMLT, My, O Myt
(2) EED m,n € ZITHNLT, FyM, € Myin
(3) Mg =M
i3 e Thb, A-NMEEM O A-FRMEED F-filtration ¥ LT

RM)=> " @ M, C Alt]) @ M
n>0

RI(M)=>"t"® M, C At,t | @a M
neL

G(M) = R'(M)/t 1R/ (M)

EED, ZNFN M D Rees INEE, FLK Rees AL, FELEXREMBEEE WS, HL, t1x A EOAR
ETLE L, EEDOn e Z I LT, "M, ={t"®x |z € M,} CAt,t o4 M 53,

EFBED, EFREIUICE D, RIM) IEKER(F)-IEE, R'(M) ETE R (F)-MEETH - T,
Fi # ATH258120F, GM) EZXEG(F)-MEETH 2, BB, FEDOn e ZITHLT, A-
Mt LCoRB " o M, 2 M, ZEZX 5L

RM) =P M,, R'(M)=P M, GM)=EDM,/M

n>0 neZ n>0
DD LD, LT, AENICBWTIE, ROBED MZiimzED 5,

SR 5.11. (A, m) X Noether RFTERY L, M # (0) 1FHARER A-MEEL T2, F = {Fulnez
WZED ADA F7 A0 filtration ZER L, M = {M,}nez (& M O A7 NEED F-filtration
Y¥%, BT, FL £ ATHD, R(F) iZ Noether BETH 5T, R(M) IZARRAER R(F)-H
BLIRET 2. M=mR(F) +R(F)+ & D, R(F) DB &k A 77V ERT,

EIE 5.12 ([94, Corollary 2.4, Proposition 2.5 (3), Corollary 2.6]). XD FEIRHIKL D 77D,

. dimg M +1 (Ip € Asshy M s.t. Fy € p)
(1) dimg(x) R(M) = {

dimy M (Z DAth)
(2) dimgs(r) R/(M) = dimg M + 1
(3) dimg(r) G(M) = dimy M
fHL, Asshqy M = {p € Suppy M | dim A/p = dima M} TH 3,
T 2T, ARERIEL R(F)-IEE N, dimgry N =t X LT
a(N) = max{n € Z | [Hiy(N)], # (0)}

YED, N Da-FEBD LR, XDOEBTHNS X 512, Rees 2D Cohen-Macaulay 1
BT 2 1E- THOER (BB EA) X, 4 7 7 IVRMEED filtration 120 L THKILT 5,

EIE 5.13 ([27, Part II, Theorem (1.1)], [94, Theorem 3.8], [0, Theorem 1.1]). M I
Cohen-Macaulay A-MIEEE 35, RD 2 &MFZFEETDH %,

7[63, Definition (3.1.4)] ZZH X2\,
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(1) R(M) 1% Cohen-Macaulay R(F)-MEETH D, 22D dimgr) R(M) =d+1TH %,
(2) G(M) & Cohen-Macaulay G(F)-MEETHH, 22D a(G(M)) <0 Td 5,

EF BT, 1990 FERUTHERE-FEH, MO Viet I2& D, 4 7 71O filtration (255 £ blow-
up FREUSH U TREIA X, Z D% 2018 4RI, & H-Phuong-N. T. Dung-T. N. An i & b hn#f
D filtration DHFEN IR E Nz, FEWT, TD K 5 7% filtration 2 SR S 415 blow-up
REDZFIH Cohen-Macaulay HEIZOWTERT 3,

FOE BT DR, M ® dimension filtration {D; }o<;<p ZED, &1 <i < LITHL, C; =
D;/D; 1 8L, ZIZT

D; = {M,, N D;}nez, Ci={[(M,ND;)+ Di_1]/Di_1}nez.

REZRDY,D; b GlXEREN D;, C; D AR INEED F-filtration TH %, EED n € Z
W LT, ANt e L ComEELY

0 — [Di—1]n = [Di]n — [Ci]n — 0
DB, KBR(F)-MEEL L TRV EH IS,
0 — R(Di—1) - R(D;) - R(C;)) = 0
0— R (Di—1) = R(D;) = R(C;) =0
0— G(Di-1) = G(D;) — G(C;) — 0
##%8 5.14 ([17, Proposition 5.1], [94, Lemma 3.1]). XD FEIRDK D 17D,
(1) {R/(Di)}o<i<e 1& R'(M) @ dimension filtration T %,

(2) EEDp € Assgy MITH LT, Fy € p EIRET 2 &, {R(D;) }o<i<e 1 R(M) D dimen-
sion filtration T® %,

DL EDEHD R, ROEHD D LD, 2, ERLETE I, k- FHOEMH DR Cohen-
Macaulay ENDO—f&(LTH %,

EIE 5.15 ([I7, Theorem 5.2, [94, Theorem 1.1]). XD 2 £HFEXFETH %,
(1) R/(M) 1ZF518 Cohen-Macaulay R'(F)-IIEETH %,

(2) G(M) IZRFIK Cohen-Macaulay G(F)-MEETH D, 222 {G(D;) }o<i<e 1 G(M) D
dimension filtration T®H %,

LECDOFEMESHAD D LD & = M 13%RFIH Cohen-Macaulay A-IMETH 2,

EIE 5.16 ([T7, Theorem 5.3], [94, Theorem 1.2]). M ZRFIHJ Cohen-Macaulay A-flfEE
L, EEDp e Assgy M ISR LT, Fy € p 8ARET % XD 2 5-MFEFRETD 5,

(1) R(M) 1ZFH Cohen-Macaulay R(F)-IEETH %,

(2) G(M) 1ZRHH) Cohen-Macaulay G(F)-M#EE, {G(D;)}o<i<e 1& G(M) @ dimension
fltration TH T, FEED 1< i < LIZH LT, a(G(C)) < 0 TH 3,

FEEORMESREDE D LD L F, RI(M) IZFRFIE Cohen-Macaulay R (F)-IIEETDH %,

AREIDOIFRIC, EH I3, EH 516 @ Stanley-Reisner BRANDIGHZ L %,
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RE 5.17. AlZV ={1,2,...,n} (n>0) ZHARS L T2HEMNERT, A£D T2,
F(A)IZED, A D facet 2IRDEEZRL, m = #F(A) e B, Kk FOZHAIRS =
kX1, Xo, .., Xp] NIZBWT, A 770V IA = (X3, Xiy - X | {i1 << -+ <ip} & A)
BEZ D, HIRKER AHEES % Stanley-Reisner B

R =k[A] = S/Ia

B LIBIRR =Y, 50Rn EARL, Hn e ZITHLTL, =Y 5, Re £ B Y, I, =m"
Y75, HL, m=R, =), (Rn & ROXBNEMKA T 7L TH 5,

EE 5.18 ([@, 2.1 Definition]). HIRIIEIK A 23 shellable™TH % L 1%, m = 1 L7213,
m>2THoT, RD 35

(1) ]:(A):{FDF%aFm}
(2) EED2<i<mINLT, (F,F,...,Fi_1) N (F;) 2 pure™
(3) EED 2 <i<mIiZX LT, dim (F, Fy,...,F;_1)N{F) =dimF, — 1

BT P, o, ... Fp € F(A)BEET B2 ThD, COESK Y, Py, ..., F € F(A)
% shelling order & L&,

BKBIEIR A 29 shellable 72 51X, shelling order Fy, Fs,..., F, € F(A) % dimF; >
dim Fy > - > dim Fy, 2723 X5 ICBRRZ N TE S, RKEELD, A# {0} THZDT,
EEDp € AssRITHN LT, p 2 I D ILD, HIZT, A 2shellable 7% 513, R IR
Cohen-Macaulay 372 DT, X%13 5,

2 5.19 ([94, Proposition 5.1]). HARIJEIR A 23 shellable 72 51X, R’ (m) 1ZRFH Cohen-
Macaulay BRCTH %,

EIF 5.20 ([94, Theorem 5.2]). A & shellable T D, shelling order Fy, Fy, ..., F,, € F(A)
Fdim Fy > -+ > dim F, 2725 EET 5o KD 2 J/AFIFAMETD %,

(1) R(m) iFHRFIH) Cohen-Macaulay JRTH 2,

(2) m=1%7%E m>2THoT,MEED2 <i <mIZRNLT,dim F;+1 > #F(A1NAg)
MDD, HU, Ay = (F1, Fy,...,F;_1), Aoy = (F)) £ 3 %,

% 5.21 ([94, Corollary 5.4]). EH 20 DRED K, m > 2 THY, dimF, > 1 &RE
T2, EED2<i <mIiTHLT, (F, Fy, ..., F1) N (E) DR 51X, R(m) 1 ERFIHY
Cohen-Macaulay R CTH 5,

B 5.22. A= (F\,Fyo, F3) % Fy = {1,2,3), Fp = {2,3,4}, F; = {4,5) KX DED B L, A
1& shellable TH - T, (F}) N (Fy) & (F, )N (F3) ZHEKTH %, Hit->T, R(m) IZRHIH
Cohen-Macaulay 32 CTH 5,

8shellable ¥ i, BKIHEAR A O facet # Hiltk 1 T OERZ &k 5 KIERICHENLNZ Z 2 2EHRT 3,
YO BRIIMEIR A 25 pure TH 3 21X, (ERD F1, F> € F(A) KR L, dim Fy = dim F> S D LD Z 2 TH 5,
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Bl 5.23. A= (F\,F, F5,Fy) % Fy = {1,2,5}, F, = {2,3}, F3 = {3,4}, Fy = {4,5} IC X
Di?@% <\f., A 0i shellable f% %)o Al = <F1,F2,F3>, AQ = <F4> %%X)_é Z

#F(A1NAY) =2=dimF; +1

T»H5DT, R(m) 1FRFNH Cohen-Macaulay BT,
1

6 Blow-up ft#® Buchsbaum 4%

Buchsbaum B, 1973 41 W. Vogel 78 D. A. Buchsbaum DX U THE M I idim
PG HHEE T e LT, J. Stiickrad-Vogel IZ & o TE A X417z Cohen-Macaulay BR DILR
& Tdh 2%, %3, Buchsbaum ORIWEIR DR D 720,

fEIRE 6.1 ([8, page 228], [33, page 42]). (A, m) & Noether RFiIRE 5%, IR A DIEEDOE
RATTNQIINLT, £ 04(A/Q) — eOQ(A) 13 dim A — depth 4, BN EMMDORNZERIT K -
TREZIND 5D D

ZIZT, la(X)ITED AMBEX OREZRL, ARAEKR A-NBEM £ ZOEZRA 770 q
LT, ef (M) 13 q B35 M OBEEEL T 2,

BRHY 2Bl 5 R, ERROMOVAIEL <370V 2 L IXEZIHBIZ N 203, 2 DA
7 Vogel 12 & - THID THRREN7=DIF 1973 D = L TH 3 ([102, Satz])e ZDH, LD
7Z0a(A/Q) — eOQ (A) HB3—7EME & 75 5 JRFTER OWEE DS T S N % @2 T, Buchsbaum B3RO
&3, [AI4E Stiickrad-Vogel IZ& > TERE SNz, Do ¥ b 1973 FDBRETIE, Buchsbaum
BRiZ IR (I-Ring) £ MINTED ([88, Definition 2]), Z DFED 1974 4£1Z, Buchbaum
BRE WS HRDIHI0 TES L7z (|89, Section 3, Definitionen, page 439])o

LUF, (A, m) & Noether R FfER & L, M IFARAER A-INEE, s = dima M &3 5,

EFE 6.2 ([88, Definition 2], [89, Section 3, Definitionen, page 439]). A-HlEf M 23 Buchs-
baum B A-MEETH % L1k, ZZI(M) = £a(M/qM) — €] (M) 25, M DERA 77 )L q D3
CHITHRS S, —ElEPZMD 2205, %7, s > 1 DHE, TO5KME, M ofEROE
Rai,az,...,as D M-595 (weak M-sequence) Zik 3 Z &, HIG, EEOEHROI<i<s—1
WRL T, FRX

(aty...,a;)M :pr ajp1 = (a1, ...,a;)M :py m

MR DD Z ¥ 2 [AfEPCTH % ([90, Theorem 1.12], [108, EFH 9.14]), 7% 3B, M % Buchs-
baum A-MEETH 2 Z 21X, M DIEEDER a1, a9, . ..,as D d-HNPEET, B, (RO
B1<i<j<siHLT, FHR

(al,...,ai,l)M ‘M aiaj == (al,...,ai,l)M ‘M aj

2027 Cohen-Macaulay 1 ¥ IZBITAINDILFRTH %, HHELEREEDBSETH 575, Cohen-Macaulay
IR DHEIZHE W T, Buchsbaum R EMNFTH D, Buchsbaum RO ER 52—t TH % FLC 5 (finitely
generated local cohomology modules % £iDBg) & €5, RFIH Cohen-Macaulay 3R & 1 KETH 5,

BT, La(M/qM) > eJ(M) A D LD ([N, @ 8.21]) OT, —EfEld I A BBIEZ T 5

Z2EL,i=00Dr X, (a1,...,a;) = (0) LED 5,

245 ofE&E, C. Huneke ([63, Definition 1.1]) I & D BA X7z, EAMEEICE L T, 08, f1§% D]
TNV,
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DEDIDZ e bFEETH S ([63, Remarks (1), page 252], 108, A 9.12]), B A »°
Buchsbaum BRTH % 2 1%, A H &2 Buchsbaum A-MMETH 2 Z 2V,

M 73 Buchsbaum A-IIEETH 2 & X, M DERA 770 q DED FITKS I EE 5 —EHE
1(M) = £4(M/qM) — (M)
% M @ Buchsbaum FEED ¥ W9, KICIED Buchsbaum A-fITEE M 1%, M-5951C X b ¥

TFohzdizd, mH, (M) = (0) (Vi # s) TH-o>T, @iartay -, (M) (Vi # s)
FREIRIR A/m EOBRXKIEANZ bR e i h, X

s—1

s—1 i
10 =3 (7 )eamany

MK D 37D ([a0, Proposition 2.6]), Buchsbaum A-fEE M 1I2BWT, fEED p € Suppy M\
{m} ISH LT, JAFfL M, 1% Cohen-Macaulay A,-IIEFCH T, FX dimy, M, = dimy M —
dim A/p 3D LD (108, EHH 9.6]).

ARRER A-IEEM # (0) 1S L, s = dima M &5 &, Hy (M) = lim Ext?y(A/m", M)
TH2HDT, ARG

ExtY(A/m", M) — H: (M)

DEONDE, ROEHD, FiEd, Buchsbaum MRS % surjectivity criterion T %,

EIE 6.3 ([90, Theorem 2.10], [108, EMH 9.19]). fEED i # s 1T LT, Lo BRI
EHTHIE, M 1 Buchsbaum A-MMETH 5, ADPERIRAERTHIUL, HDHIEL L,

EM B3 D e LT, Xe1$5,

% 6.4 ([0, Theorem 2.10], [I08, 5% 9.20]). ¢t = depth, M < s 2»2 Hi (M) = (0) (i # t,5)
YIRET 5, ZDLE, M A Buchsbaum A-IIEETH 2 7- D DRBEA735ME, mHL (M) =
(0) DD D TH %,

) 6.5 ([T0R, 1 9.16]). kXK L, S =k[[X,Y,Z, W] &k LOERPEREIR 35, 2
DEE A=8/(X,Y)N(Z,W) &2 X5t Buchsbaum R, depth A = 1 TH 2,

PUR, 5z 507 blow-up REDMA 72 5 245 5T Buchsbaum BRIZR D 1§ 202 & W 5 [
WEERT S,

FI 6.6 ([359, Theorem 1.1 (3)]). (A, m) i& Buchsbaum JHFfiER, d =dimA>1¥2 5%, A
DIEBEDOEZRA 771 QI LT, G(Q) & Buchsbaum BRT®H 5.,

EIE 6.7 ([87, Theorem 13]). (A, m) \¥ Buchsbaum R, d = dimA > 1 5%, A DIE
BEOERAT7L QI LT, R(Q) i& Buchsbaum 38 CTH %,

EHED, EMED X, BRE- FHOEM D Buchsbaum A\ DILRATREM ZRE ST 5, ZD
FHEIZBWTIE, ROFERPH SN TV S,
EIE 6.8 ([37, Theorem (1.2)]). (A4, m) & Cohen-Macaulay RFi¥g, d =dim A >2 & L, %

REA/M TR T2, ADmMERAS T 70 [ 3NEEEP 2RO LIRET 5, KD 2
FFIIFEETSH %,

(1) R(I) i¥ Buchsbaum B TH %,

HEWE, [ ALERE DILEN 5,
BER pa(l) = eY(A) +d —La(A)]) DD L TH 5,
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(2) G(I) & Buchsbaum 3R T» %,

ZD®%, MAA T 7NV = Q 4 mIZfIFET % blow-up K& D Buchsbaum % 1K 2 74/
SR XN, Bk, PHHECI X, ILERAGESEHFZ NI X DB Twvw b,
RENZBWTIX, & D% < D Buchsbaum & 72 % Rees f(RELDHI 12T 2 2 WO BIE2 S,
Ratlift-Rush FIELICE H L7z, 2 2T, MBS % Rees (B EELR T 5,

Rees REUTEE 4 77 MHED ZER S NS0, HHEIMBEONFMUEED L2 HATRICFAT
HBHHEFEZHWT, BARKIEEAN C AR S A, K72 GRS Z2 LI IR [EE o Bl
RSN TS ([25, 26, 27, DR, 09, 84, 85)),

EE 6.9 (EED Rees fXEX). AlX Noether BRe § 25, ARAEREH A-MBEF = A% (r > 0)
D A-EBIEE M W0 LT, tlBEARD A8 X 1 2 0FMUEL Sym 4 (—) DRI D5t

Sym(i) : Sym (M) — Symy(F) = Alty, t2,... . t] = S

BEZD, TOLE, R(M)=ImSym(i) £ED, A-MEE M D Rees I L FER, ZIHIR
SEBARZZ-TEIREEZ, TOXRBIN I ZHWT R(M) b Z-XEFROWEZ R0, itoT

R(M) =P M"

n>0
r#RED, HL, M IER(M) D n KERKDITH %,

A-INEE M &, R(M) D 1 XERIT [R(M)] \&—E L, MFMREUIREL 1 O F KRBT
AR END DT, Rees fRELR(M) 13 A E M Tk D ARSI 2 EEEST & ARETH
o o, r=1DGE, AMBEM 2 LTANDA T 7N Z3BR L, I M ®© Rees {RE
WE A4 770 T D Rees (REUC—HT %, BB, R(M) =R(I) = A[It) DY LD, B ARND
AFT7NI L, LCRUT, ANMBEM =LoLo---al, % F =A% O A5t
EZ25Y, MDRees (REUIZE Rees REUR (11, I, ..., I.) = A[l1t1, Iota, ..., It ¥ 725,
R 6.10. M 23 A-MBEE L TR e > 0 22T 3% &, Ker Sym(i) = t(Sym4(M)) 23
D3O, T T T, t(Symy(M)) 1 Sym (M) O A-IEEL L TORNTE D 2R, E-T

R(M) = Symy (M) /t(Sym(M))
72D, Rees RKEUR(M) 13 M © BHIBEAN DI DIABDELD FIZHKIFE L7200,

FEIE 6.11 (85, proposition 2.2]). (A, m) i Noether HFTIR, d = dim A & L, M I3HR4E
REH A-MEEF = A% (r > 0) O A-GRAMBETH o T, i r ZFo 55, FX

DI D 3D,

IEED Rees REUZ, 4 771D Rees RBDILE L B2 D, BIFEREERDFEL RV E W
DBHELRRICLD, ZOMERA T 7 NVDGEEITLREPITEME 725, ZOFEFE2EA,
BEFERETR DIFFFAENEZ M 5 X < A N7 MERDY generic Bourbaki ideals T %,

EF&E-TEIE 6.12 (|85, Definition 3.3, Theorem 3.5]). (A4, m) & Noether FFfi¥R, d = dim A
L, M 3ZARAEREH AR F = A% (r > 0) O A-FROIEFCH o T, B r 2ot
3%, depth A, <1 Z{ifi7z TIEED p € Spec A ITH LT, M, [ZHH A-MMEFTH 5 L RGE
j—éo A—Dﬂﬁi M OJéEEJUT:’% ai1,ag,...,0n e L, A L@%Iﬁﬁ}%

A =AZ)=AZ; |1<i<n, 1<j<r-—1]

2H1L, QA ITED ADLERERTLEE, QA) @4 M = Q(A)% BIDILOZ L TH B,
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BEZD, HL, Z={Z;j|1<i<n, 1<j<r—1} 3 A LORETLORTEEELRKT,
it’., M = M®AA, V‘]b:ﬁb\f, ;= Z?:l Zijai (1 S] < ’r‘—l) }_’,j{i’%, G = Z;;% A/.Tj
9%, THIZ

A — A[Z}mA[Z]v M = M @4 A”, G = Qa A"

rBL, DL E, G = (AN THoT, gradeyy [ > 05D E'JG" = [ Ziil=3 A"
DA T 7N I HHFET 5 ([85, Proposition 3.2]), 4 7 7V I % E O generic Bourbaki ideal
¥\ 5 ([85, Definition 3.3]), LRLDEED R, XD FERDK D LD (|85, Theorem 3.5]),

(1) R(M) %3 Cohen-Macaulay ¥R T & 2 7= DREA+ 77513, R(I) 23 Cohen-Macaulay
RTH5,

(2) R(I) DERZ HIX, R(IM) IFIERTH %, #HZ, (0) THRWEED p € Spec A ITHFL,
depth Ay ®4 R(M) > r +17261F, IEL W,

- T, NEED Rees VDGR A 7 7 VDG EIHESNDEZDTH 5, KIZ, MEHIN
5 RMAE RN T 2,

EE 6.13. AlZ Noether BRyx L, M [ IHRAEKEH A-IMEEF = AP (r > 0) © A-FRMN
B33, BHn>01c LT, M® 0%

M = (R(M)S> CS,=F"

CEDED B, HL, RO ER(M) D S FICHT 2@ EHT, SR 2755, M0
IS D4 77 (MS)™ T 2EEEED n KFEERHEN S KT 3, BB

e - (057,
MWD LD, KT, M = (MS), CFT®->T,jtx e MIZ, BRSHWIZBIT %X

"+ e, =0 3n >0, 3¢ € MY
73,
& 6.14 ([23, Lemma 2.2]). M R r ZF072 51, QR(M)) = Q(S) TH %, Kz, A
AEBE 512, ROD M) = ROD® 25 h o, HL, Q(=) 12 & h 2FEE =T,
Y EZEE 2T, BRI 3 % Ratliff-Rush BATL 28 A 3 5,

TEZ 6.15 (23, Definition 3.1]). A% Noether B, M (ZHRAEREH A-IEEF = A" (r > 0)
D A-FIMEEL 35, BARBEH S — S/R(M)ZDWT, B S O & 5875

ROD) == (HYS/R(M))) € §

ZEZS, HL, a=R(M)y &332, BHn >0 LT, M™ @ Ratliff-Rush PAT. %

M = <R(M)S>n CS,=F"

WEDEDS, HIb -
M = U {(Mn)ﬁrl o (Mn)ﬁ
>0

BIR D VD0 BT, M = Uy [MUH i MY TH 2,
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FEFREIA A 7 71D Ratliff-Rush BATO HAZINR T %, EARNMESF O, 23,
Section 3] ZZ I 7z,

EIF 6.16 (23, Theorem 1.2], [IT11, 7EHE 3.6]). (4, m) &2 XITIERIFFATERE L, HIREK A/m
WFR & 35, M # (0) IXAFRAERK torsion-free A-MBEE 5, KD 2 5MIIFMETH %,
(1) M =M
(2) Proj R(M) FIEHIZ % — A

LRCDOFRMESRAED D D & &, R(M) »3 Cohen-Macaulay ¥R T & % 72 DL+ 77511,
A-TNEE M DEEEATH 5,

% 6.17 ([23, Theorem 5.1], [0, % 3.7]). EHEI8 DFXED K, KD 3 &M FAMBETH 5,
(1) R(M) & Buchsbaum B8 CH b, 72> M =M Th 3,
(2) R(M) & Buchsbaum BRTH D, 2D Proj R(M) IXIEHTH 5,
B) mMCMTHH, »M-M=M>Tdhb,

B 6.18. A = k[[X, Y]] \ZHERIK & EOEXRFEREIRE 52, RDOFIRALD 7D,

(1) I=(X"X3Y2 XYSY8) M=T®ICF=AdA 2B, R(M)ZBuchsbaum
BT,

(2) I = (X6, X°Y2 X4V3 X34, XY7, V%), I, = (X°, X4Y?2, X373, XY, v") ¢ L,
M=hLoLCF=ApAtBt, R(M)!ZBuchsbaum IRTH %,

o= () (37) () () () ) () 2o

A-IEE M ZEBERTH D, R(M) 1& Buchsbaum 3R TH %,

7 Blow-up fX#® Cohen-Macaulay IEFR 1%

ANFRDHE & i 5 X <, AREITI blow-up RXE, FHZ Rees %D Cohen-Macaulay 1E#
PEZOWTE L %, 2 6 BB WT, MBS T 2T ZHE LD, T2 TEA T 7L
DGEDEREHDTIRDIED 721,

IR, AlX Noether B, I\ Z ADA T 7§ %, o€ AD T ETHE (integral over 1)
THs e, FX

" e 4 e, =0, In>0 el (1<i<n)
i3 e TH2, AT7NVI ETETHZ X5RIRADILEEKOES
IT={zcA|z ¥ LTETH2}

WXADATT7ILTH-T, I DA (integral closure) PN S, FR T = T 23D L
DE ATT7NITEFEEAE VW, I OEEOENEHATHZ e X, HIE, I = " MEED
BRI > 11 LTHRIIT 2 X, TIIIERTH 2 205, BB, ADPERBHOEA, Rees
KREOIEHEEZA 77 VDOEREEFETH 2, AHITER ST MBI FLOED TH 5,

B8 7.1. (A, m) ZXEHIEER, d =dimA & U, I 3R mERL 77 LT 2, 2O
& E WD Rees I R(I) & Cohen-Macaulay IEFIEEIN & 72 % 23,
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MECDIWIHNLT, d < 10HEE, ERICED, R(I) 13%H 2 Cohen-Macaulay 1ER%E
WMThHd, d=2DHEE, Zariski DFEM ([104, Part II, Section 12], [105, Appendix 5,
Theorem 2’], [64, Theorem 3.7]) 12 & D, R(I) IZIEMTH 5T, Lipman-Tessier DEH ([i70,
Proposition 5.5], [64, Theorem 5.1], [66, Theorem 3.1]) & #&BE- FHOEM (EM 22) 12 X
D, R(I) & Cohen-Macaulay 3R TH %, 723, 2 XTDHEIIZ, B A DIEAIMEZHERN L T,
(A,m) 25 2 T EHR R AP OGEEIC S, FIREPERZ 513, Rees fRE R(I) 1& Cohen-
Macaulay IEFIEIHT®H % ([6Y, Theorem (7.1)], [I12, 5.45 EH]), AHFES A4 771
DEEATEICEE L TLEIRDEHD D 5,

IR 7.2 ([19, Theorem 1]). (A,m) I 2 RICEHEFRITEIR Y U, BIREK A/m AR5
KTHBERET 5. RD 3FMHIFRETDH 5,

(1) AZEERRATH %,
(2) T, J HS8EER 7R mtESA 77 L5 BIE, 1] (XT3,
(3) I ADEEEAR m-MERA T 725X, 12 3EHATH %,

IS ([19]) 12BWT, B A = Q[[X,Y, Z]]/(X3 + 3Y3 + 973) IR AT 2
IICIERBATEIS T H > C, (FEOKH L m-HELEAL F 71, JIH LT, [JPEHATH S
Y HRENTWS, Hib, EE 2T, FIRE A/m BREEAER L W 5 EIRAIRTH 5.

iz FRIBFTRICEL T, d > 3 DBEEERT 3 &, RIIROBINTFEET 5,
il 7.3 ([92, Exercise 1.14]). A = K[[X,Y, Z]] 3k k LOERNERLIR 55, 2oL %
Q=X"Y32%), I1=Q=(X",Y3 2% XY, X" Z X3Y? X*YZ,Y*2)

B, I=11241? I?=QI TH %, W, R(I) & Cohen-Macaulay B2 TH % 73, IE
Tk,

Bl 7.4 (62, Theorem 3.11)). A = k[[X,Y, Z]] i&{k k LOEREREIR 35, chk £3
PIREL, I = (X4 X(Y3+23),Y(Y2+23),ZY3 4+ Z3) +m® & B, [ ZEHRTH 3
B3, G(I) & Cohen-Macaulay B TII72 W\, #UZ, R(I) IZIERTH %53, Cohen-Macaulay ¥R
TidHRwv, HL, m=(X,Y,Z) &3 %,

DF D, d>3D5E, HlrahRd k512, IEFRMIX Cohen-Macaulay 7% &2 720, [A]
BRIz, Bl 3 & D, Cohen-Macaulay 2R T % 23, IEFI T W Rees REEHIFAET 5, iE- T,
Rees fXED Cohen-Macaulay T & IEFRHIIH OBEZTH D, Rees fREADY Cohen-Macaulay
O IFFREIHIC 72 2 720120, HEEEER, 8034 T 7 LS 3 3 HfIStER B b, A
i CI3EMIRZ ERIEARE L TWE DT, 4 7 7§ 25 ER2 Y Tlnz ED 5,
LD, ZOSMAE LTAEBTOMEBICER L TERE TS, 22T, v(—) KL VERDHD
AABTITCERL, pa(—) IBNEBROBEETH 5, ZDOHHEIZBNTIL, ROFERNDH 5,

F’ 7.5 ([36, Corollary (1.3)]). (A, m) ZERRFTE, d = dim A ¥ U, T 1357 m- 15
ATFT7NET B, RDOERIKD LD,

(1) pa(I) =d 7% 5%, R(I) % Cohen-Macaulay IEFEEITH 5,
(2) pa(l) =dTH 3t DRETIFRME, v(A)I) <1 TH 5,

IR 7.6 (|12, Theorem 1.1, Corollary 3.3], [I3, Section 4]). (A, m) IXIERIFAER, d = dim A
U, T3 mMEREL T 7L T3, ROFEDKD O,

TIEHRIFTER A DEIRRATH S 2%, FEABE f - X — Spec A TH - T, H(X,0x) = (0) (Vi > 0)
T HDOMIFEET IRV,
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(1) pa(I) = d+17% 513, R(I) & Cohen-Macaulay IEFBINTH 3.,

(2) pa(I) =d+1%513, v(A/I) <2 TH 3,

PLEOFRITHRZR E 2 C, AREZEORBICHADREHN LI,
EIE 7.7 ([25]). (A, m) X FRIRFER, d=dimA & U, T3EHELZ mHEEZL F7 L 35,
RDFRDIED VLD,

(1) v(A/T) < 27513, R(I) 1& Cohen-Macaulay [EFBIRTH 2.

(2) pall) <d+27%51F, v(A/]) <2 TH 3,
R, pa(l) < d+2 %513, R(I) 1 Cohen-Macaulay IEMFEEIRTH 5,
Bl 7.8. A=k[X.,Y, Z]] 3Kk EOERXERBIRE 5, ROFIRIPD LD,

(1) I = (X3,Y3,2) = (X3, X2Y,XY2 V3 Z) e BL &, [\3HHE mHELL F7 LT
HoT, ua(l)=5=d+2TH?3, T, R(I) I¥ Cohen-Macaulay IEMEIR T H 5,

(2) I = (X4Y427) = (X4 X3Y, X?Y2 XY3. Y4 Z) e By, IR m-HERL 7
TNVTHoT, pa(l) =6 >d+2TH2D, v(A/I) =2 TH 2, > T, R() &
Cohen-Macaulay IEF®IHTH %,

(B3) EFED fem\m? 2BHn > 1L, I = (f)+m" & B, TIBEAR mMERA 7
TILVTH-T, v(A)]) <2 TH b, T, R(I) I% Cohen-Macaulay IEFIFIHTH %,

EIE 7.9 ([25]). B0 DIKE EOZIERIR A = k[ X1, Xo, ..., Xg| BT 2REAR m-HER A
TTNITHUT, pa(l) < d+ 352 I HBHIERXA 77174 513, R(I) 1& Cohen-Macaulay
IEREIRTH 2,

HEE. B 70 MIRBEES VAR Y LOBREDOERICHECEH AL LI Ed, L DDUIE E
IRBEHORR 2D X L7 0 27 ABREEORIFIRA, IS AREE, ey YR
¥V LBEEEOPE L, RIBEEEO/IMME-FATOLI D ELE L BF %S,
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PR ZE R DR D FHZEHIN LT, Ve 7F AV BiRm 2 e eIl — i b L 7z,
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o REEHADBDEHENINT T 2 B/NE FILHGRORERDIZ L A LI, EEMET2E
DR DS EHNTH LT HAADFIRETH 5 Z & 2R LTz,

o FELRIIRME (F ANV XV ATHELM/NET VOFERE) 1. SRR
SRR T 2T A D TRECRESINS 2 ZHOLIT L,

DX DI, HEBMEMOMOHFEINTH LTS, REZREDEE LRI FEM I
INEFNBGREBRET 22N TE S, IR B D, BITNRFRE TOMNET
NVHERDTEMD 7z DI12iE. b & OFEN RSN T 2 PHEEZBIRTUZ T2 T
H5,

AFROE 1 B HH 12 BE TR I RTHEHONBITHE OV T WS, 5 13 TS
WHET2XAER, 2728 4 BICIEBET L LTHENRNAZMNIINA T, 5 15 EiC
. KL HIEMOBEZZENTBV, BIRZF-NzmH L 56 13 BOXXMEN %
SEIC L. HOFEGRSIZHRER L T2 & /20,
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2 IERENTHEONNMNETILIOI S L (RKKR)

BUNEF LR, BRAEANLES Y LT, IHGERESEGEiimEIcy L TEET 5,
X ZIERELERG A T2 &, UFO XS MNET LT 7T A0RFHEITE

na .

X=Xo—=X1 = =X,

BAT v Z, (1) IR FREN 2 P! 2 —fucli s 2 WEHEGSRTH 5,
BAEMRET L X, 3 BINETIVEREHRI 7N/ 725,

JERF RS R 7 » A N—2/TH 2 2 1d. Zhd P? £z Lo P #
ThHdHIrER®T 5,

FERF RGOV NE T L TH 2 ik, ZORMERT K 2BUEINCIEA (nef &
I 2) THE I ZEKT %,

FRRoEFE, AEINEA XY TERICE > TEICE ST WA, BUNE T L 0%
RBIUZD &S A TORRAHEBIL, RIEROMRICL DL TAHKEW,
M/NEF LTS A0E, IERICKEPICE R, SR oNHEEHRCHLTE
BREONEHELZE L, B/NET LD D WVEHRT 7 4 N—ZERE1F28ETH 3,

3 E®

AHiEwE O, WMETIIERE BV I) DFERZHEICIRDIE S,

1980 4ELH : Z¥Em (M E 7 VEER) 26 % 5,

1980 B,  MEXRD 3 XIL 7V v 7OFAEZFFHAL. 3 ZTIZBIT 3 fhE
TDFENMELEN D, TAUT XD, 1990 FITHREHN 7 1 -V XEZRH,
1990 FEARHETY: @ 3 Zoeh/he 7 VRIS T 2 TEARTHEI TN THRI NS,
1990 FEEF  UNE T AR TZDORHMR, EENPRFEFICHEE L, HEE
AR,

2000 £ELH : Shokurov KA [Prelimiting flips] L EXN=ERKR2IL 7V v b %
NG

2002 1 V7Y v IRF - = a— b YIS T, Shokurov KO LY Uk
DffFt I F—DBEIN S,

2005 4F : Hacon k¥ McKernan K237 V) v FOIFFEREH % F 2,
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o F6E T BEHAE 50 ERECES LAY AT, ERoRRE R (1 1)),

e 2006 4F : Birkar—Cascini-Hacon—-McKernan IZ X 2 EEZKED L 7V > v 53
2SN (2 [BCHM] ¥ LCHIR). < OFIGER. BCHM ¥ BsFsh s,

e 2007 4F : FEHE D 52 FECE S VR Y v 41T, BCHM % figdn ([ 2]).

20 tHACIZ BT 2 M/ E TOVIERIZ EC 3 RITRESRRIA 2 MR & LTwizhs, 21 il
WA Th5iE, Shokurov KOTFHAICHE D E, —RRATTANDEMPED LN TVWDE EF
Z %, Hacon-McKernan 12X % 7V v 7OEEAHOE S, BCHM OEHIZ X 5 E
WOV TIE, EEPYRRELREES VRO 20WE (1) & [#2) 22EW
72720 R, UROFERKRZE U - T\l 5725 5,

ZOBROTELFERE LT, UTD XS REELZHRIETONS !

Sarkisov 7’1 272 4 O, (Hacon—-McKernan)
Shokurov ® ACC FHEDER (Hacon-McKernan—Xu)
TEZHEDOAFMEDOMEY. (Hacon—McKernan—Xu)

e BAB (Borisov—Alexeev—Borisov) FRD#R (Birkar)

IS DRIF. EAMNIC BCHM ZiEER e LEZEARROLOFTHELNLDDTDH
%, BAB THDMERIZ X T Birkar K7 4 =V AEZZE LI [RLHIHNT
W3,

INDHDMREIZERZAANDO— b LT, UTDXSRIH5%EDH 5 .

o M/NETFIIVHERD A DHLIE (Fujino)

FRDOBRDZ <X, Shokurov RDOBFFEEEFICZIFME OO, [F—it L CHmZ
THIANETAND EED TV ob D TH L DITH L, FFHOMHFIX. M 7L D E H
fiplz TR CIKT2 5D TH YD HHIOREEZ A THIFENRZIRR L 72 ik
D 5,

CDIEPITH, BEZHREKDEY 2 7 4 Ham, IEERUCH T 2N 7 VG, K Z0E
e DBtk EEROWm/NE 7 VG, EEMIEOMNE T VRS — 7 — SR D
NETAERRZ Y, ZHHTOREPIEDHNTED, ZOFNIEZ 2 K70,

4 FRITDEIE

SEIOMZEOEIEZ, T RO S TH 5,



o ERBMIFRRDMR
o REZHAFEDRILDIHARE

2 XTI BT 2 IR RADOHETIE. DUTD K 5 RBIEVIFHENICHVWON S, £F
REAMHEZEL. PISVESOHIC (—1) IR FEE TR, 2z s 5, ARElO
ARG 232 2 T, RERNSHISEENC (—1) BT LRWVIRBICT 2 22 25T
X3, 20D BRELAHE% minimal resolution £ '3, minimal resolution (238
JABINEB DRI AN T 7 %FNE 2T, FERAOMWEZFHL CHEMET 2 Z e A
REX 72 %,

B/ NE FAVERROIT L DE —DEIFEE. 2D X 5 REEIEE ERITDOE RTINS
WXL THETARBICT 5 2 TH S, FEABHITIARRBEIOBERIC L DELN, MBHD
SICDZEMANDFIIFERI L 725, Lizh o T, EEMBNTZER OB DS HIHNE 7L
HEgrHEHTE 2 X512k, ERITIZEB T % minimal resolution Z KT 2725 D
MR ARE 6N 2 Z 812k 5,

B 0T D 2 BRI DB(EDRFFE L L TIE, Kulikov 2 & % K3 #iEiDiR{bd
e RBEICH %, FA R LICER SN EEHRARDEEZE 2, HEAZRE T 7 4
N=DIRETHZL T2, 2Dt =, HELTORICOMRT 2T 25EE LT, F
EEBNETIVOT S L MINZBNETILVEEGNE Z 5N 5,

7272 U BB IRIRBEZS A TR S ERBTERTH 5720, ZoMOFEH %
PHERHICERAE S 2 12, R 220 o [ O S 2 Ht LT INE 7OLBIER SR S T
WAEDND B, LLEOBEED S, EEMATZEME OB DS HITN T 2 MUNE 7 A RO
METIZERETH S EES,

5 BCHM O#FERICDOWT

2 ZTid. [BCHM] @ ERMERZEHICHNT 2. [BCHM] i3, £ < DA% RITIC
EBBEIC L DARITRLTE D, ZO2KBEES DRELTIERV, FlicoVT
FEG [BCHM] 2Bz, 22T, FrCCH EEA T, BRI L2 T»
TODFRICEREZYTTHENRS,

¥ OHOEHIZ, BWYIRRKED FCRT—IFSBNETILIOY S LDKRES 3
TEeZFRLTWVWS,

I 5.1 ([BCHM, Corollary 1.4.2]) X t Y ZH¥EFHEZAREZHEAEE L, m: X - Y
ZHREA T 5. (X, A) & Q- MHYZ)ISCHEEIAR N & Ly A 1 m-E K (big) &1k
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ET B, X561, AR R-ET C BPEELT, Kx + A+ C 5 - 8ERIEA (nef) T
HY, (X,A+C) bINXHBIRGNTHS TS, TOLE, Y £ETCIEATEX
F—ftE (Kx + A)-fNETFL TR 7 0% FTT2I e TE, ZOMBRLLT Y
LOBNET VD B VIR T 7 A N—ZEE OGRS 5,

RIZHBRZ EHIZ, RO Ry — P &EfvNET LT 0 75 ADOFEITAIREN ZRHITE L T
E, HEEGICEINZ D TH B,

EI 5.2 ([BCHM, Theorem 1.2]) X ¥ Y ZHEGENRBZHRAEE L. m: X Y %
B e 5 2. (X,A) 3NCHBIIARIN ERET 5. & 512, IFOWTFhhr D5t
ZIRES %o

o AlXm-EKT., 2 Kx + A X m-HE% (pseudo-effective) TH 5,
e Kx+AWFmEKRKTH%,

D E, ROEEDKD D,

(1) (X,A) 13 Y EoENETIL (minimal model) %2 %D,

(2) Kx +A D m-BERTHIUR, (X,A) 3 Y LOWHENEEET )L (log canonical
model) Z D,

(3) Kx +A 5 QLT 4 TTHIUL

R(X/Y,Kx + A) = @ m0x(Im(Kx + A)))

meN

EHRERZ Oy-RETH 2,

6 WNETIEROFEMLZBHELT

[F2] 1251 2IBADHERIE. KD & 5 7RAE D HEMATZR Ol 0 BT 2 i)
ETFNHGHZRCD72DDIELWHHATH 5 & RkW/RchseEZ o5,

WE 6.1 UFHHEADHANELZIELVWERETH S !

o X Y Y IIERMNEMTH S,

o m: X =Y I3HHTH 3,

o WY OREA2AVNT b HEETHD, T(W,0y) 3AX—X—RIZKZ 2
DT 5,



HENLVWHENEENTVA2D LAKWE, ST ZORELEYIRDDOTHB L
D, FDOETHEHmEED S Z 2T LW,

7 BCHM 0f#thit

[BCHM] Ot %ZHEE S % £ [BCHM] IZ5MINICIERORERBEEIR L )IIX-
T14—RYIVHBEBLIMEoTVWRVWET>TEWES S, NIIN-7 4 =Ry ZHBE
HIZNEEREED —MRILTDH %, /NEOHREH 2880 % L fliHICAIATZ 2 €M TDH
%o JEH ORFE FRTHE E T 2 ISR 3 2 T H o 7253, R 2RI
LU THRABRORRAFAHEEEIFIHIN TWR Z X HshTWS, £ /NED
HRERIZIEa > 87 P RERZBIRC—RLEIhTE D, ZO/SH e U THEEMHTZEM
D DHFEHITH UTMNEOTERERE (DEMAR) dEFISHN TV 5,

[BCHM] O FAROIEE A L 1d. WEMHTEM MO FHIH LT BREATIETS
2, DUFCWE. #0851 B EOEH 5.2 OMFITELE B,

EE 7.1 ([F2, Theorem 1.1]) X, YV, m: X =Y, BXUF W IIFKE 6.1 DD 2T %,
(X, A) NSO BRSNS TH D, A X m-BERERET 5, £/ X 3 W E Q-7
MEF 2, 61T, ARG R-EF C BFELT Kx +A+C H»B W E m-BYERIEE T
HYH. (X,A+C) BISRBHIARINTH 2 L5 5,

COLE Y ETCHETHERT—AMNE (Kx + A)-MUNET VT 0TS H%ET
THIEMTE, ZOMRELT, Y LOMUNET VIR T 7 4 N—ZEMORHEE
(EX

bbb, Y o7V vy 7B X CEFIE (divisorial contraction) 72 5 7% % H R

(X,A) = (X0,A0) —=» -+ == (X5, Ag) == - = (X, Ayy)
BIEEL. (X, Ap) XY EOBUNET AL, H250VIE/HRT7 7 4 N—ZEMOEEE D O,
DURE, REEE & TR E DB O BB VICE T 2R TH %,

FET72 EHT1IRBIZERTy 7 (7Y v FRRFIGE) Tld. RESCTY %2
W OXO/NZIAFICER D ESTRERD 5, ZD7DH, m&iicEons X, .Y %
W OEFBICBEXHZHBDBDTH S, ZDRIT, FE 82 0% 15 ErELBFRLT
W3,



FE 7.3 ([F2, Theorem 1.2]) X, YV, m: X =Y, BXE W II&E 6.1 o@D & L,
(X, A) B BHIARGN ERES . 512 UTFOWITIhrDEEZRET 5 -

e AFmEKRTHY, D Kx +A X n-HAMTH 5,
L] KX —{-A =8 W‘Ej(‘/@%%o

TDrE, RDOEFRMBE DD .

(1) (X,A) 3 W oHhBaEELTHNETLE DD,
(2) Kx+A D m-BEATHIUE, (X,A) 3 W 0HZEELTHREEE S LR
b,
(3) Kx +A D QHLT 4 = ThiU,
R(X/Y,Kx + A) == @ mO0x(Im(Kx + A)))
meN

FRIFTHNCHRE KR Oy -fRETH 2,

8 m-SEIEL -BIERNIEEMH

REEHEOB DHZFHITN T 2 M/NE T VR & . EREMBATZEHE O M OS2I
B NE T AIEEIIEF IS K K ITW 205, ERBMNZAREICT 2 ik o T, ik
WD REERE LS 2 b H D,

DUR, ZOFETIE, m: X =Y 2R EHOBOSEHE L. W 2 Y Offntk
AT, L% X LD REHFRRDHLVE R-ILVT 1+ THF LT 2,

AER81 (W LD -B8EM) LW L r-28% (ample) TH2E, FEDO we W
LT L) PEETHLZIEZEWVI, 7 (w) BEEHTH 2720, L] 13y P
SEMHE, BEORBERMACBI 28BN LAKRTDH 5,

COEBDPOIEFHLITIERVD, LW L r-B8ETHrZe, LW OFYR
L LT n-BETHH L FFMETH 2, LEho>T, LB W L r-B8ETHH, »
D W HarxRy b THIUI LEZEW Ot ETHRMED -2 EREMRKRD R o-#E
ME L TREDZLITR S,

AR 82 (W Lo n-BERIEEM) L2 W Lk rn-BENIEA (nef) THZ 21X, TE
D weW INUT L -1, PEMERIFATHZ2 2 E2VS, 71 (w) BEFNTHS
7Dy Llp-1() OEUERIEANE S, BEOREEMACB I 2D AL TH S,

8



CZETREEN L Lo FAKTH S, Ll LW LT r-BENIEAETH -
ThH, BFTLS W O ET - BENIEA L 22 L3RS 20,

ZoO Xk, T HENIEAED HRABOOEX | 235, BHNREICBIT 3N EF L
FERORERICBWT, 2 ZALZATHEELR S, N2 T, Z OBk
L HARRIRE RET2HDTH %,

48 8.3 ([F2, Conjecture 8.4]) m: X — Y R2EEMMEMOBMOEHE L, (X, A)
ZRBIEEN 35, P2 Y O—rRE L. (Kx +A)|r-1(p) PBERIEATDH 2 AR
ET 2, ZOrE, Kx +A X P oilrfs BT m-BUERIIEATH 3,

RIZTFHE 8.3 BIELWE TR, FNTHERE TN ET L TR 75 A %FETL, W I
BNIHET Kx +A CARKOLLZDDNPEELBZVWEISICTEIR. 2R3 W o
ELETHUNETFLE RS,

AR 84 TH 83 X, HEHEMA MO M DS EH T 2 /N E TIOVEER TR
WS, XML T 5 Z e 6N T2 ([F2, Remark 8.5 &), %7z, [EH3,
Theorem 1.7] ZfiW2 &, X 73 3 KItLFOHEITIE T 8.3 23K D LD Z & AR T
ERA

—7C, —fRD R-EMFICOWTIE, BUERFEEMEDRM (openness) 23S D Y7270
ZeHHNTWS ([F2, Remark 4.3]) L22 L. HIH OB EIIIMEED R-EHFITH
U CTEBAERIEEM ORI T 2 Z eV RENTWS (Mo, Lemma 2.6]),

HICHWEERE LT, XROFTHEH LT 2 a3,

F 85 (FPNYARFHEORHR) X — Y 2EEMITEHOM O L,
(X,A) ZHBIEEN T2, P2 Y O—Re L. (Kx 4+ A1 (py PWEUARIEET
HHERET S, 2O E, Kx +A X P Oiif3 ET n- & E (semi-ample) TH 3,

RICTHE 8.5 FTIELWVWE TR, A/ NE ZAHEERICB VT, W BN 5 iR
TKx+A LEZDLIZIHONFHELEZVEIIICTENR. ZHUX W 0EFEETRW
BNETIL (good minimal model) X723 WX %,

T 8.3 BLUTH 8.5 IZRMIRTH 22, [BCHM] OEMTIFALUCEN S X 5 7k
EOBGE (e 21X, EH 7.1 RFEM 7.3) 1ZBLWTE, ZHHDOTFTEBKD D 23
XN T WS, FEL <X [F2, Theorem 8.3] ZSMI Nz, WFIUIE K, FERIT—
OBETIX, P 8.3 T 8.5 IR L L TIFFICHEE L RIIIETH 2 EZ S



nTwa,

9 BNETIEFRZVWMMIENLTEH?

CIDPHIERE 6.1 %2H5DLEFELLRTARY, BADHMIZIILIIND R R 4 > 28
DR T2 ERE UTEHRHALTHREER W,

& 9.1 (REAVZER) X 2EBMNZERE T2, X DRXA4 VZE[MTH S 2iE,
BEOMATHEEE F I LT H(X, F) =00 3TXRTD i >0 LTHDIZIDZ LY
35,

CDEZRERD . REEMETDT 7 4 v AF— L EEBRA DR XA 2230
j_Z) ZJEDE‘I\OVCJ:L\O

EE 9.2 (REA>AVNI MESR) X 2HEBMFZEEE L. K2 X Oa 87 M
DEEL T2, K WAXA VHESELORIEARNOFEREFR >, KIZRAXA vay
X7 PEEEMHINS,

MNTro@EzHnwd e, RAZAar_y VREVZHFET 5 bbb, EHIM
WIIZZEBBRGHT LKA NLMRTH 2,

WA 93 (ERME) K 22XA4VEM X Eoar s vEEL T3,

R o= {o e X 1@ < sup 1) or every 1 € TCx.0m)}
rEDZLE, K3 K OFANELIEN3, 20L& KiZ X ORZAvay <y
MEATH 5,

ROFNE. AR=THEDHTEIL AN DY P —NVEBIET 2D TH 5,
Bl94 (A r—ILER) X={zeC||z|<2} L. CEIVI—LEELT 3,
cclol]cX

THEZLIWHERET S, ZOLE CRER X DRAXALvay 7 VEETH D, RERD,
Fav A b RY = VHETNTRZA Y THY, CRAVAT M EDPLTH S,

L2 L.
OX(C) = F(C7OX) = hg F(Uv OX)
ccu
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W — X BT,

Lol bhnd ko1, AEXALar k7 FPEEGLWOIIRER T TIE. FEH &3
SEZBEOBEEBIFMHELE S, RTHBRS Siu I X 2FEHRIZ. 20 X5 2EE5%2HkT
A5 5255DTH 3,

EIE 9.5 (Siu, [F2, Theorem 2.10])) K ZHEZBMNZEM X ORX A Y ar 7 M RER
DEAL TS, 2O E, Ox(K)=T(K,Ox) Br—X—=BRL %5 7-DDHREA35EME
Z. UTOBEOTHS .

(x) K OBHLEE ETERSNIAERDOEMIES Z 12X L. KN Z OEFSENRITIEE 4
BIRMETH %,

By b C OB DR IEEET 572, Ox(C) @h— 2Ty %
[573:%7)07}:0)’6%60

AE 96 &M (%) EXVOMIITEDH, HEVIE (x) ZifilTar 7 MEAITEER
FET 2D, EWOEBMPET 20d LKW,

—fic. K 25 FEEFNES (semianalytic subset) TH»DOa Yy 7 b TH5B L X,
K 35 (x) i3 2 eBHohTnd,

fRt el X O 551 P OEFB T2 Z2EET 2121 RN X 2 ZEMRNIC
FHCTES, OIS RRIITBNWT, P DIEFFITRAE A v a v’y PR iTES
MRS 5 Z el d VWL HTHARET D 5,

m: X =Y EIMMEMOMOS S L. WY O0ay 7 ke s
3. m(C) W DEICHESZ L5 X LOGHEME C 72bhEKT 2 Bl 7 —~LREEE
ZUX)Y W) e, BRETIR W 33y ~2 MESEATHE L DAERET 5.

U% W OBBESEE T2 b,

Pic (n7"(U)) x Z1(X/Y; W) = Z

BAREEREPERTAZIENTXS, 22T, BRADPEZAHMBRIAICEIoT W DR
WKE2HDTH22D, UBW OnETHIUE, Lo SERIIMER S ERINS,
RE 72355 L ARk, BERFERI (R = CE| - 7= 22/

A(U,W) := Pic (r 1(U)) / =

11



REZD, X512, W OBERE U 2E5ET
AN X/Y ;W) = lim A(U, W)
wcU
LERT B, bBBA AN XY W) BT —~ABETH B0, —HIZERER L 3B 5
R,
Z 2T, UFofloE s EE R &% BT,

EIE 9.7 (Nakayama, [N2, Chapter Il. 5.19. Lemma], [F2, Theorem 4.7]) 7: X — Y
EERB R OB OHEH e L. W EY 0ar 7 METREL T %,

(x) W OBBEM LICER SN LEORNINES Z TR LT. W N Z OEERI
&4 HIRET S 3,

LS AME () DD DL F. AN XY W) IREER T — VBT H B,

TTRBAMNZOHEDZVWERDNSD, EM 9.7 2B 2504 (x) 13, EH 9512
BII2EM (x) e 2L AL DTH S, ZOIenb, FRADL A (x) WS &R
Hc B BERYEERAEST 27D ICABENR D THE bbb, Blzary 7 My
EHEREET I TERTATDHD., (x) WMl Tar 7 bMEDREELE X 2LED
b3,

AYXY ;W) DERAER T —~AVBETH 5 & %,

NYX/)Y;W):= AYX/Y; W)@z R

BERRTOERY FAEMER S, ZOL X, ZOWHRY V2R N(X/Y; W)
2. 75903 -FRitE

NE(X/Y; W)
FEBRTZIENTED, Thbb, NEX/Y; W) &, 1 I2&>T W DI % iR
7=b 2R B KD N (XY ;W) NTOMETH %,

NE(X/Y; W) ERTENR, IF1IVOEEMAEED. RESHKEKOHE LH
iz, NE(X/Y; W) ZHWTERIL - ST 2 2 e TE 3, £, WNEFLERO
HFEETH 2HETEIR (cone theorem) RUEEIR (contraction theorem) 3. REH
IGE L BEUOETENMUATRETH %, 7272 L, T TIAZES I, TW LTO r-$E
RFEEHE] & TW OEFELTO r-BIENFEEM) 1ITI3EXD 570, M REMHIELE
DRFECH D, WHhcE &, NE(X/Y; W) DEUNICERTE % & 5 RHAZ S
LEFEBRAD. JFHHTH 2 b s,
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10 SHREEIE

NSO AR G 2 % D 720 TH UK, /MNEOTHBEREDETIR/Z T3 TH 5, L
DU, AN, S O ICEVWRRA 2R OERMBR M ETikBo 35, BifF
DHEBEHTIEEL N TITH S, ZOXIRRMEEEE R, UTOEHZIAL /2, 1R
RIS 2 ERE O EHIZ, fUNE SRR BRI REES RIS T 2 221280
TITRRERKENZRZLTWS, ZITIRFOEZMBZEMRES X2 Z B FERT
»H5,

I 10.1 ([F4, Theorem 1.1]) (X, A) ZREHHIR BAERZ N L L, A #HIR R-
FHTE 553, f: X =Y REERAEHOMOMHER L L. L% X FOBBRET 3,
¢ BIEEOBE Y T3,

(i) (Strict support condition) £ — (wx +A) 28 fERETH 5 & =, RIf. L DFEfE
5y ZRRIR (associated subvariety) (&, (X, A) DH 3 FEE (stratum) O f 12k 3
%BTdH 5,

(i) (Vanishing theorem) 7:Y — Z ZEZMMEFOM OSSN L. HZY LD
T-HERREMRRE T2, L (wx +A) ~p fFHDRDIDOEE FED p >0
WX LT RPTRIfL =0 DHALT %,

B2 EFIC OV TUIFEAR LR wds, E# 10.1 1IN 2 BAIERRZ 0 (X, A) &
. HAIERR YRR EREER X 2. 20 FLOBRKAT A 262530205,
e X I3 fRICIEANTH B Z L ICHERELTBE W,

EE 102 REMRREICBIT A EM 10.1 OFHHICIE. BEFR Yy SRENAAREZHWL
BNTWz, REESHERIEFEICa Y 7 MUATRETH 2720, KR & v DHEROFER
ERHST2 2 TE %, #£L <X [F1, Chapter 5] Z&@xhiz\,

EKIF, BERy DGO HE IS AR LRI By B{tEHWS Z & T,
REFZRFRE SBT3 M 10.1 FEEH XA T\Wiz,

L2 L. ZOFEIEH 10.1 © &5 BRFERMNLRRREIITHEATE RV, FEHIX
EO A RBROMEL L THRIN TV,

FEH 10.1 1%, RYNC [F4] T, FEREICL2EAKy YMBOMGmEHWTIEHI 1
Fzo EF10.1ICEL T, [F7] 3 BREI 0V, 20K, [FFIZBWC, Ry It
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WA WHIDFEAD 5 2 57z, [FF] Tld. 24 ML H2@EDREAKR Y DHEDE
FOMEmZAAL TW5, GEHDO 7 A4 77 BIRZ. [F4] B X [FF] OM#E TARERIZIE
CTHb, D%, [Mu] Tlid. LRROEEZEZL LD —RBRERIIRINATVE XS
W, BBV ORI ZDNE L THITEZTVRY,

Wo e AEM 10.1 2EER SN2 & EERMBT TN LT EEEFD (log
canonical center) (2B 2 EANZIEE DR SN2 1F D, FEMAY 72 TE O BEIARE BN HE €
G WRMNTINIZFE T TE 2 X 5127 %, 7L I [F5] % [F6] 2B Iz,

NISONEERIAS R & D & BNRFR S %2 § OE R 22 L Tld, ZEO—#H D%
BT HEROMBRE, FZITEH 10.1 2R E TIHEATELZETH S, LD
Db, EH 10.1 ZHFERE LTEIPNS S FIERHRIE. RBRREICBWTTT
WELKDEEIDD ., ZNDIHTI L AL Z D F FEEMH 2R OEEC S BIERATRESS 22 6
ThH b,

11 KEAY vs. BRIFEY

INFETREKREEL T, REWNZGE I RSE LI Z S L Tx a0, 22
T E DENZ T 728 % Serre DHZZHIZFENT 5,

Bl 11.1 (Serre) C ZFEMEIRRY L. IFD X5 L nWiEEaes|

0—-0c—E—0c—0

WKWk TERSINIPEH2 DRI MVIRE BEZ B,

ZDrE, CX xCE, FHERZ MVEKP(E) DY) RAFHEA L L TEBAETH
%, bIVLFEHELLIE S b, Po(E) OF Y RXFES U BIFEL T, EEMTZEME L
TU~C*xC* b2, d3HAA, U REZHEIAY LTECX xC* 2T
AQRN

—F. C* x C* ZHALRIC P x P OV ZAXFAEETHDH 3,

Thbb,

Po(£) <——C

X x C*C——= Pl x P!
FAAT Y REW
EWVWHET, C* xCXIINLTZ@YDar 7 MLEHEK T2 Z e TE 5,

BEEMBTEBANT L a7 METEZ2 2 EEL RV 2IE, K<HAsnTw
LHETHD, ¥/, [ X =Y 2EEMNEHOBOSEHNE L, X Y BZEh
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Fharyy MURATRE T H o2 LT, fBZAHD a7 MMuo TN A
(bimeromorphic) 5% 52 % L 3R 578, LD Serre DX, FXIZZD K5 LBISR
PRI DEL L ERLTWVS,

12 FNIAZFEICOWNT

BUNE T NVBEEHICB W TR D R RRMEEE ZEZ 5N TVWED0, 7NV E VAT
BTh2, ZOFRIZEBROETHERONZ, T2 TIEURD XS5 IERET 3,

FH 121 (PN RZFE) (X, A) ZHERBMEIEEN 55, Ky +A 2
ERCIFATH S E, Kx + A IFFEETDH 5,

ZOFRICBELT, UMD XS IEMDEEATE L !

EIE 122 (ERBTZEROBMOHFEFICHTEITN R XFEE, [F9, Theorem 1.10])
TR 121 2 n KL THRILT B ERET %, m: X — YV IFEEMRTEM O DS &
L. WRY 0ary 7 METEET. (X, A) PHBIEENTH L T 5, ZDLE,
Kx +A2Y ETEEMICIEEDD dimX <n THIUX, Kx + A Z W D440
LT r-HFEETH 5,

FER 12213 [F9] WBW TR L7253, Z DFEIIEIR L TES TR0,

AR 123 EEICE 2R EE 122 1280V T A D R-ATFOEEIIEE T OBIEDSHE
TH5, atL & [F9, Corollary 1.11] ZZ SNz, LALEA S, WIHITL TS,
BIERIIR ZRRIRICNN S 2 7N XV AT (PR 12.1) AL 4UR, EEMBHT 22 O
DHEFHHIR L TR T ARV AT D IO e b b

CDEBODBNPITT, 7R AFRICEHL T, $% Orgk D) REICBIT S
FRXZRRTIUI T TH 2 Z e HEICR 572, ZOEKRICEBWT, EEMTZEE O
MDOGHEZHICN T 2 7N X ZATREIBR L2 EoTHDVNTH A S,

13 XEICDOWT DR

Z TR AT 241 O F O S 241 0t 5 % Mv e 7OV BEER B OO SR I D WD TR T
B,
DN ERINCRHIL T THEL720EFINC X 3 [N1] TH S, 1980 FROMEH

15



T, WUNETAVEERD 272 D IHBRBE O ETH o7z, DBAA. o TV EHFRIF)IIX
WHEHIARG D AT D o Fzo 3 RITHUVINE T IVHER DIFFE TR EIZIG U TEERBTIIRRE
OMU/NE F ARG Z D Z L3O NDFRILANTD H o7z & B S5 H, —fRRITT iK%
AIHNCERH U 72 DI N1 2T TH o BS5, HildEE [N2] T [N1] ONMEZEIE
LTW5, EH9.713 [N2] I TH 2,

%@&m@fmmwm@m@% SN B N E T OLVERERBE O I E o 72 <
FIEL R o7z ZIHBEFEO—HOMEFEDIHE DX [F2] TH S, T TR L2,
[F2] TIX [BCHM]| Z X Z R FITER B ZEE OB O HEHN L T—RL L7z, 2Dk,
[DHP] T34 LEL 2 HET [F2] 0FELRMEREZHFHHL CWS, £/, [LM] & [DHP]
ERIFITET, EERTEELINC S EHTRER S 54 5 —RkL2 52 TWwW5

Vfﬂﬁﬁi\ppifiﬂtﬁ$MIkMXﬁﬂMXﬁﬁkﬁ?6%@T%O EEE S
RFEHEIR &/ NEOIERUEBDTINERE TR D D Z e 2E 24U, e ISz T
F20, Lo [N1], [N2] & [F2] o F =2 HEkZ, fvheEF7 VR Z#R U 2 1E L WERIE

ZHOF. B LA THE HES,

KT, [F4] CHEZAMATZERE O R OSSN LT 172 8 CGEM 10.1) 2L
7oo ZHUIMAANMICIEEERFIROMET, [F2] OMLF LRI EED. EH 10.11&
IDOBZDORNIFFEATZ R0 LRV EE > T0WAFIRTH oo WTIUTE X,
[F4] D35 LT LR 213D L I3 —5UCHIEECDIREATH - 7=,

[F5] T ARERE i 0 U TRz INE 7L Bl ER 0 B C & 2 SR B0 I 2 B % FF
L7, HIREFDIGCHTH %, [F6] TIEFRIEAIREXS (semi-log canonical pairs) 7%
EH WA B KD ITHERMN N S A MAIBIE (quasi-log structure) ZE A L TEA
(7338 B 7% 280G 2 72,

HEE & e E [EHL] THERETZER OB OS2I LT (58) ¥ RERCEE 2
L. 20z W T [EH2] THREATEREERHII N LT & Mt A9 M/ E 7V BEER 2 3 U 72,
[F9] Tid FEdMiR AL, 7NV XA PRZGR U, FHIHHBIEET ) v 7 (log
canonical flip) ERBENTAIRETDHFLET 5 Z & 2R L% ([F9, Theorem 1.7]), 7
Vv 7T OFEME RV DOIEEHTEELIGEDPRICK o LRI N, T 2ICE Tl
ﬁ%i%m57uyfw—%—%%tﬁfﬁ@ﬁ%jbt:tmté [F9] % [EH3] T,
Wm%fw%L XTI RTOFPEIIAV I FLVORBLREDOTRICHETES I L

mah, %65% SR 22 D OB HNTN 3 2 M NE F VBRI L 7z &
SoTRWEAS,
SERTRS []Té6K%£5®ﬁm%6®@m%?w@%%ﬁofm %, WIHIZHE K|
2 ZBUEDO—EOHHE T, ERMNZER OSEANIIN LT REEHRAEDSE 2 IZIEF T
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F TN ETFAIEMIMER 5. 28D, —BEDOWLE S,

HE SRR Y 72 3 E C DX AR HERE (log canonical threshold) @ ACC 2 DWW TI&
[F3] & [F9, Theorem 6.2], #E3RMEAMTHI72EE T DREEAPFHEMIC OW T DWREHIZ [F8]
¢ [F9, Theorem 6.3] THbNL TV,

14 &HFIT

SElofNE 7B ORI LICEE 3 2 55O TE G [F2] T - 72347) &, [BCHM]
ZHOIRHETD TSRV DOL XS RFETH S, BEFRFAETH 25 LVOLREEZHEL T
WBADPVIUERHETA LD, EEZTOVEDEDN, FAREENZVE TR ITIE 10
FELLEIE>TLE > T\,

av Mo 2021 4£ 9 A, TMUNETFAHEEHIZOWTORE] WD XA ML TiiE%Z
1To7- GEEHELEZ [ 3] 22, ZoOME T, MUheE 7 VRO ticoVTD
i L7z, 20k, BHEO#IER (K 3]) 2HIRICKR-T, ERILFEo TR
Doleiz? ) THDEIOZ LD Ue R0’z ? ) EHPLKUCKRVED T, %
CTHDTEZTAREZA, [T [F2] B TEDD > TWiz, LW ORESE D
FROEFETH 2,

YRHE o R THH S DR REICRBADH D, FAHOMEF IcRbINL bR
DofeDT, EHLTHENTE R, ZOHR. 10 L EFO0 372 o L HBEDEZR
fEtrbd [F4] THH-o X DEEHTETL ¥ o7,

To575t. ®eEMBIZHREZERBNMNLREICEAEABRL TWLI 2T DG
TdHo72,

15 K< HBIEMADEZX

TITE, XK DB2EMNDEZAZLLTHBL, REEHADGEICIIMEL 257k
o Tehi, RN ZEE OB OFHH 25 BEICEN 2 BRTH 5,

Y ZIEFFESZHME,. PcY 235,
X Pz oy

ERDEDIHE T 2, a: Z =Y XY O PlBF327u—7v 7, B: X = Z 1%
Q€ Z\Excla) ZBF270—7vy 7235, X200 E FC X, altkd
B R O B (strict transform) % EC X &3 3,
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ZOrE W:=P eBWTHIKTHE»ZZ2 5L,
NE(X/Y; P) = Rxo[E]

YA 3HLLTHAS, 22T Y FLOBELILT 4 ZRF H Z2—0E,
L=0x(r*H+F) 8L,
ZOrE,L-E=0Xb. LIZHSL?Z P £ET m-BERIEEATH 5, F/-.

KX:TF*Ky—{—E—l—F

b, —Kx 3 P LT r-BETH?,

B, L-Kx 3 P ETr-BELR2DT, EEMNTZEE O OSREHI R $ 2 [E
E R EB{LER (basepoint free theorem) ZHWIUX, L1 P Od 2865 LT n-F
EBETHEZ s,

LOLEBRS, L F=-1ThHd7xD, LIZZbZDY LTI r-BUEMIEETIER
Vo L7zD3oT, HARRDS LIXY BT a-HE8EITERD 2720,

L 1Z NE(X/Y; P) = Rso[E] KB % Kx-AREFHROZFHEEE G2, /2. L&
ZDmGHRICE EN MR R BT IEE R 52 525, ZOIMEERIZ Y ETiER<,
Y\ a(Q) LTOREET 5,

BRI ZER OB DO EHNIN T 2 NET LT T T T AZENWT, ERAT v I W
DL ECHIB LRV EFELZVWEWVWIDIE, TOEIRBHRICEZHDTH 3,

bHbAA. TITHD EF N3O THMTH D, YV L THRD E OAZETHO
FHEEHS P TH 20, NE(X/Y; W) OdHigs 6 —Emc & b INEH 2K T 5 &,
W Dt ETULDEDFEEZ S ARV LK 5,

HEOHEARTHEZEZ S &,

NE(X/Y) = R>g[E] + Rxo[F]

YD, ZDLE LIFRs[E] OXFRREBICITR SRV, 722 2R L = Ox(r*H—F)
& Roo[E] OXXFEIEE 725 Z e300 h D #E ORBE KOG E DI E % i
X, L&Y ETE 0ARETIGHESRES5 X %,

—77. BRBHEEOMOSHEZINCT 2MNET AT v 7T A TIE, W ICEN S
ROAEWRD 72D, LD XS RERNELLDTH S,

AZOT, b5 —28fllbik>ThAZ, SEIY =P3 L. S PecLCP %
3, 272U, L3 P? LOEHET2, m: X oY Z LIZiholz7ua—7vy 33,
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IOrEW =P LT#KEHEEZ»EZ 3L,
NE(X/Y; P) = Rxo[/]

YR ZLEHLPTHSS, 2T =1 Y(P)~P' TH3,
T OHINKFE E 55k,

Ky=7m"Ky +F

YEIFZDT, —Kx D m-BETHZZebh b,

Dt &, HERBHTZEB OB OSEININ T 2 IHEMZ HWa Z & T, P OB
UDFEL. Y 2 U i 7z BT, £ 2 RICETIES ¢ BHEET 222 0bb 5,

X5, 7 B — LIZHMERE (rigidity lemma) Z#EHT2 2. Qe LNU DEED
7 7 A N= 17 HQ) ~ P IIINHES o Ik DRI D Z bbb,

ZOHB» SO B XS, BEBTEEOBOSRESICHT 2N NET LT s 5 AT
. W = P IZiEN S EERZ 02 O THHREE S X CIGREAFER I ATV 5, Ly
L. BUNET LT BT 7 LDERT v FIZBWTIEX, W 25 3AHTHIfRBEINS Z
ryd 5,

2%, NE(X/Y;P) & P CENZHROAEZRL TWEH, ERICTRT T 0%
EOEDZE, PDI77AN=—NEF Ty FRRFIGEIAEL % EIFR S0, ZDR
WIEEEDRETH 5,

16 EE

REEES VR Y LDFIMEICEE L, 7027 ABEETHIFARI AL X OHHEEA
SAZBLD, EHICIRNKES oLESFITHREHFL EFET, $h AXRZ2T
BICHATHWRIA Y P 2T E TS o BRI A L RIIFBHES A H DL DH
fLEF L BT %5

P )
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M p-E GALOIS RIRICH T B p-PARITY 48 . 82 EGNA77O0—F

A KRR

1. p-PARITY TR & 1&

F 2R¥uk, E% F LofMiRe 3%, E ® Mordell-Weil # E(F) OFEEUE raq(E),
E D L-B¥ L(E/F,s) ® (Nt 2 INE L7z L T)s = 1 TOFEEDMEE ran(E) ¥ 7
3. EIZRT % p-parity TAR & 1X, Birch and Swinnerton-Dyer 48 (BSD F48) 0%

Talg(E) = ran(E)
DIE2RR, 2F D, AFEK
(1.1) Talg(E) = Tan(£) mod 2
WS 2T TH 2. L(E,s) IZH#HYR Gamma KHFZ 0 THE LS A(E/F,s) 1B
F
A(E/F,s) =w(E/F)A(E/F,2 — s)

(w(E/F) € {£1)) 27T L FRINTVEA, ZhEED 3 £ LoARRIERO%ER L
I 5.

48 1.1. (parity TH)

(1.2) (=1)=(E) = (E/F)

Iparity T8 + L(E, s) D RWENIME ) = 55 BSD mod 2
ZZTC, w(E/F)iFN—1F I N=Ih, F OEHER v TOEHL F, ~ND E DK
ZH Er, = E Xgpec(r) Spec(Fy) IR L TERS N2 FRFTL— b F ¥ —
w(Ep,/Fy) € {£1}
DE
w(E/F) = Hw (Ep, | F,)

ELTERESND. w(ER, /F,) &, v 7f)>,4ﬁlgﬂ§é,'ﬁ@i alx -1, v ﬁ’ﬁ[‘ﬁéf:%'ff Ep, DRz
TLEDOHERF1THS. Ep, PEVETLZROHA %Cik/’uk@ a Fizp>50%
A((iéf@ ) @J[E#%U‘BTL’CL\% (Rohlich[19], Kobayashl[ll])

o L(E,s) c_%?%%*ﬁ%ﬁﬁbm\f b wE/F)IZERTES

o W(E/F) 3R HBRTORFIRITICHRTZ 2

1



2 FRAT fEORER

EWVD 2 DDHEEIZL 5T, parity TAHIZES BSD FPHEL D AR TVWTFHEE 50, 5
W rag(E) bRRNDODIEL 72 X DIFNGONRICE SRR 2 8 TARDO T —
< THBRD p-parity PREICEET 5.

E/F @ p>™-Selmer #f & Tate-Shafarevich # % ZLZ M Sel,-(E/F), UI(E/F) &3
T IS OBOERIEIMH LW (Selye (B/F) IZ2WTIE N IEF T VAR T
® % Bloch-lIk Selmer #HDER RTINS 2) 53, E(F) £ Zh o O ORITIERD5E
25

0— E(F)®z Qp/Z, — Sely (E/F) — I(E/F)[p™] — 0
DHZHIeHHMoNTED, ThiZXk o THEK
Talg(E) = corankgz, (Selye (E/F)) + corankz, (IL(E/F)[p™])

(corankz, (—) := rankz, (Qp/Zy, —)) BB 2720, U(E/F) ¥ (&> TII(E/F)[p™] )
HIRFETDH % &0 5 HEAN R FTERD T T parity PRERERO PR L FEICKR 5.

F18 1.2. (p-parity T48)

(13> (_1)Corankzp(Se1poo(E/F)) _ w(E/F)

l'p-parity T48 + I(E/F)[p>] DHRM = parity 748

FEL CIIRTHMT 275, Sely< (E/F) 13, E @ p i Tate IIEE T,E := lim E(F)[p"]
LTHEHBNS Gp D p-iE Galois BEZHWTERIN, FIC F DR v TOOHEE
Gr, C Gp NDHIR T, E|q,, DRATIZZIEENRIEL78E L 72 % . corankg, (Sely~ (E/F))
3 V,E =T,E®z,Q, DIEMNbEED, %72, Ep, R OERINIz w(EF, /F,) & VpE|a,,
MOLERINBE ZEPHISGNTWS. DLEDZ 25, p-parity T TIZER DML

o p i Galois RIL V, £ &\ 5 BEARBIIZ R » 6560 %

o BEFNTORHICHIELH W
EWVWOIWHEZROZ 2IZRD, 26 DHEIFIT X o T p-parity A parity TAEL D bk
KNG WTRER S,

AFTIE, & D —&D p it Galois REUINXT T % p-parity TAEIZOWT, ¥ 3 I THRDIE
NMEzMEi L, DV TTEOMAZER T & OFROBEICHET 2720 DRENLIFETF
Ex—> (MY p-parity T %) i3 5. TEOGH w(E/F) 3ERIHZHZHHR
RILWERSIND w(E,/F,) DETH2DT, 2 TOMEIX Sely (E/F) ZWHITL
THERIZ EDERICTEST 200 ARENLMEL 72 5.

PUF, AR TIREROZDRBUE F 13 Q DBFEDAEZ, GbOET (DAL LTE X
%) kS Q DAEEZDILITT 5.

1.1 BIRW p i Galois RIE. K =Q,Q, 2T 5%. RENMMENRAIZ, KRB T2, Gk
D3EHE RARCICER 3T 2 6REH R-IMEET %2 G O R-RBIEMERZ 212 5. G DR
10 Zy-RIlim e (K) (pypn(K) = {z € K | P =1}) % Z,(1) R L, BEr 1ot
LT Zy(r) = Z,(1)®" (r > 0), Homg, (Z,(—7),Zp) (r <0) &ERT. Gg D R-EBL T 120t
LTT(r) =T ®z, Zy(r) £ &7

FEFIHIAR B 12X % p-parity TAEZ & D —f&D p # Galois REUINT U THRER L7200, K8
FHEFR D parity PREDOEFICIX, E O — XD

A(E,s) =w(E/F)A(E,2 — s)



R p-HE GALOIS RENIH$ % p-PARITY T | EBERmNAR Y a—F 3

EWVS BIBERZ RO & WS HSE (TR BIFEEL TWed, ZDOHEHED Galois RILmMI 7
BRIKX, VEDX Well R7 Y ¥ 7 Hh BEE ZRRNTERRT Y V7

VoE x V,E — Qp(1)

EROZ DD L. pparity PREIZZD KSR T Y ¥ FRFFORMPNE KK p # Galois
HENTH L TERban 3.

EE 1.3. Gxg O R-EIT D R-AEIED» D Gr-RERBRRLNTERT ) V7
(—,=): T x T — R(1)
ROt % oF b, F
(r,y) = —(y,2) (z,yeT)
iz L, (—,—) P oOFEIN BB
T — T*(1) := Homg(T,R(1)) : x — [y — (z,9)]

MEE e 725 & %, T (1IEfECEH (T ( (=, =) 1FRIEHY B 2RO %2 7D (symplectic self-
dual), E/IFHICRILRNTH 5, E 3 C cIiZd 5.

K oM Bt LT, V,E & Weil X7 Y ¥ 212 & 2 T G DRIRINE 2 KT
Q,-KBUC2 D, XD —fRIC K EOAERIT d = 2m — 1 @ proper smooth 7RI R
X IZHLT, 200 K NDEE X OFHIOLT X — L akER Y — HE (X7, Qp(m))
' Poincaré A7V > 7

HE (X7, Qp(m)) < HE (X, Qp(m)) — HE! (X, Qp(2m)) = HE! (X, Qp(d+1)) = Qp(1)

I2&oTGgk DRI Qp—ﬁfﬁk %5, BB Kk =2k € ZZQ, LX)V N @ Hecke
AL f € SEV(Do(N)) IS LT, fIIHBEST 25 Gq @ 2 Kot p-ERIL Vi(K) &, Vi &
EHRTA2EY 27 —HEOTZ X — L akEDT T —D Poincaré HOTR7 V ¥ 7 6 FHE X
NBEZRTY T E>TRIRNE RS, G DB 2 D R-BH T 12 LT, T BRIEHT
HBZlF, T OITHRIERE detr(T) : Gk — R* 23 p AR —HT 2 Z & & [AME
285, XD —RiZ, G DRRH R-EBEHIZHTREBIIMEL 2d TH D, G DRERL 2d D
R-JBHD (H25R7) 72 Ek-T) ?JrXH’J'CZéE)f_&)&Ji T @ﬁr’i’ ERNZ & TREAT
F D3 GSpy, (R) WfEZFFH, 53D similitude character 23 p #EF IR L 72 5 2 & L [AfHEIC
5.

1.2. p-parity FEDERL. Z Z TN U THAL % p-parity 718% Gq D
R p-ERBITHT U THEER L 72\, p-parity 1 p™©-Selmer & )L— ks F > N— 12T 3
EFRTH o7, 2D K57 Selmer B2 b DY L-BAKINZ D DEEFRT 5720121, p-
EREADRMAN & WSR2 THENDS. ZZTETIEXIND LEET 2HWDOE
BEEHELWV.

L%z Q, DHERIKIEKAEE § 5.

ViEGQDL-REL TS VHIRAMNTS S LI, Vg, FARMEDRE L ZFRNTAH

DZTHY , 7D V]gg, 73 de Rham BHTH L Z &35, KITHHT 2 & 512, R
RRBD S Gi%??f'f@ Vg, OIE#HZE T (EY)ZZPEE Z152)Selmer BE L-BI%DY
EFEIND.

(ZFBE L, V&G OL-RHETE. (=pDEEIEV I de Rham TH 5 LRE
T5. ZDX572 VITH LTI, Selmer B L-BABDRFIAT LR 2 MR 2 ERT S Z



4 S DY N
EHTES. 5,V O Galois 2HRERY—FEHN(Qp, V) OFE5ZEM HL(Q,, V) %
Ker(H'(Qe, V) — H(L, V) (¢ # p)
Ker(H(Qp, V) — H'(Qp, Berys ®q, V)) (£ =p)
TED2 (I 13 Gq, DIHEE). BEEFEHEL LT, Tate X7V 7

H'(Qe, V) x HY(Qe, V(1) = L
12 & o THEZER HYL(Q,, V) & HH(Qp, V*(1)) BB ATHIZZR D BEfR

H}(Qp, V) = Hi(Qg, V(1)) "

1285 Z e o TV S (Bloch-IIEEACH). £z, VIIH LT, Q ® Weil-Deligne #f
DRILWD(V) &5 KRB KRBTGS N, Rt T O (Deligne|6]) 12 & > T
WD(V) 226137 L-KF, J{h e-KF &S LBID 01281 2 JRfKF & 72 5 ER B

Ly(WD(V),s), e(WD(V),s)

ZEFRTHIENTES. ERIIMEHLLWVD, THHIE—MRICITFR4 7258 IR (Bl 21X C,
& COF—HOED TR AR Y : Qr — C* WMD) KKFT 2 2EELR
W, £ =p DEEITEE BT, VIINIET 5 de Rham 2RER Y —D Hodge 7 4 L b L A
¥ a v» 6 Hodge-Tate AL WD V ORI dH D (BEEZFFS) BEDM {k, ko, - -+, ka}
DIEFS.

ZZT, Gg, ® L-REV (L = p DFEZ de Rham ZKGE) BRIZHITH % LIRET 5.
ZorE, WD(V) DR -8

8@(V) = Eg(WD(V),O) € C*
(R - T-0 s = 0 TOMH) 3k 4 BRI KRS, o
eo(V) € {£1}

LB ZEDHBNTWS. HH(Q, V) IKBL TR, (V EItE 2 s R <T Y > 7
WE-oTO)RBV S V) BB Z05, Tate R7 ) Y 7 HY(Qy, V) DFEERT Y 27

HY(Qu, V) x HY(Qg, V) = L

ZiAE L, Bloch-TIEEANIZ X - T H}(Qg, VX2 D7V ¥ 7B L T Lagrangian, D
0D,

H}(Qq, V) = {

H}(Qe, V) = Hp(Qe, V)*
i3T5, T, VORTY Y IZTORRME Tate R7V ¥ 7 ORI MED S L
DRT VY FEIFRT VY AT B. BRI L = p DEE D Hodge-Tate BAICHI LT
i, Qp(1) D Hodge-Tate EAIZ 1 75 Z & &, V @ Hodge-Tate HAD {ki,--- ,kq} D
& % V* @ Hodge-Tate EAD {—ky, - ,—kq} £8DB 26, RIERWR 2d XITD V IZ
LTI

{k1>ke>--2ki>21—-kg>--- 21—k >1—k}
(k; > 1) eFIFBZenbrs.



R p-HE GALOIS RENIH$ % p-PARITY T | EBERmNAR Y a—F 5

R, Vid Gq DM ORI L-RRTH 2 LIET 5. 2D E, $3V D Bleoh-
HiiE Selmet #f H}(Q, V)%

H(Q,V) := Ker <H1<Q,V> - [[H(Qe, V)/H}(Qu, V))

4

TEDS. THUIARKXTTH 2 ZeHFoNTED (ZOFERIOVWTIEIREZE WS
FEBAETH 2),

xs(V) = dim H}(Q,V) — dim H’(Q, V)
CEDD. BRI LT e(V) := ee(Vleg,) ERT. BT, Vigg, ® Hodge-Tate B
477‘%{]?1 ZkQ2"'dez1—kd2"'21—k221_k’1} belt%,

ew(V) = [J (-1 € (1)

—

=1
LED, THIT
e(V) i=exo(V) - [[ee(V) € {£1}
¢
LEDB. Vg, WAL & (V) =1 THD, VIFRMULELTHLDTED
HERBIERE RO Z L ICER. BTOHESEBLE LT
Ep(V) = co(V)ep(V)
LEDD.
FE 14. EZ Q LOHEIRRE 2. O E, QOETOHEE v ITHLT,
eo(VpE) = wy(Eq, /Qu)

MDD, Ko T

e(VpE) =w(E/Q)
BELD LD, E BT, dimg,HY(Q, V,E) =0,

dimq,H}(Q, V,E) = corankz, (Sel,~(E/Q))
DD LDODT
Xf(VpE) = corankz, (Sel,~(E£/Q))

DI D LD,
18 1.5. (p-parity 748 ) V & Gq ORI ORI L% L-KFHe T5. ZOLZ

(—1 V) =e(v)
DI D ALD.
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2. MM p-PARITY TAH

% < O (KRR 72) BEGm D R & FIBRIZ, p-parity TRRIZBWT S M Z RABORM
FICRLTEZ D ZCIZEETH 5. p-parity T4

(—1) ) =£(V)
DY EpUL>
e(V) = eae(V) - [[ ee(V)
V4

LR ORI DR LT\ DT, g/l
(=1 (V)

DRI NDIRE 725 . (1) (V) 2 BIRC RN ORT 2 2 2138 L <, BY7s
OHDL T 28 THRT S, £\ DM p-parity TRICBIT Z A X > X — Rz
RFEETHZ. ARTEZOHTHRENBRFED—DTH S, p-#ERH V), 1L 1T 23
p-parity TAE % FLEE S 2 MY p-parity TAIZOWTHI T 5. ZUE, ZoD0RIRH p-iE
Galois RV, Vo IR LT, MiZFEDTRDFEENE, 2% D, Vi(F721d V5) IZX LT p-parity
FTRRDED Lo TOVAIUX Vo(F2E V) IR LTHD LD, 22 FRTEZ2TETH 5.
— D Vi, LI LTZOTEEEZ S Z 2, pparity TRHBREE 22 Z L KA
{7B-oTLESOT, MYIREREZFO VI, L ITRHLTZOFREEZ 5 I L PEHEEIZ
2%, AT, I p TAERRZ Vi, Vo IZ2WTOMEMN p-parity T (OA) ZE X 5.

2.1. MY p-parity FHE. Gx ORIE Op-FIL Ty, T 1T LT, RZHIRT VY ¥ 7 Ll
9 2 F[G |- LD
Tl =T Koy, F>S TQ

PEST DL &, T & T 3Ep TRATH S, LRI LICTS. ZOLIREE T =T,
ERL, AL TINE T, BRI LI LT 5.

T 2.1, (MR p-parity T ) T1, T 2k p TAFR Gq ORI L-RELL L, Vi =
T\ ®o, L, Vo 3EMTHZE T 5. 2O %

(—1)w -y e = £

e(Vz2)
D RYASR

AR 2.2. p-parity PR &MY p-parity TRICIEZ K DIATHEDL D 55, T ZTIEFKA
DL BE T 2 RENR b DZEIT I D Wv. £3, Q LosHihfRics 2
p-parity PRI ETDEIT Dokchitser iLah [7] 12 & o TREAH X LTV 5. Coates-Fukaya-
Kato-Sujatha {ZfRBUA LD g KoT7 —NNAVZHIK AT, p D EDFEFT (7 —WER L)
LERTCER D, 22D Alp] B pd D F EOERDEF 2 FDO5EI1C V, A IS % p-parity
FTRERLTWS. AP (—HRORBUE L) MR DB A1 Cesnavicius[4] 12 &k - T p
D EDFEFT (7 —IUIEKR L) LZERTTEZ RO & WO REFAEIZ /R o 7. Nekovar|14]
1 p-ordinary & (| Z \XHEHE) DR CBIME T ICE TN 2 Vi, 1L 10T 5 (B3 LBIK
p TEBECIZR 52 WIEE D) XY p-parity PAEZIEHL TW5. Z 2T, Vi, Wi
p-ordinary FRICE N2 DT Vilgg, . Valag, & I ordinary & 5OWRADBETH
D, 20, IEDORI CBERIRTICA 20 E 5 3 —RICITHET 2008 L WHETDH 5.
Pottharst-Xiao|20] i& Nekovar DR % p-trianguline & (il 21X Coleman &) ic—#{k. L,



R p-HE GALOIS RENIH$ % p-PARITY T | EBERmNAR Y a—F 7

Z DD UCBRIBICE F 5 Vi, Vo IS 20 p-parity TAEZEEFHL TW5. Z
DI EEN B Vq, Vo IE p-trianguline 72D T Vilag,: Valag, & dI (77— /\}lxi‘fhjibf_

5 )semi-stable £ W5 ZEBRETH D, D, B%@HLEJE%EE TIZABHE S DIE—&RIC
FHET 2013 l’ok%ﬁbb\ﬁﬁg_f%% HLE%‘VJEZ T2 A % 22DV TIE Johannson-
Newton DGR [9] 23D 5. K TFEL  #HAF 225, Nekovar i p TEFZREGE D il DM
XY p-parity FAEIZOWTHZ < DWIZEZIT > TW2 ([15], [16], [17], [18]).

MR L-RIF VISR LT, ERED
s = 500 H 54
725 72D TFH 2.1 OEWIFATKR T DE

W) _ (M) ypecV)
e(Va) 11 eo(Va

oo(V2)

Ny L’CL\% Hp TAFR T, T OBE, TIUSHIET 2 & 5%/ (—1)xr (V) =xr (V)
DJRFFR T N D53 D Mazur-Rubin|[12] IZ X o TH X 6 h 7.

2.2. Mazur-Rubin €. T % Gq, ® O-KBe L, T 2 ZOFRKXBL T2, V =
T®o, L &8, K—pODia% ¥V iXde Rham TH2r 35 Zorx HY(Q,T)B&
O HYQu, T) DER7 Op-hnEE%

H}(Qq,T) = Ker(H'(Q(, T) — H'(Qg, V) /H;(Qy, V),

H}(Qy, T) = Image(H}(Qq, T) — H'(Q,, T) —» HY(Q, T))
TEDZ. Hi(Qe, V) D Bloch-IEERFHED & O L LT, Tate 7Y ¥ 27
H'(Q,,T) x H(Q,, T (1)) = F
R LT (FIMMEER DTV OGE L FRRIC ZHUITZRRT ) Y 71Tk 3),

1 I +
HY(Qn 1) = (H}(QW, T7(1))
MDD Z e BDh 5.

Ty ¥ Ty 3Ep TEAK G, D O-RITHZ2LT5. L =pDKIV, =T ®0, L,
Vo =Ty ®0, L ¥ $1Zde Rham TH 2 LIRET 5. LITiBRFZ &5 HE (Qg,Tl) &
Hl(Qg,Tg) X BIZHY(Qp, T) D Lagrangian £ 2> TW3 (T : =T = Ts). Th %A
L\T

5((T1,T2) S Z/QZ
ZRTERT 5.
E& 2.3. (Mazur-Rubin E% [12])

(5@(T1,T2) = dimp (H}(Qe,Tl)/H}(Qg,Tl) N H}(Q@,Tg)) mod 2
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TR TMEED Lagrangian OMEED &, §,(Th, To) 13
8¢(T1, To) = 6o(Th, T1),
8¢(T1,T3) = 6p(Th, To) + 6¢(To, T3)
REDRWHEZFFD. £/, 0#£p DT, Ta BEDBIIAFIETH 3 & =X
HH(Qr, 71) = H5(Qr, ) = Ker(H'(Qu, T) — B (1, )

L7, 6,(Ty, To) = 0 AR D W7 5.
T\ Ty % p TERE Gq ORI OL-FHE L, Vi, Vo 1BEMINTH 2 L ET 5. =
DY E BEROHLT

0r(Th, T2) = 6e(Thlcg,  T2laq, )

LRT.
Mazur-Rubin EEUIT & 2T x (Vi) & x(Vo) DFTHDBRD K 5 IZRFTE T ORI e LT
EL e TES.

EIE 2.4. (Mazur-Rubin|12])
(—1)Xs V) =xr(Va) — (1) %ede(T1,T2)
ZOEMIZE D, BRI T, To 105 2 XY p-parity FAREIZFER

Cmem ) _ €eoV1) (V1)
-y R =

25, XoT, X p-parity FAIXR D FFTHNEY p-parity TREIZIFE S 5.

48 2.5. (JAFTHENEY p-parity T4, Nekovar[17], [18], [BKNO][2]) T3, Tz %ik p THIFA
G, DOL-RHLTE. (=pDrZX, Vi,Vhidde Rham TH I RETS. ZD

L g,
ee(V1)
(_1)5Z(T1,T2) — {iﬁ(‘/;) (¢ # p)

AN
s ((=7)

AR 2.6. { = p D& =1, Nekovar[18] TlZ, Vi, V2 ® Hodge-Tate BEADY (BEE %RV
T){0,1} 2 RZGEIRONTED (ZDL F e (Vi) =co(Va) =1 R 2DT, LOF
Mot 208 £ %3), Lo g, (<) K X 3 FRRIANICEEPNTORP 572, F
R PRIV 7= DIZ (B2 5 < )[BKNO|[2] B3#IDTT, T DL TIFERICHER 2 D
WA TREEIHL TV S (%),

0 #p DA, ZOTRIZT TSI TV 3.
EIR 2.7. (Nekovar|17]) £ # p D & =, J{PFHEIEY p-parity TREIXIE LW,

PR, M3 p-parity AR £ = p 128 2 BFTHENE p-parity TREICIFEE X
% . Nekovar I3 RDFHZIGE, FHZ e0o (V1) = eo(V2) = 1 DIGEITHIIY p-parity T4
L7z,

EIE 2.8. (Nekovar[18]) £ =p &F 3. V4, Vo ® Hodge-Tate EA (B EZERNT ){0,1}
DD VilGg, ) VelGay) 7 VARV Y DL E, Ty, T (KT A p-parity THUIIE
L.
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SEE 2.9, EBCIZ 18] TlE & b —Hc, (RO p3elk K It LT, ooy
3 G OERBUCH T 2 M pparity TR LTV 2.

3. [BKNO| f5HR

DUF, p-i Galois RILDIREIR R X, 520 Noether JEFT (AI#)Z,-RET, FRAF =
R/mp DWEREL 225D (mp & ROMKA 7 7) 5, Q, DERKILRELDNTH
heF 5. B2, Qp DRERIKIEKRM LI LT, ZOBEIR OL L2 ORRIKF 132D
EORBOHITH 5. 2o 2RECHSOERIZ G D L-EHRV »BdHIUL, Gr-1EHTEH
CTW3 Op-#FT CVRERRET =T/n,T 2 LTHNEZD, SITEHEERD
&, Op- RO EREIR OL[[ X1, , Xg)] PEDERED L, O ¥ L HRTKRZ
RIRTH5.

Gq, DRLZM R-ERT I LTT =TorF t£3. H(Q,,T) =0t %2 ET
generic TH 2 LR, ZO L & (T OFE% 2d £ 5% 2)HY(Q,,T) = H(Q,,T) =0 &
%0, HY(Q,, T) P 2d D BH R-INEEL 2 D (EROBRMERT R — R ICH U TIERE
DEAGDFIRY

H'(Q,,T) ®r R = H'(Q,, T ®r R)
DD LD (LU, CORBUC X o TliFEZ[F—#3 5). £/, Tate R7V ¥ 7 LRI
R7ZYVYZOREBT 5 T (1) 1T & » TiHEI N7 Y v
H'(Q,,T) x H(Q,,T) = R

BB,
3.1. BE¥ 2 DIEA: HY(Q, T) DHSHRE.

EHE 3.1. ([BKNOJ|2|) fEED R, BXU Gq, DFEE 2D generic 2HRZEM) R-FRIL T 124
U CRE N7 TR —BINCIFET 5 ¢

Hl(QIN T) = H1+(Qp’ T) D HE(va T)

(1) HL(Qy, T) i Lagrangian, D% D, HL(Qp, T) = (HL(Qp, T))*
(2) HL(Qp, T) IMER DR Al D F D FED R — RN LT

HL(Q, T)®r R =HL(Q,, T ®& R')
(3) R=L, T=V 72 de RhamTH >t &,
H}(Q}ﬂ V) = Hl_gp(v)(Qpa V)
(22T, HL(Qp V) == HL(Q,, V) B

% 3.2. T1, T, %21k p TERBRREE 2 D generic BRI Op-RBE L, Vi, Vo lE de Rham
CIRETR. ZOLE

5
Ep(Va

Hmf2%):1®%§Z%%ﬁm?5(@®%3%ﬁﬁ)%lfﬂﬂz@Wﬁz@ﬂ@
CIRETS. 2O ZE, (3) &2 V,LhiIZHLTEZXSZLET

H}(Qpa‘/l) = Hl—s(pr‘/;) (Z = 1,2)

~—

(,1)5p(T17T2) —

~—

~
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MDD, Ty, HY(Q, T) Ok, 5L (2) © Of < L OBEHS

)
H}(Qy, Ti) = HL(Qp, T)
B DI, Zhe, HY(Q,, Th) DER, BEU (2) ® O — F OBHEHS
HL(Qy, Ti) = HL(Q,, T)

ZJ)E‘ZDTLO (T:Tl Z)Tg) J:OT,
H}(QpaTl) = H}(QP7T2)

¥ %30T
5,(T1, Ty) = 0
b, FE
& ()
_1)(TiT2) _ (_1)0 — 1 — ip( 1
= ==z m)
1585,

O
3.2. RRTDIZFEANDILK © pfaffian ZAWCERL. M 2R 2d DBEH R-INAFE L,
WFRTER R-BARIERT Y > 7

(—,—):MxM—R

MWEZLNTWBEETE. NCM%ZIDRTY YZIZLS Lagrangian, 2% D, N X
O M/NIZHBH R-MEETN = Nt 2ilil-3235%. o AE (M/N) S Nz —
[y = (z,y)] BFEX N2, ROFERDEK
detp M = detgp N ®@p detr(M/N) = detp N ®@p detr(N™) = detp N ®p (detgpN)* SR

%
Pfy : detgM = R
YERL, T%E N O Pfaffian EFERZ 2125 5.
#WRE 3.3. FBIM 5 M*:z— [y (2, )] CX-o TN B [AA
c:detgM = detgr(M™*) = (detgM)*

W L TRO AR D 32D
detpM 2N R

e

(detRM) vy

EE 3.4. A
detpgM X~ R
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72 SR W detgM = R % weak pfaffian 2 IFERZ 2123 5.
78 3.5. Uy, Uy : detgM = R % weak pfaffian £ 358, Uy € {+Uy} 272 5.

AE 3.6. i@E, pfaffian IZFENFRT V) > Z D Lagrangian IZ0 L TEZR I N, ZDHEIX
pfafﬁan ¥ Lagrangian IC X 672 W7V Y TOARER L 725D, ZOERZXNMHRT VY V7
W L7 b D23k 4 O pfaffian TH 553, Z DA Lagrangian DEP DAL & LT
+1 28N 5.

78 3.7. REHR¥Y L, N|,Ny % M D Lagrangian ¥ §%. ZD¥ &
5(N1,N2) = dimR(Nl/Nl N Ng)

Bl
Ple = (—1)6(N1’N2)PfN2

DI D ALD.
Z O Pfaffian 24 OFREICHA L7, T % Gq, ORI O-RBL L,V = T®@L
L% de Rham TH 2 LRET 2. ZD& E, H(QpV) D Lagrangian Hf(va V) e

H'(Qp, T) ® Lagrangian HL(Q,, T') #* & Pfaffian
Pfyt(q,v) * det H (Q,, V) = L,
me : detFHl(Qp,T) :) F

PENEIEE 5. £z, & HICT A generic LW S HED b & T, HY(Q,, T) 3 HY(Q,, T)
@ Lagrangian TH D
Pl () * dettH' (Qp, T) = Oy

bEES. £ LT, Plaffian O EZEH L OWA D &, [KEFUZ K 5 R

HY(Q,. T) ®0, L = HY(Q,, V)
& (generic Db & THL D LD[EHY)

HY(Q,. T) ®o, F 3 H(Q,,T)
KEBRE—-HDb e TERZR

PfH}(Qp,T) ®idp = PfH}(Q%V)
BXU

Py, ®1dr = PfH}(Qp,T)

DI D LD, -

Ty, Ty %1% p TEFR Gq, DRIRI Op-FH, T =T, = Ty & Z DFIREH, Vi,V 1
de Rham &3 %. H'(Q,,T) ® Lagrangian H}(Qp, T1), H}(Qp, T2) 1< kD& 2 #H ¥
% Z e TXRBHE LS (Plaffian 12 K 5 Mazur-Rubin EH D).

% 3.8.

Pl

A FEH 31 DEXRITRE UL TROFEE T,

_ Op (T4, T
= (_1) »(T1 Q)PfAH}(Qp,TQ)
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T 3.9. ([BKNOJ[3]) fEED R, BX U Gq, D generic RN R-RIL T I L TR%
fiti 723 R-FRIE R
Pf(T) : detgH'(Q,,T) = R
P—RICTHET 5.
(1) PE(T) iX weak pfaffian.
(2) EED R — R LT, BEHORE HY(Q,,T) ®r R = HY(Q,, T ®r R') IZ
X 2 Mi#E DF—HDILT

Pf(T) ® idr = Pf(T @r R')
DD SLD.
(B) R=L, T=V % de RhamTH> L &,
Pf(V) = 5p(V)PfH}(Q,,,V)
DD SLD.

AE 3.10. BRI 2 05GEE, FPHE3IIIEMILLLEBIIND . ER, B2 0FED T
WXL, HY(Qy, T) @ Lagrangian H! (Q,,, T) &X3 % Pfaffian

Py (q,.r) : detrH'(Qp, T) = R

DT PLHT) oA %273, EHOME (1), (2), 3) BEhZLTEOME (1), (2),
(3) ZEL.

e 3.11. T39I ZIRET S L, L = p B3 gereric ZRBIIH L TRPTHENT p-
parity TRIZIE LW, D% D, T, Ty 2k p TAFER generic R Op-RHE L, Vi, Vs
¥ de Rham ERET 5. ZDE =

(_1)5P(T17T2) — M
Ep(V2)

Proof. %3, (3) & V1,V I LTEZSBZ LT

PE(Vi) = & (Vi)Plyy(q, vy (1=1,2)
DD D, e T (2) D O — LOBEDD

PE(T) = & (V)P q,m) (1=1,2)
BELN, EHICTFHE(2) D O — FDEE»S

PE(T) = PH(TY) = &(Vi)Plrq, 7y (1=1.2)
BEoN3. XoT
& V)Pl 7y = &(V2)Plr g, o
HELN, TheHER
- Op(T1,T2)
PfH}(Qp:Tl) = (=D PfH}(QP’TQ)

YRS}
_1 6p(T1,T2) — ip( 1
=1) ep(V2)
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ARG XY (RN

FTAE 3.9 1B L CIRIBRAERD EHDFEIICE D #HA TV 3.

B 3.12. ([BKNOJ[3] in progress) fERD R, BX U Gq, D generic IEFIEEH R-EBHR T
WL TR Z 75 R-FRIEIR A
Pf(T) : detpgH'(Q,,T) > R
DPRIFET 5.
(1) PE(T) iX weak pfaffian.

(2) FED R — R K LT, BEHROFM HY(Q,,T) ®r R = HY(Q,,T ®r R') 12
X 2 DR —FHDITT

Pf(T) ® idgp = Pf(T ®r R')

DI D ALD.
(3) R=L, T =V % de Rham %D trianguline, 2% D, Q, DH 2 HRRXILT —~ L
R K DDY Vg, B semi-stable £ 725 & X

Pt(V) = 5p(V)PfH;(Q,,,V)
D RVASR

AR 3.13. AR TREHED =D T % generic TH 2 LRE L. HY(Q,,T) Db b
Galois A RER Y —HIE C*(Gq,,T) &5 X, HRE L LT pfaffian ZEHT 25 I LT
generic TRWVW—RD Gq, RN R-RIUTN LT TR 3.9 BLEH 3.12 6N 5.
%7, SN (generic ZRE L7=DT) = p DBEDHD T 3.9 #MH L7, ¢ £ p
DA S FRD THENER B X FREHN T =, Nekovar DEH 2.8 DRFIFEAEB X O —fi%
fbpsfEoh s, X512, KIH Galois 2REw Y —EIRITH LT (Poitou-Tate 5ERFIC &
% )pfaffian Z# Z % £ Mazur-Rubin O EM 2.4 DRHIGEEAS X X — AL 5 54, HXTHY
p-parity TRED AT L, p-parity TREEAKS pfaffian ZHWTERELTE2 K512k 5.
oI, FE 22 DIFIETOMRD plaffian 12 K 2 ERIC K o TH—HNTIK S T &2 T
=, FOMGMOE S, bR TE2 X51Ck3. DEcownwTideT[3|icke
HDETETHS.

REFERENCES

[1] A. Burungale, S. Kobayashi, K. Ota, Rubin’s conjecture on local units in the anticyclotomic tower
at inert primes, Ann. of Math.(2) 194 (2021), no. 3, 943-966.

[2] A. Burungale, S. Kobayashi, K. Nakamua and K. Ota, A local sign decomposition for symplectic
self-dual Galois representations of rank two, arXiv:2508.17776.

[3] A. Burungale, S. Kobayashi, K. Nakamua and K. Ota, A local sign decomposition for symplectic
self-dual Galois representations II, in preparation.

[4] K. Cesnaviéius, The p-parity conjecture for elliptic curves with a p-isogeny, Journal fiir die reine
und angewandte Mathematik, 719 (2016), 45-73,

[6] J. Coates, T. Fukaya, K. Kato and R. Sujatha, Root numbers, Selmer groups, and non-commutative
Iwasawa theory, J. Algebraic Geom. 19 (2010), 19-97.

[6] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, Modular functions of one
variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in
Math., Vol. 349, 501-597, Springer, Berlin-New York(1973).



14
7]

18]

9]
[10]
[11]
12
113
[14]
[15]
[16]
[17]
18]
[19]

[20]

FRAT fEORER

T. Dockchitser, V. Dockchitser, On the Birch-Swinnerton-Dyer quotients modulo squares, Ann. of
Math. (2) 172 (2010), no. 1, 567-596.

T. Fukaya, K. Kato, A formulation of conjectures on p-adic zeta functions in noncommutative
Iwasawa theory, Amer. Math. Soc. Transl. Ser. 2, 219 American Mathematical Society, Providence,
RI, 2006, 1-85.

C. Johansson, J. Newton, Parallel weight 2 points on Hilbert modular eigenvarieties and the parity
conjecture, Forum Math. Sigma, 7, Paper No. €27, 36 (2019).,

K. Kato, Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via Bgr. 1I,
preprint.

S. Kobayashi, The local root number of elliptic curves with wild ramification, Math. Ann. 323
(2002), 609-623.

B. Mazur, K. Rubin, Finding large Selmer rank via an arithmetic theory of local constants, Ann. of
Math. (2), 166 (2007), no. 2, 579-612.

K. Nakamura, Local e-isomorphisms for rank two p-adic representations of Gal(ép /Qp) and a
functional equation of Kato’s Euler system, Camb. J. Math. 5 (2017), no. 3, 281-368.

J. Nekovar, Selmer complexes, Astérisque, 310, viii+559 (2006),

J. NekoaF, On the parity of ranks of Selmer groups. 111, Doc. Math. 12 (2007), 243-274.

J. Nekovar, Some consequences of a formula of Mazur and Rubin for arithmetic local constants,
Algebra Number Theory, 7 (2013), no. 5, 1101-1120.

J. Nekovar, Compatibility of arithmetic and algebraic local constants (the case £ # p), Compos.
Math., 151 (2015), no. 9, 1626-1646.

J. Nekovar, Compatibility of arithmetic and algebraic local constants, II: the tame abelian poten-
tially Barsotti-Tate case, Proc. Lond. Math. Soc. (3) 116 (2018), no. 2, 378-427.

D. E. Rohrlich, Variation of root number in families of elliptic curves, Compos. Math., 87(1993)
119-151.

J. Pottharst, L. Xiao, On the parity conjecture in finite-slope families, arXiv:1410.5050.

Email address: nakamura@math.kyushu-u.ac. jp



BREORKGRICB T2 70y ZO/{HRES X
ESRFEMEICDOWT

J17] 5+ (REFERRF)

1 FLC®IC

AREEOLTERZ, FED 0 £ G ONBZzE S WA ELORRTH 2 8HERIL L, HED
G DB EENZELEORHTHZEY 27 —RBIIHT T o5, @BHERHTIE, Maschke O EH
WE DR EG I3 FHMTDH D, S5 ICHMMEFORAEOEBIE G O EHOEK e —H T 2
LoD, LiedioT, BRMETH 2 BBt ORAEEZLAT 2 22T, 2RPEETE
%, —FH, BV 27—RHTI, kG IFFHMICRS T, BMMEEZT TR, XhEMRMEEE
S OBERAINNBE AN DB D 5, HER kG ORBANZ, 2L O5E Twild REAE 752k
HHIHH, TXTOEBKMEFZHHNS Z CZRETDH 5720, IIEHER Z OERE O T EE
RAREE 2%, Braver 12X 3 526078 G OFRM p T2 RFEDERIZ, D p-Aiakss
HORBROEERL S/ OLNLZDTIIRVD] EWVWIEZIZHIE, Y27 —REAHTIE McKay
F4H, Alperin T4, Dade ¥48, Broué ¥4, Donovan TR Y Z < OFEIMEEIN, Zh b
ZHDICIIRDFE L TE 7,

ARTIX, NBEDOESZ DERE D7 HHICET 2 PHETH %, Broué T4, Donovan T4 (Puig
TH) ICBF 2RI OVWTIEN S,

2 S CEAXAE

p 2R L, G ZARML T2, %7, k 258 p 25 >RBWEAKL 55, kG %

kG:{}:AﬂzAgek}

geG

TEZES G OBERL T 2. kG-I k FRRIOTTH S & L, FICHISRWVIRD HINE L 5 %,
ke THMZ kG-MEEZRT, Z4ud
ke =kY g CkG
geG

LRI—HTE 2,



kG-IEE U 25 Q-FIMTH 5 L1, RO kG-HEREY

@:U@kaG—>U, uQar—ua

DRHETZLETHE (U | URrg kG =U Jo1%) o kG-HEFEL f:U -V » Q-5EHNTH2 &
&, Q- EG-INEE W, BXPEG-HERM g U - W, h: W =V 2FELT, f=hog &
BRHEZZETH?, Q=10r EZ, HBEOFHEMEDOZ L TH 5,

EG-MEE U 2 p-BRMBETH 2213, U %2 G DEED p-il0BAGIR Lz =, BENEEY
BBZETH2, p-ilolt Q WxtL, FEMEE ko 1¢ 1ZEMAR kG-NEE ke BHDMERC S OE
BRI 272721 0b D, ZOEBKT%2 Q 1ICBF % Scott MBEL X8, S(G,Q) TXI, &
F LD, Scott MMEHX p-EEUINEETH 5,

KG-NEE U, G @ p#53HE Q IHL, UQ) = U/ Y pe o TRUR) 2 U ® Q 1KHT 3
Brauer construction ¥ k&, 22T, U ={ucUlur =u(Vz € R)}, Tr: UR - UQ urs
2ierg Wt TH2,

BEER kG Ol 77 1 2 L TOEBH

kG=Aye A1 & DA

CBWT, B A % kG OTOw Y LR, [TEOEE kG-NEHIE x5 ¥ 12070y 7
BT %, HIR EGIEEZE0EE 12070y 22ETAOY I L LU, Bo(G) THET. G O
Tay 7 At GO pEaht DL, W] (A, A)-InEEo R EG

QDD:A®]€DA—>A, rTRY— Y

HEZb. op WARTIERND pH9#E D % A ODREEL L5, PTGz x—
BIEED, 7y 7oRBBNCHESBEKRT %, IZIETEHPHTONE 7 1y 713 EHM
iz, PRENKERTHIUT T 0y ZIIARKRBMTH 2, GOETay ZJOREHEZ G D
Sylow p-ESREETH 2,

Brauer 135 1 EEHICBWT, LT L5205 x2 52 Twa
EHE 1 (Brauer O 1 FEM). AREE G @ p-#08E D XL, GORERE D 2dD2570y 2
¥ Ng(D) OFREE D 2do7 1y 7 ORI 1% 1 MISHFEETS %,

WD MG DSylow pHnHTHZ2LE, GOEITRY ZIFZOMBICED Ng(D) oF
7ay ZANIGT % (Brauer O 3 EEH),

3 Broué FHEELUVEET S FAE
HIREEDEY 2 5 —RBGHTII,

(G 0EHOWH } &5 (G @ p BT REE B O RBHOWER )



ZEZDIEDHEETH S, I, pRAMEGEEZHBIZHOFEREDO 7T v 72O\ T, D
(& Z DEREORREZHFNS ZLIZEETH 2, ZOHITIE, ZOBNTOTEBXUEET 2
FAUZONWTIRR B,

P% GO pEnkied s, GIZBIF5 P L0 fusion system Fp(G) &%, RD X 5 ITEHK
SNLETH S, Fp(G) DMRIE P O DHRETHD, (EEOEIH Q,R < P IZXLT, 4t
DEEZ

Hompz, () (Q,R) ={f: Q = R:BFEFA | 2 g GITHLT f=¢,}

THABN2, TIT oyl g KKIHBREGLELRT,
ARETIE, EAMCLITORER#EZ %,

WE 1. ARG & H 33580 Sylow p MAEE P(#£ 1) #Hor L, AU p Rz oo
v, Thbb, Fp(G)=Fp(H)THoIr T3, %72, A= By(G), B=By(H) £ 5,

F4 1 (Broué [1,2]). &ZE1 DD LT, X5, PRI r33, 2or &, D’(modA) ~
Db(modB) $7bb, At BT ZEREX, =MAEYL L CHME CERFAM) THs,

P D3ERIHARECTH 25 8121%, RUIDEET 5 Z e FI 6o TW5, Rouquier [18] 12k D, P
DIEAHT D 55T 5 PRBEEI ATV 5,

Broué MBI SN TV HE L LTE, P MKEEE (15, 17), P = Cy x Cy([16]),
P = Cyx O3([6], %7261 1, $12 BM) R OBEAMET SN B, Tz, MBS IR
B LT MRAESATYS ([3)),

Bl 1 (13L,[9]). p=3 &L, F3:={q: BHONEZ | (¢—1)3 =3} B, G=PSL(3,q) &
L, € F3 THdr3T2L, C3xC32PeSyly(G) TH?3, H=Ng(P) 53, ZOL %,
Fp(G) = Fp(H) B IO, TOREDD L, LURHRILT 5,

(1) D’(modBy(G)) ~ D?(modBy(H)) $7b5, By(G) & Bo(H) IZk3 2ERFEETH 5,
2% D, Broué DFENKILT 5,

(2) G HoOFE7ay Z7oMETTRL, POFMIEE Q OHFIMLEE Cq(Q), Cr(Q)) DF
71y ZENCHERFAME (Z0BEEERE, SHAEM »Eo0hb,

# 1(2) @ & 512, splendid FfEE XidNh 3, FuMbf o 7wy ZEICHERFEEZ | E#H 25
KRB X Vb DD 5, ZOHITOERFE, splendid FfEE FEIENTWEHDTH Y, EF
Broué FHEDIKHTIE, splendid [FfEE TFHEIN TV ([16]),

Bl 2(9). p=3¢tl, F3:={q: BZHDORE | (¢—1)3 =3} B q1, ¢2 € F3 ITHL,
G1 :PSL(3,Q1), G2 :PSL(g,QQ) ) &35, :@Z%, fp(Gl) :fp(Gg) THh (1&”1;}%‘1)
Bo(G1) & Bo(G) EARHIFMETH 3.,

B2 D& 51T Lie OB QEERRYIT p RFEEZ —~ R 5 &, RHRMEIPRGENS, L

3



TOTFRESEELERETH 5,

48 2 (Donovan). P %4 pBr 33, P 2 REBHC b SHRBO 71 v 7 OREREEE
RIECH 5.

4 ZHERZEFMEOHRHERMEANDES LT

ARHFEPERFEEZ MRS 2 ke LT, $IARMLEREZMKRL, ZhzehHAHE &
KRFEMEANFED LT 2 FiERDH 25, ZOEITE, FAMEREZFZHRENFED LT 2 FiEz b

N5,
|E 2. M % (A B)-mflngte L, UT2REs 5 !

(1) M 13/ A-MBEso1 B LT
(I1) k-XRHHTEE M* = Homy, (M, k) 2RI, ROTHNELIREAIEET 3 :

M@ M*=2Ad X, M QuM=BaY (%)

FE L (1) FE2%) KBVT, X =042 Y =0 %3 %, MZAL B OMORHRAE
ZHETLEND,

(2) RE2(x) KBWT, XY 2EEHNeR3eE, M2 AL B OMOKRHMZERESH
BIsrwi,

ARHFFIFERAMEE FE L, EREEIIADELERMEZFEET 2, G > H O %, By(G)
¢ Bo(H) DB TOFE L HIROPFEMLERELZEZ 2 2035, HlZIE, G5 Tlset &7
% Sylow p-#0HE P #3b2r %, Bo(G) ¥ Bo(Ng(P)) \FFE v HIFRIC & b R ZE FIE »
%5,

ARHBIZEFE e AREFEECE LT, ROEH I CTHEETH S (BRAMANDFS LIFIcd
#23),

EH 2 (Linckelmann [12] ). M % EBK (A, B) Ml T A & B ORHABLZERELFES
235, ZOLE, XHPWILT %,

(1) HEEOWH AMBECHL, S04 MBI BIEECH 3.,
(2) DM AMBICN L, S @4 M HHH BB R 2K 51E, M A ¥ B OEOX
MR T 2.

DIF, Bl &2 i&%E 1 2INET %, A(P) = {(z,z)|z € P} <GxH 23 %, A(P)-55897% p-
B k(G x H) INEFCAE XN 2 7 HFEE splendid ZRHARE L X2, M = S(Gx H,A(P))
% A(P) I3 % Scott MIfr $2, ZOr &, MIE, &E2EHMEZLTVWS,

EIE 3 (Broué [2]). &%E 1 ZRET 5. M = S(G x H,A(P)) iI<xL, KZFHETH 3,

4



(1) M i: A ¥ B OMoORHEMNZEFRELHET %,
(2) 1 <£VQ < PIZR L, M @ Brauer construction M(A(Q)) = MA@/ > R<0 Tr%(MA(R))
& Bo(Ca(Q)) & Bo(Cu(Q)) OFAHFEZFAEES 5,

F 1. M O»rbbIC BIED A(P)-FHH 7% p-BIINEED S 72 2 HFEIR M 12hZ2, ARHFEE
ZECRFEME Y L7z, KM (Rouquier OEH [18]) »EHNETWVWD

Broué¢ OEM (Rouquier ®EM) ¥ Linckelmann OEHEHEYE, MIRD X 5 RAHEEDOH
RIEPEZBNTWV S,

(1) EED p o8 Q(# 1) 1L, MO ET vy 7 By(Ca(Q)) & Bo(Cu(Q)) D
(AR HFMEZ RS

(i) (i) THELNLSHRHAMBEEZIEDEDEZZ2ICED, By(G) & Bo(H) OEOHRHEMELE
[FlfiE % AR5 %

(iil) (ii) THERK L 7 AREBLEFRED b £ T, Bl By(G) MMEEDOIGHYE 72 Al By (H) M7z
5ZERNY

EEE, #] 2 fthpZ < OflT, ZOHFETHHRMEIRIRATNS,

5 Brauver EELHI4

HIETCEH L AR AV E RME 2 AR FMEC S BT 2 FEOBEH DR, WL 20 ERH
%, RAD 1D, p AT HOKRHRAELZ S L EDDHDOELZILNTEDINLEWVIHTH
%, 2FEL I BOEB7DIT, Scott MHE S(G x H, A(P)) iZ2W\WT, Brauer EFEFIMEE WS
WHEDbDOZ eNEREINS, kG-IEE U 7 Brauer BEIITH % 21X, G DIEED p-HlinEt Q
2R L, Brauer construction U(Q) 73 kQCq(Q)-IEEE L TEBHIE/ZE 0 &md e El2Wn,

HE1DDE, EoIZ P PAMTHLHE, UTIWREATNS

EIE 4 (Kessar-K-Mitsuhashi [5]). RE 1 Db, M = S(Gx H,A(P)) <., PIIAMHHEET
HDEIRET 2L, MIZ Braver EETH 5,

P pdfalfaio e 1%, RINBEMTDH 2, LTRSS TNS

EIE 5 (Ishioka-K [4]). G xHIREf, P % G ® p-ib5 B, Fp(G) saturated TH 2 & T %,
M =S(G,P) ¥ 5<. KR

(1) M % Brauer EREHY
(2) fEE D fully nodrmalized 72 P OHERDHE Q WXL, S(Na(Q), Np(Q)) 1 QCq(Q) MEE
¢ L CIEBEY

EE S ZHWS Z e EICE D, Koshitani, Tuvay 7 %%, Brauer BRI E RIE X



TWd, A, RELIZBWTp=2, P2 E2MHEKEE (7], HEW0IEV -2 (8], ITHfL,
M = S(G x H,A(P)) @ Brauer EEIEDREI TV S,

KETIRAN 2 AN 2 E FEORERD 7212, [10] 1I2BWT, 3t Braver EEEHIMED BRI T
W3,

6 FOH p-EfREZELHEDOMLVFE

BFOrbEDd S —oDKERLMEE LT, G, HPEEHZFOLH p et Z 2oL ZiC
i, Ca(Z)=G,Cuy(Z)=H ti>TLE57%®, Broué DEM (3) 25 ALV, WD
ZehbiFonsd, Threwiks 27201, REMENZEREOHERE RES L, UM, 8
ARE—KE OHFRIMFRICES S AETDH %,

ARBEGOTuv 2, Q% GO p@HRErs 2, AN QREE mod?A ¥ix, A-ME
EX5 Y L, Hom%(U,V) = Homa(U,V)/{f € Homa(U,V) | f: Q-5 } 25 0%EEL ¥ 3
BTths, 2, ZABOHESEE DD,

E#HE 2 (Wang-Zhang [19]). G & H 13 Q 2H@D p Hofte LTHOHAMAEFL L, A, B &%
NEN G HOT 0y 2T 5, BE2x) LBWT X LY 5 (Qx Q) Hrhars, M
3 At B OROKRBRMEN Q ZEFREZFET S L0,

COERIZBWVWT, G & HEZHRE1 Z2ALTZ3ERIN TRV, 205G, —&RIC M
N ZEEDREZ 5 Z# 23 23R 5720,

MR, Gt HIREL =AY, kbbb, @D Sylow p &t P 2d b, Fp(G) = Fp(H)
DL TW5E T35, G HIFHDZpEntt Z 4P b O58%2E 2 %,

Broué OEH (EH 3) b T b0 LT, UNDEHZHE,

T 6 (K-Suzuki [10). HE 1 Ob Y, 512G, HZHOICpBOBE Z < P 2dor T3,
M = S(G x H,A(P)) <%t L, KIZFMETH 3,

(1) M & Bo(G) & Bo(H) OEOFREBMEN Z EREZFLES 5,
(2) Z ZEIZET P DIEEDOEDEE Q 1IZxf L, Brauer construction M(A(Q)) & Bo(Ca(Q))
¥ Bo(Cu(Q)) DHHFEMEZ FHES 2,

Linckelmann OEH (EH 2) IS T 20 LT, UTOEHZE,

EE 7 (K-Suzuki [10]). &ZE 1 Db, LG HIFHPMCpHo#E Z< P 2283 5%,
M = S(G x H,A(P)) 78 A= By(G) ¥ B = By(H) ODREOAMEEN Z ZEFEEEL 2 RE
T3, TOLE, XPILT %,

(1) M & mod?A ¥ mod? B oo =faEYr L TORMEREL
(2) MEE DB Bo(G) IEE S XL, S®p,q) M FEBEH Bo(H) MEETH 5.




(3) IEBEDHH By(G) MBE S 1TH L, S @p,q) M AL By(H) MBECTHAUZ, M 13AHA
EEFHET 5,

R 6, 7 ZflAGDE S T, JEAWRTLE p B Z 2FoLEI, REEMEN Z &
EREZRRL, ZhzRHREANRS EIF5 0w i LWFENELo NI itk b,

() EED p MR Z < Q icxt LT, HiMbEE Co(Q), Cy(Q) dFETr v 7 By(Ca(Q)),
Bo(Ca(Q)) O BHIFEE T 5.
(i) (i) THON:AHEHRERZDAbESLICED, Bo(G) & Bo(H) ORI AR
7 REFMEERELT %,
(iii) (ii) THER L 7= AREBAER Z ZEREICHEWT, Bl By(G)-IEE DA O AT By (H)-
#3223,

HLWFREREHATS 2T, UFEE-,

EIE 8 (K-Suzuki [11]). p =2, ¢1,q2: WRBRZFLL, (1 —1)2=(g2—1)2 = 2™ (m > 2)
3%, Gy = GL(2,q1), G2 = GL(2,q2) £ 55 &, Gy & Gy 3H@ED Sylow 2-#f 77 &f
P2 (Com xCom)xCo &b B, Fp(Gr) = Fp(Ga) £72%, ZDE &, M =5(G1 x Ga, A(P))
FARHFE modBy(G1) ~ modBy(Ge) ZiEET 5,

COEMIZED, GL(2,q) i3 2 RHFMEDEIZTR L7 Z ilk 5,

7 BHDHIC

BV 27 -—RIGMIBI2FET vy ZOFHEIEICOWT, XD HbExHWTHRBEEZERE
ZREAL, AHFEMEZS 2 FRCOWTEHL, JEERRFON p-Ei0REZ & D5 EICbEH T
BHFLWFIREMN L,

TBORFEEDOREICOWTIE, 2L OBEND 5, TIIFERR p-ERaREZ 205 E OERF/E
OHREEZ 525 Z L bRED 1 D TH 5, £z, KEAEHEL D70 v ZITHT % Broué ¥
BoRzMHL, p-7 > 2702 OARARERZ b OHEP X XKERERZ 25512V,
FE7 v v ZEOFHELERED Z 2 [18][13] KB\ THELN TS, ERFEEOMAIC Z
LEEMMH TR ERSEE 2L HSROFETH 5,
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ON sl,b-ALGEBRAS AND MULTIPLE EISENSTEIN SERIES

HENRIK BACHMANN
(Based on a joint work with JAN-WILLEM VAN ITTERSUM and NILS MATTHES [BIM],

and work in progress with JAN-WILLEM VAN ITTERSUM and ANNIKA BURMESTER [BBI])

ABSTRACT. In this survey article we summarize the results of [BIM] in which the authors in-
troduced the algebra of formal multiple Eisenstein. This algebra is motivated by the classical
multiple Eisenstein series, introduced by Gangl-Kaneko—Zagier as a hybrid of classical Eisen-
stein series and multiple zeta values. This algebra is an sly-algebra by formalizing the usual
derivations for quasimodular forms and extending them naturally to the whole algebra. A
quotient of this algebra is isomorphic to the algebra of formal multiple zeta values. This gives
a novel and purely formal approach to classical (quasi)modular forms and builds a new link
between (formal) multiple zeta values and modular forms. In this note, we use a new algebraic
setup, used in [BBI], to define these objects and present dimension and structural conjectures
related to Lie algebras of derivations.

1. INTRODUCTION

The purpose of this note is to provide a summary of the work [BIM], where the authors
introduced formal multiple Eisenstein and studied their derivations, and to give an overview
of a work in progress [BBI] on certain conjectures which arose from [BIM]. Formal multiple
Eisenstein series are a formalization of multiple Eisenstein series, which are a hybrid of classical
Eisenstein series and multiple zeta values. Multiple zeta values, which are defined for integers
r>1land ky > 2, ke,..., k. >1by

Chyr k)= S (1.1)

. o e T
my > >me>0 111 .

are subject to many relations. Denote the QQ-algebra of all multiple zeta values by Z. Con-
jecturally, the extended double shuffle relations of multiple zeta values provide all algebraic
relations among multiple zeta values [IKZ]. These relations are obtained (after possible reg-
ularization) from the two ways of expressing the product of multiple zeta values—the ‘usual’
(stuffle) product of real numbers, and a (shuffle) product from the iterated integral represen-
tation of multiple zeta values—which both can be interpreted as quasi-shuffle products [H].

Multiple zeta values and (quasi)modular forms are connected in various ways. For example,
in the case r = 1, they appear as the constant term of the Eisenstein series. The Eisenstein
series of weight k > 2 is given for 7 € H = {7 € C |Im(7) > 0} by

—2m1 i k—1_mn 2miT
Gulr) =Gl + oy 3 g (g = ).

m,n>1

For even k > 2 these series are (quasi)modular forms for the full modular group. In [GKZ] the
authors defined double Eisenstein series, which have double zeta values ((1.1) in the case r = 2)

Date: December 14, 2025.



as their constant terms, and which can be seen as a natural depth two version of Eisenstein
series. This construction was generalized by the first author in [Bal].

The main goal of [BIM] was to define a formal algebraic structure that captures the prop-
erties of these series. In this note, we will first review the classical theory of Multiple Zeta
Values and the motivation coming from analytic Multiple Eisenstein series (and their relation
to MacMahon’s sums). We will then introduce the algebra of formal multiple Eisenstein series
G/. While [BIM] used a ”bi-bracket” notation, we will present here a new ”balanced” setup
developed in [Bul] and used in [BBI|, which simplifies the algebraic description. Finally, we
will discuss the sly-structure on this algebra and relate it to conjectures about Lie algebras of
derivations.

Acknowledgements. The author thanks the organizers of the conference ”70th Algebra Sym-
posium 2025”7 for giving him the opportunity to present the results of [BIM] and [BBI]. This
project was partially supported by JSPS KAKENHI Grant 23K03030.

2. MULTIPLE ZETA VALUES AND LIE ALGEBRAS

We begin by establishing the algebraic framework for multiple zeta values, which serves as
the foundation for the more general theory of multiple Eisenstein series.

2.1. Algebraic setup. Let X = {x¢, 21} and Y = {y1,99,...}. We have an embedding
c:Q(Y) = Q(X)

Yk, Yk, TG Ty T,
and a canonical projection Iy : Q(X) — Q(Y’) which maps any word ending in xy to 0. This
setup reflects the two representations of MZVs: the harmonic sum representation (alphabet Y)
and the iterated integral representation (alphabet X).
We define two coproducts corresponding to the two multiplication laws of MZVs. On Q(X),
let Ay, be the shuffle coproduct defined on generators by Ay (x;) =2; ® 1 +1® ;. On Q(Y),
let A, be the harmonic coproduct defined by A, (y;) =% @ 1+ 1@y + > 1 Yk @ Ui

2.2. The Lie algebra dmg. The structure of multiple zeta values is conjecturally governed
by a specific Lie algebra. For f € Q(X) and a word w € Q(X), we denote by (f | w) the
coefficient of w in f.

Definition 2.1 ([Rac]). Let dmg be the set of all ¢ € Q(X), such that

1) (W |wo) =@ |21) = (¥ | mow1) =0,
(i) A =91+ 1®1,
(iil) Avthy =10 @ 1+1 @,

where 1), = Iy (1) 4 correction terms.

Racinet showed that (dmg,{—, —}) is a Lie algebra under the Thara bracket. The connection
to formal MZVs is given by the following isomorphism:

Theorem 2.2 ([Rac]). We have an isomorphism Z = Q[¢'(2)] ® U(dmy)".

One of the major open problems in the field is to determine the structure of this Lie algebra.



Conjecture 2.3. We have omy = Lie(os, 05,07,...), a free Lie algebra with one generator in
each odd weight k > 3.

This conjecture implies the famous Zagier dimension conjecture for MZVs:

1
§ : fyk _
k>0

The motivation of [BBI] is to describe an analogue of Theorem 2.2 for multiple Eisenstein series.

3. MULTIPLE EISENSTEIN SERIES

Before defining multiple Eisenstein series, we recall some basic facts on (quasi)modular forms
and related objects.

3.1. sly-algebras and Classical Quasimodular Forms. The structure we aim to capture is
that of an sly-algebra.

Definition 3.1. An sly-algebra is an algebra A together with a Lie algebra homomorphism
sly — Der(A). Equivalently, an sly-algebra is an algebra A together with three derivations
D, W, § € Der(A) satisfying the commutator relations

In this case, (D, W, 0) is called an sly-triple.

The prototypical example arises from the theory of modular forms. For 7 € H, let M =
Q[Gg, Gy, Gg] be the algebra of quasimodular forms with rational coefficients. It is well known

that M is an sly- algebra. The derivations D, W, d & Der(./\/l) are defined on generators by:

)4 L k=2,
D(Gy) = (27”)E<Gk7 W(Gy) = kG, 5(Gy) = {O 2 Loy

3.2. MacMahon’s sums and ¢-analogues. A historical motivation for multiple Eisenstein
series comes from the work of MacMahon, who introduced the g-series

qm1+"'+mr

Ar(q) = Z (1 —qgm)2...(1—qmn)2 (3.1)

mi>-->my>0

Andrews and Rose ([AR]) proved that for any r > 1, the A, (q) are quasimodular forms of mized
weight. For example, A;(q) = Ga(q) + 57 and As(g ) —3Gu(q) + 1G2(9)* + £Ga(q) + 555

640"
The A,(q) can be seen as special cases of the ¢-series

> s
g(ky, ... k) = R g (3.2)
m1>~~->mT50 (kl - 1)| (k"' - 1)'

MY yenny Ny >

Specifically, A,.(¢) = ¢g(2,...,2). These g-series are g-analogues of multiple zeta values: lim,,;(1—
q)"*Mg(k) = ((k). However, like A,(q), they are not of homogeneous weight. This leads to
the definition of multiple Eisenstein series, which provide a ”homogeneous weight” version of
these objects.



3.3. Multiple Eisenstein Series (MES). For a depth r > 1 and integers ky, ..., k. > 2, the
multiple Eisenstein series are defined for 7 € H by

1

Gre(T) = D S
A=A -0 71 r
Ni€EZT+T

where the order > on the lattice Z7 + Z is the standard lexicographical order. These functions
are holomorphic in H. Since Gy, (T + 1) = Gy, k. (7), they possess a Fourier expansion.
These Fourier expansions can be described explicitly in terms of the g-series g(ky, ..., k,) given
n (3.2). In this context the g¢-series g always appear together with a power of —2mi and
therefore we set for ky,..., k. >1

Glky, ... k) = (=2m) TV Rrg (kg k) € Qi) [q] -

Notice that with that notation we can write the classical Eisenstein as

G (1) = ¢(k) + g(k)

and for multiple Eisenstein series we get the following generalization:

,,,,,

Theorem 3.2 (r = 1,2 [GKZ], 7 > 1 [Bal]). Forky, ..., k. > 2 there exist explicit a;, 7’."'."’lk’j €Z,
such that for q =e

Gyt (1) = CRr, .. - Ky E: P O ) L)+ 9k Ky

2miT e have

11>2,02,...,lr>1
In particular, Gy, 5, (7) = C(k1, ... kp) + 3000 Qo (R)G™ for some ay, . 1. (n) € Z[mi].

In the case r = 2 we get that for ki, ks > 2 the Fourier expansion of the double Eisenstein
series is given by (see [GKZ, Theorem 6))

Guuna(r) = Clhu k) + 3 (0 (L 77 )0 (T ) b )<l0)a) + ot )

l1+lo=k1+k2
l1,l2>2

Example 3.3. Writing P = —2mi we have
Ge(1) = ((6) + 9(6)
= ((6) + 1—20P6 q+ Llul)PGq2 + g(l)PGq?’ +.
Guao(m) = ((4,2) +2¢(2) 9(4) +2¢(3) 9(3) +4C(4) 9(2) + §(4,2)
C(4,2) + ( 1C(2) + P3C(3) + AP2(( ) @P4 %ﬁP%()%HP%MDf+”W
Gs3(1) = ((3,3) +((3) 4(3) — 6¢(4) 9(2) + 9(3,3)
—((3,3) + (JﬁQ) 6P%@Dq+(gp%@y—wp%@»¢%w.“

Example 3.4. Multiple Eisenstein series can also be seen as giving the correct linear combina-
tion of the g-series ¢ in order to get something of homogeneous weight. For example, the mixed



weight quasimodular forms (3.1) can be made into homogeneous weight as follows: Setting
G{Q}l = (271@)72[@{2}1 we get

1
= 2 -
G2 g() 24’
Gra = 9(2.2) = 29(2) + —
22 = g\4 gJ 1920’
5 13 1
=9(2,2,2) = 579(2,2) + 75559(2) — '
G2,2,2 g( ) <y ) 249( ’ )+ 1920g( ) 322560

These are quasimodular forms of homogeneous weights 2,4 and 6 , respectively

3.4. The space £ and Conjectures. We denote the Q-vector space spanned by all multiple
Eisenstein series by

kr‘?”zo,k'l,...,k‘r22>@.

.....

It is easy to check that £ is an algebra, which has the algebra of quasimodular forms as a
subalgebra. We conjecture that the sly-structure of quasimodular forms extends to the entire
space &.

Conjecture 3.5. The operators D, W, ¢ defined on generators by

o d
D(Gk) = (QWZ)%GI{,
W(Gk,,.k) = (k1 + -+ k)G, ks
1
535Gy i k=2
5 G — 2 25007 ?
( kl 7777 k'r’) {0 Zf k’l > 2’

give well-defined derivations on £ and form an sly-triple.

We also have a conjecture for the size of this space. Let M(X) = ((1 — X1)(1 — X%))~! be
the series for modular forms, S(X) = X'M(X) for cusp forms, and O(X) = X?3(1 — X?)~! for
odd weights.

Conjecture 3.6. The dimension of € is given by

1

2 dimg &X" = M) 15 sy

k>0

This suggests an isomorphism & =2 M ® U(E)Y, where € is a Lie algebra related to cusp
forms. This Lie algebra will be studied in [BBI].

4. FORMAL MULTIPLE EISENSTEIN SERIES

To study these structures rigorously without relying on analytic difficulties, we introduce the
algebra of formal multiple Eisenstein series. Here we use the ”"balanced” setup introduced in
[Bul] and used in [BBI], which differs from the bi-bracket notation used in [BIM] but describes

the same object.



4.1. The balanced setup. Let Q(B) be the non-commutative polynomial ring in the alphabet
B = {bo,by,...}. On Q(B) we recursively define the stuffle product * as the Q-bilinear product
satisfying 1 « w = w *x 1 = w and

biu * ij = bz(u * bj?)) + bj<b1u * U) -+ 5ij>0 bfL'Jrj (U * U).

Let Q(B)° be the subspace of words not starting in by. This subspace is closed under *. We
define a Q-linear involution 7 : Q(B)? — Q(B)" by

T(bry U™ -+ b, 0) = g1 b67 -+ by 1 b5
where k; > 1 and m; > 0. This map 7 plays the role of the swap map in [BIM].
Definition 4.1. The algebra of formal multiple Fisenstein series is defined by
G = (Q<B>Oa *)/7-,

where T is the ideal generated by 7(w) —w for all w € Q(B)°. We denote the class of by, - - - by,
by Gk, ... k).

While the definition involves by, we are often interested in the ”analytic” subspace spanned
by generators with indices > 2:

E = (G ks, ..., k) | >0,k > 2)g.
Conjecture 4.2. The map & — & given by G'(k) — Gy is an isomorphism.
The formal space satisfies the properties conjectured for the analytic space.

Theorem 4.3 ([BIM]). There exist explicit derivations W, D,§ on G/ such that G is an sl,-
algebra.

The derivations are defined combinatorially on the words in B. In particular, D is a derivation
of weight —2 and ¢ is a derivation of weight 2.

Theorem 4.4 ([BIM]). There exists a surjective algebra homomorphism
.G =z
such that 7(G'(k)) = ¢/ (k).
This is the ”formal projection to the constant term”. As a natural sub algebra we define the
algebra of formal quasimodular forms by M/ == Q[G¥(2), G(4), G/(6)] C ¢'.
Theorem 4.5. Mf = M as sly-algebras.

This implies that relations such as the Ramanujan differential equations and the Chazy
equation hold in Gf. We also define the algebra of formal cusp forms by & = ker sy The

first non-zero formal cusp form is Af € 8{2, defined analogously to the classical discriminant

A.

5. LIE ALGEBRAS AND DIMENSIONS

In this final section, we mention the conjectural structure of the derivations on G’ and
dimension conjectures which will be studied in [BBI].



5.1. The Lie algebra ®. For | € Z, let ©; be the space of T-equivariant derivations on Q(B)°
of weight —I.

D, ={d € Der(Q(B)°, %) | doT = 7 od,deg(d) = —1}.
Define ® = 2121 9;. It is easy to check that ® is a Lie subalgebra of derivations.
Theorem 5.1 ([BIM]). There exist explicit non-zero elements w; € D1 and § € Ds.

The element 0 here is the same operator that gives the sly-structure. We conjecture that
® is generated by 0 and elements wy, € D, for odd s > 1. We further expect an embedding
omy — 9.

5.2. The space bmg. To better understand ©, Burmester introduced a subspace bmy C Q(B),
which can be seem as an analogue of Racinets dm,.

Definition 5.2 ([Bul]). The space bm, consists of all ¥ € Q(B), such that

(i) (¥ | bg) =0 for k=0,2,4,6,
(i) A(W) =¥ R1+1® Y,
(iil) 7(I1p(W)) = [y(W).

Theorem 5.3 ([Bul]). There is an embedding dmy — bmy.
Conjecture 5.4. bmyg is a Lie algebra and Gf = M @ U(bmy)".

5.3. Relation between ® and bmy. The main motivation of [BBI] is to show that Burmesters
bmy can be described by the derivations in ®. Let 8 =%, & @123 ;.

Conjecture 5.5 ([BBI]). B = bmg as Lie algebras. Thus © = Q0 @ bm,.

5.4. Dimension Conjecture for G/. Define the Hilbert-Poincaré series of the space of period
polynomials W with even k& > 2 by

4

_ : k_ 1
W(X) = g dimg Wy X* = M(X) +S(X) — 1= ——5 +25(X)
k even
where D(X) = =, O(X) = 55, M(X) = g, S(X) = X2M(X).
Conjecture 5.6 ([BK],[BBI]). The dimension of G’ is given by:
- 1
. k .
D dimg GX* = M(X) - 15 5770 1X) 7 BIOWIX)

k>0
1

= M) 1— X - X2—0(X)+W(X)

This provides a unified conjectural picture for the size of the algebra of multiple Eisenstein
series, combining the structure of modular forms (M) with the structure of multiple zeta values
(O) and period polynomials (W).
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WHRBODERDOE  ZDIHHIZOWT
TEE EEE (k)

1 Motivations

1.1 W-algebras

Let g be a simple Lie algebra and k € C. Then the affine vertex algebra V*(g) of g at level k is defined.
Since

V*(g)-modules = smooth g-modules of level k,

V¥ (g) is a vertex algebra version of the affine Lie algebra g. Therefore we can study smooth g-modules
using technology of vertex algebras. In particular, g-modules will be related to modular forms because
vertex algebra is originated from 2d conformal field theory.

Let f be a nilpotent element of g. Then one can define the BRST cohomology asso. to f of V¥(g):

W(g, f) == H}(V*(9)).

W¥(g, f) is a vertex algebra and called the W -algebra of g, f at level k [FF90, KRW03].
0 0
1 0
general, the W-algebras contain interesting vertex algebra and using the BRST functor

For g = sly with f = ), W¥(sly, f) = the Virasoro (vertex) algebra of some central charge. In

V¥(g)—mod > M — HY(M) € W¥(g, f)—mod

one may associate g-modules to W¥(g, f)-modules.

1.2 Examples: g = sl

Consider the case g = sl3. Let f be a nilpotent element in sls. Then the Jordan form of f has only 0 in
the diagonal entries and thus is one of the followings:

000 0 0]0 0]0 0
10 o0ff, 1 0]0 ], 0[0]o0 |,
010 0 0]0] 0 0[0]

which corresponds to the partitions (3), (2,1), (1) of 3, called principal, subregular, zero, respectively.
Thus we obtain three families of W-algebras in case g = sl3:

o Wk(sls, fprin) = the Zamolodchikov W3-algebra.
o W¥(sl3, foup) = the Bershadsky-Polyakov algebra.

e W¥(sl3,0) = the affine vertex algebra V¥(sl3).

1.3 Finite analogs

Given a vertex algebra V, we can define the Zhu algebra ZhuV', an associative algebra. For V = V*(g),
ZhuV*(g) = U(g) [FZ92]. Thus, ZhuV gives a finite analog of V.

For V. = Wk(g, ), ZhuW*(g, f) = U(g, f) [Ara07, DSKO06], the finite W -algebra of g, f, introduced
by Premet [Pre02]. For examples,



* U(g,0) = U(g)-

U(g, forin) = Z(g): the center of U(g) [KosT8].

°
C

U

(

(

(sl,, f) = shifted Yangian of type A [BKO06].

(g, f) = shifted twisted Yangian of type BCD for g = BCD [Bro09, LPT*25].
(

e U(sl(m|n), f) = shifted super Yangian of type A [BR03, BBG13, Pen21].

1.4 Poisson geometry

Using the PBW filtration on U(g),
grU(g) ~ S(g) = Clg*] (Possion algebra)

Thus g* is a Poisson variety (Kirillov-Kostant), and the symplectic leaves of g* are coadjoint orbits O*.
The finite W-algebra has a canonical filtration (Kazhdan filtration), and the associated graded algebra
also becomes a Poisson algebra [Pre02, GG02, Los10]:

grU(g, f) ~ C[Syl,

where Sy is the Slodowy slice of g at f.
Suppose that f # 0. Then the Jacobson-Morozov theorem implies that there exists an sly-triple
{e, h, f} C g containing our choice of f. Then

Sg=f+g°Cg~g"

Let b be a Cartan subalgebra of g and h € b.
A pair (f,h) is called a good pair if
(1) adh defines a Z-grading on g = P 5 9;, where
g; ={a€g|[had=ja}
(2) fE€g-—2
(3) ad f: g; — g;—2 is injective for j > 1 and surjective for j < 1.
For example, we may choose h in the sly-triple {e, h, f}. In general, we have more options for h.
Classifications: [EK05, Hoy12].
By the good conditions,

<a’a b> = (fHa’b]) - ([fa a”b)a a,b € g

defines a non-deg. skew-symmetric (=symplectic) form on g;.
Let [ be a Lagrangian (= maximal isotropic subspace) in g; and m a nilpotent subalgebra

m=1[® g>s.
For example, in case g = sl3,

0 00 0 * =
f=form=1]1 0 0 = m=|[0 0 =x],

010 0 00

0 00 0 * =
f=fsw=10 0 0 = m=|0 0 0

1 00 0 0 O

Let M = exp(m) a unipotent Lie group. Then the coadjoint action of M on g* is Hamiltonian with
the moment map

gt ~g—-m*, aw—(al-).
Let x = (f|-) € m*. Gan-Ginzburg show that

a: M xSp—ux), (g,a)— Ady(a)



is an isomorphism. Therefore

S = p~H(x)/M =: g/ M.
The RHS is called the Hamiltonian reduction of g* by M at x. Then the Poisson structure of Sy is

induced from g*.

1.5 Variations of Hamiltonian reductions

Gan-Ginzburg proposed variations of Hamiltonian reductions. Let [ be any isotropic subspace in g; and
set

m=[@g>, n=I"@gs,

where [+ = {a € g1 | (a,[) =0} D . Thus m C n. For example, in case g = sl and [ = 0,

0 0 0 0 0 = 0 * =
Jar=10 0 0 =m={0 0 0fCn={0 0 =
1 00 0 00 0 0 O
Let N =exp(n) and x = (f]-) € n*. Set the N-orbit at x

On := Adyy x ~ /L.
Then X := g* x O, is a Poisson variety. Define a moment map
px: X =g"x0n3((;n)—(la—nen™
We have p5"(0) =~ =1 (O,), where u: g* — n* the restriction. Gan-Ginzburg show that
Vi N X Sp = p N0, (g,0) - Ady(a)

is an isomorphism. Hence Sy ~ u='(0,)/N. For | =Lagrangian: Sy ~ u~'(x)/M (Premet). For [ = 0:
8¢~ 10y.,)/G>o (Kac-Roan-Wakimoto).
At the level of coordinate rings (or Poisson algebras),

C[Sy] = Clu™" (O = Clu™H (On)]*" = (C[X]/12)™",
where I, is the defining ideal for
pH(On) = px'(0) C X = g* x Oy,
Using the Lie algebra cohomology and homology,
C[Sy] = H(n,C[X]/Is) = H(n, Ho(n, C[g"] ® C[O4])).
Fourthermore, using the semi-infinite cohomology (= a mix version of homology/cohomology),
C[S¢] = HF ™ (n,Clg"] @ C[O4)).

These results lead to equivalent variant definitions of U (g, f).
Given a good pair (f,h) in g and an isotropic subspace [ in g1, set

Ulg, f.h,1) ;== HZ0(n,U(g) ® Dn),

where D, is the Weyl algebra associated to O, ~ I*+/I.

For example, if [+/l = C?", then D, = (9;,x; | i = 1,...n)a, with the relation [9;,z;] = J; ; and
[0:,05] = [zi, ;] = 0.

Gan-Ginzburg [GG02] and Brundan-Goodwin [BGOT7] show that these algebras are isomorphic to
each other if f belongs to the same nilpotent orbit Oy := Adg/(f). Therefore,

U(g, f, h, 1) is isomorphic to the finite W-algebra U(g, f)

because these include Premet’s original definition of U(g, f): h comes from an slo-triple {e, h, f} and [
is a Lagrangian.



2 Main results

Following Gan-Ginzburg, for a good pair (f,h) in g and an isotropic subspace [ in g;, define a vertex
algebra

W (g, f.h.1) == HE 0 (alt=1], V(g) @ Aw),
where n[t*!] is a Lie subalgebra of g and A, is the Weyl vertex algebra assoiated to O,,.
The following result is a long-standing conjecture or well-known “fact” for specialists of W-algebras,
but nobady knows the precise proof:

Theorem 2.1 ([GJ25)). Fir g and k. Then W¥(g, f,h,l) are isomorphic to each other if f belongs to
the same nilpotent orbit O¢.

Therefore, W¥(g, f, h,[) is isomorphic to the W-algebra W¥(g, f) because these include Kac-Roan-

Wakimoto’s original definition: [ = 0.

2.1 Idea of proof for equivalence theorem

We mimic the strategy of [AKM15]. They provided the fi-adic version of our results for [ = 0 and [ is
a Lagrangian (they defined the W-algebras as the C*-invariant algebra of the fi-adic ones. In fact, one
can prove their W-algebras are isomorphic to W¥(g, f, h, [) by using our results).

Here I will expain the strategy.

Let a be a vector space and A(a® a*) the Clifford algebra associated to a@® a*. This means A(a® a*)
is generated by odd generators ¢;, ¢} for ¢ =1,...dima with the relations

where [-, -] is the odd bracket. Then the cochain complex of U(g, f,h,[) = H% T0(n,U(g) ® Dy) is defined
by

C(gv f7 ha [) = U(g) & Dn X A('ﬂ (&) n*).
Vertex algebra version:
C*(g, f,h,1) == V(g) ® Ay @ F(n @ n*),

where F(a @ a*) is the Clifford vertex superalgebra associated to a @ a*. C¥(g, f,h,[) is the cochain
complex of W¥(g, f, h,1).

Want to compare the case of [ = 0 (Kac-Roan-Wakimoto choice) and the case of [ = Lagrangian
(Premet choice). Set

Cxrw = V*(9) @ Ag_, ® F(g50 ® 9%0), Crag = VF(g) ® F(non*).

But we have no morphisms between Ckrw and Crag commuting with the differentials in general. Now,
define the intermediary complex

Cint = V¥(g) @ F(n @ g%).
Then the natural maps n < g~¢ and g%, — n* induces
Ckrw < Cing = CLag-
Then these maps are commuting the diffrentials and we have

Wk(gv f)KRW — Wk(ga f)int - Wk(ga f)Lag'

In finite cases,

U(g7 f)KRW — U(gv f)int — U(gv f)Lag



are isomorphisms because
grU(g, f,h,1) = Clu~ ' (On))™ =~ C[Sy].

What about gr W*(g, f, h, 1) ?
The following result is proved esssentially by Kac-Roan-Wakimoto [KRWO03] for [ = 0, and by
Arakawa-Moreau [AM24] when [ is a Lagrangian, but we prove general cases:

Theorem 2.2 ([GJ25]).
gr W¥(g, f,h,1) = C[JoSy].

Therefore gr W*(g, flxrw =~ gt W*(g, f)int =~ gr W*(g, f)Lag, which implies the original maps are
isomorphisms.

2.2 Structure Theorem on BRST cohomology

Let m C n be nilpotent Lie algebras s.t. [n,n] C m.
Set M = exp(m) < N = exp(n). Denote by V(m) C V(n) the affine vertex algebras of m C n.

Let X be a Poisson variety with the Hamiltonian N-action and p: X — m* the N-equivariant moment
map.

Suppose that

(P1) p is smooth and surjective and there exists a closed subvariety S C p~!(x) for some y € m* s.t.

a: NxS—=p'(x), (9,8 g-s

is a well-defined isom.
Let V' C V be vertex algebras with V(m) C V(n)-actions, i.e. there exist vertex algebra homomor-
phisms

T:Vm) =V, Tl : Vim) =V

Suppose that
(P2) V is closed by n[t]-action through Y.
(P3) grV >~ C[JX] and Y|y, imduces a PVA hom

grY: ClJoom®] = C[JuX].

Then grY(a) = Joop*(a) for a € m.

(P4) The induced n[t]-action on C[J.X] coincides with the one from J.N.

(P5) V is graded by L34: V = @AG%Z V(A) for some K € N s.t. V is non-negatively graded and
each homogeneous space V(A) is finite-dimensional.

(P6) Y(a) € Bpcy V(A) for all a € n.

(P7) Let Y1(a) be the image of the proj. V(n) RN 7 V(1). Then T1(a) € V(1) for a € n and
Vin) >V, a— Ti(a)

defines a free n[t~!]t~!-action on V.
Let Cy =V@Fmon') € Cp =V F(mdn*) and

dimn dimn
Qx =D (T(w:) = x(x:) @' — B > @ ionp'e’: € Cy.
i=1 i,7,k=1

Then d, = QX(O) satisfies that di =0on Cy.
The (mixed-type) BRST cohomology is defined by

HY(V) = H*(C}, dy).

Let Cv,4 = Cv /Iy with Iy = Span{y;_,¢, (dypi)(—nyc| 1 <i<dimm, c € Cy}.



Suppose that

(P8) Cv has a new Hamiltonian op. Lg* s.t. L§¥ od,, = d, o L§°" and L§*V(Iv) C Iv.

(P9) The L§*-action defines a non-negative garding on Cly 4.

The folllowing theorem is a generalization of results of Arakawa-Moreau for V = V¥(g) with HY(V) =

Wk(gv f)Lag:
Theorem 2.3 ([GJ25]). Suppose (P1)~(P9). Then H.(V) =0 fori#0, and gr H)(V) ~ C[JxS].

3 Applications: Reduction by stages

We apply our theorem for V = Vk(g) or V = V*(g) ® A, then we get the equivalence theorem. How
about V = WF(g, f)? Answer: we get reduction by stages theorem, which tells that BRST reduction of
W -algebra gives different W-algebra under some nice geometric assumptions.

3.1 Reduction by stages (general cases)

Let X be a Poisson variety with a Hamiltonian Ms-action and M; a normal Lie subgroup of Ms. Then
we obtain two Poisson varieties X //M;, X//Ms from X by using the Hamiltonian reductions. But, under
suitable assumptions, we may define a Hamiltonian Ms/M;j-action on X//M; such that the following
diagram commutes:

X //M> X//M2

h _ = 0/

X//My

This procedure is called the reduction by stages since we obtain X//My by stages. We will apply for
X =g

3.2 Reduction by stages for 1V-algebras
Let (f1,h1), (f2,h2) be good pairs in g s.t. hy, he € b, and

1-Do” - Dy’

JEL JEL
the Z-gradings by ad hy, ad ho. Then we have Slodowy slices
Sty = 117 (On,)/N1, Spy = 13 (On,) /N2
Definition 3.1. (f1,h1) is a step towards (fo,he) if fo:= fo— f1 € gél) 09(72%, and

2 2
1 2 1 1 2 2 1
oy ol col), ol cPel”, o c Pl
j=0 3=0

Note: we will explain examples later.
By the step conditions,

e we have Oy, C Oy, (Zariski clusure).

e n; C ny ideal and ny = ny @ ng for some Lie subalgebra ng.

e Sy, has a Hamiltonian Ny-action for Ny := exp(ng) =~ Na/Nj.

The result (1) in the following was conjectured by Morgan in case of g = sl,:

Theorem 3.2 ([GJ24]). Suppose that (f1,h1) is a step towards (fa,h2). Then



1. sz >~ Sfl//NO'

2. U(g, f2) ~ HY (U(g, f1))-
Examples:

e Let g =sl,, aj,as € N such that 1 < a; < ag < n and f; = (a1,1" %), fo = (ag,1""%). These
are called hook-type nilpotent elements:

[ L[]

Then fi, fo satisfies the step conditions.

Let g = sl, f1 = (2,12) and f2 = (22).

Let g = 509,41, f1 is subregular and fs is principal.

Let g = spy,,, f1 = (22,12"~%) (short nilpotent) and f is principal.

Let g =G, f1is Xl and fs is subregular.

(Maybe) more...
Our goal is to establish a proof of the following theorem:

Theorem 3.3 ([GJ25]). Suppose that (f1,h1) is a step towards (fa,h2). Then

Wk(gv f2) =~ H‘)OCO (Wk(g7 fl))
forall k € C.
Main technical difficulty is that we have no morphism naively between W¥(g, f») and HJQO (Wk(g, f1))-
To overcome the difficulty, we need to vary the defining complexes of these algebras.
3.3 Idea of proof for reduction by stages theorem

Under the step conditions, there exist nilpotent Lie algebras n; (i = 0,1,2) such that ny = ny @ ng,
Sf1 = /’61_1(0111)/]\71 and sz = M;l(onz)/NQ' Set

N =~ _ (1
ng :=n; Gng, Ny :=gyq-

We have n; D n; for i = 1,2. Let
Vi=Vig od;, Ci=VieaFm on), Cy=V,oF(n,onl)
Wi :HO(C1), Wo :HO(CQ), CW1 =W; ®J—"(n0@n3).

Then Wy = W¥(g, f1) and H(Cw,) = H) (W*(g, f1)).
Geometry says: N
No % Sp =yt (o), Nox Sp = py ' (Og,).

Therefore the structure theorem of BRST cohomology applies:
H'(Cw,) = H(C2) =0 (i #0), gr H*(Cw,) ~ gr H°(Cs) ~ C[JSp,).

Let
L: CW1 =W ®.7:(110€Bﬂ8) — C4 ®]—"(n0@n8) = (5.

Then we have 7: H*(Cy,) — H°(C3) and gr7 is an isom. Hence

Hy, (W*(g, f1)) = H*(Cw,) = H°(Ca).



Remaining part: W¥(g, f2) ~ H°(C5). Recall Cy = V*(g) ® Az, @ F(ny &13). Set
Cn, = VF(g) © An, ® F(nz ®n3),
Cine = V¥(g) ® A, ® F(nz & 13).
Then the natural maps ny < iy and 15 — nj induces
Cy = Cipg = Ch,.

Then we have H°(Cy) + H°(Ciy) — H°(Cy,), which are isomorphisms by the strucrue theorem of
BRST cohomology. Now we have H?(Cy,) ~ W¥(g, f2) by the equivcalence theorem. As a consequence,

W¥(g, f2) = H°(Cy,) = H%(Cs) = H°(Cw,) = Hj, (W*(g, f1)).

This completes the proof.
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KHI»BEED 5. Z LT, — ORI T 27—V TR BE EFR L, Gy DHEIT Pollack
D7 —1) RO EENT 5. Gan-Gurevich V 7 M Ginzburgic X5V 7 + 247 —
K27 M RMAEDEINAA TV Y FU T M THB. ZHUTDWTHEBITHN L% T, M
TLEH A THERITH T 5 Gross DFRIZDOWTER S . Gross D TAH & 13123 David Pollack
1258 T /=MD H T U 72 Saito-Kurokawa lift @ Gy D 7 — V) TR OHRARE &

B TITRIEERINRBE DR - K7 — ) v a LREOERZHRH L TS o iR
WOWTHI L 5. RIRICSEROMECEE T 253 OV T H bRz 0.

Date: 55 70 [\ fRECES VRO 4, 2025 48 A 29 H ().
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2. (RENEA D 7 — V) RO BGEm: BRG]
BEIN, k> 1, 487y : (Z/NZ)* — CIOHLTEZ k, LAV (N), 88 RFOEY a2
7 — I (ERREFREER) 2R DR § 22 % M (To(N), x), Y 2 7 —REBEA2IEDK
2% Sp(To(N), x) TET (cf. [4],[3]). U x BHIEEDO & 235,168 T 2 2icd

5. AREEE SLy/Q ORBUKF% j : SLy(R) x H — C*, (y = (CCL Z) ,
CERTD. F L H={s=0+y/-1€C|y>0 1 FEBLPFHTDHS. EVa2T7—
FER f(2) = an(f)g" € Mp(To(N), x), ¢ =€, z € HITH LT,

n>0

2) = j(v,2) =cz+d

@5 SLa(R) — C, g+ j(g,V=1)""f(gvV/-1)

CERT DL, o 1FSLy(R) EORIIER (automorphic form) £ 725 (cf. [2, 1.3, 1.5-(1)]).
JEEEEI n T LT, of D nth 77—V 7 E

1
Lt —2my/—1n
Waler: 9) ::/o w((o 1) g)e PVt

CEDDE, mERIE g = ((1) T) <\(/)§ \/gl) k € SLy(R) = B(R)SO(2), z € R, y >
0, ke SO(2) &,

Walosig) = o / F(a 4 t 4+ yy/T))e YTy

(2.1) = yiq"a.(f)
= Im(gv/=1)ze>V ="V, (f)

D, EY 27— f O nth 7=V R a,(f) 1FRETEK o 1T 28855 W ey 9)
XIS 5. 2T, a,(f)1d B THE2DITH L, W, (pp; %) 1E SLa(R) LOBETHZ Z &
ICHEBE SN, W (0f;9) I8B1F 3 SLy(R) LD Im (gy/—1) 22~ 1n(ov=1) (33, BRES
BEMINZHDTHY, TheRABIZLTHELNS O, FEmz BT 2 1D LWE, 2
BADEL AP S a,(f) TH 3.

PIROBITIFEY 2 5 —TERD & 5 ITRFMER L OB D 7 — UV ROV T DFEE D
RO K5 WREK T2 VT (REEE L) REERDO 7 —) =i LTHHRZA 65 T
LICER IV

Example 2.1. 7—&ZMH0(z) =Y ¢, q=e"V" 2 € HITHL T, 0! € Mp(Ty(4)) T
nez

HBIEBHBENTWS (cf. [16, p.138-139]). €Y 2 7 —RK 6! D n-th 7 —V REUZ

a, (0%) = ﬂ{(nl,nz,ng,m) € Z" | ni +njy +nj +ni=n}
Y 2%, A, MQ(F0(4)) = (EP EM¢c bR B ZEDBHIBENTWS. 72721, Ey(z) = 1 —
24 " oi(n)q", o1(n )::chzﬂbf, E\(2) = (1 = d)"(BEy(2) — dBE>(d)), d=2,4 £ 7E

n>1 din

£33, £oT, H3a,be CHEELT, 04—aE +bE LIRBM, 7 — ) TAREUR L
35Z & T, a_Ob—1>E?':ﬁ'az>0>f

#{(n1,n9,n3,m4) € Z* | 0] +nj3 +nj +ni =n} = a,(0") = an(E§4)) = 8Zd

R‘
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218%. ZHUud X { H15 7= Lagrange OVUF S EH ORI R E FHW/-GEHTH 3 L.
Example 2.2. T—XFEIZ &> THEOLNZHE f(2) = n(2)n(232) = qH (1— —g®n) =

aN"=a-@ -+ +¢* =¥ =g+ P+ 207+ 1 S(T0(23),x) D
n>1

TCEED D, 72720, 2KIEE x : (2/23Z) = (5) — C* & x(5) = —1 TEDHS. ZHR
h(z)=a®—2+1€Zx]|2ER, ERMpITMN L Thmodp % h, LT, TDL X, KR
p# 231X LT,

2 (hy 13F, D 1 XA DFEITIE)
ap =13 0 (hy1&F, b1 X EBEK 2 XA DI f#)
—1 (hy 13 F, RBE)

DD IO, ZDOEIICEY 27 —RAER f 07—V ZFRBUIZHEA h OMEE LA ([36
Section 6]) Z3ZFELL TW5

Example 2.3. X2 0¥ =7V EFZEMHE, = {Z = X +YV-1 € M(C ) 117 =
ZIm@V:Y>O}%%i5-GZSMZ{XGAAVX@X:JJNEI(Oz )2?5

I 0,
v G(R)O)fnvz(é g) BIXUZeH, LT, vZ = (AZ+B)(CZ+ D) tED 3.

¥72,5(7,Z)=CZ+D &BL. ZHUIXG D (canonical ) (REKFTH 5. T' = G(Z) = Sp,(Z)

EBE, LORTH D = { ((i g) } BHERD. B € 2050 LEFREI s ITH LT,

Siegel-Eisenstein series %

Ex(Z,s) := det(Im(Z Z det (7 (v, Z)) " *|det(j(vy, Z2))|7%, Z € Hy, s € C

YET o \I'

YEDDE, I {(Z,s) €Hy x C | k+2Re(s) > 3} ICBWTHER—FRICE L, X512, 2
sFIHNCHHAN TR S L5 (cf. [22, Section 1]). ZRZ U Ey(Z, s) £ild. Kohnen
35 Z e Hy IR LT, Eo(Z,0) WERTHZ ZZmL, 207 —V ZEBZFHE L [17]
([21] IZ short proof 23® 2). Fy(Z,0) 1& Z 1IZBI5 5 IERIBAEL & 1372 57203,

Ey(2,0) = GEEAIRES) + > AD)gr, qr =>4 7 e H,

TESymy(Z)*>0

CIERAXNS. 72721, Sym,(Z)* > 0 IFIEEMEFRBBOIPM T 2RORTES. 2oL &, 1E
B mi, Mo TdHo T, mymas DIEHFET WD DTt LT, R D LD ([9, Section 2]):

% N A(T) = Hecke $I T, ¥ Ty & DXAHL

TeSymo(Z)* >0
diag(T)=(m1,mg)

f:ﬁ’.’. L, T = (tij>1§i,j§2 &:}'(TJ‘ LT, dlag(T) (t117t22> % if;, ﬁkﬁm > 1 &\-j—jbf
Hecke X5 T,,, 13 C x C NDFEMTHIES {(5 (), j(m )) €CxC|reH} ST 37 7 4
AREHAR T B B (cf. [33]). 72721, 5 c:,t (Felix Klein ®)j-BIITH 2. DX 51T, Ey(Z,0)
DR D 7 — Y TARBIL ST EEE D (cf. [19]).

Ly o L3 EMBEscE W3 %2 5 2 7=



Example 2.4. B8k > 6 120 LT, EHf, Kohnen OFEARFERIZE D Sy, := Sor(SL(Z))
CHEMEIDEY 27— cusp forms DT ZER-] D plus 22 S];:%(fo(él)) (cf. [16, Chapter
IV]) & O Hecke fTERZEZ RO CRUEREINHET 2 Z e I ONT WS, Tz ERXT
JBE WS . ERE &7z Hecke EAER f € Sy 1HIET 2 5;+%<f0<4)) DTt% Sh(f) LEL

fOENYZ 205, Sh(f) =) e(n)g" & 7—Y TJEHT 5. Kohnen-Zagier DFER ([18])
n>1

WD, EARHBIX D THo>T(—1)!D>0722dDIIRLT

(2 2) L(kvf®XD) _ C(|D|)2 . 7Tk

' (f, ) (9:9)  (k—1)|DJ* 2
DD D, 72720, xp IR D 2880 2 ZIRITHBES 2 2 KIEEETH D, foxp & f D
Xp ICXBEDTHS. ZDXSIZENY 7 Sh(f) D |D|-th 77—V ZfF&E c(|D]) 1 f @ xp
D LK oHMEE BEfRT 5.

3. REER D 7 — ) R E: — iR

G/Q Z SRR EEE & § % (cf. G = GLy, SLy, PGLy, GSpan, Span, SO(p,q), U(p, q),
SU(p,q)). 2N 2D, G —BEE GLy/QIZHEDIAATEL: +: G — GLy.
G(Q) DEEBGER AT DGR TH % &I & Y (GLy(Z))NG(Q) 2B AIRES TH B & &%

1<i,j<N
LEDD. GR) DV —RKE g = Lie(G(R)) DEZEIL gc DR ISR U(ge) := T(ge) /(X ®
Y-Y®X-[XY]| XY €gc), T(ge) = @ ed" L% Z(ge) £XFT. gL X &

n>0

GR) LD (R FVIE) BB FITH LT, X - f %

X f(g) = (S flgep(tx))|

CED, TOEFRE CRRIBIC ge IKIERE L, T 512E U(ge) Licd BRIIERE L TEL.
GODQBWEDIEEPL L3 G DQ LOFFIEHTH D, G/P HFHINREBZRIK 725 D
DTH?3. FDXIPIZHLT, P=MpNp=Mpx Np % Levi g 35%. MplZ P2
EENBHEARD reductive B TH D, Np lZ PICEENIHRADL=RT > MEHEBDEET
HZ. LR, POLViGRERHICP=MN 2RI ILIDHIZDTERINTZL.
G(R) DIRKA VT ML Ky & L, Koo ODBRITTERE p : Ko — Aute(V,)
EEZD. £, T % GQ) DT DRI T5. 2O &, Eo7R V, [HFEE

f:GR) —V,

yaR)
(1) f(vghoo) = p(k)), v ET, g € G(R), koo € Koo
(3) fIXREHEM, 2D, HEIEERKC L IEEE n BFLEL T, fEED linear functional
[:V,— CIZHLT, [lof(g9)] < COlgll", Vg € G(R),

2REEE G DERITH 5 2 1Z, GI1ZIEEIAZ nomral unipotent M EER LWL 2R ES.
SEEG OB H K pS5BRIARETH B L3 [H: HN K], [K, HN K| B3I ARTH 3 L 2x 0S5,
G IREBEMTHIL L, 2O QMM E r 232 %, Z(ge) 3 r ZHD C LOZHEABRLFAM L2252 b
DHIHNT W S (Harish-Chandra [F]%Y).
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Ziilz T, f & (T, Ku) 105 58 (p, J) DREEFER (automorphic form) W5 (cf. [2,
1.3+1.5-(1)]). ZD X5 7%2bDRKRORTEMEE AT, p, J, Ky) ERT. T HICRDEMEER
T fRRAIRETER (cuspidal automorphic form) & W5

(4) LD QBWESEE P = MpNp # G ISR LT,

/ f(ng)dn =0, Vg € G(R).
(Np(R)NT)\Np (R)
RERETER 2RO T 2R % Ay (T, 0, J, Ko) £R T
REER f € AT, p, J, Koo) 28 5. Q-IBIERDHE P = MN B X EHHEE ¢ : N(R) —
CTX LT,

fylg) == / F(ng)d(m)dn
(N(R)NT)\N(R)

% fO N 7A68 Y (BT 27—V MR WS, 137 —~ULE N(R)/[N(R), N(R)]
ZREHT 2DT, fD[N(R), N(R)] DIEHDEIAZE T OEHRZ R TWaE Z 8 ITERESI N
V. ko T, 07— EBERGT, f A 7V TEH S5 LIERL 2V OTHE
EPRBETH %,

Example 3.1. FHHEE G OXFEIEK G(R)/ K 23 Hermitian tube domain T®» % & Z (cf.
G = Spon, SU(n,n),SU(n,n, H)®, SO(2,n), Er3), G Q-WE5»E P TH->T, Np ¥
TRV TH2bD%MAD. G EORE f O N IiZiho77 —V ZREIIFEFIT N I
o777 =1 T ENICHN 2 RE e e T 5. IERIZER 1 Example 2.3 TR L5127 —
) TAREUIBRBEEL (Z OGS g & det(Y) DEEPIT 2D D) ORNCIHN 2 A(T)
TH 3 ([27, 2 ). IFERIZRER D Ol B 2 BRBIENE— I IZEHEC e b, o005
WIFETRE SN TV AP RERIC 7 -V LEMZEZZICTEE-TVRWN (YDOBEITHEET
ENTWB T [20], [14] HESHR).

Example 3.2. HASEEHE G O Q-9 HEE P = MN %% X 5. N & 2-step unipotency %
FiolRET 2L, NOHUL Z 13 Z = [N,N] Ziifi7z3. W = N/Z £ 5L & Tl additive
algebraic group & 7% 5. #EtEIE ¢ : N(R) — C* I W(R) = N(R)/Z(R) Z#EHT 25 Z
LIERET S REX f e AT, p, J, Koo) IR LT, NIZifhio 7261E v 1IR3 57—V =f%
By 3RO XSWCHNS. BT, Z2ih-o - EBUE

fz(g) ;:/ f(zg)dz
(Z(R)ND\Z(R)

BEZDL. ZDEE, fi(z9) = f2(9), 2 € Z(R) 72D T, flda k7 b7 —~UEEWH\W (R)
DIEETREMNTE 2. 72720, W A NR)NT O W(R) NDBRERT. Z OEEIXHEGHE
T :NR) — C*THoT, NR)NT LHHZ S D%EEZ DT,

(3.1) fz= > fvw

PN (R) —CX
YIN®R)Nr=1

EWSERMERS. ZOXIT7 =V BRI fyy 1 f D Z 0o 7ER0E f, DRERICHN
5. b3V LFHELLARZ L, fiT

(3.2) f= Z [20, T20(9) =

©:Z(R)—CX
#lz®)nr=1

/ f(z9)p(2)dz
(ZR)ND\Z(R)

SHIZ Q Foramfiss.



t@ﬁ?ﬁé h, @ﬁ%é@@ ZIJSQEHEH%*% 10t %75)‘ fZ = fZ71 76255 ﬁE‘OVC, ﬂﬁg&:&i f %%Ei’lﬁ'
BIIFIEFEAZR o LTS fr, ZRRZDELRD 5. — 1, HISEE Gy O & 2 ITIFERZE N
TXIT fz 2 fIFEHRERER o TWD ZEHIHGN TV S (KREIBHK). 7, f2,, ¢ #1
DR EZENRTH D (Gy DAL [11, Appendix B],[23] ZZH), XOHI TR 3
7=V zvavElzHWTERINS.

Example 3.3. ZOHNZEET 2 N [13] 228, HEREEEE G O Q- WIS #EP = MN =
NM =NxM%t5. Zy% NOHLY$5. 5 MOPEIEGE HPFEL T, J = NxH
BYALEEL BRoTWB LT3, EBID, N=XYZWH0fR%EboD. 7270, X IZIND
Lagrangian #7078, Y & X OXHIIIET 2EAHTH D, ZIE N OHLTH 5. ZOR, IF
HEAZZ AR« Zy(R) — Cli= {2z € C| |2| = 1} £ > 2V YVE P € S(X(R)) 123}
LT, J(R) @ metaplectic double covering J(R) = N(R) x H(R) LD F— X B O, (vh; ®) T
5T, O4(zvh; ®) = ¥(2)O0y(vh; @), z € Zy(R) 7= dD% J(R) D Weil ZHD (lattice
model Z FHWT) ERTDHIENTES. 2O EGR) LOREER f € AT, p, J, Koo I
XL T,

fwgb(z) = / fz,w(vh)@w(zv};; ) dv
N(R)NT\N(R)

IO W) BB 7— ) IV aEKE WS, 270, hidh o HR) — HR) IS 3
BTH%. 77—V IV ALFEEK fu0(h) i3 HR) LOFMAKTH 3.

Example 3.4. G/Q % Q Loffifff# L 5. BZRULAHEDHEHE L, B=TN & Levi
ST 5. A = ABT) % (B,T) BT 2HML— M 2EOKTESGLE TS, KT
a € A RZXHNT % root space & X, C N idd. #EfiEfRE o : N(R) — C! 23JRE(LT
HBLIF,MAEDa e ATHLT, Yx.r £ 1. ZD XD RIERLAERE ¢ 1ot L, RN
fe AT, p,J, Ky) D3 9p-generic TH D LI fyy Z0 272D EZFRTF . ¢-generic 7% f 10}
LT, fny Z Whittaker 7 — U ZfRE & WO, Z2 DEGERIIEEIZ O W TIEIARARDOMHEB X
Oz omEEFEREZ SRS N0,

4. Gy LOPIITEHFAE R ¥ POLLACK @ (RN b)) 7 — 1) T BB DM

4.1. Gy, DERK. Gy % Q LONHFINEE “Gy” T 5. Gy DHfiL—MNE o, THY (alX
short root, 3 1% long root), positive roots £2AD K T EAIX

O(Go)" = {a, B,a + B,2a + 8,3a + 3, 3a + 23}

£7%%. Roots BIEZ O(Gs) := P(Ga)T U (—P(G2)") & L, K root 7 IZH LT, X, % root
space (€ DILZ z,(t), t € G, £ <), w, & Weyl gL & § 5. [11, Appendix C] Tl Pollack
[31] 12 - T, Gy & SO(3,4) NTHI/R L 7= THKED 2581375 5 b BB Nz0.

BE {a} TNIBT 5 Gy D QWG HE P = MN 12X L CT#% D unipotent part N &
Heisenberg B DGR D, FEE,

N = XﬁXa+BX2a+ﬁX3a+ﬁX3a+2,B
= {n(a1, a2, a3, as,t) == 25(a1)Ta+5(a2)T20+5(a3)T30+5(a4)T3a125(t) | a1, .., a4,t € G}
THR b, HEIX

n(ala ag, a3, 4, tl)n(bl) b27 b37 b47 t?) - n(al + b17 as + b27 as + b37 aq + b47 tl + tQ - a4b1 + 3a3b2>
6



ThHzoh 5. BRI

1 0 —ag 2ay —a; a3 —ajaz 2asaz —ajay —t
0 1 —ay 2a3 —as —asas—+t ai — asay
00 1 0 0 aq as
n(ay,as, as,aq,t): = 0 0 0 1 0 as as
00 0 0 1 as a4
00 O 0 0 1 0
00 O 0 0 0 1
N OHFNE Zx = {n(0,0,0,0,t) = T34405(t) | t € G,} TH 3. ¥7=, BIE%E
1 1 3
(41) 711(&1, 2,03, a4, t) = n(ah a2, as, a4, §t - (5@1@4 - 5&2&3)).
CAEIEL, ni(a,t) = ni(ai, as, as, a4, t), a= (ay,a,a3,a4) € G ELZLITT B L
(42) nl(a, t1>n1(b, f}g) =N (a + b7 f}1 + tQ + <a, b>)

& 725 7]:'.'.73 L, (a, b> = a1b4 — 3(12b3 + 3&362 - CL4bl, a = ((11,(12,&3,&4), b= (b]_,bQ, b3,b4).
INED, NIiZ Zy ZHul & § % Heisenberg A OMIE % & D.
7z, (k2 1
W .= XBXQ+5XQQ+BX3Q+5 ~ N/ZN
a b

E® symplectic form ZEDH 5. P D Levi factor (& M ~ GL, TH Y, <c d

> € GL, I

53 M@ﬁ:m:m((z b)) B

d
d —ed 0 0 0 0 0
—ab a(bc+1) 0 0 0 0 0
b 0 0 4 _2d e 0 0
m( (“ )) -1 0 0 b 2bc+1 —c(bc+1) 0 0
c d 0 0 ab® _ 2ab(bet1) a(be+1)2 0 0
d d d
0 0 0 0 0 betd %
0 0 0 0 0 ¢ 1

THZ 50 %. Determinant 682 det : M — GL, % LEtF—H M ~ GLy ¥ det : GLy —
GL E DERTEZ, 2% det : P — GL, KIER L THL . BEHEFET,

(4.3) Ad(m)(ni(a, 2)) = mni(a, 2)m™" = ny(det(m) ' ps(m)a, det(m)z)
DS, 72721, ps(m)a (Z[E—HH
(4.4) W ~ Sym®Sty, a = (a1,as, a3, as) +— fa(u,v) = ayu® + 3au®v + 3azuv? + agv

DR, AEH mfa(u,v) = f(du+bv,cu+av) HIETZDDTHS. Z T, Sym’Sty 1X CGLy D
2 RICHEHER B St D symmetric cubic RIZTH 2. M D W AD adjoint action 1 det ™' @ps
THY, AW ~ det™ Sty ® Sym3St, ZiEE T 2. ZOEMHIX [31] TEALLDDEIX
HTRLZZICEFER. Haar HIEDNE X 5N EEICRWT, P ® modulus character (&
op(p) = |det(m)|®>, p=mne P=MN THEZ6N 3.

EE OB 0 DRI RICH LT,

3

1
W(R) :={a = (a1, a2, as,aq) :=n(ay, as,a3,a4,0) | a1,a4 € R, ag,a3 € §R}
7



EBX a=(a,as,a3 a4) € W(R) IZH LT, Freudenthal’s quartic form %

(4.5)  q(a) =
EEDBD.

4.2. Gy LOMTHFREAZIN (quaternionic modular forms) DEE. DL TIHARETEIZ
Q LofEH Lo 77— NVHELEERINT2bDEEZ S (cf. [2, Section 1.9]). FRITLUEH Kk
D, Section 3 £ DEFRE DXIHIIBEZICHERTES. QOT7T—NAERZ AL, ZOHRER
D% A EFET.

Go(R) DMK > %7 MR Ko 855, Ky = SU(2)30095 X SUQ2), EIHNTWS
72721, SU(2), i Go(R) D a ¥ %7 MERIEET, ZDERILD Lie fREDY 51y, (y SRR
sly-triple) LRI 722 DTH 5. Go(R) DMFRZENZSE 14 LT B 3 HE SRS F 7
2. K o TIERIBERCRIIZERI (Gelfand Kirillov RITHVNE WREL) ZHiz720. L LA
5, Gy DEGEITBT 2 2 OREYD, WITBEERCRYIEREL Dy, k > 2 TH 5 ([10]). Dy D
/N Koo-type & (1, Vi), Vi = SymZk(CQ) X1 TEZoh, BILFERINRFANDEDIAA

Dy — Indgig)sgnk(detﬂ det |k_%

RO Z IS TWV S [10, Section 13](£341& normalized induction).
PR TIE Gan-Gross-Savin [5, Section 7] \ZHE5 T, Go(A) LOPUTTEREIE (quaternionic
modular forms) DEREZ G R %:

Definition 4.6. {5572 V,-HEAEL F : Go(A) — VY DE X k OETTERATE K (quater-
nionic modular form) TH % & & F BROEM 2T L 225 5!

(1) F(yghic) = 7/ (Kec) " F(g), g € Go(A), v € G2(Q), Koo € Kux;

(2) B3 Go(Ar) DB 2T NEIEED U FEL T, F(gu) = F(g) g € Go(A), u €
(3) Z(gc) DA T TN JTH-T, dimeZ(ge)/J BEIRY 7 2 b OOIEE LT, J-f=
(4)
()

—Ediscx(fa(:z:, 1)) = —3a§a§ + 4a1a§ + 4a§a4 — 6a,azasay + a’a>.

%’gf S GQ(Af) 0\_5(—]‘ LT F(gfgoo) = goo € GQ(R) &\_OL\’C?‘E%M
X 51T, Gy DIEED Q-1ER4 \ﬁio) umpotent part I o 72 EBCEB 0 TH B & X, F %P
TEHH 2 TR (quaternionic cusp form) &\ 9.

4.3. Pollack IC& ZTTHEREFZAD (AN k) 7—U TERA. HEIENEE = @), :
Q\A — C* & p < 0o IR LTI, 4y (x) = e 27V -1Fracl@) ¥ U (Frac(z) &2 € Q, DEHEK
H7), p =00 I LT Yoo(z) = >V LED D, Ft c QITHLT, 4y : Q\Ag — C*
Z (%) = (%) 1T X O'CEZ@%. Section 4.1 @ Heisenberg [AYIEE P = MN ZEWHT. N
DHLE ZN 55,5, F:Gy(A) — VY ZTERATEA e 35 & F 3K Zy(Q)-TE
DT, Iy 2> 72

(4.7) F=Y F=FR+Y F, Flg):= / F(2g)th:(2)dz

teQ teQx Zn(@Q\Zn(A)

2195, BREUH Zy Ko7 Ry BEXUFE, t # 0 F oEHEs I &t S. HEE |5,
Lemma 8.5] Z#&MH 5 5% Z/ﬁ(i))ﬁi D37 ([11, Proposition 4.5]):

Proposition 4.1. XIZ[FMETH %:
(1) F=0.
(2) Fy = 0.
(3) [FEDt € Q* XM LT, F, = 0.



(4) ERERBEE Lt e QCITHLT, F, =0.

£oT, FZiR2TEDITFH ZZEZTHHEMIFEDL TWARWEE XTIV, EE, (11,
Theorem 1.1] 12 X D Fy DIFEHRD S F 2 FHMKEI N 5.

X T, Pollack & & b — DMt REIE IS LT Fy %2 N/ Zy Ko 2R 7 — 1) =
JERZ 1572 ([30]). Pollack {2 Z4UE7 —V ZEMAD B ANX FHEREMPATWVWS. ZHZE Gy D
BEWCEm L0 31 TH 5. ), KEHEMKKIE F,t #0% 77—V vavEROEmZ
HOWTHNTED, 207 — X BRI (SLo-57) \F#HE AR N F JMZIEAHICHE ST %
CeZMALT. ZORRIZEEFCIEIREZIDTHo

X T, Pollack D7 =V MNP ED KSR DD Z#HAT S, (EED quasi-character
N(@Q)\N(A) — C*Z Zy(A) EAATH D, 2 w e W(Q) ZHWT ¢y(n) :== Y((w,x)), n =
n(xz,t) € N(A) &RES. ZOEXD, W =N/Zy o7 Fy, D7 —Y TJEH

(4. Bl)= Y Rlo). Rlo)= [ Fgmin

weW (Q)

%#15%. Aaron Pollack I3EKBER A B T2 Z 2 TF, ZHI/R L=, R smii e 5%
DREH WS & Fy I3RERNZX

Fy(n(x)m) = Fyo(m) + Y ap(w)e®™ "W, (m),

weW (Q)
w>0

n(z) :=n(z,0) € W(R), m € M(R) £F&REN3 ([31, Theorem 3.4]). =72 L, W,(m) i
Pollack @ V,Y-fEEKEEEL T & D modified Bessel Bz AW TERRE N5 (31, p.391]). £7,

ﬂmmz/m F(ng)dn & Fy D N/Zy \Zi0 o 75E8HTH 5 (F 3 A A TIN5 0T
N(Q)\N(A)

\
H5). MOFEFICEAL T, w e W(Q) WX LT, FA (4.4) THIGT 2 ZHAZ f,(2,1) &
THEE FMFw>010F Tfu(z,1) ORIETRTEEY EVWOISFRHEEEKRTS. X512, w>0
WKRLUT, fulz, 1) PERZRZRNZ 2 L g(w) #011XFAETH 3.

F DPUTCE A 2 TR DA, Pollack [30, Corollary 1.2.3] 1k & D K% 72 JEBH

(4.9) Fo(n(z)m) = Z ap(w)e2™V IO (m).

weW (Q)
w>0, q(w)<0

21572 (“qlw) < 071 “RE WHEREZEZTWS ZLICHE). BETF—V—R2 LT
ML 7— ) ZEEICBT 2 TEREE 23 V1o W, (m) TH D, Z DEBIRE ap(w)
N F ORGRIEE 2D /- EHE R 72 5. AREO BEX F 28 Gan-Gurevich V) 7 b & XIiE
NBTEBA A TR TH 2 L ZWZH 2D w I LT ap(w) DEGHIEE 2R Z ¥
THb.

5. GAN-GUREVICH Y 7 b

Z DEIDONEZ [6] \HES . Gan-Gurevich U 7 M Ginzgburg 25K L 72V 7 + (Miyawaki
litt MoV 7 M) eplstr—20 7 F2HAEOERANAL TV FU T THS. IFZDY
7 MZOWTHHHEICHAT 5. [6] TIHMEEORBUA LTHER L TV A2 2 2 TIREHEO D
QLETEZ%.

783, Ginzburg 2 L7z Y 7 b [T]IZDOWTEIAT 5. PGLy(A) DB cuspidal 2RI 7
WX LT, SLy(A) ~ND Waldspurger V 7 + % o(BEfY cuspidal &) &3 5. —f&IC o DIELE
T2 LBROBVD, FET 2D DOREAGHRMIIA VT2 Y HTOFETEX 61D
([6, Section 3.2] ZZ&). £z, c IFFEELZLE LTH—ETIERWV. ZD X 57 o DFRIESE
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2RO TE A % global Waldspurger packet £ W0 A, THET. & o€ A, LT, o D
Saito-Kurokawa U 7 b ([29]) 12 X D 1§ 5415 PGSp,(A) DEEKY 2 R FED RILZE GSpy(A) 12
HUDMEREDHIAE 23 XS WIER L7 b D% SK(0) £ FH K (SK(0) & o X L THICHEET
%). U FOMBDOEFITEWTIESK(0) i cuspidal £ 52V EK D20 R, 2D XS
750 DIFAER L(5,7) # 0 ERET® % ([6, Theorem 3.2-(iii)]).

REFE GSps D Q- EE Qs = MN T, M ~ GLy X GSpy L7225 DHLD. ZDY
% (normalized) FFE R InngF&A)c%s (T @ SK(0)) 1I2f¥BES % Eisenstein series D s = 2 12
BT 5 residue 23k 5 PGSpg(A) DB 2 R DRI Z 11(0) LFLT.

T, 11,7 7 PGLy(A) DBERY cuspidal ZHe L, 22RO T L2220 T
FHLTEL. Fn LT, 00 € A, ZEX. ZDL Z, X(01, ) ZRDRBEADIR 2
GSpg(A) DXRFLE T 5
(5.1)

Orion) (f, 0)(9) == St fg,h-s(9))p(h-s(g))dh, fell(or), v € 12, g€ GSpg(A).

72720, g € GSps X LT, s(g) € GLy & (g9,s(9)) € (GSps x GL3)° := {(g1,92) €
GSps x GLy | v(g1) = det(go)} ZWi7zTDDEBHFICL > TERLDDTH S (HlZRIX, g €
Sps 51X s(g) = ). Ginzburg I X(o1, 7) 1 non-zero 7% L*(PGSpg(Q)\PGSpg(A)) 7
PGSpg(A))-FRA T H 2 Z & 2R L, £ L2, (PGSps(Q)\PGSpg(A)) ICEEN L7
IZ1E Osk(oy)(2) = 0 722 T EDREFIEMNFTH S Z & ZRLT ([6, p.16, Proposition
4.3]). 72721, Osk(or)(12) & SK(01) Z T — XD L TR THEE NS PGLy 7*5 PGL,
ADYTZ RTHDY, (5.1) LEMICL TEFRI NS (6, Section 4.2] &S H).

Z 2T, L(%,ﬁ) #0ZIRET 5 Z T, THIWCHHALZ X512 7 @ Waldspurger V 7 b oy
THoT, SK(0y) 1Z cuspidal EZLHHRNWESITESRZEDNTES. TNED, Osk(ry)(12) =0
%1585 DT, non-zero 7% (BRI & 1ZFR 572\ )cuspidal I X(oy, 7o) 2185 . LD Ginzburg
V7 s DWROBETH 2.

Gan-Gurevich 134} dual pair (Gy, PGSps) C Er (E; &3R5 Er) 1203 25154 7 —
ZHIE OF D S(01,72) DI O (S(01,72)) DB B idex 1T 57—V TREBE X (i
LTWBDT, 11 DGENPARETHS I LICERT 5:

Theorem 5.1. [6, p.3, Main theorem, Proposition 5.1,5.2,5.3, Appendix 14] PGLy(A) DBER)
cuspidal I 71X L(5,7) # 0 &7z 3 EAREL, 7 D Waldspurger UV 7 b o TH o T, SK(0)
i¥ cuspidal ERSRVHBDEL D, TDLE, 0F((0,7)) 1& Go(A) D non-zero 7% (B &
[XFR & 72\ )cuspidal KBITH D, Z QEEFIES IHEWFNRD Ind5 )T @ | det |2 OBEIAS
¥ nearly equivalent TH 2. X512, SEEBRZRLAB IV T DNIBELELIKORTEG LTS
&, T OFHER D L BB

1

L*(s,I1,8t) = L%(s, Sym*7) L (s + % )L (s — 37
g
Definition 5.2. FlFiRD 053 (X(0,7)) & 7 D Gan-Gurevich V) 7 b &\ 5.

Gan-Gurevich V 7  OBEIMHEIZHIEZINTE ST, /2, ERERGITBITA2REAN YD X
IRHDTHEDTRNENTWIRD - 2780, FEEFIX Kim K& OEFEMIETREMR L 72

Theorem 5.2. ([11, Appendix A]) k> 6 & L, new form f € So,(SLo(Z)) & L(k, f) #0 &

723 EIRET S (ZDIRED S ki even £725). New form fITHFET 2 PGLy(A) DBERY
10



cuspidal R¥l%Z 7, £ 5. TDE E, 7; O Gan-Gurevich U 7 b Il := @gﬁ(E(a, mp)) ZBE
# cuspidal RILTH b, MIRFRAUTBITF 2713 D, LABTH 5. K, I I3EE k OPUIT
BHh A TR THERINS. -8 LT

(s, 17, 5t) = L{s, Synmg)Lis + 5, 7)Lls — 5,77)
THEzZoN 5.

6. GROSS D48

Z @ﬁﬁf@i Gross 73 David Pollack FKIC%E T=FHMRICEDIPNTDH 2 FREICOWTIHARS. B
Xk, Go(Z) THEIBEINZUTLEA A TR F - Go(A) — V) & 2D Zy 12 - 72 EBUE F
D7 —V kR (4.9)

Fo(n(zym) = > ap(w)e™ W, (m), n(z)m € W(R)N(R)

weW (Q)
w>0, g(w)<0

%‘%L\&j‘ IEP::FIQ (44) &b W(Z) DI w = (al,ag,ag,a4), ai,a4 € Z, as,a3 € %Z L:iﬂ‘m
3 % cubic form % p,(u,v) = a1u® + 3asuv + 3azuv® + a® €5 5. TDE FZ LER3 D
AR A, =Z-1+Z - a+Z - ZLTNORETE X % ([5, Proposition 4.2]):

af = —aay,

a? = —3ajas + 3asa — a3,

B? = —3asay + asa — 3asp.
DT, widqw) < 0BXUFw > 02T ERETSE. ZOE B, = A, 2,Q13Q
bEx&—nroE, R ~ R &7 % (EBRITIE g(w) # 0, w > 0 DEAFDATE SR
%) BRA, D E, DMIKEIRTH S & X, A, ldmaximal THBEWVWIH. X 5HIZ, Artin RI
pa, : Go = Gal(Q/Q) — GLy(C) % Ca,(s) = ((s)L(s,pa,) > TERT S (cf. [32,
Section 3]). £7z, L(s, f®pa, ) Z (unnormalized) Rankin-Selberg L T s = k 23 central value
E3bDeF 5. LIET, Gross THEZ RN 2 UM% 5 7.

Conjecture 6.1. (Gross D48 [8]) %k > 6 B L P new form f € S (SLa(Z)) 2 & D,
Qr=Qan(f) |n>1)% f D Hecke ke T5. ZDL X FIINLT, BEX Lk OMEITTEH AT
JER Fy DMFE L TR & 729

(1) WHLRERLD R, ap, (w) € Qp AMERD maximal 72 w I L THRILT 2.

(2) EE D maximal 72 w X0 LT

L(k, f ® pa,) _ ar,(w)” 2k

(f, ) (Fr, Fr)  ((k — 1)1)2|q(w)|*2
DENLT 5. 72721, (*,%) 1 Petersson NFETH 5.
o FHED 2 FH D FiRIE Kohnen-Gross DA (2.2) OFELITH 5.

7. EXREREFEHO T A4 77

ZOHEITIE 1] DFERTH 2 TF 20T % Gross TREOER S HIfER) OFEBHO 7 4 77
RN 5. EREEILRIEERYIRINCEB T 518/t Whittaker BI% 35 & O global Fourier-
Jacobi &R & local Fourier-Jacobi B¢ OFEEMHETH 5.

Bk > 6%t 3. New form f € Sop(SLa(Z)) ITHIET 5 GLy(A) DBEXY cuspidal &I
T =Ty = @, = T ® Mo EZL. LIF@ELT, Lk, f) # 02IRET 2. EEOAER
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RplXBWVWT, 7, = W(up,,u; ), tp 1 Q) — C~ ERTEE, G2(Q,) DEMFFAERI
I, = IndeQQg pp © det (normalized mductlon) 2EZ 5. FERF|RICBWTIE, MTAEERCR
5”?@@1—[ =Dy &2EZ%. 5, Lk, f) #0%2KELTWS DT, Gan-Gurevich U 7 + Fy 12
HES 2 Ga(A) DREIRITIE
Hf = ®/H
NSRS, B w e W(Q), q(w) <0, 1T LT Jacquet F77 Z FHW 2 Z & T functionals

Wi € Hompy g, (I C(thy), p < 00, W2 € Homy gy (oo, C(th0c)).
EMGERDZZEDTES. 121, ¢y = Quy : N(Q)\N(A) — C 1 F ¢y (n(z,t) =

)
v({w,z)) TERINS. ﬁﬁﬁ%:%'ﬁo)i% iEq(w ) #0EWVWIHFEDAT, dim(Homy (g, (I, C(Ywyp))) =
=1

| BTRE S fth)y, FERFE T BN T g(w) < 0DIED T, dim(Hom y R>(Hm,@(¢w))
DR % ([11, Section 6]). Gan-Gurevich Y 7 b Iy @ L? ZEfIC BT 5 5281
T = L2, (G2(Q)\G2(A))
EEZ, 0=, € Iy DELEBUTE T 218% Fr(x;¢) LRl .
Theorem 7.1. FELORED T, Ff( ;) ERD XS ICEMEI N S:

(7.1) Fi(g:0) = > Flaolg: ¢ > D Fao(19:9), 9= (9)p € Ga(A).

s€Q 'yEwBXg(Q) seQX
7272 L,
(lf—1
Fls0)(g;0) = Z Chf (Fy) (H WA (o (9 %)) Ad(ua)w(Fos * Poo)
w=(ay,az,a3,s)EW(Q)>¢ p<oo

q(w)<0

THY, Cu(F;) e CTH 5.

FHENZ PV g = @ by € TED | 6e(1g) = 1 BEU 6o € Vi C Dy, ZHMYNTES.
ZDEE Fri=Fi(*;¢0) ITNLT, 7=V MR8 Cle(Fy) AT,

Q{F"C“&i, w = (al,ag,a3,a4) EW(Z)so :=W(Z)NW(Q)>0, q(w) <0 TH>T, E,FQ?
PERITQx K (KIF2XKK) L2 0%EZ 5. BREDHE T w> 000 KIFE 22X
K% ZOLE HBme MQ) EAVTw=Adm 1)(t0,5,0) L EL LA TES. /-
720, m' = Ad(w,)(m) THD,t,S€eQ It <0228 >0%ZHs

Theorem 7.2. Fid, w = Ad(m/~!)(¢,0,%,0) € W(Q), m' = Ad(w,)(m) LT, 2%
TRWEBC(S) BFELT,

Cit (Fy) = C(S)pe(det(m)) ™ ue(S) " ers
DEDILD. 272U, pur = @ opty THY, 151& f DEFY 7 b g := Sh(f) D (tS)-th 7 —
VIfRTH 5.

ISR E LT, B, FAHRFZR R 0ER e Zo ., Tt DE 2K Q(V—t) D ﬁzt#u
EUMJ;OTL\%%@U]‘LT w=(t,0,1,0) (Mm% M(Q) DHEAITLD L X) BE X

)3
Clf(Fy)* = C(1)%¢;

£ 72 %. Kohnen-Zagier DR (2.2) & D ¢ DEDE LK, f @ xq(y=0) EERNTONLD
T, Petersson N#& (g, g) & (Fy, Fy) & ZREUOT S e TENR, EE w i LT Gross
TA8H3 Theorem 7.2 2> S¢S

TEEEY =1, 5_12:1,“( JGHE LTG0 5.
12



Corollary 7.3. E, ~ Q3 27z 37T w € W(Q) W LT, Cl(Fy) 1FIEFER L Lk, f) &
DETHZ. FIZ, ZDEI R wiH LTI CH(Fy) £0TH 5.

8. SROREE L Y 558

FEM (Theorem 7.2) 1% Gy DHGED Arthur PREZIRET 5 Z & T, LUV N B3 squarefree
DBZED Sp(To(N)), k> 212x0fF % Gan-Gurevich U 7 MK LTS FERICFEAX NS, Z
DM [11] DEEHTH 2. )7, £k 1] 1BV TS, CM form (2R LT, FEE®D w i3 LT,
Gross TREDERZHNCEER X N7z, I A DRE TlE L b squarefree 72 DT, CM form % &
FHV. XoT, (1] LR IGHIKTH 3.

BXNMET E, WERDGETH 3. ZDHEIZ E, & Galois cubic % 721X non-Galois
cubic DWIFNPTH D, ZHUI D = —qw) > 0 FAFELE S0 TRES. 5, B, D f
@ cubic base change % fg, := BCg,(f) £ 32 &, fg, & GLy(Ag,) L@ Hilbert cusp form
&%, Z2ZT, fg, D Gan-Gurevich V7 b2 Fy, £ 9%. COLE E,®oFE, 3E, £
& By X Ey(VD) ¥72%. ko T, Bi#E%E cubic JEK B, 1ICET % & EREHAD Q DFEDIR
B %. 22T, index TN LT, Fy, O7—V TREMZHND Z & THIEANZ Gross 748
ZRAEBH S % 771E% Henry H Kim [, M OMHRK e BIfEEFTERFTH 5. 4, 20
THHEHEKIZ XD, Gross THEOD GGP 482 5 ® formulation dEZE XN TE D, SROERY
HifF LT3,

b7, e REEE R F izt UCRER (4.7)

F= Fy=Fy+ F, Fg::/ F(zg)Y(2)dz
2 fi=Fot ) P Fl) Zn(@\Zn () Fo)lz)

teQ teQx

EEROWHTE, F, t A 007 =V T YabEREZHAT 2 MEIZEKRECEEE Bbh b
AR U7z & 5 W KX [23] 1B W T F, OFSMERD Okt & REGRINICAT - /2. F, OfF5EIE
INHOOHEETLZZeEZHFGFLEV. Ay, BRPIOE L L TH 4 D Eisenstein series
WHLT7—VZVYabEHAPEDI I RDDTHE2NITRICHEBININNETHS. *
D7=DITE 7 — V) AR DOBARRI (cf. [15],[34],[12]) 72 ED R DI DA b S E
Thh, 5D OMENERT 22 2LV,

9. Gy DIFFZIZDOWT D [EAH

FH13 2019 1T Wee Teck Gan FRIC X D NUS IZHBfF XN 72F%, Gross 23 David Pollack
WS CAFMOa —%, AFRICHTSMELOEEL L BITRITI -7, 2D, WX
[11] Z¥E T 51CE S F T, Henry H. Kim REMESHEMZERTE D, G T3
Tkeda type HEICDOWTIE, €5 L TH DR TARENRNEICER L, HATHEDIEL
KHUZKE Do (BRI, MR TERLBobDNEBRIZIZ 0 ThotzZ b ddboTz).

29 LWEEICOWTIE, 2 28FE, RHREMERZEFE LR oiimrENRS Z L T,
EOAD IHEORED D 2 DPIRAICEZATER. Z0#ET, RKEEmINIRZ 5N
Gan-Gurevich V7 MZIEHL, 22 DT TH 77—V ZEBHZEBR T2 VWSS
FINEC BRI L2 D, —DODZEBHOE o7,

O 5513 CM K& A R FTHRD S U(1) D2 =& Y Hecke IIEE G X, ZHEET, 7—X V7 MTED
PU(3)~\VU 7 bF%. Cubic algebra E,,, w € W(Q)>o DRNZIETL T, V 7 + A5t dual pair PU(3)x G2 C Eg
(Es 1% quasi-split adjoint group of type Eg) ZHWT Go NV 7 +§ 3. Eg D Qrank ¥ B, ~ Q3725 6T
(FFIT split), By, ~ Q x K (K/Q X 2 %K) D ¥ =13 4.
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10. #fEE

\_0)}—5‘3%%%1:&\. SWTHEHDIER Z BE ALK S oA —HF A F—DhAT7Z, D
,_\n%TEPLLUiT Rrc, P s e, KH F—88 4, &1 BE tAEREBRES

ﬁﬁkﬁbibt. IR LTS oEERR L E .
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Z2—=N—REBDOEHNRIONS XA —FEEICDOWVWT

Sem KM (R LERRLRSE BAEET)

L. XL

RIGROMAZITOWCHD 2R OMEZFANL] &\ D5 DI THEARMZ
MW Td 3. di# (GL,,SL,,SO,,Sp,,) 2 EaORBEHOKRER T F7 A TH il « 7R
FEFIREE, Jantzen OEELE [Jan03] TH X A Y DHFFEMG L LTRkbATEBD, L—1 -
TR TR EINE THRVRTWI IR THS. ZORBEHD £/ — bOSETHAS
HEFRINCEEAR XN, HEICER2ETOLRDDOZ e PHBEINTETWVS. il ZIXFHIRE
=7 ADIEEHOITT (V=4 b)) OFEEMNSEERBNC I DR, 206 DBEY
b DEEDIT A —ZHIFBERIN— VRO LT RT3 e 8 TE 5. 2
DFEREL LT, YYINED &S BHAGDENRNR L IFECRERLD 2 Z L RBI N5,

—J7 T, A=N—RBEHZBVTL—F - TR THIEELARTEZ S L5727 7 XdHA
DEAFID LA BRI &N TH D 2 DRB G D FHANIHFES A TW223, [Shi20] 12T dense
big cell DMERDEZ T2 HWS Z T, BRNRBOMBEH—ICTS I e TEL. L
L, FER——D L 2D LS ICHHIRHOMESC T X —ZEE N OREX (V) —+ R—
NR=REDL 2BV TDH) FFHEICHLVWHEE LTHED RBER--TWa. 2L, &
K72 L DL DR — = RBEE (GLjn, Qu, $POsnpe 2 E) I LTI, il & ORFFREE
ZEFLN T2 2 TENZNUROHEDL IR TETED, fIZIERTA—RELE N
DOPEFBIC R ENTETWS ([BruKujo3, BruKle03, ShuWan08]) . fiz b & 2 Fiikiz sk
HEE7e T A= —REFHCBE LT, Kac MO XS RV “BAE" BhsZeT, I
A—=R—DE ZEWATLFEMmMZITA 2 T 7> TWWd [Shi2l].

ARRTIE, A= —REEED S B “N— PR B EIREDS K57 (GLyjn, Qu, SPOanye %
L) RERIIRIHMLT, V—FROBETEI N GHEFRER) &5 A ZERL,
il & DRFRFIEEH NS Z R RTAXA—RESG N DD N KHEHEINE L ERT. &
BICEEKP R WL O DGHEICEES A = A KD IDZ 2 EATHL.

HEE. B TORREEES VR Y JZBVT, lHOKARZ 52 T RS o LBGREOERKRICZ
DIGEMED THELE L EIF 3. ARIFZLE JSPS KAKENHI (22K13905) DB % 21T 72 %
DTY.

2. REHEE 2 DBERIRI

Az E LT A ORBCR (IREBC REE- Ay 7REURY) BEELZK Kk ETEZS.
1



2 SEH KK (R ILEERERS: BIAEER)

2.1. RBBEDTEREH. ARTET 7 4 YREHER X —20Z e 2 BICREBEEL VS, T4
OHEREEE G LI E DB Alg 2> SEEDE Grp NORIBAJEEFTTH D, ZDREN
R OG) PDERERTHZ2DDDZ e Z2WVSH. KHOMEIC X D EMEL KL T OG) 12
ARy PREOBEENRAD, Ky RO S S SREEEZHTEL TV Z & ASATHE
TH5.

%2Jﬁﬁ%@&RKﬁLT,%HK@%%%@%HSMUD:{Qﬁ)eMawaad—mzl}
EWVWTHL R Z2EETHD, ZAUIMTHORIC L > THZRT. ZOXS5ICLTHAR
WZBETF SLy : Alg — Grp 218722 8125, 561

SLs(R) — Alg(k[A, B,C,D]/(AD — BC),R); (2%)— (A—a,B—b,C—c,D—d)

DPRHEHTH B Z 005D T, SLy FARERNRE O(SLy) =k[A, B,C,D]/(AD — BC)
WEoTREHZINDEFTHD SLy, 3REFFE 955, £L T SL, OFETDH 244 -
HAIE - WITE KL T, O(SLy) ICIERFE A : O(SLy) — O(SLy) ® O(SLy) + AR HLL 4T
£:0Ly) =k 7YFR—=F S:0(SLy) = OSLy) BRZNZFNEZE D, PRINIZ
(8020 = (fendecdanimen) . ((8:0) = (1), (38 89) = (&)
THZBN5E. ZTHT O(SLy) BEBICARy 7REZ KT Z L 3B Z HEro b5, O
— AR BB I IO RERPITH D
GL,(R) := {g € Mat,(R) | det(g) # 0} (R IZATH#AREK)

THEZbN5E. 72720, BEEEOTYIHO b D2 AN S, EE, RIEMNRIZ OGL,) =
k[T;;, D |1 <i,j <n]/(Ddet(Ty;) —1) TH 5. i REHEOKRE 7 7 2Df L LTI,
BIRXTT M) —RE e 2 DEERHD WX 5 Chevalley 8 CEHEAIREEL &
@@h%%@ﬁ%é.Wiﬁ,%%ﬁﬂﬁ&%m%:@eGuﬂb“a@ﬁﬂ}%ﬁiﬁ
soARy:{geﬁ%ga @Lﬂ:ah}%ﬂﬁﬁSmAR%:{QGSMUﬂ @J%ng%}
A3 Chevalley BEOBITH B, T 2T tgld g DEEITHITH D,

S Ol1 O |1
T = 0] 0 I |, Jum= m) g = "
o 0 : ( Im O ) ’ ( _In O >

I, O

EBVTWE (I, & n XEATH]) . B —REBED 7S T T, SL,yy & A, B
SOgns1 (& B, B, Spy, 13 C ) SOy, 13 D, HEMHIN TV,

s GL,SL, SO, Sp 8 Tiba e U CERE - PREWE L EN 2, v—F - T—%&L
MG 5 ROREEED 2 5 2035 5. UFTRTWL £312, TOr 5 RERBROMRE
L= OEETHRTE 2720, HIRIMHASDER L OMEDSIER IR,



A= R —REEEOBEIRBLD 5 X — ZEFITDONT 3
2.2. REED) —RBERLILERDE. REEE G 52 o &, ZOXRBNR O(G)
FAHR y TREZ R T D TH o7, ZORME A 2K &, HEN O(G) 13FED
(F * @) = X5, F)o(=) (.9 € O(GY' o € O(G) with Alx) = ¥,9: ® =), BULTEAR
Hii e € OG) THhlzoNd2RBekd. 32, REOG) & [f,g)=fxg—gx*f
(f,g € OG) WXoTYV—REERTDTHo7z. STREMOME m=Ker(e) B L
X, OG) ERERTH S Z h 50 m/m? ZERXIITICHR S, ZDBEII Lie(G) =
(/m2)* 1, FRIC OG) O—# e BT Y —{CEHEER A 5.
PIZIERBEEZ G C GL, Rk, 1THIBORE e LTERLZE Z (ZhUdvod
HIRE) , FEREIRICLD

Lie(G) @ Ker(G(K[T]/(T?)) Z2% G(k)) C Mat,(k)

L AT O HS ) —REE LTEBTE 5. BRI, G = GL, O8A1 Lie(GL,) =
Mat, (k) TH 5.
Bl 2.2. Fiot 7> a y TEIFILAEHO Y —REKiTzhzhn

o Lie(SL,) = {X € Mat,, (k) ’ tr(X) = 0}

o Lie(SO,) = {X € Lie(SL,) | tXJ, + J,X = 0}

o Lie(Sp,,) = {X € Lie(SL,) | *XJ, + J, X = o}
¥ (FAEhS) 123. O

TEFRD OG- DA G EIPHEMRK - A T 2bD. b= X TIEAMATHD
Z DIHEREE A = X(T) & Homg,p (T, Gp) ¥ 5L &, BURERI (T A= ZO LI
WKR—HT 2N TELZDTHo/2. ZIZT Gn = GLy 1 F—RITHERE.

WE T 13Y =% g := Lie(G) "NHERIC K DIEH T 228, T-AEHDZEMZ §h el
=gk

g=ho P ¢ "= {Xeg ) VH € §, [H,X]:a(H)X}
aEN (CA)
Ev— MZERNZ RS 5.

WhHhW B B L— FRE—DOLDEETE LT, L— F2ROES A WEFZ VN
BZeMTE, ZAUCHILTIERFNCART 2 28 TES A = A~UAT with A~ = —AF
DTHote. HHL— PRI C A G BRI B Db BHRD Zooll := {, qa; €
AN|ci € Zso 0z €1} EBLEE AT = AN (Zsoll) Zifi727F.

X5 G DEAERTEE-H B,BT TH-T, 20V —REDZhZH A, AT I WS T
27 E5RBOBENZDTHo7. THHIE G DRLILERDEE L M, HY1=RT
YIEAEE U UT Ik oTZENZEN B2 UXT, Bt 22U xT ORI 3.



4 SEH KK (R ILEERERS: BIAEER)

i 2.3. G=GL, DEEEEZS. F—F AT & LTHAITIIZEKLLR2bD%E D, %
DIEFEREZNEMNC A =), Ze £HADB. TIT

€ : T —k*; diag(ty,...,tn) — t;.

N=brRIEA={e—¢|1<i#j<n} kb, PIZIFBEENZRL AR B £ LT
TEATAIREN NS, U

At ={e—¢|1<i<j<nl, N =-NA"

ELeEDHDTHS. 2=KR7 ¥ MFIRE U AT TRT 1 TH S F=MA1TS
2RTH 3. .

2.3. BI¥IRIADEEK. Zot 7> a rTHEM - 7HENEE G  Z00H MK - T
CRUIILERGE B B2 UXT,BT XUt xT 2 HEET 3.

BAXEAITHLT, —XtZEM ky 2 A Rl L7z T-RB A 5. LI T-BHIRBOD
(FZIZERRL) 2 {kalaer TEZ DN S, BEEREOSETWVZIX O(T) PEHEITTES
NBEETHZZEDHHES.

MRB2UXT AHZI22 UNIZRTFT Y FTHBLWVWS I LIF, BEROSETHR
12 O(T) 28 OB) D O(U)-BRAZEERS OB)CW) v RAFITHZ L OU) BAMREL L
THRNTH2 Z 2B LTV, fitoT, B-EIRHRO (ARZERS) 2K £72 {k)}ea
THEZoNBZ e 9hr5b. ZTZTky ~ND BAERHIX, FCHILZHE B2UxT =T
PHOWTOWATWS.

WEBCGEHOIEB-REZBRICG-RHL A Z 2B TE S (Wb 3FERE) .
FEREERD STV ZIE, Bh OB)-RIMEE M (LT, Biky 7OBRRES O(G) - O(B)
W2&D OG) 2k OB)-RMbte A 20T VIL

indg (M) := M Qo) O(G)

ZHRCH OG- RNt A72bDTHE. ZHUIMEBEL e OHED ) —REDT FRHD
7)) DX TWRIR, BBXZEY y—~I#E M Quy U(g) WY T 5.
T, ZHRTEEHN B-RB ky (A€ A) & G-RIUCH B EiFz ind§ (k) 2E X,

A+;:{A€z\)mdg&q)#0}
YBE, F A AT ITHLT, ind§(ky) D G-B (socle) & L(\) &K, T3, BxBt —
G OIRHD O(G) - OB) @ OBY) BHEHTHLL WS b, XROMRESS.
i 2.4. B G-RELD (FRZFRS) 2K {L(\)}herr THRABNS.

INTOLET (MRH7ED) G OBHRBEZISE2 Z e 3 TE-07203, ZOWEICEEL
TRICRAEDPIELR BT D 120121F, b o LIRWRIGRZEMT 208N H S, 22T
HEDIIRIZ Vo 2 ABIC LT, RDEZ S arTlENRI X —ZEES AT IZOVWTATWK.



A= NR—REBEDREIRID T X —XEHITONT 5

2.4. BEIRBFEDNS XA =R, (I X-2EG AT OREZ TS5 LTE, WoltA kB
REPAIRDG & %% 2, FERBZ

indS (ky) 2 {f .Gk ‘ Vg e G,beB, flgh) = )\(b)‘lf(g)}

LA—HL, G ® Bruhat HfEE AV 2 DRV Z 2T G LERINIFL
Bt L, Zhhind§(ky) DICICRZEME2FANS, WS FERD 2 (B2 [Jan03,
Part II, Proposition 2.6] Z8) . ZO#ER, JEXL v 2B EN S 72D DB+ &4 2 E
ERNTIENTE,

ind5(ky) #0 <<= VYacAT 0<(\aY)

ENL—bPROBETIHRT AN TES. ZREIEHEY 24 P THMINENES
HTHs. FHDO AT FZHBEAAHML - PRICEXHZITH LW, 22T (,) FARER
7V

() e X(T) X X (T) — Z; (A, @) — Ao € Endgp(Gm) = Z (X, (T) := Homgp (G, T))
THDY, oV ida DL —FT (a,aY) =2 BAT. ARTEZOMFRME, 2FDh

A = {)\GA‘ Va € AY, 0 < <A,aV>}
ZRDBZZ LWL TROE I Y a Y TEAHIZN ONBETWL 22T 5.

2.4.1. GL,,SL, ®%& (AT, ¥3 G=GL, DHEEEZ 5. il 2.3 Dit5 A = @), Ze
REERHBIZHES., £1<i<niTLT,
it Gm— Ty rediag(l,....1,r1,...,1)
EBELE X(T) Y@ 2y b i), RZVYZE (an) =0y (ZRFYH—DFN
R) L7RoTWb., ZOILEDbL, b—bt a=¢—¢ (i <j) DRRIL— M
i J

Vv
\%

\%
' =n—n;:Gn—T; rdagl,...,1,r,1,..., 1,7 1,...,1)

i85,

TR2LEAN=D" NG €ANEZ)ITHMLT, IEL—bFa=¢—¢ (i <j) DHED
RZVYAE (Nay =N — N E5B. (EoT, BRIRHD T X —XE&IZ AL 729"
F—Hob L

AT ={(A, .., A EZM [ A== \)
L5,

—J/T G=8L, DHAEIE, GL, DHEDFEZFTRT det =1 WV I FEATHIUIRWE

DT, BIZIEX(T) =@, Ze:)Z(> " &) R L7 ->T, ok FARKICLT

AT ={(\,..., ) €ZZ(,..., 1) [ AL == M}



6 SEE KR (RILER A2 T2
LR 5.
2.42. SOy,11 OHFH BH). ZOHE, b= 2% T = {diag(1,t1,... tu ;5. .. 000 |

tyoo s tn €EG} EEoTEBL. Td2, F1<i<niTHLT, ¢eX(T),n €X(T) &%
nzh

6T — Gn;  diag(L,ty,...,t,t7 5. 1) — 15,
i+1 ntitl
\Y \Y

i Gm — T;  r—diag(l,...,1, »,1,...,1, r* 1,...,1)

LEDIUR, X(T) = @), Zei, X(T) = P, Zn; £72D, £rRT VX 7E (e;,n;) = 6i;
o TWA.
) — %K Lie(SOgy41) DNV— b 3fR%EE Z UL — N R

A ={xe |1 <i<n}tU{se+tej|s,t e {£l}, 1<i#j<n}

T%‘i%h% Z :ﬁsﬁj\i))é %@ifﬁﬁ}l/’_ ]\%Z LT {61—627...,€n_1—€n,€n} %HX%) Z t
WTE, Z0b e THHNRHD NI X —-2EEZ

v, YOIOMEOEELE—HEIh 3.
2.4.3. Sp,, DS (CH). ZOHE, v—F 2% T = {diag(ty, ..., tn, 175, t7) | t1, ..., t, €
Gnl B2 oTBL. 722, £1<i<n LT, ¢eX(T),n € X.(T) ZZhzh

1) st

r'n

€T — Gn;  diag(ty, ... ta,t75, ...

i n-+i
\

\
mi: Gm — T;  rr+—diag(l,...,1,r,1,...,1,r 1 1,...,1)

Zﬁ?@ﬂbi, X(T) = @?:1 ZEz,X*(T) = @?:1 an Z 71::( D, i-/’::"\o7 ]) ‘/7¢i <€i77]j> = 61',]'
ERoTWVW5.
Y —fE Lie(Sp,y,) DIV— b fEZEE Z UV — R R

A ={£2¢ |1 <i<n}U{se+te; | s,t e {£l}, 1<i##j<n}

THEZoN2 805, ZOHFMAL—FRELT {6 —¢€,..., 601 — €0, 26, D Z
EDTE, Z0H e THHNRHD T X —ZEFIZ

ATV ={A,. . A EZ [ A ==\, =0}

b,



A= NR—REBEDREIRID T X —XEHITONT 7

2.4.4. SOy, DFHE DB). ZDBFE, b—=F A% T = {diag(ts, ..., tn,t; "ot [ty 1, €
G} 22oTBL. T2k, £1<i<niZNLT, e X(T),n €X(T) ZZNLTh

€T — Gn;  diag(ty, ...t t75 .. 1) — 1y,

r'n

i n-+i
\2

v
ni: Gm — T; rr+—diag(l,...,1,r,1,...,1,r 1 1,...,1)
tﬁlﬁbﬁbi, X(T) = @?:1 ZEZ,X*(T) = @?:1 ZT]Z Ztﬁ b, if(ﬁ’\o7 D) ?/70;* <6¢,77j> = 5i,j
ERoTWVWa.
D — VB Lie(Spy,) D— b 4REE Z AU — b R

A= {se;+te|s,te{£l}, 1<i#j<n}

THERAONZ LI H 5. ZOHMAL—FRELT {6 — €. 601 — €, ZHDZ LD
TE, Z0d e TEHNRHED AT X —REEIZ

AV ={(A, M) €EZM M = = A = )

Y5, O HERHET 1SS N\ = £\, BDHTL B3DT, Zhze—2IFHT
ELDIZESILTWAS.

3. A= _—REEE & 2 DBERIRIE

A== IR 2 DB Zy = {0, 1} TRESTF HNTNRTH T, R—r8=xfFp e
X % IFE B BR Zont Fi

VoW —WeV;, v@w— (—1)"y o

PERINIMHROZTHS. ZZToveV,we W IFEXRTT jv] € {0,1} 132 DXEK.
A= X—=WFREDIEBEIHICZ SR WVWE D12, ZA——%D & = 3HEBK k 0T 2 T
Fne 35, FIZIEAMHRR — =B X Zy TREMIONTRB R=R &R TH
D, JCICBEF % R — S—n] ik

—ba if a,b € Ry,
ab =
ba otherwise

BT 0DIETHS.

A—=—f{ba iz Ob— bPRTHABEINE LI REVWT T 20D) REEHCBWTD RN
RAZTNK ] WIS DIFEARTH h EARNRETH 5. RIFIER— =DM D
WMk 35T, MNRBHEETHK T2 ZERETH 5. ZZCROMEL LT, JE
2 —R—Dr EZLEIC TBIHBRBHED ARSI X —XEEZ2L— FRTREdRE X WSV
BT 3. W ODERIIR A — S—REFHIN L TIE, ZRZ2NEEOFEIC X H B4R
BT X = REFOFBBH 5N T WS, ARIFFETIIER ORI EZ W3 I2, —BRINFE
Mo ETHREISEN S e ERT 3.



8 SEH KK (R ILEERERS: BIAEER)

3.1. EHREM. IER—nR—Dr ZLFEHICLT, X—N—RKEE G &, n[fax— < —#K
DED SEEOBEANORBARERETFTH > T, RIIR O(G) KA ——RE ¥ L THRAERK
THHDHBDE L TERTS. 2D BRI 2[R DOEICHIBRL72d D G, (T8 DL
BENCZD, ZO@BHMEPERILICT 5. BEROSETEITE 0(G) &, OG) 220
l-part O(G), DEMRT 24 T 7NV THIoZbDTH 5. RERRRA——REEEDHZ LT
WCEITF 5.

5l 3.1. U RTCTR=Ry® R, ZA[ AR —R—RE LT 3.

o —HFIRBYIZ —/)N—B%

GLyun(R) = {(%‘%) € Mat,s(R)

e Queer X—/\—&¥

Qu(R) = { (%‘%) e mm(}z)}

e Kac [Kac77) IZ &K D DI NEBRIKTHMMY — - R——fK% (A,B,C,D,..) &,
ZFDRERBLSHM X NS Chevalley X—/N—BF L FHZN D 2 — S—REFEE. il
20X, SRR X —N—8

SEmm(R)::{gezGlmm(R)‘sda(g)::l}

A€ GL(Ry), D € GL,(Ry),
B e Matmm(Rl),C’ € Matn,m(Rl)

%, BERXMIRXRXA—/V\—8 (ortho-symplectic supergroups)
$[P®2n\€(R) = {g € $D—2n|€(R) ‘ Stg J2n|ég = JQnM}

MWEDOREFITHB. T,

st
A|B Al B A |C
sdet .= det(A)det(D — CA™'B) ™, =
C|D C|D —'B|'D

X, FNENA—8—1THIRA (F721% Berezinian) , A— %—HRE L XN 5 B DT,

X HIZ
O I,]O O 0
O I,]O O
-, OO0 O 0
J =1 o o|lo I, 0 A — ~ln 010 0O
2n2m+1 -— m ) 2n|2m - — O ol o Im
O O|I, O 0
o 0|1, O
0O 0|0 0 1

CEVWTWVWS.
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(Z_‘II_?EE‘:) $|]—m+l|n+1 Ci A(m|n) Eg, $[P<D2n|2m+1 (Wlth n 2 O) Ci B(m|n) ?II:J, $|P(D2n\2 Gj: C(TL)
7 $pOanppm (with m > 2) 1& D(m|n) BUSHIET 223, XHRIC & 5 To85 X —ZDELD F5 -
FETHIED ZLITHERET 5. O

STR—N—HREHE G T LT, FFR—1—D Lt F LRI
Lie(G) := (m/m?)*, m := Ker(e : O(G) — k)
BT, ThHARRKY — - A-R—REZ%ZT. THIR— -

Al B A € Mat,,(k), D € Mat, (k),
Mat,,, (k) = { (%) € Mat,, (k) }

B € Mat,, ,(k), C' € Mat,, ,,,(k)

1 CREUHFIE A2 0 TIERAD 1) ER— KRBT, BRZT S v M
(X, Y] := XY —(=D)PXIVY X (X, Y € Mat,, (k) IC&koTV =+ A=~ ELRTDOTH-
7o. A= =D ZLFBKIZLT, G C GL,,, £A%Z T, HAIZ Lie(G) C Mat,,,(k)
EATHNRA = R—REBDERT VY — + A—R—RBe LTHEHHATE L I IXEET 5.

Bl 3.2. ] 3.1 DRA—NR—RKREFE2HDV — « A—R—REEZznTh
e G= G[Lm|n 0)1%/5\
Lie((EI]_m|n) = Matm‘n(k)

e G=Q, DE&E

Lie(Q,) = { (%‘%) € Mats, (k)

e G= $[|_m|n 0)3[:7;.7/5\

A|B
Lie(SI]_m‘n) = {X = (7‘?) S Matm|n(k)

o G =3pO(2n|l) DHFHE

A € Mat,(k), B € Matn(k)}

str(X) :=tr(A) —tr(D) = O}

Lmﬁp®%@::{¥eLm@m%@‘“XJ%M+JM@X=0}
Y oTW5A., O
32, U= Z—N—RIEI— h R, 2A—A—REBE G 13, ZOME G, A50R; - 52
WERCRoTWVW3 (=— b TF—XTithEN3) & =2 &8 - OEBPYX—/N—BE L I}

RIZLIZTB. ZDLE Gy ODOHMAN—F A T Bedh, IER—r—D L & ¥ [Flkk
WKLTG DY — -+ Z—=—RE g := Lie(G) WCHBETIEAL, XTI EROLSI BV = A

NN R R i
g=he (@) e @9

a€EA LISHN
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ZZTH & T-AREEHST, A:=X(T) 2BVTWVW3. Fec{0,1} LT, Ac:={ac
Ag*#0} BE,

NoUAU{0} ifh, #0
Y ERMNC) BWTEE, hz G OL— Rt (AHIREBEMMNIZEZT) wo<T
LES5ZkIZT 5.
DURCHERZ Y : ZA - R THo>T Y(a)#O0foralac A R VEET . T
At ={ae A |£T(a) >0} LT GEER) L—MCEADPAS. —fIC A £ATUAT
LA #-ATTHELLPINBFET S LICTEETS.

{AOUA1 i, =0

B 3.3. Hl 32 DV — « A== DNL— b REATVL. FP=FRELTEVTIDN
AP S5 DR 2D, ZOMATDORZF%E diagt_m,. .., t_1,t1,...,ty) DEIITH
BDHF X EZHFIIEATRANT 2221235 (queer [ZEAFRZWV) .
(1) G = Gl PHE, ERA-—R—DEELFKICLT A =D, cicpizo Zei EFA—H
L7ceZ, A={e—¢|-m<i#j<nwithi,j#0} THEZHN, A=A UL
L IEFNT R L
No={ei—eN|—-m<i#j<—lorl<i#j<n}
EioTW5,
2) 6=Q, DHE, A= Ze; THYH, A={ei—¢; |1 <i#j<n}u{0} TEZ
5, Ng=A £RoTWE OV T 4 =280 TWVW3) .
(3) G = 3Ly DHBER GL,y, DL F LRRIRDTH.

(4) G = $[P(D2n\2m+1 @i%/lfl\, A= ®fn<i<m,i7é0 ZGZ' VC“% D, A = A+ L (—A+) with
Af={26|-n<i< -1 U{e |1 <k<m}U{eLe | —n<i#j<mwithi,j # 0},
A ={e|-n<i<-1}U{g+e | —n<i<0<k<m}

Thzohs.
(5) G = $pOanpom PHTE, A =B _cicmizoZes THD, A=AV U(-A") with
Ay ={2 ]| —n<i<—-1}U{e e | —n<i#j<mwithi,j#0},
N ={etea|-n<i<0<k<m}
Thzohs.
MET ¢ BIFR— =D E R CEKROGT S & LTHWTWS. O

—D R = R—RBNH LT, DR e BBHRFRTIEAHNCZ DL — RO “HfliL—
NR" ZEBEZRNIEIZTE (Ng=2 RETCNBIRNDD 2005) . 72720, REmEE
B3 212H7-h 5 LT “Biflin— bR IXMER DT, 4 DEMREN BN TIZFEMmA
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IEZBNTVS. BlZIE, G=GCL,, D EFE7 0y 7 HEEENT GL,,, ZBot
CEOHMA— MREEZEZIL LWV,

Bl 3.4. G = SpOy, DYE, Bl 3.3 DI — FROED FITH LT, “Bffir— R Ui
EFNENLUTD LIz 5.

(1)BA (=2m+1DHAE. (=1DL

U= {E—n —€ntly- .-, €2 7 €1, 6—1}7

(=2m+1withm#1D& =
U ={e_ — € pni1,- -, €0— € 1,61 —€1,6 — €y, €m_1 — Em, Em}
(2) cBl =2 DFE
U={e|—€,6 —€,...,601— €n,26}.
(3) DB ¢ =2m with m > 2 DIFE

U= {e,, — € ni1, . 60— €_1,61 —€1,61 — €2, ..., Em_1 — Emy €m_1 + Em }.

HHAABML— P RE VI BEIIHBICERL TVWARWVWY, JEA—1—D ELHL LS
BEMRTHWTWS, 0O

3.3. BIORIADBE. = 2 TR - nREMNIA— - GC 2L D, G, DITHRMK T —
FATREDEFELTEL.
Fec{0,1}ITHLT, AF:=A*NA EBE, u: =@, 0> £BL. DS G,
DA=KFTY U THoT Lie(U) =1y AT HOHEN 3.
X, G DR = =N EEH T,U TH->T

T, =T, Us=U, Le(T)=56 Lie(U)=u

il TODDPERTES. ZOT 2XA—=/N\—+* b—FRLMERZEIZTS. JERA—I3—
DY ExLFEFRICUTHRRIEHT T X U % normalize LTED, RLIL « A—/IN—E85EF
BEEEHUXT -G D 2 LTERT 5.

JER = R—DFFEFFEIC LT G OBFIRTOBG R, 2A——WFMEEERBLTH
Fol AR D IO Z DTS 5b. ZLTLERED T,U,B,G (22D T 7 ADF
UT,B") DREZMIZT I DD 5DT, BEIREN D> L WO TE 5. 2721,
BANC O(T) ORI FI%T 2 DB D 505, ZHUTZ Y 7 +— FEGHEEME L
L, BANEANIHLT, TOBHIRK u(\) 2182 2 TE, X520 {u(\)}ien 2
ETERL LTV I 0 5. s, T-RB L LTI u()) 2 k™ for some ny € N
ClEmV o4 FEEREEZIFICRoTWS.
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T, HLIFIER—N—DBELFAL & 512 1\ er 2BEHR BERL AT, &
512 G-RIHA Y FE

H3(A) = ind§(u(A)) = u(\) Do) O(G)
AU, KD D LD [Shi20)].

el 3.5. BEH G-RELD (FEZBRW) 2KIE {L()) :=socg(HE(N) | A € A’} THZ S
Z%. ZZTN :={NcA|HIN) #0} BVTWVS.

3.4. BBORBRDNS A—2 (F1THZE). LihD X 5128 G-REDOHBIZIERA——D ¥
XL FoKARRICTAZENTE, RIX—XELH N bFo-LFALEATESNT.
ROEFIZZDRIX—REEDWEZRET S Z L1255,

B B eI & D, T- R0 Bt

Hg(\) = Hg (V™o A(g,)"
DBHDIehnnb. TITHY (N =indg(ky) EBVTWVWS. T3
(3.1) A A*zz{AEA}%1€A$O<<de}

YWOEERGS. 0D N X TG, DXEMEEY = 4 b (with respect to Be,)
b TEINLTVS ] WD e nhb.

—ER TN LA LW 3L Z5 20T, UFTROEETHISNA TV AHRE
IS 2221235, UNORBITIE k ZREEAKE L, BEZ p = char(k) £ BL. EE
LT, FER—RN—DLZLREMKIILT, L p=0ThE G OEHFL Lie(G) D “FJ
B RIRE—HT 20T (REED—HE) , DI A— —REFEFOWEDIIHITB W
TIXIEEHO L EDERBwmIKICR > T VW3S,

341 —FBUR =B GLyp, OHE. EFT A==+ F=F 2T LT G = GLy,
OXNAITHI IR NS (BT ey 7738250 T GL,, ZE&5) . Thd G, =
GLy, x GL, DFENLR MR b —F 2 T Iz 620 i T=T. Er—FReLT
At ={e—¢eN|-m<i<j<n}

BEALLE, A=K7V U RGO N=ATITHADL 1 DbD2KTHD, KL -
A=R—FDBEB 1T G D FR=HAfTIIE 72 5.

BE G-RBLD T X — ZEF1Z Brundan-Kujawa [BruKuj03] 12 X o T (FIIEEH) *
EINTED, ZOE, HBHE G, D AT (with respect to Bey) =T 2 Z e RENT
W5 !

NzA*z%k%,wAAAh”A@EZm%,Lm>~g%khh>~->M}
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AR 3.6. Fid [Shi20] 12X D, RS - TREIR—R—F G2 “BRVATRY v+ X—
N—ERE P 2FECIE, BERNARL— FROBFREEZEFRT S Z 2R KHc
N = At PO DI EDRENTWVS. WED G = GL,,,, DHEI,

P@p:{(é%i)e@hmm%. (R FAIHRR — R —E)

PHRAUI LV, D AR TIXERZ B S 523 periplectic X—/N—F# B [FEICR VWS
AUV w72 DODT, N =At DD BT o>TN5.

3.4.2. Queer A—3—F Q, DGE. T 6=Q, DA—2—+ F—FAT LT

o {(4f2) s

Nehd, BBEAAT =T & Gy = GL, OWNAITHEERTHZDT, T#T KEET
5. EL—FHRELT

A B 6iﬂﬁ§ﬁ§ﬂ} (R AR — < —REK)

A+:{61—6]€A‘1<2<3<n}

BIEATLE, G DERLIL « A—NX—FE08E B 1

Mmz{<;z+i>e®am

2%,
BE) G-RIAD 8 F X — ZHEE51F Brundan-Kleshchev [BruKle03] (2 & o T (FICIEFEHD

PEXNTED,

A'B ciTEﬁaﬁﬁﬂ} (R IFAMHBRR — 1 — %)

N = {0 h) €A% | X =i = p | A}
where AT = {(A1,...,\) €Z" [ A1 =+ = M\ )

ERoTWS., 3bAA AT I G, = GL, DXECHEEY = 4 b (with respect to Be,) &
DEE. ZTHUIp=0DtEb p| e\ =0 LRLTHRILT 5.
DX ITHBEKDIEBIHKIFE L TVWB L ZAPER—R—LDRKERBENTH .

3.4.3. EARRRRA = 8—HF $p0s, DYE. T HEAD
($[P®2n|£)ev = szm X SO(

ERDBILICHERT D (ZNDPAFTOHKRTHAS) . §HLR—8— F—=FX T X
SPon, SO ENENDHHMK b —F X2 W RIUX KL, T=T, AKT. #l 33 TEHEZX
7= FROIEF AT = AJUAT WWIBLT2R LIV « A= X—F80HE B 2E X5 Z DT

E2.
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B G-RIAD T X — ZEAIX Shu-Wang [ShuWan08] 12 &k - T (FITIEER) REX
NTW5., KRR RT 2L, (=2m+1 DHEIE,

A — {(A_n,...,)\_l,Al,...,)\m) eAt| A, >Jp(A1,,..,Am)},

A+:{(A_n,...,Am)eZ"+m‘A_n>...>A_1>0, /\12...>>\m>0}
THbY, (=2m DEFEII,

A= {(A,n,...,)\,l,Al,...,)\m) e At ‘ A1 =3O A, Mm\)},

A*:{(A_n,...,Am)eZHm‘A_n>--->A_1>o, /\12---2/\m_1>|/\m|}

5. bbAA AT IE Gy = Spy, X SO, DXELHIEE Y = 4+ 2fK (with respect to Be,)
TH 5.

FRET, PF p LTy () i, p=0DeXE p DERZ I(n) &L, p>0DEZEF p
DH D p-removable cell DfEIELY L TW3. Z ZT premovable cell 1%, RTERIN
55DTH5 :F3 p2Y Y IHNETARE 2I2H MIOHDH 5% rim L WH D, £
D—FERIN»SIED T p HOF =5 % — p-segment £ FEN, 55— p-segment DFEDHH 05
strictly \ICHBIO—FE T2 510D T p MDD 2 " p-segment EFER. ZHZEDIRT
Z T p-segments DG 5N 5. 7272 LRRIIFEDEED p AL O VR THHDORVWBHD
35, ZD5 p-segments DFDOHT [F|D#ED DIZHIE L TWSD, p-segment D p
HTERW) D% premovable cell & FEXR,

B 3.7. 22T p= (543311 DEEEZ5. L p=0ROIFERDLPS 1,(n) =
lp) =6 ThHsb. DL p=571K5IX, p D rim o, p-segments o, p-removable cells x I,
zheh (BN LMo X5127k%5 ¢

olo] o o] o|x]|
(o e ol|e o | X
) o o
O[O ]|O oo (o oo (o
o o X
B o K
£oT, ZOHER ) (n)=4L%%. O

3.4.4. BIAEL Chevalley A — 8—BED5E. Kac I X 2 ERKRTHMY — « R——RED
DD S BRI XIS D(2,1;a),F(3|1),6(3) DS X5 (simply-connected 72)
Chevalley R — % —HEDREGHIX [CheShuWan19] TEXHTEYD, ZhPhOHET A 2 E
RRNCEE T T ZENTETVS.
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3.5. BERMR. JER— =G, ORI BHRRD S X =X EEDREL ET)
EMRET2H-D, ZOUALE Ob— bRICK 2HEMO L TE) OERIZEERY —IL -
R EELREZDTH o7, DL TR——DBEE, — B R ——REEEDZE (i
ZIEED N DS - HEMII R — R—FER YY) TRV A A & 5 2EF R SFEEARSE R
Do TV, 72721, ERDEMEK 7 2 — — R LT, fIZIEY A VTR
XORBDEEZDIENTE, INEAVWTRIGREZER T2 TETVWS. xR
Hit2 > ay 34 DER— - G ODBIRILD 7 X=X DRETIE, ZDMHEER G,
DY A NFICHFERR L XN 5 operation ZIBIML ZD “YEA” I X2 ZEFHZTHDE Z 23
ARERE 2R L Tni.

T ZCHEBEM L, EEBIALER N basic V) — « A—— B g I L TERS N
BROBIEDZETHS. L— bR A D—DFEEL-HMAL— MR U 2L 22 X, TTHHM
N—1 vy eUNA, THoTEINRZDD (e, (1,7)=072dD, BVFEINIX 29 ¢ A
2HD) ITHLT,

Uy i={-tUfac ¥\ {1} [(a,7) =0} U{at+y[ac¥ (ay)#0}

EBLLE, AR A OHRL— FPRIZR L ZEDPHIGNT WS, EL—1+DFH, UIZ
MIET BIEL— FRE AT 22K 2 E, U, BT 2IEL— FRIE AT = {—7JUAT\ {7}
7%, o TR b= D, cp+ 9% 0, =) Dens 9* NEIDD. ZORME

T’Y(\D> = \IJ’Ya T’Y(A+) = Aj? T’Y(b) = b’Y

ZREMEER. BBEAAERDPD —7 eV, THoT r_ (r, (V) =V 2D ITD. 7o
72HEE e UTROFRIH SN TWS [CheWanl2, Proposition 1.32].

BE 3.8. FEOHMMAL— MR U,V LT, EFv (H) HFEMLs e wHEmes
Ty oo DFEELT U =rp -1y (U) 23K D ILD.

COHEFILD, BEDOV AN L AHENZ HOEIUIHEML— PR (= KAL) O®T
DD BEZDRIBEICIR D 2 e 30 h 5.

il 3.9. HlZIX g = Lie(SpOanjam+1) With m =n =2 DGEREZS. IEL—FRELTIZ
# 3.3 DHD
NG ={eate 61t e, 269,24, €1, 6},
Aii_ = {6—2 + €1,€-2 + €2,€_1 + €1,€1 + €2, €_9, E—l}

b, ZOLZOHAMA—PRIZ U ={cs—€ 1, y:=¢c 1 —€1,61 —€,60} ETRD, v =
€1 —€6 DIOFOME—DFETWLREMANL—FTHS. 72770 (R——XFMENRE B X



16 Sem KR (RILERRERSE FEZEER)
Nniz) 7Y 7%
1 if —n<i=j< 1,
(€i65) =9 -1 if1<i=j<m,
0 otherwise
ThHbd. ZD v CTHBEMEZITZIZ,

Uy =ry(¥) ={7 =er—a, =17 =1 —e,6}
ERBIEDTDD. T T —, 7,y DEFIREMAEL— MZRZDT, I,y
THLLWAHEMZITS LN TES (BBbAA —y THAHEMET L UIZKES) . Z£OH
R

"

Uy =1y (W) = {(— ea—e 1,7 e}, Wy =1y (Vy) = (e —e, =" e}
£i5%. ZNEN Ay THEMMNTZ 205, Z ORI
Wi = 1o (Woyr) = 1y (W) = { =7, 7" 1= €_2 — €2, =", €1}
E—HT 5. mRICINhE 7 TEHEMT S L
Wi = o (W) = {€1 — €3, —" ey —e 1,61}

2185, INTETORE—VYHRRLI SN ilhD, Zhszifiiud

Wy
- //ﬂ ~2 "
vo— Wi ——= Wiy
\ /
Wy
EWOH KRG Z TR . O

WEO (H) S ZOFHFEME WS EELEZ 52T, BfliL— P REETD X —
YTEOH#Z N2 WS ZLlE, V" L_LTOY 7 —<MECBVTRESY 24 D
SMFEARELRRD ZETVWLE A I N TEZEWVWI I IZRD. IDFFELLdREE, KL
bCcgZrWEETZLE, Ur—<hBE UG Quep) ky DEAIEZ V,(\) E2 &, Z
DR LIIHIGT % BfL— M RO THETRZRBERFEL— F 4 2 2T,

i = {vbu—v) if (),7) 0,
Vi, () (A7) =0

2 ARBIDTEET 2. REMCZOFEZHWS Z LT, Bitr s ay 3.4 OFERHFHX
NTVWS (B AAEMBEOEL LD 2 IZBHICHI ST\ E) .
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B 3.10. Bl 3.9 DERE - FEDB LT, BLYV =AM A= (A, A1, A, 00) 25 T(N7),(A—
YA A=y =7 A), A=y = =" 4" BIRTER TRV EWI R AZLT
5 (—BHREDFr—2A%EZTWS), LOEENNS
‘/b<)\) g ‘/b’y<)\_fy) g ‘/[),Y,Y/(A_fy_,y/) g ‘/[) / //(>\_7_7/—7//) g ‘/b i ///<)\_’}/_7/_7//_”}///>

Yy YUY

WS ABIDHNZES. RAHADY 24 P 2EZX IR
A=(V+7Y 4+ +9") =N —=2, 212N +2, X +2)

LIBDT, T THREYV oA FEEEZX, FTILWEREELT A, -22>202%D
A= 20HTL 3. 20225 3,(M\, ) DIERTH 5. O

3.6. EFER. AW TIZV — « LLVOFEZREHE ST, EEINCHERI O 2 7 FHik
WEDERT 22 WS FEEMD, BHIRBHD I X —XES N 2L — P ROSIETIR
TH5Ze R BELT 5. ZOLDITHFERIANOTHEMD “PERH” 238 57220 5 %)
TR B2,

ZDFEIRD 7= DITIFHL D A= —REFFD 7 T R %8s - DREBIR - —Hr 55
TRABRED D B, BARINCE, D NEITER - 2REFIIR— - G TH-T, “H
M7 L= RDPEBZONDIRWMTHD, (i) v e Ay, dim(g)) =1 AL, (i) —At=A"
AL, Dacayo 8 (C g =Lie(G)) @ “BW Chevalley FJE

{XOé (G gg)}OtGAO U {Y’Y (G g?)}WGAl

DT HIERE, L—PRITEBRREAEZRT. ZHETD GLyjn, Qn, 3pOsyp R E
X ZO&MERT. (1) OFHDS, YV, 1ZAD T —GERE—DICRE S L ICERT 5.
E7z (i) DEUEPS, F e ITNLT Y, B2 528D TES. T

Ky =Y, Y] €hy

LBL.
COUEHDH L TROFEREZRT I B TETWVS [S] (in progress).

EIE 3.11. EELZEL—FR AT EXIETERLIL « Z—R—FREE B IZOWT. {£E
DEFEFPEMAFL— b ye A LT, [FE

I

HO(V) {H&Mv)ﬁxmw¢omk,

HE (A) if A(K) =0 in k

DEDILD. TIT, B, 312k BOFBET KL - A—R—F0HTHS. OF
D, B, ISHIET B — FRA A = {1} UAT\ {1} THEXHNB L5 bDTHS.
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IDLE, EE,NDS AJ = (A7) 22D Bey = (By)ew DD Lo TS (D F b HEIIA
) TEIHERT 5.

WEAUE N CAT DPEZ TR EROVEHRR, U2 G, D7 A LD
e (BEI) 7oK ZEFIFERBINTWL LHRTE 2. [toT, HLIZAFHM 5K
LM THIFUE (D e d) FwoTREVWD, EEZLZDIZEHARTHS. 22T, EX
LNBRH OETOFHFEMDAIE — 2 THRUEZHIZ Z 2R TAS.

DIFT G DORLIL - A=R=FnH B Z—D2 DEETS. ZUuIMiEd 2 HHL— b
R0 BHRD, BZ OB EFHRD—D D

7 V2 73 YN
B ~ By ~ By ~ .-+ ~» By.

ZSB) eFELZEIRTD. YA P AeAZEDEETS. 20 S(B) IZMNLT, FHIFH
WKHUTOBRZERT S !
1 if AOD(K,) # 0 in k,

A0 . A, CE\O) =0, A@=ACD C(;)% CE\Z‘) — |
0 if \-U(K.,) =0in k.

T3 LEM 311 »5, FMOF HY(N) = HY (AV) = =2 gy (\V) 2182, {toT, B
L Ae N BoiE, BFMAEHEEEZ TWihro/zZ e A’ Cc AT ZERVHBEZ, HiLwv
Z&ft

1<Vr <N, Vaelf, (A—ZCY)’MO&V) 2 0.
=1

PRIl b,
ZZT, B2ohE3EHMOI S(B) = (B By ~5--- N By) IZHRLT,

ASB) .~ {)\ eA"

1<Vr <N, Vael, \a¥)> ch)%,av>}

=1
BT, ROFERIES.

I 3.12. BHRBID ST X —ZBEEH N1 A = Mg (AP | B1E B 2586 % 2 A HO5 }
DEHEATHS. 22T S(B) IFAHEMDIID S B “iR” DiEZTHIL.

CDEIRCVEETEFNL— POEREITNTHS LS REMHFTEE T TN TEL.
GRITEYZ R —R—RBEED 7 T AZREL, ZDTTATRIRX—REHE N HFEL
W EPERET S GIFZHET2) DEVDH L.

3.7. EHEAR. LU TIRERA k 28 p=0 OREBEKE T2, cotr>arTiRE
HEZ@EL T, T332 TN =N THDIILEAD.
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3.7.1. $pOanjoms1 withn =m =2 DFH. B 3.9 OREEMES. DX D HfliL—FRE L
TU={eqy—€4q,7:= 6,1—61,61—62,62} BrhH. ZOGE, Bixol LEEBRNS, &
FILDF Y L TEREOEDN—BRERLDD

1"

S(IB) ([B oard [B W IB’Y’Y/ oard [B'Y'Y ’Y// :\\//\_> IB’Y’Y ’Y”’YW)

ErIUE A =ASB) 2R BZeRN DD,

% -n<i,j<mwithi,j Z0INLT, ¥4 FRADMNEITHFRDHFXDLEEZ 5 WV
SEMRICUTEBEXTHHNZ B, e ELZLIRTS. INTy=¢—¢ withi=—-1,j=1
W LT, Z® Chevalley Z£JEE LT

Yyi=Ejumi+ Eing = B3 1+ E 31 =

O O O O ol o o o
o O O O |l O o o
o O O ©O ol o o o
o O O O ol o o o
o O O O ol o o o
O O O O ol o o o
o O O O ol O ©o o
O O O O ol o o o
o O O O ol o o o

BeN, A FRADHFEY ., =FEjin—Eijim=FE1_3— E_13 BHL3 (see [ShuWan0s,
§3.3) . ¥5&, FHREICKD

K, =[Y,,Y_ ] = diag(0,1,0,—1|1,0,—1,0,0)

bbb

DIFTY 24 P A=A, A, A\, ) EA* ZEDEET S, Dt d Ne At DT,
Ao A 12022220 ToTWBZICHERETS. HiEiZ A e A’ Z2RT
e THD. ELNIEEI a2y 343 OBREH > TWR WS HEL 5. DD,
HAEZ RS 72 DITIESMF

(3.2) At = (A, X)) (= Jp=0(M1, A2))

ERBIETOTH . EEIIGAED TR ZATS.

(1) FFTANE) =A14+ ) THEZLIXFEETS. L AK,) =0TdHokb, &dr
BAg=XM=0TRLITERELRV. 5T, FIT Ay =0 Z2HWV5DT, ZDL
U, N) =0 872D, & (32) Z0K & b.

(2) UFTANK,) A0 DEHEEZEZRS. £3 v :=€c 2 —¢ €V, D Chevalley BJEZ %
AT (yorxeFM) HETUL K, = [Y,, Y ] = diag(1,0,—1,0 | 1,0,—1,0,0)
L,

A=NEy) = Ao+ +1
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Y5 VWE AN > 0 2OTIREERIIRD ZRW., FITIHIEDT,
Y i=€1— € € U,y O Chevalley BIEZZ X TtBEITHI K, = [V, Y] =
diag(0,1,0,—1]0,1,0,—1,0) ¥ 7%,

A= =9)Ew) = Aa—=1+X

5.

B) DL A=y =) K)=0Tholkb, LS A1 =122 \=0THETZ
BN, FEST, LA, X) =L)< 1=X_1 25D, % (3.2) X OK.

(4) IRT A== )(Ky) #0 DEEZERZD. £F 7" :=€e_9—€ € ¥y D Cheval-
ley BHEZ#H 2 CatE UL Kyw = [You,Y ] = diag(1,0,—-1,0 | 0,1,0,—-1,0) &
%D,

A=7 =7 =7 )Ep) = Aztdo—2

L5,

5) BL A=y - — ) (K») =0 %5, B L B, % B,y % B CTAEEHOD
AHIEFEolz WS Zilhb. 2O ED AS® DM Va € AT ITHLT,
Moy = (v+9 +9" ") &b HZEARICANTF 2y 7 LTAZE, HiLW
LT 20 >4 (a=2e, OFEFN) %2152, 10T, A\ =222 0(\,\) &7
b, %t (3.2) 1X OK.

(6) BL (A= = —y")(Kyn) # 0 15, FHEMOINE B S B, & By 2o Byyryr 1o
Boyyrym DETHNZ 21725, ZOHBETDH LG L AKICAFS THEZITX
WBRWOED, FILOWEHIIHTZT, ZoEE5MF 32) 0K &0 5.

DILEDEZEN S, A=A DBEDILDZ e B0 o 7.

3.72. Qs DFGE. 7 ay 342 ORERMES. ZOHE, B -FDL— 22— LTV
ZDTIFHICZERZERIER SRV, D FEFIFX “HiL— R 2 LT

U= {e —€,60 — €3} C A+IATI{Q—E%Q—63,62—63}

rd. INTy:i=6—6 MNT 2 “GEm” 2IBXINCEZ S L, U, ={—,7 :=e1—€3}
2185, ZHIZEF D GL; TOFMEEZ T\ Z iz siwn. X512 TO “&
M 23 UX T, = {e2 — €3, —'} 18 5.

ST, ERBIR A= (A, M0, 03) e N ZEDEET S, 8BAANEAT DD A 2 X = As
WHEETS. TN Ne N 1Tz, 22 ar 342D N OFEREEZHVTRLTA
. WEDEER, OB TATHZIE, M #£0= X\ # X DVZE5LW (B FHE
) . BTREICKD

MEL) =M+ Xy
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Eamd. LU ANK,) =0 THIURX, N\ #£0 2RELTOWADT, T4t A # N ZEK
T5DTOK. ZITHRVWEAE MNK,) A0, ZZFTD AN OFMHE2EZSZLT,

M= = (N(e—6)) = (A(a—e)) = 2

2185, o TZDHED M #£ N ETTD0 5.
XHIHBEMAEIT->TH ZHL EEEPHETI W e 2ELDHNEZDT, fER e A’
THDZeWgholz. UEdrs, A=A pRENT-.
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2=% 1) # ED Whittaker FIHIOHE-HHA A RIZDOWT

Bk
(RIF K2R BB BT R

B E

Lapid & Mao (& Whittaker i & FEff L B ORIk ME & %2 #5 SR AR (- HMAX) 2 FHA U
7zo ARTIX. Lapid-Mao D 1=% )OGS DHHIZ D WTHHT 5,

1 A4 hNO%¥% o3y

ZA MVIZH B THE-HE AKX & 1E, L BEHORKRE L R XD & 2 & SHRARDEMED—DT
» %, Lapid-Mao FATli&, Whittaker A L MEIEN 2 HIAIZ DWW T OHE-HEARXNEZ FHLTVWE, Z
DETIL, Lapid-Mao PHEDtE R o2 FHIEY 27— ADNHEE L B DORIRE L % &5 SBHRARIZD
WTHRDIR->THL,

FRES b LALVSLy(Z) OEMEY 25— AL TS, D0, flEH:={z+iyecC:y>0} LOF
RIS CIR D&M %3729

az+b a b
o f <cz—|—d> = (cz+d)kf(z), (C d> € SLy(Z)

o f(2)= Z ay(n)e*™™ O D Fourier &A% D
n=0

THIT, af(0) =0 DR, fEARATERLIES, B k. LNV SLy(Z) DEREY 2 7 —EA2k%E M (1).
F AT 2R E S (1) £EL, My(1) 121% Hecke BR L PFIXN D L CERDMERAT 5, f € Mi(1) g R
TOD Hecke IRDITICEH U CHEAE AL 405 L &, f % Hecke FAHFANE £, Hecke EHHKAD Fourier £R%
af(1) FEBTHRVDT, ap(l) =112 &S ITERITE S,

FESM)DPORIFIERLEBNTHETE S, HIRIE. f ORME LB L(s, f)(s € C) IIIRTEHRIND

oo

L(S,f) _ Z a’f(n)

ns

n=1

LB L(s, f) i Re(s) > 0 THOFIDER U, 2Em I ERIBBUZ MR TE 5, X512, f BRESLI
Hecke A B ADOGEICIE, L BEBIZXOMRERRERD

L(S7 f) = H(l — af(p)p_s +pk—1—25>—1.

Fro. T L BBULE Y B E R 22, SOEHA I As, f) = 2(2m) S T(s)L(s, f) £ B &,
A(s, ) = (V=1)*A(k — s, f)

WS BHEXNZT 23, T LB EEE LB EEIEEHZHHALTEL, T fe S(1) XES T
7= Hecke BB §5, 5. LEBORRNFZ2ROLIIIZHMBELTEL L
k—1 k=1

L—arpp s +p" "> =1 —arpp 2z *)A—arp)'p 2 %)  asp)eC”,

1



LBEBIFIRD L5 12F TS

-1
s Qo an( (0 00)))

Z I T, std ¥ GL(2,C) DFEHERBITH 5, L(s, f) DEHTIE. GL(2,C) DRBLE U THERSZ H W7
OIUE LB M EN S, —MINIZIE. GL(2,C) DRBEZMOBEA 2 Z LT f Dkk4 7 LB E#RI NS,
AR TIIMAERER 2 WTEZINAMME LBABIZOWTEZ S, BAERIZIE, BLFDESIZULT f OBEE L
BB ERTE S, £9. FEHILI N7 Hecke FHEA £, g € Sk(1) D Rankin-SelbergL BI#i 2 X CEFE T

L(s,f xg) = Hdet (I — p" 17 %std @ std ((af(p) af(p),1> ® <ag(p) oy (p) 1 )))_1
P

Z O LEBD Re(s) > 0 THUGIR L. C eI FHEBBEIBICMITER I NS, -,
A(s, f x g) = 22(2m) "2 TR0 (8) (s — k + 1) L(s, f X g)
el e, MOBEBEXZRT=T
Als, f xg) =A2k—1—s,f x g).

ZDWE, L(s, f x f) = L(s, f,Ad) £ EE, f O L B EIEE,
AETIEEY 27RO B THhE2AUERDOSETEREZRRS 72D, (L) RADEHLEY 2
S—EA & ORIz OWTHEEBIZEALTE L,

Definition 1.1. F 28k L. FOT7TF—)VE% Ap ¥ EL, G % F LEHEBI W -MHRERE, Z %2 G O
e, w# Z(F)\Z(Ap) D2=R VIgEE T 5, Z DR,
L*(G,w) = {p € L*(Z(Ap)G(F)\G(AF)),| ¢(29) = w(2)p(g), ¢ 1 50}

D% FMERE w O L2RIE R (F721d, BUIZREIER) LIRS, X512, G OILEDEDO BRI/ HE % I
D, TORBREZ U tFE W&, &M

(1.0.1) o(ug)du =0 EED g e G(Ap)

/U(F)\U(AF)

i35 o € L2(G,w) 2 HMEIE w O L2- A A TR RS, T w O L2- 1A THAD I3 %52/ %
L3(G,w) &L, &7, LY(G) = P Li(G,w) e BV, L3(G) Ok L2-HATHRA (£, Hzh 2

TR LIER, G(Ar) DABTIC LD L2(G) ~OIEFAAEE D, = ORBOIHIRAS & B 5 A & 2L
K LTS,
£ Sp(1) 25 I RMEEIA E B L2952 THAARD & 5 12 ETE 5, AT
SL(2, Z)\SL(2, R) 5 SL(2, Z)g — GL(2, Q)R% gGL(2, Z) € GL(2, Q)R*\GL(2, Ag)/GL(2,2)
EHWB L. g€ GL(2,A) IZH U, g€ GL(2,Q)RY goGL(2,Z) £ 725 goo = (*}) € SL(2,R) 22 5 Z &7
T&5, ZOW, ,
prig— f (m +2> (ci+d)~*

IZ& D, GL(2,Aq) LOBIBMNERTE S, TD pp 2 GL(2,Aq) LD LEAATHADHEITH S, f D Fourier
Bl ar(n) 12 o OBPITE > TIRDEIIZES ZENTES, Hlfig: Q\Ag - C* ZIRTEHET D

cl

Yo : Q\Ag — (R x Z)/Z 3 (Too, ) — exp(2miToo)

2



ZOWE, goo = (25) €SL(2,R) & m e NU{0}IZX L T,
1 u -1 . —k
©f Joo 11)@ (mu) du = af(m)exp(—2mny)(ci + d)
Q\A 1
KO LD, ZITy z+iy =2t duld vol(Q\Aq, du) =1 £ 75 Haar JE, %12, f£ED g € GL(2,A)

ci+d>
615(\ bf\
/ f(<1 x) ) 0
Q\A 1

B DL, o PG (1.0.1) 72T 2 LA h 5, X0 I ¢ Q\Ag — CX & IEEBIARIGIE Y L 7H,

¢ € LA(GL(2)) iTx LT,
= Lo “2)dx
Ww(@)—/F\AQw« 1>>w () d

% ¢ @ (¢p-)Whittaker A & I8, EOERIZL D, ZHIFEY 27 —BRITHB T % Fourier FRED —fikfk &
o TWD, RETIH, =X UBOGEIZHLORIZ X D Whittaker Al 2 €& T 5,

pEEBEIE Lz &
Vi = (p(g)es: g € GL(2,Aq))c

LB &, feSy(l) D Hecke FIHFERDELEITIE V13 GL(2,Aq) BRI 2525, ZOEB%E (1r,V5)
eES &L (mp, Vi) X GL(2, Ag) DEEFI 7 A Y XNVRBIRELTH 5, Ty DEFEE p DRFTRD 75, 13, RS
TA=RLIFEND C DIl —HNEE 5, 5DHEIIE, LEABOERTHW ap(p) BMERNST A —&T
HB, [>T, mp DIERNT A=K LWS REGRIVERIZE O, LEBL(s, ) BWEHETE D, 72720, M
Ky MOEHEIND LB L(s, mp) IZBBEERDPZLH s — 1 — s ITH LT IO LD ITERI NS, D
x0., 5055

L(s,mf) =1L (s + k;17f>

Tho, mp OFEFE L BB EMRICERTE, L(s,ny,Ad) & EL £720 A(s, 7y, Ad) B A(s, f,Ad) L FBRIZ
EFRT D, TOR, MOEAPHSNTWS,

Theorem 1.1. f € S(1) Z EFUL I N7z Hecke EHATRARE T 5, Z DI, IROEXDED 2D
(1.0.2) (f,f) =27% Ress_1A(s, my, Ad)

ZIZT. figeSp() TR L. W (f,g) ZIRTEET S

B — pdzdy
(f.9) = /S ECTC

@, ¢ € L(CL(2)) Izx LT, Wiz

() = vol(Z(A)GL(2, F)\GL(2, Ap)) " - / ()79 dg
Z(A)GL(2,F)\GL(2,Ap)

RO ERT DL, ,
(1) =T lerep)

EWVWS BRAIE DAL D, o T (1.0.2) iF

(0f,¢f) = c-Rese—1L(s, s, Ad)



LHLZENTES, HEL, I LEHBORY 1 OETEINBPRNAEER, L0, o & 1 O
BOSTIZIERET 222 %2E X5, £9. fBREREINTORWEEIZIE,

(s 08) = lag(1)[? - ¢~ Ress=1 L(s, wp, Ad).
WELNS, ZOHRARZ

as (P _ .
<90f7 @f) Ress:lL(S, Tf, Ad)

CHEZELTELE, ZORB fOARNT—HZLSBWRIZZ > TS, ZOHRARIZEVWT ¢ 22—
D 7y DIG. ap(1) % Whittaker I & —ffb U 72 BIR AKX Z DEE D Lapid-Mao PTH 5, IREITIE,
=X ) BEDOEE T Lapid-Mao PO EfELR TR 52 5,

(1.0.3)

2 Lapid-Mao ¥78

Lapid & Mao [5] 3K EER S N AERBOMEPARBIEL A Z TV 7T 4y ZFHZH LT, Whittaker J&
WL BELE L BB ORRME & 28 SHRARZ FHEUEZ, ZOETIE, =XV EHDOEEA O Lapid-Mao FAHD
TRz T 5,

Remark 2.1. ¥ 25 &0k, Whittaker A2 EHT 572 DI EBREMETH 5,

2.1 Whittaker BB

Fl3BRE U, Ex2 FO2IERET 5, Gal(E/F) DIEEWRITLIZE S E~OIEH%E E> 20— 7 £ EL,
EEDOn e NIZNLUT, F EEHZINZESAH =XV U(n) Z2IRTEET S

1 1
U(n) = § g € Resg/pGLy, : tg g=

TEHT D, ZOKR Un) O E=ZMATHREN 5255 2HEE Un) O Borel BB THH. N IZZDOREHE
WMETHD, 5. Yy 2 NF)\N(Ap) OIFBRILBIERE 5, 22T, Un)(F) O ATHIOEEKZIZED
N(F)\N(Ap) DfEELEKIERPEE S0, ORI X BEERSFHR UN)(F) OFbe —HT5 L%
fetsi % JER b & FE.5, Whittaker FIEHIZA RO L S ITEE I N5,

Definition 2.1. ¢ % U(n)(Ap) DAATEAL T2, Z DI,

Wy () = p(n)y' (n)dn

/]V(F)\N(AF)
% @ D - Whittaker I, £ 7213812 Whittaker FIIRE WS, (7, Vi) & U(n)(Ap) DEERI A 2 ¥ ZOVEREIER
Be Urzif, Wy, (1) Ve EEENIZEOTRWR S, (7, Vy) X ¢Yn-generic (£721F. BT generic) TH S
EWnd,



(m, Vi) % U(n)(Ar) OEERIH 2 E ZVIRBIRBLE § 5, $IBE Ve — C: o = Wy, () &

Hompy(a) (T, ¢¥n)

DrxE5z256, ZOR, FOEEDZESTvIZxL,
dimc Hom () (70, ¥nv,0) < 1

BEOLD, ZIZT, F, % F Do TORFMb. mp. Yy, 37 &8 ¢ Do-lATH B, m, ' generic K, D
£ Y Hompy (g, (70, ¥Nw) # 0 TH B, Frobenius DM EHAIZ LD,

dim(c HomU(n)(Fv) (7Tv, IDdN((T}L? Fv)wN v) -

ﬁﬁoﬁooﬁof\mﬁ$§meuawém@—%maiﬁﬁﬁﬁﬁéo:@mwiﬁ%wwwm>a
FHE. 1 O (Yn-)Whittaker €TV EIER, 7z, RAFZR—EE2 S

dimc Hompy(a ) (7, 9n) < 1

MRES, ZOEEE 1 EBIZ LD, WETEET 3 (EAULE 1) BT Whittaker ARI% 2 &, W7
T C,y € CHEET S Z EHbh%

(2.1.1) Wyn (0)? = Cr II%) (EML & N 7z) AT Whittaker &)

PERD ¢ = @, € Vi KU TH DD, Lapid-Mao FHETIH. Wy, (1) #V; ETHEHEFNIZEY B TRV
(T, Ve) I LT, 20D Cr BHRMNZERE LABORIRMETE TS Z L2 FHL TS, IRETIE, EFL
X N7 JFAF Whittaker 239 % Z & T Lapid-Mao D FiE % EHEIZIA RS,

Remark 2.2. SO(n+1) DA A FEA%Z SO(n) IZHIR L. SO(n) DAATHRLEDNREZ L5 L TEHES
N5 JEIE Gross-Prasad Al L FFIEN 5, ZORIICOWTOEERE 1 EHIZ LD, (2.1.1) D & 5 LHAr Y
NDOENLD LD, IR S ME R [4] 1k, SRR 7 2 ¢ SOV BIRBUZ W U TR Gross-Prasad
FMZER L, ZOROD Cr 2 L-BIORIIRME L RN EBIZ L viidTcE s e 2 PMLE, AiHE LHE
BOORIRE & & A5 SHRARITRE A R TR I N TWhs, 20 & 5 12 KIS 72 AR O R i~ D 43 i o
ERAGIZ L BB ORIRMEN BN S & WS TEDEARA 4] IZEWTHID TH X 507z, Lapid & Mao O FAHIZ
Z O E-iH A D Whittaker DL & DL TH 2,

2.2 [BPF Whittaker EHB

v& FOENET B, (—,—)y € Homy( g, (1o @7, C) = Homy (g, (M0 @ Ty, C) % m, DITHIREE S
%, v DERFZEHDOKE, XD K SI1ZLT @, € 1, DFFT Whittaker A% E&ET 5

Wilgn) = [ (mmhous oo ) dn.

N(Fy)
ZIT [TREERS. OF0. THKRERN(F,) ©a LR NEEOEE Ny T, EED Ny C Ny &85
N(F,) a7 MRERDHE Ny (2 U T,
/N () )i ) dn = [ () 00) b ) dn

N1

ERBEDNFHAET AR, ZOHEDEZ fSt T, fﬁﬁﬁj\iﬁm%éﬂé Z & & Lapid-Mao [5, Proposi-
tion 2.3] TAFHINT WD, — AT, v BT NLVFATAREDOGEITIE, £ 7, 2 “FAFHARI 0, ITL DK
%ﬂ%@%ﬁ@%ﬁﬁﬁtﬁéjo_®ﬁ\hamﬁﬁﬁkibﬂ“DWMW%M%?N@JMDWMm&M%?
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WIZE DR TE S, £/, 0, IV TIX FROBED FHNIUR T 5720, 2D &5 5 o, DEAT Whittaker
iz ERED & D ITEETE, Jacquet A EflAGDLE S Z & Trw, DfFFT Whittaker iz E&I N5, if
#lliZ 2T Lapid-Mao[5, Section 2] Z 2L TH 5\ /e, &7z, Homy (g, ) (T, ¥ne) #0785, Wy(-) 2
MHEMIZE 1 T2\ Z &A% [5, Proposition 2.10, Section 2.5] TRINTWS

EETEBA U 72 & 5 12 FAF Whittaker AR DR %25 2 5 DT, HXFH%??PFEJ%EZ RBEDPIRDEFIZED %
NIEATEETDH 5,

Proposition 2.1 (Proposition 2.14 in [5]). v X2 ZE 5 L WHRERE LU, E, & F, DATEZIRIER, £
3 E,=F,0F, £3%, m X genericTHD LT 5, £z, mp, YNy IADE, DEVRKRI NI M
DR RO ARLRE O TRNARY MLERDET D, o) #0&2HRKI N7 MEOREIZ X D ARLRART M
& U7zIRE, .

H?:l L(y, X]EU) o o

—7@75K5fww%>

MW OALD, 272U, L(1, 7y, Ad) 1 m, DRFTHME L-KF. xp, ZEFTEEERICE D E,/F, IZHIET 5 F)f
DI, dn 3 O, & F, DEEFRE UK, vol(N(0,)) =1 &722 K5 IZIERML L 72 JIE,

Wy(py) =

0 # oy € my IR U, IEHME X 172 FAr Whittaker &1 %

L(1,7,,Ad) Wo(po)
H?:l L(]a XJEU) ((10117 SOU)'U

TEHET S, generic 2 m 25 Z72Kf, Z D Proposition (Z & DEEDE T TRVIT o = @y, € Vi IZX L,
FLALTRTOES v TWE () =1 DR DL, fbo T, JRTE D MR

[Tw#(e.)

NEHTES, =X VEEDHED Lapid-Mao D ERIFIRD L S iR 515,

Wf(@v) =

Conjecture 2.1. (7, V;) % U(n)(Ap) DBERA A Y SZOVERIIKRBLIT, n-generic THZ LT B, DD Wy, (+)
NV, EOFEAHELREDL TS, n DN (-, —) %

(¢, ) = vol(U(n) (F)\U(n) (Ap)) ™" / T o €V
U(n)(F)\U(n)(AF)

THEET B, £750 (=)o % (=) = [L, (= —)o E45 £ 5SS, O, FEEOETTR o = @p, € 7
IZx LT,

‘thv(‘P)’ 1-k HJ 1 ] XE li

(o, ) =2 L(1,7,Ad) IILV

ﬁ&bjoo::T\kdw#Bﬁiéﬁéﬁﬁﬁ\wakiiﬂﬁﬁ%\N@mKﬁﬁﬁiﬂﬂﬁ%%
w5,

Remark 2.3. 1 & 7 ® GL(n,Ap) "NODR—=ZXAF =YY 7 b &F 5, ZOW, #Y47% GL(n;, Ag) DEER
A ZNVARBRBIL 2 VT, D=0 1L 2 &2, 22T, BENd kB TRICBT S kEThH D,

Remark 2.4. 2 (1.0.3) X FBEOURAR %2 720121F, JFT Whittaker A Wi (p,) & BRINIZEHETH
ERW, 72720, BENIZZOMY 25HET 2 2 2 IXASTIERW, FlZiE, Chen-i% [2] 1X GSp(4) DHE
12, TASSp(4, Z)-RERARY PLERO L 212, (1.0.3) DELOPFRARZFAL T3, #51d. Lapid-Mao
FREFELIEOHRARNEZHHL, BEEFELZETI Ty FAaYy 7738 A@ﬁﬁ%%bé zizk
D, ERRTORFAMD ZFHEUHRARZIEHL TH 5,

Lapid & Mao [5] I F EOEREOMERURBELL AR TV I T4y ZFHIDOWT, RO FEEEREL T
%, ROGEIZZDFEITHSNT WD,



U(1),U(2),50(3),50(4), GL(n) (Lapid-Mao [5])

U(2n + 1), 7 AYEBNN (Beuzart—Plessis-Chaudouard [1])

o U(2n), F IZRFE, moo R RARHEI, ARHHIHTE m, BRI, F 2R3 RARHRB (9))
o Sp(n), F X%, o X AR KB (Lapid-Mao [7])

GSp(4), (F1B-FA [3]. [3] TR EIZ DI L TWBE A, —ROBEICHiBICHIETE 2)
A DEEHITIRDOIERTH 5,

Theorem 2.1 ([11]). ¥ x-generic 7% U(n) DL D BRI 7 A & ZXNVARBIRBUZ W U T Conjecture 2.1 1355 D
AVASH

Remark 2.5. n D& ET 7 AR MDGE 121, Z DRI Beuzart—Plessis-Chaudouard [1] 12 & » 3 TIZEE
HHE VT /225, Theorem 2.1 Tl, A DGE TEHERIEMOME ITBHEL Ui\, 72720, — ik Ramanujan
FHEINET B &, Pn-generic REE A A Y ZOVIERIERBIIEE MO T, Z UDWEUDTT F. AROYE
Theorem 2.1 (X [1] IZHEN 5B,

3 Theorem 2.1 DEFRADELRE
ZDETIX, Theorem 2.1 DZEFHH ORI % ZiHH T 5,

3.1 RBRAEX~NDET

Lapid & Mao [6] I&. Conjecture 2.1 DNFAMA LD Y 2EXANLIRETE LI L2t Lz, ZOETIE,
Z DFATERANDIFEIZ DWW THIAT 5,

Lapid & Mao [6] l3ENEFE S L IFIEN S 7, DFFTE— XS %2 HWT, Wi (r,) EONEZEHL 7=,
ZOWNRE [, —,], £ &L, OB, Whittaker EF L0 X 0. WU ¢ € CF BEIELT, WA
M7= 9 .

[ W Wil () dn = e W@, Wa, WL € W ().
N(Fy) ’
727200 [, =]y DEFRCHWONIHER dn 1T Yy D OEE DB WHIEZEIS (]9, Section 2.4] % &),
Lapid & Mao IZfABIFE Rk & XN 2 (REIRBLOREKIEZ WS Z & TIREFEIA U 7=,

Theorem 3.1 (Theorem 5.5(n 2ME%X). Theorem 8.6(n 73#&%X) in [6]). Conjecture 2.1 LR UglHE %2 W5
ZOR, FLAETRTOERVIZBWVWT, ¢, =128V D, £/

Wy ()] [15=1 LGy X
‘ (i’if)” :(H ) . JllﬂAdE HWtt

PMEEDEX T TR o = Ry, € Vi IZRUTHED LD,

Theorem 3.1 12 & 0. (T[], cz}) = 1 D3O ZTIE, Conjecture 2.1 23w 12 LTHE YLD, K DFEL L,
Lapid & Mao (XIXDENX%Z FHEL 7=,

Conjecture 3.1. [EEDFZER v ITH U, cr, = wr, (—1) WD LD,

Conjecture 3.1 WRENAUE, ([[,cx}) =100 h 5, FEBE n BMEEDEEIZIE, Theorem 2.1 IFIKDE
HA»LHED,
Theorem 3.2 ([9, 11]). n 2L 95, EEDOERKNEFERMIBENT, Conjecture 3.1 KD LD, £
Too BHRBR0IZBWTIE ryCry = wr, (—Dwr, (1) DO ZD, BT, (T], ¢xt) = 1 DD D,

v 7T

7



3.2 Theorem 3.2 & Theorem 2.1 MEFRA DS

BANZIRELDS 2n DIGEEF X D, v WARBRDGEITIE, FEHIX (7] OBLOFERIZ I V5605,
SAUFULSHEIT S &, PURMEDMEZ HBH U 723546, Conjecture 3.1 1% Fourier 2 # 28 VKL W5
ZEIZEDEEHTE S, £72. ZOHEMIFETNVOEHAKX ([8, 10]) XN AR DOREKRNEZH WS Z LIz
L DIENETE S,

v DERFER OGBS IITE R FEEZH VD, OO, v WRRAEZELOGEIZTA T 7 2HHT 5,

ZDEGEITIE, m FIRO K S IZFIT S
Ty = X1 % XX X (Gl G [T e (Gl g ] [T,

ZZ T, axblda,b% Levi fRAHEOREUZ S DIWAGEEERB 2 X3, (IR D=X VL x; 13 GL(1,R)
%7213 GL(2,R) OHEHCRIIRIL (DRIFR), s; € C I [Re(s;)| < 5 &3, O, RARE D,
Lemma 3.1. [Re(s;)| < 3 ZBD U7, ¢, & wr, (—1) & s KLU TERTH 5,

o T, +93%< D s 1K LT, Conjecture 3.1 Z/RmEIX L\, ZD77ZDIZ, a; € RIZH L GL(2n,R) D
%fﬁ m)[al, ‘o ,ak] %%Z)-é

molan, oy ap] = x1 X o x e x (] - VIO ) ETH TV s (6] - VTR x gt -V,

ZDRBEDL AIIRD LS IZ KB LgETHh 5,

Lemma 3.2. F =Q, E % QDE_IIEKE T 5, ZOWE, n-generic’s U(2n)(Ag) DIEINZBEKI /7 AKX
IVARRIZR I (:.'W,[al, ce, ak]) TZDEFZ[LTORD N 7[‘1,[04, ce ,ak] ERBEDPFHET S LD ((11, ce ,ak)
DEAEIIRY OMBELRHRIEETH S,

ZOMEIZE Y, 7 i=7[ar,...,a) IZDWVWT Conjecture 2.1 A3 Y 32 TIX, Theorem 3.1 (2K D
HCW; =1
MDD, ToIT, AREROGEOREEZMNEZ LT
( H wﬁg(—l)) X Crl = 1
VF#00
Bonrd, D2ED,
Cﬂ—/oo :wﬁéo(—l)

MDD, o T, ETHRRZELIIT 5 IZDWTOIERIMERS
Cﬂ'v = wﬂ'v(_]‘)

DK D LD, LAED S, Theorem 3.2 DFEIAIE, 7/ 12 DWW T D Conjecture 2.1 N IFEI Nz, 51T, T—
2 7~ EEN D RESREIOME 515 % W 5 LIRDFEHTE 5,

Proposition 3.1. #/ ® U(2n+1)(Ag) NDT—X ) 7 b mf 13584 77— X 2 BAUK, BRI 7 2 ¢ X
IWRBIER % 5.2 5, £72F DI, 7/ 1T LT Conjecture 2.1 PO LD & &, w) 1A LT Congecture 2.1
DD NDZ L IXEETH B,

Proposition 3.1 (Z & ». Theorem 3.2 DFEAFIE 7)) IZ DWW T D Conjecture 2.1 N W& I N5, HijEH Tk
N7z & 512 2 DA 1E Beuzart-Plessis & Chaudouard [1] (2 &K D EEBHEI N T WS 728, Theorem 3.2 DFEAHA
58795, HEZRLUTBWTHEMKOEMWIZ L D Theorem 3.2 D FEHT &, n BWMEB DL A D Theorem 2.1 D
AEEADSE TS5, WARIZ, 2n+ 1 DA D Theorem 2.1 1, Proposition 3.1 & [AFRDIEIHIZ L D 2n +2 D
ANEIRETEEDT, WEIEH LU ZEEOGEN SRS,



BT AE

5

70 FEIRBUEY VARV D M THREORRZ 5 AT S 272700 7 LAEAEORHF —IREE, T

Rk, Y ARY Y AEEEOFERGE, REEEEO/NMESEITLL D EH VLT,
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7Y I = a v RAF— LRNFRZERN AT FE
ERCEZ A E2- RN MolNNE

SRR
VR R BRI R AR

1 ELHIC

7YV IT—YaryA¥F—nl¥, AREE X tH5EOEHIEE DO
X x X ORE» 25 HERMETHS. 7YIT—2aVAF—LD
il LT, Hamming A ¥ — A% Johnson A ¥ — 24 & XIEN2dD0H D,
IS FHBNRFEHR TV A YERRE RO H L. £ LT
INHD7YVIIT—Ya v AF—LIF P o QEHEAM IS MHE
b0, ProQZEA7YYT— a3y Ax— 24121, Askey-Wilson
ZHAR (BLUZOWMR) BT 2 Z e TWS. ZHET,
ZEFIRD Askey-Wilson ZIHARDE T 205513 % 1T TE 7223,
PBIUOQZHEA7YVY -3y 2AFx— 202 (EFEEIL) 12
B3 2 AT . ST WD o7z, L LIk, Bernard-Crampé-
d’Andecy-Vinet-Zaimi [3] 12 & > T 2 B DOGEDERIIEREN, 2O
MnziRA, EELRNFE—K OUNRFELEZEZIR), Da Zhao K (East
China University of Science and Technology), Yan Zhu X (Shanghai
University for Science and Technology) ¥ OZE[FEFSE 2] 12X D, — D
HIEAEFZHW2 22T, I BEATHRVRTVETY YT —>a Yy
AX—LDZEHPBLIQZHAMEZER L. L IOERITHED
E, INETHLNATVEZLDT YT - a Y AX—LHNEEH P
BIUQBHAT Y T - a Y AF—21TR5IERLE. 5T,
FEEH L HATENR CRIRK) L oHEFEIFSE [10) TF VYT —ya vy R
F— 2D & 0 S S BIEAEF O SE TR T2 Z e T
Tz 7T Eak, a Yo7 PXIFRZEHED 2] DERDOEHRTEZEMQ %
HAMZE DO Z DAL 527280, ZDMICOWTHAFDOREIZ
DPLTREDHENEKRT 5.



2 FPYII—arAF*—L
2.1 FYII—aYAXF—LOEHRLH

FTR 7YY - a Y RAEF—LDRANEHEE X 5. FHLEK
W-IRN-FHE [21] BRI, 2B, BEOREYS VROV LATH
7YY IT—Ya Y RAF— MOV TOMEHIW L D2 THOITW5. 2004
DO EEIT web 22 HBEFHITT 7L AHITE 5 DTIEA [22, 28], Ik
N (23, 30], HHHR (24, 29], B 27, 31], HH [25], K [26] b EIESHR
LTWkiEEw.

X, I2HEREALL, R: X x X - I 22§ BER T3, Kicl
LT, BRITHI A; ZRTED S: A; DITEHNE X ITE » THRATFD
I B | X| RIEFGITHIT, A OB

(Ai)ay = 1 R(z,y)=iDL X,
0 Fhlt

TH5. ZOLERMPEHTHZIENH
(Al) Zz’eIAi = JX (th él?ﬁ'ﬁ”), Ail OAi2 = 5i1i2Ai1 (O: J&ﬁ]\@fﬁf)
DD LD Z LITHERT 5.

EE 2.1. X = (X,R,T) = (X, R) = (X, {As}icz) BT ORI Z 7S
X X ETVII—YarYAF—LEWVD

(A2) Ay = Ix (Ux ZBAATH) 2075 io € T WHFET 5
(A3) i T WL T, AT = Ay %725 T c IHFIET 3,

Quyémmelmﬂbf,&ﬁ@:z%dﬁ%A%%ﬁk?#ﬁgﬁ
P, PEET 5
(Ad) DEEL {pi?’ Viviigsiser 2 X DRI E WS . FEBd = |I] -1

1112
DZELEXDITRENS. EBIC
(A5) #ir,in € TITHLT, Ay Ay, = A Ay, (OFD plB, =pl3, ) %ifl
ETrE, XBWTHL LS.
(A6) i c TITHLT, T =i (DFD A BHHTH) Zilifzd L &,

X TH B 0. BB, XIS TH 2 Z L I3H
DITRENS.



&’ 2.2.220D7 VL —YayAF—A X = (Xl,Rl,Il) L Xy =
(X2, R, Io) WX LT, UTFOKMEZMT 2002 f: X1 - Xo &
g: 1Ty — I DFET S L X XX R THDZ LWV .

ERED z,y € X1 LT, Ra(f(2), f(y)) = 9g(Ra(z,y)).
ZOLE, 20DFVII—YaYRAE—AIDOWVT

EED i1,19,13 € 1q &:jﬂ‘bf’pinggg(w) = pi?b (]_)

DM DALS, RYBIFARIC LD RIFESNS. —/T, (1) 2l e
B gPFET 2L E, X1 & X BRBINCFRITH 2 v . —RANTHR
BHNCRETH > TH R L EBR S 720. ZAUTDONTEROH| 2.7 TER
Bl221T 5.

M7y —>aryAx—20F WL O0ZEIF 5.

5l 2.3 (Hamming A F—24). q,n ZARKE T 5. ¥/ F % qtEd
L, X =FeBL. I={0,1,....n}33E, 2 R: X xX =7
BRDESICEHET 5.

R(z,y) =i e{l,....n} [z #yi}| (Hamming FERE)

ZOrE, X=(X,RI)EMNM7rY IT—yaryAFx—2nilizh, Zh
% Hamming A ¥ — 24 H(n,q) L FEX.

ffl 2.4 (Johnson ¥ —L). nk & n > 2k ZALTHABLEL, X %
{1,2,...,n} D kITCEREEL LR I2EEGL TS, T={0,1,...,k} &F
2% 2HR XxX IR RDESIERT 3.

R(z,y) =k — |z Ny| (EESIERE)

ZOLE, X=X, RDIEIMM7TY>IIT—>a Y AFxF—1I12R%H, ZHh
% Johnson A ¥ — 24 J(n, k) & LS.

Bl 2.5 (B7Y>T—>aryRF—20). GEEREEL, {ClizZGD
HEE (132G OBE AR T INLDES) 75, 2R GxG =T
ZylzceCiDER(r,y) =i EEDD. ZOLE, X=(G,R,I) I
A7 VST —2a VY AF—LITRKRY, TNEMHT7 YV T -2 a vy AFx—
LTS,

Bl 2.6 (Schur (7Y —> a>2¥x—Ln). GEAREL L, GIZER

EBE X ITHRBINERALTWAE 30D T3. ZOLE, GIEXXxXITH
g(z,y) == (gz,gy) KX D BRARIIMEHTS. ZOGIZES X x X OB



e XxX =, R 3% BHR: XxX >IT%(z,y) e RiDL
ZR(z,y) =i LEDD. TOLE, X=X, RIHET7TYIPT—YarR
F—2IZRKY, TNESchur 7V > —>a Y AF¥F—L MR, 2B,
BEL/Z2g e XWCHNLTK:={geG|gro=a0} £BLELE, XDZ
CEEHEEME LTG/K eRTZedHDb. X =(G/K,R,I) HAJ#aT
HrrE, (G,K)% Gelfand Xt WS, il 2.3, 2.4, 2.5 THZ =7V
IT—>aYAF—LIFTRT Schurfi 7Y > T —>a Y A¥F—LTHDY,
ZRZN Gelfand X (6,16,,6,), (6,6, x S,_k), (G x G,diag(G))
WSS 5.

5 2.7 (Shrikhande 7'Z 7). &#&DHIE LT, Schurf7 Y T — 3
YAF—LTRVWHDEFET L. LIFDI 773 b—F X Ricgilani:
bDE L, ZN% Shrikhande 75 7 & ML,

CDT7773EEP2THY, LFOLSICLTTES7 Y T —a
YAF—L4X=(X,0,1) &I SchurfITH 2 Z e pHILNTWS: 75
7OERES (I6THE»HR2) ZX L, 0: X x X - 7T:={0,1,2}
%2727 DKL 5 5.

BB, TOT7YIIL—a Y AF¥—LIX Hamming A ¥ — . H(2,4) &
REGNIZFARTH 225, FETIERW.

2.2 Bose-Mesner (X# £ IEI1ER

ZOHiITIE, 7YY I—YaYAF—LX=(X,R,I)IXFEIITITH
5255, XD{A}ier TERIN R E R Bose-Mesner RELE W, 2A
TEIT. ok %, ADEHRBREEKE LT {Ai}iEI 7b§kh575§, Gepdiloxn
Pk (A5) & D AIIFREE T SR B HDEIK{E)}jer (T EIRATER
&) BFFD, SOICE), = x/x £7%% jo € T BFET 5. 125 {Aikier
Y {E}jes BADEERDT, |Z| = |T| AW IO L ICHET 3.
F72 (A1) &0 AT o TRHLE 5. 5T (| X|E;)) o (| X|E;,) =



Y iseq O X |Bjy %7z 3FE (RIIAKCR D) ), BFIET 5.
D qps, & XD Kreine W5,

X @ Bose-Mesner {RE( 2 @ 2 DOHEIK {A;}ir & {E)}jes DEH

(Y

A; = Z Pi(j)E;;, | X|E; = ZQj(i)Az‘
JjeT €L

DR BB BN BIEHTT P = (P(j), Q = (Q;(j) 2ZzhzhE 1
BEE1T5, FE2EBETH S, BN P O—&EDI % ig BT %
Hle L, —HFLDIT%E jo B3 21735, HERIC, QD—HFLDII%
jo WRT 28I L, —FLDITE ig ICHAT 21T T 5.

XDBET7 YV L —2aryAX—LATHBLE, P IAENIZ) GDig
BREFELY., IR BRI 7 Y2 —2 a Y 25— AI12DWVWT
bPOZZIEHFEREVHIZEDHDS.

2.3 PRENX-QIERAT7VYII—2arvAF—L4L

PZIEKX - Q ZHA 7Y > T -2 a3 ¥ A% — 4id Delsarte [8] 12X D
e T A VHEEREZH— LTS DIWBAIN. FERT Y
PI—YaYAX—LDELEFPHDQBERTYII—aVAF—
LTz oTW3,

EE 28. JIRAONMT7T VYT —>a v RAF¥F -4 %X = (X, {A}ier)
BPEEAT7 YV T —2a v AFx—LTH5LEREMITILTH5S:
{AYier DIRZAFHEE T % {0,1,...,d} TBEDPZT{Ag, Ay,..., A5} &
THE, Kie{0,1,2,...,d}ITNLT, A =v;i(A4) Zifi7z3TXEi D
1 ZRZ TN v;(z) € Clz] BEIET 5.

FRkIC, 77 RdOMH7 Y=Y ary2¥F—4 %X = (X, {Ai}ier)
DFMBEFTORKY {Ejljes 2T %, XD QZHAY V> T—
YaVAF—LTHIERIREMIETIETDHS: {E}jes DIRATH
HT%{0,1,....d} TBE»PZT{Ey,FE,...,B;} T2 %, %jc
{0,1,2,...,d} .ISNLT, |X|E; =vj(|X|E) RS o) 2z
KEL § D1 ZZIHN v} (2) € Cla] DIFAET 5.

5l 2.9 (Hamming X ¥ — 24). Hamming A ¥ — 2 H(n,q) &7 7 A n D
PO QEZEHRTVIIL—aYAF—ALTH5. {v}l, & {v/}r, &
FLL D, ZoZEKXRIE Krawtchouk ZIEA L I TV 5.

5l 2.10 (Johnson A ¥ —L). Johnson ¥ — 24 J(n,k) &7 5 A kD P
DO QEBEAT VST —Ya v AFX—L0TH5. {v}  1ZA Hahn %
HAX, {vf 1% Hahn ZHEA L FHZN TV 3.



PZIER - QZHEA 7 VT — 3 vy ZAF— A3 WL D0 D FMESM:
PRGN TWS., IR TR PEEA7 Y2 —Y 3 VY AF¥— 2 DFRHES
HrE52%. QFBHENRXT YL —Y 3y AF— ADRMESFIZOVWTIE,
{AiY 2 {E;j}9_ 1, P % QIEZMANIFAKD I LHFR 5.

W 2.11. 75 RdOXMT YT —va vy AF¥F—L4 X = (X, {A}L,)
R LT NIZFAETSH 2.

(i) XIEFPEEHA7 Y T - a XX —L0TdhH5.
(i1) % i 10t LCRD 3 HMEM LK b 320
Ay A = pl A+l A P A (2)
BB, i=0,dDL FITHND pl A R piit A, F0 L ART.

(iii) X O 1 EHTH P OFE 1O T % Pi(j) =0; (je€J) &8
Y&, jijo € TWj1 # j2a 8018, 0;, # 0, THYH, PDH
G (i =0,1,...,d) DEID i REER v; Z VT Pi(j) = vi(6;)
UGJ)Z%H5

(iii) DFEfESRMFZ 22, TP ZIH OHKTH 2. %7 (i) O 3 THMH
Wb (2) 205 {A ), S Ay BEBHETINC S OHR 27 7 7 OFERE T4 &
—HTHIedbrd. ZOLIKRITTI TR (X, A) RIERIEAII ST
Wi,

PZHEA7YST—2a AF—2DEHFRLD Ay lZd+ 1 EOHER
B EHE g, 61, ...,0q ZFD. £ A DR IEK W41 DRBUF d+1

ThHDh,
d

wap1(Ar) = [J(A1 = 6:1x) =0 (3)
i=0

Z it 7z 5
P%Eﬁ-@%ﬁﬁ?yy1~yayx#~AKﬁ%¢%%ﬁﬁ@ML0
BLUA{v} OHBQWMmf()#%ﬁ*yﬁf%ﬁﬁé Kz P oo
Q&IEJ(7‘//I—/3/X3F 2D {v;}d, {v o &1 28 Askey-
Wilson E A ZIHAR & FEEN 2 B4 IE LL‘%IE_Q%: (B LUTZDHB)
THDHZeDPHONTVS. 1 B Askey-Wilson ER ZIHK R % HL5R
L 72 228 Askey-Wilson ERXZHHAR D WL Do TWS. filz
WFEATHIZE & LT, Mizukawa-Tanaka [13], Gasper-Rahman [9], Iliev—
Terwillger [12], Tratnik [15, 16, 17, 18] " ¥ 2% 5. HIAKZMANL L LT,
ZEE Askey-Wilson ERXRZIHARBMEL TS 7Y T —Ya vy R
F—LDEBREELDEISXEZNZ IV WO BENEZ LN, ZO%



ADEFEBELE XN TNV, 2024 ££12 Bernard, Crampé, d’Andecy, Vinet,
Zaimi (3] 2% (a,b)-compatible L WHWERZHEAL, (a,b) D 2ZEH P %
ER - QZBHATYIIT—va v AF—L2DEHREIBLE. £7[3] T
BELO7Y YT —vayAX—o0 288 P 2EA - Q ZHAT V>
IT—YaYRAF—LIRKRoTVWEI bR ZOMEICMIEINT,
Bannai, Kurihara, Zhao, Zhu [2] TIZ—MHRIETEZEH P ZHK - Q
ZHAT VL —2a YAF—ADERDPG AN, ROHTIHLD
BB OWVTIRRTWVL .

3 BEPBEKTYII—>aYRAF—L

ZOHITIEE THIERIEFICOWTHBICHAL, 20k, 2 ICk3H
HAMEF < BT 22ZBPZENA - QZHEA7 YV - a vy Ax—
LDEREEZ 5. 28, 3|12k (a,0) Bl 2 2 P 21HN - Q ZH
R7YVII—2aVAFXF—LDERDERETH 5D, ZOFEMTITHE
T 5.

N = {(n1,ng,...,ng) | ni FIEEER I 2 L, ¢ e N 2 i RO DA
1, ZALADOETIZ0DRZ bre$ 5. N EOBIERIER < 21X, XU
T 3&MFZHEZTHDOTH 3.

(1) <Z2MEFTH 3.
(i) o, B,y e NI LT, a<pRBIE, at+y<B+yDHEDILD.

(i4i) < B3EFEFTH 2. THROBIERDOETHRO N OFTESIE <
B LTI TR RO,

HIEAERF OBl e LT, HENER <o, BAMNEHEAMET <ge R Y
MNhD.

EE 3.1 (2). ¢ eNERIiBHORTDA L, ZRLHNOEIIE0 DRY
FLET B, DEeen,...,.q 280N OERESELL, <ZN LOH
HREFE$5. Alt7y Y2 —>a vy Ax—L4 X = (X, {Ai}ic) B D
LD <WHETIUER P EZEAT VST -2 a Y AF—LTH5LIEIX
il ThH5:
(i) (n1,n2,...,mg) € D220 <m; <n; (G=1,2,...,0) B5IZ,
(my,ma,...,my) EDTH5.

(ii) X DBHEATH {Ai}tier DIRAFHEEE DICBEMAT {As}aep &
THLE, BRaeDIIMLT, Ay = va(Aq, Ay - .-, Ae,) ZTHITZ
T <L TEESXE a D L EBZIEK v, (x) DFEIEL, THIC
vo(x) DEHIEN 27 1% 8 € D %ifilz 7.



(iii) FaeDi=1,2,... . 0L T, A, A, ((i1) KD BRETE a+e
DZIER) F{As|BED, B<a+e} D—REEEGTRES.

FOEFRIZBWT, (=152, HERNCDIE (i) &Y {0,1,...,d}
DD, (1) 1F A4 F 12RO i ROZHEK v;(z) TREINLE I EE
K55, ZHIER28D PEHR 7YV T -2 a v AF—LDEHRL
—H 5. TRPEZEATY I - a yAF—2084A, (i) X (3) &
DHENCHEDILD. Lo TER3LIEPZHAY VY2 —va Yy
22X —LDEBEIRLIZBDTHZZeBbhd. Lk ZERP%
HA7 Y T =2 a Y AFX—208EHS, PEHAT YV T —>a v R
F—LDIEIZHMPREAT7YVY I - ayAF—L2ERI L
H5.

(ERQBZBTHEA 7V T —2a Y AF—LADERIITFR 3L ITBVTHE
R RS TCEERZ b0 LTHEZ 6N 5.

DPFCIRE—HBHRELRZERZHA 7 VP22 a Y AF -0l L
T, BE7Y YT —2aYAF—LIZOWTHER3,

B3.2. k=1,2,....0 LT, x® = (x® (A% ) 225 R dy
DE[a7 VT —varyA¥—ntT 5. X oEEEEGRITH xE)
Druaxyh—iE

A(nth 77777 ng) ‘= A;ll) & AgQ) (SRR Agﬁ) fO?" (nl, no,. .. ,ng) eD

(LD =TW I x..xZTO v FT23) ITEDEERT7 VST -3
YAF—LEL, Qi XW ELL DL ERBMDLO:

(i) XM BFRTPEBER 7Y v L—> a v AF— 2k 51E, QL xP
N EOFEEOBIAANET < 1cBi§ 2 (Z- P 2HEX7 Y > T —
PavAF—LTHA.

(i) XPHRFRTQZERAT YV T—var2F—2kilE, @, x®
E N EOEEOHIERIET < ICBT2(ERQZHERY Y T —
SavAF—LTHAb.

AEE 3.3, IRTOAMT VST —2 a v AF—LNEZLEHP (resp. Q)
ZHEAT7 YV VT - a v A¥—20/iEEdD. X = (X, {Ri}ti—01,..4)
Q:jﬂ‘bf, WJ/%J;'D = {0,61,.. . ,Gd}, AO = AO, Az = Asi tﬁ( . ZD
E X 3D EOEAMNEFHENIEF <gie ICOWTD d R P ZIHKXT
VST = aYARFX—LIIhD. X EdEHQZHEA 7YV >z —>a Yy
2F—L BT HEDFEETHZ. Lo TEZEHRZHEA Y V> —
YavAF—LOHEIXTE 72T L DEIPNIVHDBINVE N S,



2B P EZER - QZHEAT VYT —> 3 vy 25— L0, l3.2%

FE33DISICELIZEIPDONEDDDH LD, —INIC, GRoh
127V —2a Y AF—LREDE I BREEH P 2N - Q ZHAY
VIIL—=aYAF—LIZRIZPESIPEHETH2DOFHL V. 2] 1]
ZBWT, B0z s RTEDHETEL 7Y ST - a v AF— 0%
BREZEN 7Y ST =2 a Y AF—AICkhD I ER L. FlX (2, 1]
ESRLTWELEERW, 2 2T n fE5k Hamming 2 ¥ — 24 2 3E 2 7T
VarvYYAF—LADERLBNR, YOI RZEK P ZERN - QZHE
R7YVSIT—2aryAF—20OMEEBNT 5.

5l 3.4 (n #55E Hamming R ¥ —24). n/ ZHAKE L, X = (X,R,Z=
{0,1,... ) Z2 JRALDART7 VP T -2 a Y RAFX =0T B, Z =
X" = (x1,...00),y = (Y1,...Yn) € Z L1 € ZXHLT ny(z,y) =
{k | Rz, yk) = i} £BL. D= {(n1,na,...,m0) € N | 3.n; < n}
3B E, S:ZxZ D%

S(way) = (nl(mv y)7n2($7y)7 S 7nf(m7 y))

TEDDE Hn,X) == (Z,8,D) IFAHA7 VY > T —> a Y XX — LIT7K
b, Tz X 1ZBT % n ik Hamming A F — A2 W5 . [2]IZBWT,
H(n,X) 3EAM EFFERNETF <grex ICBT2 D LOIER PO Q%
HA 7Y YT —>a XX —LTH5I PRI,

BB, XPRRIITK, (DEDIFIRLIDTY ST -2 aryAFx—
L) DL E H(n, Ky) $8H D Hamming A% — A H(n,q) THZDT, T
DAEFRIE Hamming R X — L0 1 B P o Q ZHA TV T —>a v
AX—LTHEILEERT 5.

Bl 3.5 (JE27C Johnson AF—2). r 2L EOBEAEKE L, K = {0,1,...,r—
1} 8B 0<k<nZlfi7d BB nkZEELLEE, ©e KMITH
LCw(x) = |{i |2 #0}, X ={x € K" | wx) =k} T 5.
D:={(,j) |0<i<k—j 0<j<min{kn—k}} £BE, 5
R: X xX —D; R(x,y) = (i,j]) THIZ %

Hil@i #0, y #0} =k —j, Hilzi=y#0} =k—i—

ELTEDDE, X=(X,R, D) ENMT YT —>a Y AF—AITIR5.
CHEIE2ILY a vy Y Y RAF =LV, [FlIZBWVWT, 20 XI13H (1,0)
DL2EMPEZHERNT Y T —a v AF—LIICHRBZL, [2]ICBVT,
XD <griex KT 2 2EM P RZEAT YT -2 a Y AF—LI1THKD T
EORENTz. EBHIIZ[6]ITBVWT, n>2k—1Dr &R (0,1/2) D 2%
HQZHEA7 Y T -2 a YAF—LIZhZ I HRINZ. [1]ITBW



T, BTDn, kLT X DERE 3.1 DEIERT <guex T2 22K Q
ZIHEA TV ST —3a v AF—ALICRABZEHREINT

%8B, ZOMRBZHERNNETZ <glex 2 <iex [ZHUD#Z T B FBRITHK
VAR

COMODBBICEERZIER 7V -3 a Y AF—2ICHT A NLD
OB 2 EEE T 5.

M8 3.6. 7Y 2T —>aYAFXF—LXIEEL 2O0FTLD 1 R P (resp.
Q) ZHAT7 VYT —Y a Y AF—LOMEERZRVWI EAHISGATY
5. —HT, XIEBEBP (resp. Q) ZIHAT7 YV T - a v AF—214
DOHEET ANS X, 1, D, <DEVAIHLDDH, —MINICZ S OAJREM:
WHHD, HEIERTHEDTEIITEZ2D7E% 5.

RIRE 3.7. 2.8 T IZER PO QEBHA TV T —>a vy Ax—2I12fY
b3 2 ERZIHNRIT Askey- Wilson ZHARINICE D TE5 %
BRI, A EBZHEA PO QZBHEHR7 YT -2 a Y AF— 412t
bE S 2 ZEBZIERIN S Askey- Wilson ZITARRIND XS ITHETE 2D
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I8 3.8. MRE 3.6 & 3.7 fRRENz v &, (EHZTENA P D QZIH
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IZBPIPOQEHEAT VL —ary AFXF—LDEETHVELITHK
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211 T, 12 PR2HEHAT YV T —Y a Y A% — L DRESRMA
L7z, ZOMROILRE LT, 2EH P EZEHAT YV 2 -2 a v R
¥ — 2 DFMEZEMD [2] *° Higashitani-Kurihara [10] IZBWTREN1L.
R, DeEIFIEDCNDILT, €,6,..., e DTHY, EFE3.1
(1) T35, £/ N FLoHERIET < 2EELTBL.
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WAL S 5.
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[2] DEFZ HWT, Hk Bernard, Crampé, Vinet, Zaimi, Zhang [4] 12
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