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Abstract. In virtue of the advances of computer, we can calculate various

geometric data of K3 surfaces and Enriques surfaces by brute-force method.
The lattice theory plays an important role in this method. We give a survey

of the lattice theory used in the computer-aided algebraic geometry of K3

surfaces and Enriques surfaces. In particular, we explain Borcherds’ method
for the calculation of automorphism groups of these surfaces. As an example,

we compute the automorphism groups of Enriques surfaces covered by a general

Jacobian Kummer surface.

1. Introduction

Machine-aided computation has now become a very strong tool in the study of
K3 surfaces and Enriques surfaces. In this survey, we show how far we can go with
computers in the algebraic geometry of these surfaces.

We mainly deal with the automorphism group of a K3 surface or an Enriques
surface. The automorphism group is calculated from the numerical Néron–Severi
lattice and the nef-and-big cone of the surface. Borcherds [2], [3] developed a
computational method to determine the shape of the nef-and-big cone by embedding
the Néron–Severi lattice into an even unimodular hyperbolic lattice II1,25 of rank
26, which is unique up to isomorphism. In this paper, we write L26 for II1,25. The
lattice L26 has many beautiful combinatorial properties related to the Leech lattice,
and these properties are used in the study of geometry of K3 and Enriques surfaces.

We explain Borcherds’ method and its generalization. In particular, we present
our recent result (joint work [4] with Simon Brandhorst) on Borcherds’ method
for Enriques surfaces. As an example, we compute the automorphism groups of
complex Enriques surfaces covered by a general Jacobian Kummer surface.

2. Lattices

First we fix notation and terminologies about lattices. A lattice is a free Z-
module L of finite rank with a non-degenerate symmetric bilinear form

〈 , 〉 : L× L→ Z.

Let e1, . . . , en be a basis of a lattice L of rank n. The Gram matrix of L with
respect to e1, . . . , en is the n × n matrix whose (i, j)-component is 〈ei, ej〉. The
automorphism group of a lattice L is denoted by O(L). The action of O(L) on L is
from the right, and we write the action as v 7→ vg for v ∈ L and g ∈ O(L). A lattice
L is unimodular if the determinant of the Gram matrix is ±1. A lattice L is even
(or of type II ) if 〈x, x〉 ∈ 2Z holds for all x ∈ L. A lattice L of rank n is hyperbolic
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(resp. positive-definite, resp. negative-definite) if the signature of the real quadratic
space L⊗ R is (1, n− 1) (resp. (n, 0), resp. (0, n)).

Let L be an even hyperbolic lattice. A positive cone of L is one of the two
connected components of

{x ∈ L⊗ R | 〈x, x〉 > 0 }.
Let P be a positive cone of L. We put

O(L,P) := { g ∈ O(L) | Pg = P }.
Then we have O(L) = O(L,P)× {±1}. For a vector v ∈ L⊗Q with 〈v, v〉 < 0, we
put

(v)⊥ := {x ∈ P | 〈v, x〉 = 0 },
which is a real hyperplane of P. Let D be a closed subset of P defined by countably
many inequalities of the form

〈x, vi〉 ≥ 0 (vi ∈ L⊗Q).

Suppose that D contains a non-empty open subset of P. A closed subset w of D is
a wall of D if there exists a hyperplane (v)⊥ of P such that w is written as D∩(v)⊥,
that (v)⊥ is disjoint from the interior of D, and that D∩(v)⊥ contains a non-empty
open subset of (v)⊥. Let w be a wall of D. We say that a vector v ∈ L⊗Q defines
the wall w if w = D ∩ (v)⊥ and 〈v, x〉 ≥ 0 holds for all points x of D.

A vector r ∈ L is called a (−2)-vector if 〈r, r〉 = −2. A (−2)-vector r ∈ L defines
the reflection sr ∈ O(L,P) into the mirror (r)⊥, which is given by

sr : x 7→ x+ 〈x, r〉 r.
Let W (L) denote the subgroup of O(L,P) generated by all reflections sr with
respect to (−2)-vectors r. Note that W (L) is a normal subgroup in O(L,P). A
standard fundamental domain of the action of W (L) on P is the closure in P of a
connected component of

P \
⋃

(r)⊥,

where r runs through the set of all (−2)-vectors. Then W (L) acts on the set of stan-
dard fundamental domains simple-transitively. Let N be a standard fundamental
domain. We put

O(L,N) := { g ∈ O(L) | Ng = N }.
Then W (L) is generated by the reflections sr with respect to the (−2)-vectors r
defining walls of N , and we have O(L,P) = W (L) o O(L,N). Therefore, for the
study of O(L), it is important to calculate the walls of a standard fundamental
domain of the action of W (L) on P.

The following is well-known. See, for example, [31, Chapter V].

Theorem 2.1. For a positive integer n with n ≡ 2 mod 8, there exists an even
unimodular hyperbolic lattice Ln of rank n. (A more standard notation is II1,n−1.)
For each n, the lattice Ln is unique up to isomorphism.

We denote by U (instead of L2) the hyperbolic plane, a Gram matrix of which is[
0 1
1 0

]
.

When n = 8m + 2, the lattice Ln is obtained as the orthogonal direct-sum of U
and m copies of the negative-definite root lattice of type E8.
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Figure 2.1. Coxeter graph of W (L10)

Example 2.2. Vinberg [41] proved the following. Let P10 be a positive cone of
L10. A standard fundamental domain of the action of W (L10) on P10 has exactly 10
walls defined by (−2)-vectors that form the dual graph given in Figure 2.1. Hence
W (L10) is the Coxeter group whose Coxeter graph is Figure 2.1. Since this graph
has no non-trivial symmetries, we have O(L10,P10) = W (L10).

3. Geometry of K3 surfaces

For simplicity, we work over the complex number field C.
For a non-singular projective surface Z, we denote by SZ the lattice of numerical

equivalence classes of divisors of Z. For a divisor Γ of Z, let [Γ] ∈ SZ denote the
class of Γ. Note that SZ is hyperbolic by Hodge index theorem. If Z is a K3
surface, then SZ is even. If Z is an Enriques surface, then SZ is isomorphic to L10.
Let PZ be the positive cone of SZ containing an ample class of Z. We put

NZ := {x ∈ PZ | 〈x, [C]〉 ≥ 0 for all curves C on Z },
and call it the nef-and-big cone of Z.

Suppose that X is a complex K3 surface. The following is well-known.

Theorem 3.1. The nef-and-big cone NX of X is a standard fundamental domain
of the action of W (SX) on PX . The mapping C 7→ [C] gives rise to a bijection from
the set of smooth rational curves C on X to the set of (−2)-vectors [C] defining the
walls of NX .

The following is a corollary of Torelli theorem for complex algebraic K3 sur-
faces [29].

Theorem 3.2. The natural homomorphism Aut(X) → O(SX , NX) is an isomor-
phism up to finite kernel and finite cokernel.

Remark 3.3. The kernel and cokernel can be calculated by looking at the period
H2,0(X) of X and the action of Aut(X) on the discriminant form of SX , which is
canonically anti-isomorphic to the discriminant form of the transcendental lattice
of X [23].

Let a ∈ SX be an ample class. Note that a is an interior point of NX . Since
〈a, a〉 > 0, the orthogonal complement of Z a in SX is negative-definite. Therefore,
for integers c and d, we can calculate the finite set

{ v ∈ SX | 〈a, v〉 = c, 〈v, v〉 = d }.
Then we have the following algorithms.

• A vector v ∈ PX ∩ SX is nef (that is, v ∈ NX) if and only if the finite set

{ r ∈ SX | 〈r, r〉 = −2, 〈r, a〉 > 0, 〈r, v〉 < 0 }
is empty. See [32] for the algorithm to calculate this set.
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• Let r ∈ SX be a (−2)-vector such that

d := 〈r, a〉 > 0,

so that r is the class of an effective divisor Γ. Then Γ is irreducible if and
only if 〈r, [C ′]〉 ≥ 0 for all smooth rational curves C ′ with 〈[C ′], a〉 < d.
Hence we can determine whether r is the class of a smooth rational curve
or not by induction on d.

Example 3.4. The Fermat quartic surface

XFQ,p : x4
1 + x4

2 + x4
3 + x4

4 = 0

in characteristic p is a K3 surface if p 6= 2. The complex Fermat quartic surface
XFQ,0 is a singular K3 surface whose transcendental lattice is[

8 0
0 8

]
,

whereas the Fermat quartic surface XFQ,3 in characteristic 3 is a supersingular
K3 surface with Artin invariant 1. Let h4 be the class of a hyperplane section of
XFQ,p. We denote by Rd the set of smooth rational curves C on XFQ,p such that
〈h4, [C]〉 = d. Then the sizes |Rd| of the sets Rd are given as follows:

d 1 2 3 4 5 6 7

p = 0 48 320 1152 15456 136896 743808 3851136
p = 3 112 0 0 18144 0 0 2177280 .

See [37] and [28].

Example 3.5. Suppose that h2 ∈ SX is a nef vector with 〈h2, h2〉 = 2, and L a line
bundle whose class is h2. By [25], the complete linear system |L| is fixed-component
free if and only if the finite set

{ e ∈ SX | 〈e, e〉 = 0, 〈e, h2〉 = 1 }

is empty. Suppose that |L| is fixed-component free. Then |L| is base-point free
by [30], and hence |L| defines a double covering Φ: X → P2. The set of classes of
smooth rational curves contracted by Φ is the fundamental root system in

{ r ∈ SX | 〈r, r〉 = −2, 〈r, h2〉 = 0 }

with respect to the ample class a, and hence we can compute it explicitly. (See, for
example, [11].) The matrix representation of the action of the deck transformation
ι(h2) ∈ Aut(X) of Φ: X → P2 on SX is then calculated from this set of classes of
contracted curves. See [32] or [34]. Calculating vectors h2 with 〈h2, h2〉 = 2 and
〈h2, a〉 = d for small d, we can obtain many involutions ι(h2) ∈ Aut(X).

Remark 3.6. In [19], a generating set of the automorphism group of XFQ,3 is ob-
tained by the method above. In [34], using randomly generated involutions, we
carried out an experiment on the characteristic polynomials of automorphisms of
supersingular K3 surfaces.
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no. R N/〈R〉
1 24A1 (Z/2Z)12
2 A11 +D7 + E6 Z/12Z
3 2A12 Z/13Z
4 A15 +D9 Z/8Z
5 A17 + E7 Z/6Z
6 12A2 (Z/3Z)6
7 A24 Z/5Z
8 8A3 (Z/4Z)4
9 6A4 (Z/5Z)3
10 4A5 +D4 Z/2Z× (Z/6Z)2
11 4A6 (Z/7Z)2
12 2A7 + 2D5 Z/4Z× Z/8Z

no. R N/〈R〉
13 3A8 Z/3Z× Z/9Z
14 2A9 +D6 Z/2Z× Z/10Z
15 D10 + 2E7 (Z/2Z)2
16 2D12 (Z/2Z)2
17 D16 + E8 Z/2Z
18 D24 Z/2Z
19 6D4 (Z/2Z)6
20 4D6 (Z/2Z)4
21 3D8 (Z/2Z)3
22 4E6 (Z/3Z)2
23 3E8 0
24 none Z24

Table 4.1. Niemeier lattices

4. Conway theory

A positive-definite even unimodular lattice of rank 24 is called a Niemeier lat-
tice. Niemeier showed that there exist exactly 24 isomorphism classes of Niemeier
lattices, one of which is the famous Leech lattice Λ. See [8, Chapter 16] or [40]. The
isomorphism classes of Niemeier lattices are described in Table 4.1, where the sec-
ond column is the ADE-type of the set R of vectors r ∈ N with 〈r, r〉 = 2, and the
third column shows the group N/〈R〉, where 〈R〉 is the sublattice of N generated
by R. The Leech lattice Λ (no. 24) is characterized as the unique Niemeier lattice
that does not contain any vectors of square-norm 2.

Recall that L26 is an even unimodular hyperbolic lattice of rank 26, which is
unique up to isomorphism. Note that the lattice L26 is written as

U ⊕N−,

where N is a Niemeier lattice and N− is the negative-definite lattice obtained from
N by multiplying the intersection form by −1. We fix a positive cone P26 of L26,
and let P26 denote the closure of P26 in L26 ⊗ R. We put ∂ P26 := P26 \ P26.

Definition 4.1. A vector w ∈ L26 is called a Weyl vector if w is a non-zero
primitive vector of L26 contained in ∂ P26 (in particular, we have 〈w,w〉 = 0 and
hence Zw ⊂ (Zw)⊥) such that (Zw)⊥/Zw is isomorphic to the negative-definite
Leech lattice Λ−. A (−2)-vector r ∈ L26 is called a Leech root with respect to a
Weyl vector w if 〈w, r〉 = 1.

Let 〈 , 〉Λ denote the intersection form of the (positive-definite) Leech lattice Λ.
Note that every Weyl vector w is written as (1, 0,0) in an orthogonal direct-sum
decomposition

L26 = U ⊕ Λ−,

and, under this decomposition, Leech roots with respect to w are written as

rλ :=

(
〈λ, λ〉Λ

2
− 1, 1, λ

)
, where λ ∈ Λ.
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For a Weyl vector w, we put

N26(w) := {x ∈ P26 | 〈x, r〉 ≥ 0 for all Leech roots r with resepct to w }.

Definition 4.2. A standard fundamental domain of the action of W (L26) on P26

is called a Conway chamber.

Conway [5] proved the following.

Theorem 4.3. The mapping w 7→ N26(w) gives a bijection from the set of Weyl
vectors to the set of Conway chambers.

We fix a Conway chamber N26. Let w0 be the corresponding Weyl vector, and let
L26 = U ⊕Λ− be an orthogonal direct-sum decomposition such that w0 = (1, 0,0).

Corollary 4.4. The group O(L26, N26) = { g ∈ O(L26) |Ng
26 = N26 } is the group

Co∞ of affine isometries of Λ, that is, the group generated by Co0 = O(Λ) and the
affine translations of Λ.

Let N26 be the closure of N26 in L26⊗R. We investigate the rays in N26∩∂ P26.
Suppose that

v := (a, b, x) ∈ L26 ⊗ R
be a non-zero vector in N26 ∩ ∂ P26, where (a, b) ∈ U ⊗R and x ∈ Λ⊗R. Then we
have

〈v, v〉 = 2ab− 〈x, x〉Λ = 0,

and, for every λ ∈ Λ, we have

(4.1) 〈v, rλ〉 = a+ b

(
〈λ, λ〉Λ

2
− 1

)
− 〈x, λ〉Λ ≥ 0.

Considering the limit of 〈v, rλ〉 when 〈λ, λ〉Λ → ∞, we see that b ≥ 0. If b = 0,
then we have x = 0 and a > 0. Hence the ray R≥0v is equal to R≥0w0. Suppose
that b > 0. We can assume that b = 1 without changing R≥0v. Then we have
a = 〈x, x〉Λ/2 and hence

(4.2) 〈v, rλ〉 =
1

2
〈x− λ, x− λ〉Λ − 1.

Therefore we have 〈x− λ, x− λ〉Λ ≥ 2 for all λ ∈ Λ, which means that x ∈ Λ⊗ R
is a deep hole of the Leech lattice [6]. In particular, we have x ∈ Λ ⊗ Q and
a ∈ Q, and hence there exists a primitive vector f ∈ L26 with 〈f, f〉 = 0 such that
R≥0v = R≥0f . Thus we obtain the following:

Proposition 4.5. The intersection N26∩∂ P26 consists of countably many rational
rays. One of them is R≥0w0, and the other rays are in one-to-one correspondence
with the deep holes of Λ.

Let f ∈ L26 be as above, and let xf ∈ Λ ⊗ Q be the corresponding deep hole.
Since f is primitive and L26 is unimodular, we have a vector z ∈ L26 such that
〈f, z〉 = 1 and 〈z, z〉 = −2. Let Uf,z ⊂ L26 be the hyperbolic plane generated
by f and z, and let N−f,z be the orthogonal complement of Uf,z in L26, which is
obtained from a Niemeier lattice Nf,z by changing the sign of the intersection form.
By (4.2), the mapping λ 7→ rλ gives a bijection from the set of vectors λ ∈ Λ with
〈xf − λ, xf − λ〉Λ = 2 to the set

Rf := { r ∈ L26 | 〈r, r〉 = −2, 〈r,w0〉 = 1, 〈r, f〉 = 0 }
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of Leech roots r with 〈r, f〉 = 0. By [6] and [7], we see that Rf form a Dynkin
diagram whose ADE-type is the ADE-type of the Niemeier lattice Nf,z given in
Table 4.1, and we obtain one-to-one correspondences between the following three
sets:

• the set of deep holes of Λ modulo the action of Co∞,
• the set of rays in N26 ∩ ∂ P26 other than R≥0w0 modulo the action of

O(L26, N26) = Co∞, and
• the isomorphism classes of Niemeier lattices other than the Leech lattice.

Remark 4.6. Let X26 be a K3 surface such that the Néron–Severi lattice of X26 is
isomorphic to L26. Of course, such a K3 surface X26 does not exist. We introduce
X26 only for heuristic purpose: Using this non-existing “K3 surface” X26, we can
state results about the lattice L26 as results about geometry of X26. Note that the
nef-and-big cone of X26 can be identified with the Conway chamber N26.

“Theorem”. The smooth rational curves Cλ on X26 are indexed by vectors λ ∈ Λ
in such a way that [Cλ] = rλ, and Aut(X26) is isomorphic to Co∞ up to finite
kernel and finite cokernel in such a way that the action of Aut(X26) on the set of
smooth rational curves on X26 and the action of Co∞ on Λ are compatible under
the correspondence Cλ ↔ λ.

Using the theory of elliptic K3 surfaces (see, for example, [39]), the classical
result of Niemeier can also be regarded as a “theorem” on the elliptic fibrations of
the “K3 surface” X26.

“Theorem”. Modulo the action of Co∞, there exist exactly 24 elliptic fibrations
on X26. Each of them has a zero section. The ADE-type of singular fibers and
the Mordell–Weil group of each of these elliptic fibrations are given in Table 4.1.
In particular, the Leech lattice is realized as the Mordell–Weil lattice of a Jacobian
fibration of X26.

5. Borcherds’ method

Let X be a K3 surface. Suppose that we have a primitive embedding

SX ↪→ L26.

By this embedding, we regard the positive cone PX of SX as a subspace of a
positive cone P26 of L26. Recall that the positive cone P26 is tessellated by Conway
chambers N26(w).

Definition 5.1. An induced chamber is a closed subset D of PX that contains a
non-empty open subset of PX and is obtained as the intersection PX ∩N26(w) of
PX with a Conway chamber N26(w). The tessellation of P26 by Conway chambers
induces a tessellation of PX by the induced chambers, which we call the induced
tessellation of PX .

Since the nef-and-big cone NX is bounded by hyperplanes (r)⊥ defined by (−2)-
vectors r ∈ SX , and a (−2)-vector r of SX is a (−2)-vector of L26, the cone NX is
also tessellated by induced chambers.

We assume the following mild assumption:

Assumption 5.2. The orthogonal complement of SX in L26 contains at least one
(−2)-vector.
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Then any induced chamber D = PX ∩N26(w) of PX has only finite number of
walls, and these walls can be calculated explicitly from the Weyl vector w of the
Conway chamber N26(w) inducing D. See [33] for the detail. A linear programming
plays an important role in this algorithm.

Definition 5.3. We say that the induced tessellation of PX is simple if the induced
chambers are congruent to each other by the action of O(SX ,PX).

When the induced tessellation of PX is simple, we can calculate the shape of NX
by means of this tessellation. This method was contrived by Borcherds [2], [3], and
the automorphism groups Aut(X) of many K3 surfaces X have been calculated by
this method.

Remark 5.4. Borcherds’ method is regarded as a calculation of Aut(X) by a gener-
alization of “the K3 surface” X26 to X, that is, we regard the embedding SX ↪→ L26

as the embedding induced by a “specialization” of X to X26.

5.1. Jacobian Kummer surface. Let

X := Km(Jac(C))

be the Kummer surface associated with the Jacobian variety Jac(C) of a complex
general genus 2 curve

C : y2 = (x− λ1) · · · (x− λ6).

The K3 surface X has three famous projective models.

• The K3 surface X is embedded into P3 as a quartic surface X4 ⊂ P3 with
16 ordinary nodes corresponding to the points of the 2-torsion subgroup of
Jac(C). This quartic surface is called the Kummer quartic surface.
• The dual X∨4 ⊂ (P3)∨ of the Kummer quartic surface X4 ⊂ P3 is also a

quartic surface with 16 ordinary nodes.
• The K3 surface X is embedded into P5 as a smooth (2, 2, 2)-complete in-

tersection X2,2,2 defined by

(5.1)

6∑
i=1

x2
i =

6∑
i=1

λix
2
i =

6∑
i=1

λ2
ix

2
i = 0.

The surface X2,2,2 contains 32 lines, which are the exceptional curves over
the ordinary nodes of X4 and of X∨4 .

The Néron–Severi lattice SX of X is of rank 17. Kondo [18] found a primitive
embedding SX ↪→ L26 such that PX is simply tessellated by induced chambers,
and using this embedding, he obtained the following:

Theorem 5.5. Every induced chamber D has 32 + 60 + 32 + 192 walls.
There exists a unique induced chamber D0 that contains the class h8 of a hyper-

plane section of X2,2,2 ⊂ P5. Then the 32 walls of D0 are defined by the classes of
the 32 lines on X2,2,2, and the group

Aut(X,D0) := { g ∈ Aut(X) | Dg
0 = D0 }

is equal to the projective automorphism group

Aut(X2,2,2) = { g ∈ Aut(X) | hg8 = h8 } ∼= (Z/2Z)5

of X2,2,2. For each of the other 60+32+192 walls w of D0, there exists an involution
gw ∈ Aut(X) that maps D0 to the induced chamber adjacent to D0 across the wall
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w. These automorphisms gw are classically known and described geometrically as
follows.

(a) 60 involutions are obtained as Hutchinson–Göpel involutions. See Hutchin-
son [13] and [14].

(b) 32 = 16 + 16 involutions are obtained as the deck-transformation of the double
covering X → P2 given by the projection with the center being an ordinary node
of X4 or of X∨4 .

(c) 192 involutions are obtained as Hutchinson–Weber involutions. See Hutchin-
son [15].

Corollary 5.6. The group Aut(X) is generated by Aut(X2,2,2) ∼= (Z/2Z)5 and
60 + 32 + 192 involutions described above.

Remark 5.7. The fact that the 192 involutions above are Hutchinson–Weber invo-
lutions was proved by Ohashi [27].

5.2. Fifteen nodal quartic surface. As is expected from Remark 5.4, Borcherds’
method is especially suitable for the analysis of the change of automorphism group
under generalization/specialization of K3 surfaces.

The surface X = Km(Jac(C)) is obtained as the minimal resolution of a quartic
surface X4 ⊂ P3 with 16 ordinary nodes (Kummer quartic surface), and it is clas-
sically known (see, for example, [12, Chapter 6]) that a Kummer quartic surface is
related to the line congruence of type (2, 2) in Grass(P1,P3). We generalize X to a
K3 surface X ′ that is the minimal resolution of a general quartic surface X ′4 with
15 ordinary nodes. This surface was investigated by Dolgachev [9] in the relation to
the line congruence of type (2, 3) in Grass(P1,P3). Using this result, we determined
Aut(X ′) in [10].

Compositing Kondo’s embedding SX ↪→ L26 with the primitive embedding
SX′ ↪→ SX induced by the specialization of X ′ to X, we obtain a primitive embed-
ding SX′ ↪→ L26. It turns out that this embedding also induces a simple tessellation
of PX′ , and we obtain the following:

Theorem 5.8. The automorphism group of X ′ is generated by

6 + 45 + 6 + 15 + 120 + 72

automorphisms, each of which is described explicitly and geometrically.

Example 5.9. Let p1, . . . , p5 be distinct ordinary nodes of the 15-nodal quartic
surface X ′4, no four of them are coplanar. Then we obtain a birational involution
g of X ′4 defined as follows. Let q be a general point of X ′4. There exists a unique
twisted cubic curve Γ in P3 passing through p1, . . . , p5 and q. Let q′ be the point
such that Γ ∩ X ′4 = {p1, . . . , p5, q, q

′}. Then the involution g interchanges q and
q′. Choosing suitable 5-tuples p1, . . . , p5 of ordinary nodes of X ′4, we obtain 72
generators of Aut(X ′) in Theorem 5.8.

Remark 5.10. Enumerating the faces of an induced chamber with codimension 2, we
also obtained a set of defining relations of Aut(X ′) with respect to the generators
given in Theorem 5.8.

Remark 5.11. In [35], we calculated the automorphism group Aut(X/R) of a certain
K3 surface X defined over a complete discrete valuation ring R of mixed character-
istics by comparing the automorphism groups of the special fiber and of the generic
fiber.
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5.3. Non-simple tessellation. For every complex K3 surface X, we can embed
SX into L26 primitively. Usually, however, the induced tessellation of PX is not
simple. In [33], Borcheds’ method is generalized for the case where the induced
tessellation of PX is not simple.

Let X be a singular K3 surface whose transcendental lattice is[
2 1
1 6

]
.

Then we have 1098 distinct types of induced chambers, and obtain a generating set
of Aut(X) consisting of 764 elements.

Recall that XFQ,0 is the complex Fermat quartic surface. We have observed that,
for XFQ,0, there exist more than 105 types of induced chambers, and we have not
yet obtained a generating set of Aut(XFQ,0).

6. Borcherds method for Enriques surfaces

We work over C. An involution ε of a K3 surface X is called an Enriques
involution if ε is fixed-point free, or equivalently, if the quotient surface Y := X/〈ε〉
is an Enriques surface. Ohashi [26] showed that the set of Enriques involutions of
a K3 surface X is a union of finitely many conjugacy classes of Aut(X).

Example 6.1. The Hutchinson–Göpel involutions and the Hutchinson–Weber in-
volutions on Km(Jac(C)) are Enriques involutions.

Let π : X → Y be the universal covering of an Enriques surface Y = X/〈ε〉.
Then the pull-back by π gives a primitive embedding

π∗ : SY (2) ∼= L10(2) ↪→ SX ,

where SY (2) is the lattice with the same underlying Z-module as SY and with the
intersection form being that of SY multiplied by 2. The image of π∗ is equal to the
invariant part { v ∈ SX | vε = v } of the action of the Enriques involution ε on SX .
Since π is étale, the orthogonal complement of the image of π∗ does not contain
any (−2)-vector. The following is due to Keum [16].

Theorem 6.2. An involution ε of a K3 surface X is an Enriques involution if and
only if the fixed sublattice { v ∈ SX | vε = v } of SX is isomorphic to L10(2) and its
orthogonal complement in SX contains no (−2)-vectors.

In a joint work with S. Brandhorst [4], we have classified all primitive embeddings
of L10(2) into L26.

Theorem 6.3. Up to the action of O(L10) and O(L26), there exist exactly 17
primitive embeddings

12A, 12B, 20A, . . . , 20F, 40A, . . . , 40E, 96A, 96B, 96C, infty

of L10(2) into L26.

Recall that the positive cone P26 of L26 is tessellated by Conway chambers. A
primitive embedding L10(2) ↪→ L26 induces a tessellation of the positive cone P10

of L10 that is mapped into P26 by L10(2) ↪→ L26. The following theorem is very
useful in the calculation of the automorphism group of an Enriques surface.

Theorem 6.4. Except for the embedding of type infty, the following hold.

(i) The induced tessellation on P10 is simple.
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No. name rt m4 og

1 12A D8 1376 229 · 37 · 53 · 72

2 12B A7 1824 223 · 36 · 52 · 72

3 20A D4 +D5 1760 225 · 37 · 52 · 7
4 20B 2D4 1888 229 · 34 · 5 · 7
5 20C 10A1 +D6 1632 228 · 36 · 53 · 7
6 20D A3 +A4 2016 216 · 36 · 53 · 7
7 20E 5A1 +A5 1952 220 · 37 · 53

8 20F 2A3 2080 223 · 34 · 52

9 40A 4A1 + 2A3 2016 225 · 35 · 5
10 40B 8A1 + 2D4 1760 230 · 36 · 5 · 7
11 40C 6A1 +A3 2080 220 · 35 · 5 · 7
12 40D 12A1 +D4 1888 228 · 35 · 52

13 40E 2A1 + 2A2 2144 216 · 36 · 52

14 96A 8A1 2144 228 · 33

15 96B 16A1 2016 231 · 35

16 96C 4A1 2208 222 · 35

17 infty 2272 226 · 32 · 5 · 7

Table 6.1. Primitive embeddings of L10(2) into L26

(ii) Each wall of every induced chamber is defined by a (−2)-vector r of L10.
(iii) For each wall D∩(r)⊥ of an induced chamber D with 〈r, r〉 = −2, the reflection

sr maps D to the induced chamber adjacent to D across the wall D ∩ (r)⊥.

Table 6.1 shows the 17 primitive embeddings of L10(2) into L26, and Table 6.2
shows properties of induced chambers.

• The name of the primitive embedding indicates the number of walls of an
induced chamber. For example, each induced chamber of the embedding
96A has 96 walls.

• The column rt in Table 6.1 shows the ADE-type of the set of (−2)-vectors
in the orthogonal complement ι⊥ of the image of the primitive embedding
ι : L10(2) ↪→ L26. For the embedding infty, the orthogonal complement
ι⊥ contains no (−2)-vectors (that is, Assumption 5.2 is not satisfied), and
the induced chamber has infinitely many walls.

• The column m4 in Table 6.1 shows the number of vectors v with 〈v, v〉 = −4
in the orthogonal complement ι⊥, and the column og gives the order of the
orthogonal group O(ι⊥) of ι⊥.

• Recall that the standard fundamental domain of the action of W (L10) on
P10 is bounded by 10 walls defined by (−2)-vectors that form the dual graph
in Figure 2.1. Since every wall of an induced chamber is defined by a (−2)-
vector, each induced chamber is a union of standard fundamental domains.
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No. name volume |aut| isom NK

1 12A 269824 22 I

2 12B 12142080 23 · 3 II

3 20A 64757760 23 · 3 V

4 20B 145704960 26 III

5 20C 777093120 23 · 3 · 5 20D VII

6 20D 777093120 23 · 3 · 5 20C VII

7 20E 906608640 23 · 3 · 5 VI

8 20F 2039869440 26 · 5 IV

9 40A 8159477760 27 · 3
10 40B 18650234880 27 · 32 40C

11 40C 18650234880 27 · 32 40B

12 40D 32637911040 25 · 32 · 5 40E

13 40E 32637911040 25 · 32 · 5 40D

14 96A 163189555200 213 · 3
15 96B 652758220800 212 · 33 96C

16 96C 652758220800 212 · 33 96B

17 infty ∞

Table 6.2. Induced chambers of P10

The column volume in Table 6.2 shows how many standard fundamental
domains are contained in an induced chamber.
• The column |aut| in Table 6.2 shows the order of the automorphism group

O(L10, D) := { g ∈ O(L10) | Dg = D }

of an induced chamber D in O(L10).
• Distinct embeddings can produce congruent induced chambers. The column
isom in Table 6.2 shows that, for example, two embeddings 20C and 20D

yield congruent induced chambers.
• Nikulin [24] and Kondo [17] classified Enriques surfaces Y with finite au-

tomorphism group. If Aut(Y ) is finite, then Y contains only finite number
of smooth rational curves. By the configuration of these smooth rational
curves, Enriques surfaces with finite automorphism group are divided into
7 classes I, II, . . . ,VII. These 7 configurations appear as the configurations
of (−2)-vectors defining walls of an induced chamber of P10. The column
NK in Table 6.2 shows this correspondence.

The induced chambers are much bigger than the standard fundamental domain ∆
of the action of W (L10) on P10, and hence we need only small number of copies
of chambers to describe the nef-and-big cone NY of an Enriques surface Y . For
example, let Y be a complex generic Enriques surface. We have NY = PY . By
Barth–Peters [1], the fundamental domain F of the action of Aut(Y ) on NY = PY
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number ε name

6 Hutchinson–Weber 20E

15 Hutchinson–Göpel 40A

10 in Aut(X2,2,2) 40C .

Table 7.1. Conjugacy classes of Enriques involutions

is a union of

|O(L10 ⊗ F2)| = 221 · 35 · 52 · 7 · 17 · 31 = 46998591897600

copies of ∆. If we use induced chambers of the embedding 96C, we can express F
as a union of

46998591897600

652758220800
= 72

copies of induced chambers.

7. Enriques surfaces covered by a Jacobian Kummer surface

We illustrate Borcherds’ method for Enriques surfaces by applying it to Enriques
surfaces covered by the Kummer surface

X = Km(Jac(C))

associated with the Jacobian variety Jac(C) of a general curve C of genus 2. Re-
call that Aut(X) was calculated by Kondo [18], as was explained in Section 5.1.
Ohashi [27] gave the complete classification of conjugacy classes of Enriques invo-
lutions in Aut(X), which had been conjectured by Mukai [21].

Theorem 7.1. There exist exactly 6 + 15 + 10 conjugacy classes of Enriques invo-
lutions in Aut(X). A representative of each conjugacy class is given in Table 7.1.

Remark 7.2. A representative of the conjugacy class in the third line of Table 7.1
is given as follows. The projective automorphism group Aut(X2,2,2) ∼= (Z/2Z)5

of the (2, 2, 2)-complete intersection X2,2,2 in P5 defined by (5.1) consists of the
involutions

(x1 : x2 : · · · : x6) 7→ (±x1 : ±x2 : · · · : ±x6).

This involution is fixed-point free if and only if there exist exactly three minuses in
(±x1 : ±x2 : · · · : ±x6), and hence there exist exactly ten Enriques involutions in
Aut(X2,2,2).

Kondo [18] used a primitive embedding ιX : SX ↪→ L26 to calculate Aut(X). Let
ε be an Enriques involution of X with the quotient morphism

π : X → Y = X/〈ε〉.
Then the composite of π∗ : SY (2) ↪→ SX and ιX : SX ↪→ L26 gives a primitive
embedding

ιY : SY (2) ∼= L10(2) ↪→ L26.

The type of this primitive embedding is given in Table 7.1. We investigate the
automorphism groups of these Enriques surfaces Y = X/〈ε〉. We have a canonical
isomorphism

Aut(Y ) ∼= Cen(ε)/〈ε〉,
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where Cen(ε) is the centralizer of ε in Aut(X). Therefore, to calculate Aut(Y ), it
is enough to calculate Cen(ε).

Remark 7.3. Mukai and Ohashi [22] investigated automorphisms of an Enriques
surface in the conjugacy class of of type 40A (an Enriques surface of Hutchinson–
Göpel type). See also [20].

Recall that h8 ∈ SX is the class of a hyperplane section of X2,2,2 ⊂ P5. Let DX

be the induced chamber in PX containing h8. (This induced chamber was denoted
by D0 in Section 5.1.) Let ε and π : X → Y = X/〈ε〉 be as above. We identify SY
(resp. PY ) with the invariant part of the action of ε on SX (resp. on PX). Then
the nef-and-big cone NY of Y is equal to the intersection PY ∩NX . Suppose that
ε′ = g−1εg is a conjugate of ε, where g ∈ Aut(X), and let π′ : X → Y ′ = X/〈ε′〉 be
the corresponding covering morphism. Then we have PY ′ = PgY . Recall that NX is
tessellated by the induced chambers Dg

X , where g runs through Aut(X). Therefore,
replacing ε with a conjugate of ε, we can and will assume that

DY := PY ∩DX

contains a non-empty open subset of PY , and hence DY is an induced chamber of
the primitive embedding ιY : SY (2) ↪→ L26. We put

Cen(ε,DY ) := { g ∈ Cen(ε) | Dg
Y = DY },

which is a finite subgroup of Cen(ε). We then put

Cen(ε,DY )|PY := { g|PY | g ∈ Cen(ε,DY ) },

where g|PY is the restriction of g to PY .

Definition 7.4. Let w = DY ∩ (r)⊥ be a wall of DY , and let r be the (−2)-vector
defining w. We say that w is an outer wall if the following mutually equivalent
conditions are satisfied.

• w is contained in a wall of NY ,
• the induced chamber of PY adjacent to DY across the wall w is not con-

tained in NY ,
• the (−2)-vector r is the class of a smooth rational curve on Y , and
• there exists a smooth rational curve C of X such that π∗(r) = [C] + [ε(C)].

Otherwise we say that w is an inner wall.

Definition 7.5. We say that a wall DX ∩ (v)⊥ of DX is perpendicular to DY if
the vector v ∈ SX ⊗Q defining DX ∩ (v)⊥ belongs to SY ⊗Q.

In the following, a configuration of (−2)-vectors in L10 is described by a pair
(Γ, µ), where Γ is a set of indexes γ of (−2)-vectors rγ , and µ : Γ × Γ → Z gives
the intersection pairing µ(γ, γ′) = 〈rγ , rγ′〉. The configuration of type τ means the
configuration of (−2)-vectors defining the walls of an induced chamber obtained by
the primitive embedding L10(2) ↪→ L26 of type τ .

7.1. An Enriques surface in the conjugacy class of type 20E. First we de-
scribe the configuration of type 20E. This configuration is isomorphic to the config-
uration of Nikulin–Kondo type VI (Fig. 6.4 of [17]). The description below of this
configuration was obtained in [36]. Let A be the set of subsets a of {1, . . . , 5} with
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|a| = 3. Let A1 and A2 be two copies of A with the natural bijection to A denoted
by a 7→ ā. We then put

Γ := A1 tA2,

and define a symmetric function µ : Γ × Γ → Z with µ(a, a) = −2 for all a ∈ Γ as
follows.

• Suppose that a, a′ ∈ A1 with a 6= a′. Then

µ(a, a′) =

{
1 if |a ∩ a′| = 1,

0 otherwise.

• Suppose that a, a′ ∈ A2 with a 6= a′. Then

µ(a, a′) =

{
1 if |a ∩ a′| = 2,

0 otherwise.

• Suppose that a ∈ A1 and a′ ∈ A2. Then

µ(a, a′) =

{
2 if ā = ā′,

0 otherwise.

Then (Γ, µ) defines the configuration of type 20E.

Remark 7.6. The sub-configuration (A1, µ|A1) of (Γ, µ) is isomorphic to the famous
Petersen graph, and the sub-configuration (A2, µ|A2) is isomorphic to the comple-
ment of the Petersen graph. The automorphism group of (Γ, µ) is equal to the
automorphism group of the Petersen graph, which is isomorphic to S5.

Let ε be a Hutchinson–Weber involution of X. Calculating the ADE-type of the
set of (−2)-vectors in the orthogonal complement ι⊥Y of the image of ιY , we see that
ιY is of type 20E. We assume that ε is the involution that maps DX to the induced
chamber of PX adjacent to DX , and let w := DX∩(vε)

⊥ be the wall of DX between
DX and Dε

X , that is, w is the wall in Theorem 5.5 (c). Then DY := PY ∩DX is
contained in w, andDY contains an interior point of w (as a subset of the hyperplane
(vε)

⊥). The group Cen(ε,DY ) is contained in Aut(X2,2,2)∪Aut(X2,2,2)ε. Looking
at all 32 + 32 elements of this set, we see that Cen(ε,DY ) is equal to {1, ε}, and
hence Cen(ε,DY )|PY is trivial.

In 20 walls of DY , 10 are outer and 10 are inner. There exists an indexing γ 7→ rγ
of the (−2)-vectors defining the walls DY ∩ (rγ)⊥ of DY by the set Γ = A1 t A2

above with the following properties.

• Suppose that γ ∈ A1. Then the wall DY ∩ (rγ)⊥ of DY is outer. There
exists a unique pair of lines C, ε(C) of X2,2,2 such that DY ∩ (rγ)⊥ is equal
to PY ∩DX ∩ ([C])⊥, and we have π∗(r) = [C] + [ε(C)].

• Suppose that γ ∈ A2. Then the wall DY ∩ (rγ)⊥ of DY is inner. There
exists a unique wall DX ∩(vγ)⊥ of DX such that the wall DY ∩(rγ)⊥ of DY

is equal to PY ∩DX ∩ (vγ)⊥. The wall DX ∩ (vγ)⊥ is perpendicular to DY ,
and corresponds to a Hutchinson–Göpel involution gγ of X (Theorem 5.5
(a)). The defining vector vγ is perpendicular to the defining vector vε of the
wall w. There exists exactly one element hγ in Aut(X2,2,2) = Aut(X,DX)
such that hγgγ commutes with ε. Then the restriction hγgγ |PY of hγgγ
to PY maps DY to the induced chamber adjacent to DY across the wall
DY ∩ (rγ)⊥. The automorphism hγgγ is of order 2, and the eigenvalues of
hγgγ |PY are 16(−1)4.
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Therefore the group Cen(ε) is generated by ε and 10 involutions hγgγ , where γ runs
through A2.

7.2. An Enriques surface in the conjugacy class of type 40A. We describe
the configuration of type 40A. Let C+ and C− be two copies of the cube I3 ⊂ R3,
where I = [0, 1] ⊂ R is the unit interval. Let σ be + or −. A vertex of Cσ is
written as ((ax, ay, az), σ), where ax, ay, az ∈ {0, 1}, and a face of Cσ is written
as (w = a, σ), where w ∈ {x, y, z} and a ∈ {0, 1}. Let V be the set of vertices
of C±, and let F be the set of faces of C±. Let P be the set of pairs of a face
f+ = (w = a+) of C+ and a face f− = (w = a−) of C− that are parallel. Each
element of P is written as (w = a+, w = a−), where w ∈ {x, y, z} and a± ∈ {0, 1}.
We have |V | = 16, |F | = 12, |P | = 12. We put

Γ := V t F t P,

and define a symmetric function µ : Γ × Γ → Z with µ(a, a) = −2 for all a ∈ Γ as
follows.

• Suppose that v1, v2 ∈ V with v1 6= v2. Then

µ(v1, v2) =


0 if v1v2 is an edge of C+ or C−,

4 if v1v2 is a diagonal of C+ or C−,

2 otherwise.

• Suppose that v ∈ V and f ∈ F . Then

µ(v, f) =

{
2 if v ∈ f ,

0 otherwise.

• Suppose that v ∈ V and p = (f+, f−) ∈ P . Then

µ(v, p) =

{
2 if v ∈ f+ ∪ f−,

0 otherwise.

• Suppose that f1, f2 ∈ F with f1 6= f2. Let fi be (wi = ai, σi), where
wi ∈ {x, y, z}, ai ∈ {0, 1}, and σi ∈ {+,−}. Then

µ(f1, f2) =

{
1 if σ1 6= σ2 and w1 6= w2,

0 otherwise.

• Suppose that f = (w = a, σ) ∈ F and p = (f ′+, f
′
−) ∈ P . Let f̄ be the

unique face of Cσ that is disjoint from f . Then

µ(f, p) =

{
2 if f̄ = f ′+ or f̄ = f ′−,

0 otherwise.

• Suppose that p1, p2 ∈ P with p1 6= p2. Let faces(pi) denote the set of 2
faces contained in pi, and let verts(pi) denote the set of 8 vertices contained
in the two faces of pi.

µ(p1, p2) =


2 if verts(p1) ∩ verts(p2) = ∅,
0 if faces(p1) ∩ faces(p2) 6= ∅,
1 otherwise.

Then (Γ, µ) defines the configuration of type 40A.
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Remark 7.7. The automorphism group Aut(Γ, µ) is of order 768, and V, F, P are
the orbits of the action of Aut(Γ, µ) on Γ. Let V+ and V− be the set of vertices of
C+ and of C−, respectively. We regard each of V± as a graph with edges being the
edges of the cube. The automorphism group Aut(V+) of the graph V+ is of order
48. The stabilizer subgroup Stab(V+) of V+ in Aut(Γ, µ) is of index 2, the natural
homomorphism Stab(V+) → Aut(V+) is surjective, and its kernel is isomorphic to
(Z/2Z)3 acting on V− as ((ax, ay, az),−) 7→ ((±ax,±ay,±az),−).

Let ε be a Hutchinson–Göpel involution of X. Calculating the ADE-type of
the set of (−2)-vectors in ι⊥Y , we see that ιY is of type 40A. As in the previous
section, we assume that ε maps DX to the induced chamber of PX adjacent to DX

across the wall w := DX ∩ (vε)
⊥, that is, w is a wall in Theorem 5.5 (a). Then

DY := PY ∩DX is an induced chamber of PY , and DY is contained in w. Moreover
DY contains an interior point of w (as a subspace of the hyperplane (vε)

⊥).
The group Cen(ε,DY ), which is a subset of Aut(X2,2,2) ∪ Aut(X2,2,2)ε, is iso-

morphic to (Z/2Z)4, and the group Cen(ε,DY )|PY is isomorphic to (Z/2Z)3. The
eigenvalues of a non-trivial element of Cen(ε,DY )|PY are 16(−1)4.

Remark 7.8. In [22], it was shown that the action of Cen(ε,DY )|PY ∼= (Z/2Z)3

characterizes the Enriques surfaces of Hutchinson–Göpel type.

In the 40 walls of DY , 20 are outer and 20 are inner. There exists an indexing
γ 7→ rγ of the (−2)-vectors defining the walls of DY by the set Γ = V tF tP above
with the following properties. Let V0 (resp. V1) be the subset of V consisting of
((ax, ay, az),±) such that ax + ay + az is even (resp. odd).

• Suppose that γ ∈ V0. Then the wall DY ∩ (rγ)⊥ is inner. There exists a
unique wall DX ∩ (vγ)⊥ of DX such that DY ∩ (rγ)⊥ = PY ∩DX ∩ (vγ)⊥.
We have 〈vε, vγ〉 = 0. This wall DX ∩ (vγ)⊥ is perpendicular to DY , and
corresponds to an involution gγ ∈ Aut(X) obtained by the projection from
an ordinary node of X4 or of X∨4 (Theorem 5.5 (b)). The involution gγ
commutes with ε, and its restriction gγ |PY to PY maps DY to the induced
chamber adjacent to DY across the wall DY ∩ (rγ)⊥. The eigenvalues of
gγ |PY are 19(−1)1. Hence gγ ∈ Cen(ε) induces a numerically reflective
involution [21] on Y .

• Suppose that γ ∈ V1. Then the wall DY ∩ (rγ)⊥ is outer. There exists
a unique line C of X2,2,2 such that DY ∩ (rγ)⊥ = PY ∩ DX ∩ ([C])⊥ and
π∗(r) = [C] + [ε(C)]. The curve ε(C) is of degree 5 with respect to h8.

• Suppose that γ ∈ F . Then DY ∩ (rγ)⊥ is outer. There exists a unique pair
of lines C, ε(C) of X2,2,2 such that DY ∩(rγ)⊥ is equal to PY ∩DX∩([C])⊥,
and we have π∗(r) = [C] + [ε(C)].

• Suppose that γ ∈ P . Then DY ∩ (rγ)⊥ is inner. There exists a unique wall
DX ∩ (vγ)⊥ of DX such that DY ∩ (rγ)⊥ = PY ∩ DX ∩ (vγ)⊥. We have
〈vε, vγ〉 = 0. This wall DX∩(vγ)⊥ is perpendicular to DY , and corresponds
to a Hutchinson–Göpel involution gγ (Theorem 5.5 (a)). The involution gγ
commutes with ε, and gγ |PY maps DY to the induced chamber adjacent
to DY across DY ∩ (rγ)⊥. The eigenvalues of gγ |PY are 16(−1)4.

Therefore Cen(ε) is generated by a subgroup of Aut(X2,2,2) of order 24, eight in-
volutions associated with projections from ordinary nodes of X4 or of X∨4 , and 12
Hutchinson–Göpel involutions.
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7.3. An Enriques surface in the conjugacy class of type 40C. We describe
the configuration of type 40C. We put F := {1, 2, 3, 4}. Let P be the set F×F with
the projections pr1 : P → F and pr2 : P → F , and let B be the set of bijections
f : F → F . We put

Γ := P tB.
We define a symmetric function µ : Γ × Γ → Z with µ(a, a) = −2 for all a ∈ Γ as
follows.

• Suppose that p, p′ ∈ P with p 6= p′. Then

µ(p, p′) =

{
1 if pr1(p) = pr1(p′) or pr2(p) = pr2(p′),

0 otherwise.

• Suppose that p ∈ P and f ∈ B. Then

µ(p, f) =

{
2 if f(pr1(p)) = pr2(p),

0 otherwise.

• Suppose that f, f ′ ∈ B with f 6= f ′. Then γ := ff ′−1 is a permutation
of F . Let τ(γ) denote the lengths of cycles in the cycle decomposition of
γ ∈ S4. Then

µ(f, f ′) =


2 if τ(γ) = (4),

2 if τ(γ) = (2, 2),

1 if τ(γ) = (3, 1),

0 if τ(γ) = (2, 1, 1).

Remark 7.9. The group Aut(Γ, µ) is isomorphic to (S4 ×S4) oC2, which acts on
P in the natural way.

Let ε be an Enriques involution belonging to Aut(X2,2,2) = Aut(X,DX) (see
Remark 7.2). Then DY := PY ∩ DX is an induced chamber of ιY , and since
hε8 = h8, the class h8 is an interior point of DY . The group Cen(ε,DY ) is equal
to Aut(X2,2,2), and Cen(ε,DY )|PY is isomorphic to (Z/2Z)4. The eigenvalues of 6
elements of Cen(ε,DY )|PY are 14(−1)6, whereas the eigenvalues of 9 elements of
Cen(ε,DY )|PY are 16(−1)4.

In the 40 walls of DY , 16 are outer and 24 are inner. There exists an indexing
γ 7→ rγ of the (−2)-vectors defining the walls of DY by the set Γ = P t B above
with the following properties.

• Suppose that γ ∈ P . Then DY ∩ (rγ)⊥ is outer. There exists a unique pair
of lines C, ε(C) of X2,2,2 such that DY ∩ (rγ)⊥ = PY ∩DX ∩ ([C])⊥, and
we have π∗(r) = [C] + [ε(C)].

• Suppose that γ ∈ B. Then DY ∩ (rγ)⊥ is inner. There exists a unique wall
DX ∩ (vγ)⊥ of DX such that DY ∩ (rγ)⊥ = PY ∩ DX ∩ (vγ)⊥. This wall
DX∩(vγ)⊥ is perpendicular to DY , and corresponds to a Hutchinson–Göpel
involution gγ (Theorem 5.5 (a)). The involution gγ commutes with ε, and
gγ |PY maps DY to the induced chamber adjacent to DY across DY ∩(rγ)⊥.
The eigenvalues of gγ |PY are 16(−1)4.

Therefore the group Cen(ε) is generated by Aut(X2,2,2) and 24 Hutchinson–Göpel
involutions.
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Remark 7.10. In [38], we have determined conjugacy classes of Enriques involutions
of singular K3 surfaces whose transcendental lattice is of discriminant ≤ 36.
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