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Abstract. In this report, we explain recent developments about the representation
theory of preprojective algebras, and its connection to path algebras and the Coxeter
groups. In particular, we discuss our recent results based on joint work with Hugh
Thomas [MT].

1. Introduction

Let ∆ be a simply laced Dynkin diagram andQ a quiver whose underlying graph is ∆. In
[G], Gabriel gave a close relationship between the representation theory of Q and the root
system of ∆. More precisely, he proved a bijection between indecomposable representations
of Q and positive roots of ∆. This result is one of the most fundamental connections
between the quiver representation theory and the root system. Recently, it has turned out
that preprojective algebras (Definition 2.3) allow us to give a stronger and more direct
connection. Indeed, the preprojective algebra, which unifies all the path algebras of quivers
whose underlying graph is ∆, gives a representation-theoretical interpretation of the Weyl
group W of ∆ (Theorem 2.7). This fact leads to the extensive study of connections
between representation theory of algebras and combinatorics of W (for example [AM,
AIRT, BIRS, GLS, IR1, IRRT, IRTT, L, ORT]). We also remark that the preprojective
algebra naturally appears in many branch of mathematics such as simple singularities,
quantum groups, quiver varieties and cluster algebras.

In this report, we explain some relationships between the representation theory of pre-
projective algebras, path algebras and the Coxeter groups. One of the key ingredients
is the notion of c-sortable elements (Definition 2.16), which are some elements of W . c-
sortable elements were originally defined in [R2] from the viewpoint of Cambrian lattices
[R1]. In particular, an explicit map πc : W → {c-sortable elements of W}, where c de-
notes the Coxeter element, plays a quite important role to relate c-sortable elements with
generalized associahedra and cluster algebras [FR, R3, RS1].

On the other hand, it is also shown that c-sortable elements are quite natural from
the viewpoint of quiver representations [IT, AIRT] (Theorem 2.21, Corollary 2.23). One
of the aims is to give a categorical interpretation of the above map πc in terms of the
representation theory of preprojective algebras and path algebras. Another aim is, using
this map, to give answers to questions proposed by Oppermann–Reiten–Thomas [ORT]
(Question 3.1). In [ORT], they gave a very fundamental bijection between the elements of
W and quotient-closed subcategories of the path algebra of Q (Theorem 2.14). Then it is
natural to ask a characterization of quotient-closed subcategories being extension-closed
(that is, torsion classes) and indeed they proposed conjectures about the problems [ORT,
Conjecture 11.1,11.2].

In this report, we will explain the background about these problems including necessary
definitions, examples and results, and we discuss methods of our proofs of conjectures.
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2. Preliminary

Notation. Throughout the report, let K be an algebraically closed field. For a K-
algebra Λ, we denote by modΛ the category of finite dimensional right Λ-modules.

In this section, we collect some basic definitions and results.

2.1. Path algebras and preprojective algebras.

Definition 2.1. A quiver Q = (Q0, Q1, s, t) is a quadruple consisting of two sets : Q0

(whose elements are called vertices) and Q1 (whose elements are called arrows), and two
maps s, t : Q1 → Q0 which associate to each arrow a ∈ Q1 its source s(a) ∈ Q0 and its
target t(a) ∈ Q0, respectively. Thus, a quiver is nothing but an oriented graph without
any restriction as to the number of arrows. A path of Q is a sequence

aℓ . . . a2a1,

where ak ∈ Q1 for all 1 ≤ k ≤ ℓ and t(ak) = s(ak+1) for each 1 ≤ k < ℓ. Moreover, we
define ei the path of length 0 which corresponds to each vertex i ∈ Q0.

Let Q be a quiver. The path algebra KQ of Q is the K-algebra whose underlying K-
vector space has as its basis the set of all paths of Q, and define the product for two paths
am · · · a1 and bn · · · b1 of KQ by

am · · · a1 · bn · · · b1 :=

{
am · · · a1bn · · · b1 (s(a1) = t(bn))

0 (s(a1) ̸= t(bn)).

In particular, we have e2i = ei for any i ∈ Q0, that is, it is an idempotent and we have
1 =

∑
i∈Q0

ei.

We give some examples of path algebras.

Example 2.2. (a) Let Q be the following quiver

Q = .!!

Then we have KQ ≃ K[x].
(b) Let Q be the following quiver

Q = (1
a // 2

b // 3).

Then we have

KQ ≃

 K 0 0
K K 0
K K K

 .

Moreover, we have

KQ/⟨ba⟩ ≃

 K 0 0
K K 0
0 K K

 ,

where ⟨ba⟩ denotes the ideal of KQ generated by ba.

Next we give a definition of preprojective algebras.
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Definition 2.3. Let Q be an acyclic quiver. The preprojective algebra of Q is the algebra

Λ = KQ/⟨
∑
a∈Q1

(aa∗ − a∗a)⟩

where Q is the double quiver of Q, which is obtained from Q by adding for each arrow
a : i→ j in Q1 an arrow a∗ : i← j pointing in the opposite direction.

The following lemma is well-known (see [Ri] for example).

Lemma 2.4. Let Q be an acyclic quiver and Λ the preprojective algebra of Q.

(a) Λ does not depend on the orientation of Q (namely it is determined by the under-
lying graph of Q).

(b) Λ is finite dimensional if and only if Q is a Dynkin (A,D,E) quiver.

Notation. Fix a vertex i ∈ Q0. Then we can define 1-dimensional simple module Si by

Si · ej =

{
K (i = j)

0 (i ̸= j).

Example 2.5. Let Q be the following quiver

Q = (1
a // 2

b // 3).

Then we have

Q = (1
a // 2
a∗
oo

b // 3
b∗
oo ).

In this case, e1Λ has K-basis {e1, a∗, a∗b∗} and, as a Λ-module, e1Λ has the following
composition series

0 ⊂M3 ⊂M2 ⊂M1 = e1Λ,

where M3 = S3, M2/M3 ≃ S2 and M1/M2 ≃ S1. Therefore we denote e1Λ by
S1
S2
S3

For simplicity, we denote Si by i. Then we can write e1Λ as
1
2
3
. In this notation, we

have

e1Λ⊕ e2Λ⊕ e3Λ =
1
2
3
⊕ 2

31
2
⊕ 3

2
1
.

2.2. A connection between preprojective algebras and the Coxeter groups. Let
Q be a finite connected acyclic quiver with vertices Q0 = {1, . . . , n}. We always assume
for simplicity that we have an arrow j → i, then j < i. Next we discuss an important
relationship between preprojective algebras and the Coxeter groups.

Definition 2.6. The Coxeter group W associated to Q is defined by the generators S :=
{s1, . . . , sn} and relations

• s2i = 1,
• sisj = sjsi if there is no arrow between i and j in Q,
• sisjsi = sjsisj if there is precisely one arrow between i and j in Q.

We denote by w a word, that is, an expression in the free monoid generated by si for
i ∈ Q0 and w its equivalence class in the Coxeter group W . We regard W as a poset
defined by the (right) weak order. An element c = s1 . . . sn is called a Coxeter element
(Note that we require that the order of the product of simple generators of c is compatible
with the orientation of the quiver).



4 YUYA MIZUNO

Let Λ the preprojective algebra of Q. We denote by Ii the two-sided ideal of Λ generated
by 1− ei, where ei (i ∈ Q0) is the path of length 0 (= a primitive idempotent) of Λ. We
denote by ⟨I1, . . . , In⟩ the set of ideals of Λ which can be written as Iu1 · · · Iul

for some
l ≥ 0 and u1, . . . , ul ∈ Q0. Then we have the following result (see also [Mi, Theorem 2.14]
in the case of Dynkin).

Theorem 2.7. [BIRS, Theorem III.1.9] There exists a bijection W → ⟨I1, . . . , In⟩. It is
given by w 7→ Iw = Iul

· · · Iu1 for any reduced expression w = su1 · · · sul
.

Note that the product of ideals is taken in the opposite order to the product of expression
of w. This is just because we follow the convention of [ORT, AIRT].

The following result shows that the object Iw is quite natural and important from the
viewpoint of tilting theory (we refer to [IR2] and its literature for tilting and support
τ -tilting theory).

Theorem 2.8. [BIRS, Theorem III.1.6][Mi, Theorem 2.2].

(a) Let Λ be the preprojective algebra of a non-Dynkin quiver Q and tiltΛ the set
of isoclasses of basic tilting Λ-modules. Then the map w 7→ Iw gives an order-
reversing injection from W to tiltΛ.

(b) Let Λ be the preprojective algebra of a Dynkin quiver Q and sτ -tiltΛ the set of
isoclasses of basic support τ -tilting Λ-modules. Then the map w 7→ Iw gives an
order-reversing bijection from W to sτ -tiltΛ.

Example 2.9. Take i ∈ Q0. Then, for X ∈ modΛ, XIi is the minimum amongst sub-
module Y of X such that any composition factor of X/Y has the form Si (that is, the
action of Ii delete i-top of X). Note that the Hasse quiver of sτ -tiltΛ coincides with the
mutation quiver of sτ -tiltΛ [AIR, Corollary 2.34].

(a) Let Λ be the preprojective algebra of type A2. In this case, the Hasse quiver of
sτ -tiltΛ is given as follows.

1
2 1

I1 // 1
I2

��<
<<

<<
<<

1
2
2
1

I2
>>||||||

I1   B
BB

BB
B

0

2 2
1 I2

/ / 2

I1

AA�������

Here we write a direct sum X ⊕ Y by X Y . Note that Ii denotes a left multi-
plication (not right multiplication).

(b) Let Λ be the preprojective algebra of type A3. In this case, the Hasse quiver of
sτ -tiltΛ is given as follows
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1 2
2 1
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OOO
OO
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33
33

33
33

33
33

33
33
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2 1 2
3 2 1

66nnnnnnnnnn

''OO
OOO

OOO
OO

1
2 1

��9
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99
99
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1
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88ppppppppp

1 2
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3 2 1

??�������������

  A
AA
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AA

AA
AA

A
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3 2 1
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��6
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66
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2 1

��;
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;;
;;
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1

��-
--
--
--
--
--
-
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3 2 1

77ooooooooo
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44
44

44
44

44
44

44
44

1 2 3
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CC����������

��7
77

77
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7

// 1 3
2 31 2
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>>}}}}}}}}}}}}
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AA
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AA

AA
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A

2
2 13 2
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3 1

AA���������������

��;
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;;
;;

;;
;;

;;
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Remark 2.10. There is some generalization of Theorem 2.8 to non-simply laced Dynkin
cases by Fu-Geng [FG] and Murakami [Mu].

Remark 2.11. A relationship with the construction of quiver varieties are explained in
[ST].

2.3. Results by Oppermann–Reiten–Thomas. Next we briefly explain a main result
of [ORT], which gives a fundamental connection between path algebras, preprojective
algebras and the Coxeter groups.

Definition 2.12. Let Λ be the preprojective algebra of Q. For a Λ-module X, we denote
by XKQ the KQ-module by the restriction, that is, we forget the action of the arrows

a∗ ∈ Q. We denote by addXKQ the full subcategories of modKQ whose objects are direct
summands of finite direct sums of copies of XKQ. Moreover we associate the subcategory

resX = addXKQ

∩
modKQ.

In the case of non-Dynkin quiver, we denote by resX the additive category generated by
resX together with all non-preprojective indecomposable KQ-modules (Note that in the
case of Dynkin quiver, all modules are preprojective modules. We refer to [ASS, VIII] for
the notion of preprojective modules).
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Example 2.13. Let Q be the following quiver

1 // 2 // 3.

Then KQ = 1 ⊕ 2
1
⊕ 3

2
1

(Note that our convention is different from [ASS] but the

same as [ORT, AIRT]) and the preprojective algebra Λ =
1
2
3
⊕ 2

31
2
⊕ 3

2
1
. Then res(Λ) =

add{1, 2, 3, 2
1 ,

3
2 ,

3
2
1
} (in this way, we always obtain all preprojective KQ-modules as res(Λ):

this is why we call Λ preprojective algebras).

For example, I1I3 = 2
3
⊕ 2

31
2
⊕ 2

1
and res(I1I3) = add{2, 3, 2

1 ,
3
2 }.

Consider the infinite word c∞ = c c c . . . , where c = s1 . . . sn. For w, we take the lexi-
cographically first reduced expression for w in c∞ (or equivalently, among all the reduced
expressions su1 . . . sul

for w in c∞, we choose the one such that su1 is as far to the left as pos-
sible in c∞, and, among such expressions, su2 is as far to the left as possible, and so on for
each suj ). It is uniquely determined and we denote it by w. Then we can identify c∞ with

indecomposable preprojective KQ-modules P1, . . . , Pn, τ
−P1, . . . , τ

−Pn, τ
−2P1, . . ., drop-

ping any τ iPj if it is zero, where Pi := eiKQ.
We call a subcategory A in modKQ cofinite if there are only finitely many indecompos-

able KQ-modules which are not in A (in the case of Dynkin quiver, cofinite is automatic).
Note that any cofinite quotient closed subcategory contains all the non-preprojective KQ-
modules [ORT, Proposition 2.2]. Then we have the following result.

Theorem 2.14. [ORT] Let Q be an acyclic quiver and W the Coxeter group of Q. There
is a bijection

W −→ {cofinite quotient-closed subcategories of modKQ}.
(a) This bijection is obtained by removing from indecomposable preprojective KQ-

modules corresponding to w (via the above identification)
(b) This bijection is also obtained by the map w 7→ resIw.

Thus we have two maps : (a) uses combinatorics of the Auslander-Reiten quiver and
(b) uses the representation theory of preprojective algebras.

Example 2.15. (a) Let Q = (1 → 2 → 3). Then the AR quiver of modKQ is given
by

3
2
1

��<
<<

2
1

@@���

""E
EE

3
2

##F
FF

1

<<yyy
2

<<yyy
3 .

For example, take w = s1s3 = s3s1. Then w = s1s3 and hence the correspond-

ing indecomposable modules are {1, 3
2
1
}. Thus the subcategory add{2, 3, 2

1 ,
3
2 },

which was obtained by removing {1, 3
2
1
} from all KQ-modules, is quotient-closed

(Theorem 2.14 (a)). On the other hand, one can obtain the same category as
resIw (Theorem 2.14 (b) and Example 2.13). For example, if w = s2s3s1s2, then
resIw = add{1, 3} is quotient-closed.
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(b) Let Q be the following quiver

2
%%JJ

JJ

1

::uuuu // 3.

We identify the infinite word c∞ = s1s2s3s1s2s3s1s2s3 . . . with infinitely many
preprojective modules P1, P2, P3, τ

−1P1, τ
−1P2, τ

−1P3, τ
−2P1, τ

−2P2, τ
−2P3, · · · .

For example, take w = s1s3s2s3s1. Then the left most word w is s1s2s3s2s1.
Hence the corresponding indecomposable modules are {P1, P2, P3, τ

−1P2, τ
−2P1}

and hence the subcategory consists of modules of modKQ by removing these mod-
ules is quotient-closed, which is also obtained as resIw.

2.4. c-sortable elements.

Definition 2.16. Let c be a Coxeter element. Fix a reduced expression of c and regard c
as a reduced word. For w ∈ W , we denote the support of W by supp(w), that is, the set
of generators occurring in a reduced expression of w.

We call an element w ∈ W c-sortable if there exists a reduced expression of w of the
form w = c(0)c(1) . . . c(m), where all c(t) are subwords of c whose supports satisfy

supp(c(m)) ⊆ supp(c(m−1)) ⊆ . . . ⊆ supp(c(1)) ⊆ supp(c(0)) ⊆ Q0.

For the generators S = {s1, . . . , sn}, we let ⟨s⟩ := S \ {s} and denote W⟨s⟩ by the
subgroup of W generated by ⟨s⟩. For any w ∈ W , there is a unique factorization w =

w⟨s⟩ · w⟨s⟩ maximizing ℓ(w⟨s⟩) for w⟨s⟩ ∈W⟨s⟩ and ℓ(w⟨s⟩) + ℓ(w⟨s⟩) = ℓ(w).
Then we give the following map introduced by Reading [R2].

Definition 2.17. Let c be a Coxeter element and let s be initial in c. Then, define
πc(id) = id and, for each w ∈W , we define

πc(w) :=

{
sπscs(sw) if ℓ(sw) < ℓ(w)
πsc(w⟨s⟩) if ℓ(sw) > ℓ(w).

Then we have the following property.

Theorem 2.18. [R3, Proposition 3.2][RS2, Corollary 6.2] For any w ∈ W , πc(w) is the
unique maximal c-sortable element below w in the weak order.

Example 2.19. Let Q be the following quiver

1 // 2 // 3.

Then c = s1s2s3. For example s1s2s3s2 is a c-sortable element, and s1s2s3s2s1 is not.
Let w = s1s2s3s2s1. Then one can check that πc(w) = s1s2s3s2 and it is a unique

maximal c-sortable element below w.

2.5. c-sortable elements and finite torsion-free classes. Next we discuss a relation-
ship between sortable elements and the notion of torsion(-free) classes.

Definition 2.20. (a) We call a subcategory of modKQ torsion class (respectively,
torsion-free class) if it is closed under factor modules (respectively, submodules)
and extension-closed.

(b) We call a torsion class (or torsion-free class) finite if it has finitely many indecom-
posable modules.
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For a given torsion class T , we have the corresponding torsion-free class F as T ⊥ :=
{X ∈ modKQ | HomKQ(T , X) = 0}, and dually for a given torsion-free class F , we have

the corresponding torsion class ⊥F . We call such a pair of torsion class and torsion-free
class a torsion pair.

Next we recall layers following [AIRT]. For any reduced word w = su1 . . . sul
, we have

the chain of ideals

Λ ⊃ Iu1 ⊃ Iu2Iu1 ⊃ . . . ⊃ Iul
. . . Iu2Iu1 = Iw.

For j = 1, . . . , l, we define the layer

Lj
w = eujL

j
w :=

Iuj−1 . . . Iu1

Iuj . . . Iu1

.

Note that the layer Lj
w is an indecomposable Λ-module for any j = 1, . . . , l [AIRT].

Then, for a c-sortable word, we can give a torsion-free class, which is explicitly described
by layers, as follows.

Theorem 2.21. [AIRT, Theorems 3.3, 3.11 and Corollary 3.10] Let c be a Coxeter element

of Q and w = c(0)c(1) . . . c(m) = su1 . . . sul
a c-sortable word.

(a) Lj
w is a non-zero indecomposable KQ-module for all j = 1, . . . , l.

(b) We have add{L1
w, . . . , L

l
w} = res(Λ/Iw) and it is finite torsion-free class.

Example 2.22. Let Q be the following quiver

2
%%JJ

JJ

1

::uuuu // 3.

Then s1s2s3 is a Coxeter element of Q. Let w = s1s2s3s1s2s1. Then we have

L1
w = 1 , L2

w = 2
1 , L3

w =
3

1 2
1
, L4

w =
2 3
1 2

1
, L5

w =
3

1 2 3
1 2

1

, L6
w = 3

1 .

Hence we have
add{L1

w, . . . , L
l
w} = res(Λ/Iw).

Therefore, Theorem 2.21 implies that a c-sortable element gives a finite torsion-free
class. Conversely, any finite torsion-free classes of modKQ is given by a c-sortable element
[AIRT, Theorem 3.16].

Thus, we provide the following correspondence, which is also shown in [T].

Corollary 2.23. The map w 7→ res(Λ/Iw) gives a bijection

{c-sortable elements} −→ {finite torsion-free classes of modKQ}.

Remark 2.24. Many other interesting relationship with sortable elements are discussed
in [IT, AIRT].

3. Our results

Let Q be a finite acyclic quiver, Λ the preprojective algebra of Q, W the Coxeter group
of Q and c the Coxeter element of W (which depends on the orientation of Q).

In this section, we explain our main results of [MT]. Our investigation has one of its
primary origins in the following natural questions and the related conjectures posed in
[ORT, Conjecture 11.1,11.2].

Question 3.1. (a) When is resIw a torsion class of modKQ for w ∈W ?
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(b) When resIw is a torsion class, how can we relate w to a c-sortable element x which
provides the corresponding finite torsion-free class res(Λ/Ix) ?

With regard to this question, we note that, for a given finite torsion-free class, the
corresponding torsion class is not necessary cofinite in the case of non-Dynkin quivers,
and hence it is not necessary the form resIw in general. It is easy check that a finite
torsion-free class consists of preprojective modules if and only if the corresponding torsion
class is cofinite. Therefore, it is natural to give a characterization of a c-sortable element x
when res(Λ/Ix) consists of preprojective modules. For this purpose, we give the following
definition.

Definition 3.2. Let Q is a non-Dynkin quiver. A c-sortable element x is called bounded
if there exists a positive integer N such that x ≤ cN . If Q is a Dynkin quiver, then we
regard any c-sortable element as bounded. We denote by bc-sortW the set of bounded
c-sortable elements.

Example 3.3. (a) Let Q be the following quiver

1 // 2 //// 3.

Because

c3 = s1s2s3s1s2s3s1s2s3

= s1s2s3s1s2s1s3s2s3

= s1s2s3s2s1s2s3s2s3,

we have s1s2s3s2 ≤ c3 and hence s1s2s3s2 is bounded c-sortable.
(b) Let Q be the following quiver

2
%%JJ

JJ

1

::uuuu // 3.

Then one can check that s1s2s3s2 is not bounded c-sortable.

Then we give the following lemma.

Lemma 3.4. Let x be a c-sortable element. Then the following are equivalent.

(a) x is bounded c-sortable.
(b) Any module of res(Λ/Ix) is a preprojective module.
(c) The corresponding torsion class (res(Λ/Ix))

⊥ is cofinite.

Thus, bounded c-sortable elements are essential objects from the viewpoint of Question
3.1. To give a complete answer to the question, we also introduce the following terminology.

Definition 3.5. Let x be a c-sortable element. If there exists a maximum element amongst
{w ∈W | πc(w) = x}, then we denote it by x̂c = x̂ and call it c-antisortable, following the
definition from [RS1]. We denote by c-antisortW the set of c-antisortable elements of W .

Example 3.6. (a) Let Q be the following quiver

1 // 2 //// 3.

Take a c-sortable element x = s1s2s3s2. Then one can check that x̂ = s1s2s3s2s1.
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(b) Let Q be the following quiver

2
%%JJ

JJ

1

::uuuu // 3.

Take a c-sortable element x = s1s2s3s2. Consider the following infinite word

s1s2s3s2s1s3s2s1s3s2s1s3s2 · · · .

Then from the word, we can take an arbitrary large element w such that πc(w) = x.
Thus, x̂ does not exist.

Using the above terminology, we obatin the following consequences and give an answer
to Question 3.1.

Theorem 3.7. We have the following commutative diagram of bijections:

{cofinite torsion pairs of modKQ}
jj

**VVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVVV
V44

ttiiii
iiii

iiii
iiii

iiii
iiii

iii
(resIx̂, res(Λ/Ix))

bc-sortW
(̂−) // c-antisortW

πc(−)
oo

x x̂

In particular, a c-sortable element x is bouded if and only if it admits a maximum element
in {w ∈W | πc(w) = x}.

Thus, the answer of Question 3.1 is given by the notion of c-antisortable elements and

the map πc(−) and (̂−). Note that each category of (resIx̂, res(Λ/Ix)) can be explicitly
described in terms of the Coxeter group (Theorem 2.14 and 2.21). As a consequence of
the above results, we establish a proof of [ORT, Conjecture 11.1,11.2].

Example 3.8. (a) Let Q = (1→ 2→ 3). Then the AR quiver of modKQ is given by
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1

��<
<<
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2
1

??~~~~

!!C
CC

3
2

  @
@@

@?>=<89:;1

=={{{{
2

>>~~~~ ?>=<89:;3

For example, we take a c-sortable element x = s1s3. Then we have the torsion-
free class res(Λ/Ix) = add{ 1 , 3 } whose modules are circled above. Then one can
check that the corresponding torsion class is add{ 21 , 2 } whose modules are squared
above. By Theorem 2.14, the torsion class is given as resIw for w = s1s3s2s1 and
the theorem implies that this element is x̂.

(b) Let Q = ( 1 // 2 //// 3) . Then the preprojective component of the AR quiver of

modKQ is given as the translation quiver. Thus it is given as the form
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For example, we take a c-sortable element x = s1s2s3s2, which is bounded c-
sortable. Then res(Λ/Ix) consists of the modules which are circled above. The
corresponding torsion class consists of the modules which are squared above and
all the rest. It is given as resIw for w = s1s2s3s2s1 and our theorem implies that
we have x̂ = s1s2s3s2s1.

Finally we explain our strategy for a proof of the theorem. The first step is a parametriza-
tion of torsion pairs of modΛ.

Proposition 3.9. For any w ∈W ,

(Fac(Iw), Sub(Λ/Iw))

is a torsion pair of modΛ. In particular, (Fac(Iw) ∩ modKQ, Sub(Λ/Iw) ∩ modKQ) is a
torsion pair of modKQ.

We denote by torfΛ (respectively, torfKQ) the set of torsion-free classes of modΛ
(respectively, modKQ). Then, there is a natural map from torfΛ to torfKQ, by tak-
ing the intersection to modKQ. The following result recognizes a categorical map of
πc : W → c-sortW , where c-sortW denotes c-sortable elements.

Theorem 3.10. We have the following commutative diagram :

W
πc(−) //

Sub(Λ/I−)

��

c-sortW

res(Λ/I−)

��
torfΛ

−∩modKQ // torfKQ

Then Question 3.1 can be explained in this way: Assume that resIw is a torsion class.
Then we can show that it is given as Fac(Iw) ∩ modKQ. Therefore the corresponding
torsion-free class is Sub(Λ/Iw) ∩ modKQ by Proposition 3.9. Thus Theorem 3.10 shows
that it is res(Λ/Iπc(w)), that is, we can relate w by πc to the c-sortable element which
provides the corresponding torsion-free class. Moreover, assume that there exists u ∈ W
with u > w and πc(u) = πc(w). Then by Theorem 2.14 and the above argument, we have

res(Iu) ⊃ FacIu ∩modKQ = ⊥(resΛπc(w)) = resIw.

Because res(Iu) (respectively, resIw) consists of the category which is obtained by removing
ℓ(u) (respectively, ℓ(w)) indecomposable KQ-modules from the preprojective modules by
Theorem 2.14, this is impossible. In this way, we can show that w is of maximal length
in {w ∈ W | πc(w) = x}, and indeed maximum element (but it is non-trivial). Thus we

conclude w = π̂c(w), that is, w is a c-antisortable element.
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