
TOWARD CRITERIA FOR K-STABILITY OF LOG
FANO PAIRS

KENTO FUJITA

Abstract. This is my proceedings of “64th Algebra Symposium”
at Tohoku university. In the proceedings, we give a simplification
for the proof of “a valuative criterion” for the uniform K-stability
of log Fano pairs.
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1. K-stability of log Fano pairs

We work over an arbitrary algebraically closed field k of characteristic
zero. Throughout this proceedings, we always assume that (X,∆) is an
n-dimensional log Fano pair, that is, X is a normal projective variety
over k and ∆ is an effective Q-Weil divisor with (X,∆) a klt pair and
L := −(KX+∆) an ample Q-divisor. (For the theory of minimal model
program, we refer the readers to [KM98].) We recall the K-semistability
and the uniform K-stability of (X,∆).

Definition 1.1 (see, e.g., [Tia97, Don02]). (1) The following data
• a normal projective variety X and a surjective morphism
p : X → P1,

• a p-semiample Q-line bundle L on X ,
• a Gm-action Gm y (X ,L) commuting with the action
Gm y P1

t with (a, t) 7→ at,
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• a Gm-equivariant isomorphism(
X \ X0,L|X\X0

)
≃
(
X × (P1 \ {0}), p∗1L

)
,

where X0 is the fiber of p at 0 ∈ P1,
is said to be a test configuration of (X,L). We simply say
that “(X ,L)/P1 is a test configuration of (X,L)”. For a test
configuration (X ,L)/P1 of (X,L), let ∆X be the Q-Weil divisor
on X defined by the closure of ∆× (P1 \ {0}).

(2) A test configuration (X ,L)/P1 of (X,L) is said to be trivial if
the ample model of L over P1 is Gm-equivariantly isomorphic
to (X × P1, p∗1L).

(3) (see [LX14]) A test configuration (X ,L)/P1 of (X,L) is said to
be special if L is ample over P1 and the pair (X ,∆X +X0) is a
plt pair.

(4) (see [Wan12, Oda13]) For a test configuration (X ,L)/P1 of
(X,L), theDonaldson-Futaki invariant DF∆(X ,L) of (X ,L)/P1

is defined as follows:

DF∆(X ,L) := n

n+ 1
· (L

·n+1)

(L·n)
+

(L·n · (KX/P1 +∆X ))

(L·n)
,

where KX/P1 := KX − p∗KP1 .

In the paper [Fuj19a], the Ding invariant, introduced by [Ber16] (see
also [Fuj18]), plays an important role.

Definition 1.2 (see [Ber16, Fuj18]). For a test configuration (X ,L)/P1

of (X,L), the Ding invariant Ding∆(X ,L) of (X ,L)/P1 is defined as
follows:

Ding∆(X ,L) := − (L·n+1)

(n+ 1)(L·n)
− 1 + lct

(
X ,∆X +D((X ,∆X ),L);X0

)
,

where D((X ,∆X ),L) is the Q-Weil divisor on X supported on X0 with

D((X ,∆X ),L) ∼Q −(KX/P1 +∆X )− L,
and lct is the log canonical threshold, that is,

lct
(
X ,∆X +D((X ,∆X ),L);X0

)
:= max{c ∈ R |

(
X ,∆X +D((X ,∆X ),L) + cX0

)
is a sub-lc pair}.

Definition 1.3. A log Fano pair (X,∆) is said to be K-semistable
(resp., Ding semistable) if DF∆(X ,L) ≥ 0 (resp., Ding∆(X ,L) ≥ 0)
holds for any test configuration (X ,L)/P1 of (X,L).

In the papers [Der16, BHJ17], they systematically treat the norm of
test configurations.
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Definition 1.4 (see [Der16, BHJ17]). For a test configuration (X ,L)/P1

of (X,L), let us consider the normalization of the graph
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of the rational map X × P1 99K X . The minimal norm (resp., the
non-archimedean J-norm) ∥(X ,L)∥m (resp., JNA(X ,L)) of (X ,L)/P1

is defined as follows:

∥(X ,L)∥m :=
(Π∗p∗1L ·Θ∗L·n)

(L·n)
− n(L·n+1)

(n+ 1)(L·n)
,

JNA(X ,L) :=
(Π∗p∗1L

·n ·Θ∗L)
(L·n)

− (L·n+1)

(n+ 1)(L·n)
.

Remark 1.5. (1) The definition of test configurations in [Fuj19a]
and the above definition differs. In [Fuj19a], we consider (X ,L)
over A1. If we canonically compactify (X ,L)/A1 over P1, then
we get the same notion.

(2) In [Fuj19a] and [BBJ15], we focused on JNA(X ,L). Recently, I
recognized that considering ∥(X ,L)∥m is more natural in order
to prove a “valuative criterion” for K-stability of log Fano pairs.
It is the purpose of the proceedings explaining this observation.

Definition 1.6. A log Fano pair (X,∆) is said to be uniformly K-
stable (resp., unifomrly Ding stable) if there exists δ ∈ (0, 1) such that
DF∆(X ,L) ≥ δ ·JNA(X ,L) (resp., Ding∆(X ,L) ≥ δ ·JNA(X ,L)) holds
for any test configuration (X ,L)/P1 of (X,L).

We recall basic results:

Proposition 1.7. Let (X ,L)/P1 be a test configuration of (X,L) with
L ample over P1.

(1) We have the inequalities

1

n
· JNA(X ,L) ≤ ∥(X ,L)∥m ≤ n · JNA(X ,L).

(2) We have ∥(X ,L)∥m ≥ 0, and equality holds if and only if
(X ,L)/P1 is trivial.

(3) We have DF∆(X ,L) ≥ Ding∆(X ,L), and equality holds if and
only if L ∼Q,P1 −(KX/P1 + ∆X ) and the pair (X ,∆X + X0) is
an lc pair. (In particular, we have DF∆(X ,L) = Ding∆(X ,L)
for any special test configuration.)
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Proof. (1) See [BHJ17, Proposition 7.8 and Remark 7.12].
(2) See [BHJ17] or [Der16].
(3) See [Ber16] or [Fuj18]. �

2. A valuative criterion and the purpose of this
proceedings

We recall “a valuative criterion” for the K-stability of log Fano pairs
introduced in [Li17] and [Fuj19a] independently.

Definition 2.1. Let F be a prime divisor over X, that is, there exists
a log resolution σ : X̃ → X of (X,∆) such that F is a prime divisor on
X̃. (The following definitions does not depend on the choice of σ.)

(1) Let A(F ) be the log discrepancy of (X,∆) along F , that is,
A(F ) := 1 + ordF (KX̃ − σ∗(KX +∆)).

(2) The divisor F is said to be dreamy if the graded k-algebra⊕
k,j≥0

H0(X̃, σ∗(krL)− jF )

is finitely generated, where r is some (hence, any) positive in-
teger with rL Cartier.

(3) For any x ∈ R≥0, let us set

vol(L− xF ) := volX̃(σ
∗L− xF )

(see [Laz04a, Laz04b]). We define

τ(F ) := min{τ ∈ R>0 | vol(L− τF ) = 0}.

(4) (see [BJ17]) We set

S(F ) :=
1

(L·n)

∫ ∞

0

vol(L− xF )dx.

(5) (see [Fuj19a, Li17]) We set

β(F ) := (L·n)(A(F )− S(F )),

j(F ) := (L·n)(τ(F )− S(F )).

(6) (see [Fuj19b]) We set

β̂(F ) :=
β(F )

A(F )(L·n)
= 1−

(
A(F )

S(F )

)−1

.

More generally, for a divisorial valuation v = c · ordF with c ∈ Q>0, we
naturally define A(v) := c ·A(F ), τ(v) := c · τ(F ) S(v) := c ·S(F ), etc.
See [Fuj19a] for detail.
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In [Fuj19a], I proved the following “valuative criterion” for the uni-
form K-stability of (X,∆). For the K-semistability, the result was
proved by [Li17] and [Fuj19a] independently.

Theorem 2.2 (see [Fuj19a]). The following are equivalent:

(1) (X,∆) is uniformly K-stable.
(2) There exists δ ∈ (0, 1) such that β(F ) ≥ δ · j(F ) holds for any

prime divisor F over X.
(3) There exists δ ∈ (0, 1) such that β(F ) ≥ δ · j(F ) holds for any

prime divisor F over X which is dreamy.

Nowadays, it has been known that the invariant β̂(F ), more precisely,
the invariant

A(F )

S(F )
,

is more important than β(F ) and j(F ). See, for example, [FO18, BJ17].
Actually, I proved the following result in [Fuj19b]:

Theorem 2.3 (see [Fuj19b]). The following are equivalent:

(1) (X,∆) is uniformly K-stable.

(2) There exists ε ∈ (0, 1) such that β̂(F ) ≥ ε holds for any prime
divisor F over X.

(3) There exists ε ∈ (0, 1) such that β̂(F ) ≥ ε holds for any prime
divisor F over X which is dreamy.

The purpose of this proceedings is to prove Theorem 2.3 directly, by
changing the original proof of Theorem 2.2 a bit.

Remark 2.4. It is more convenient in many situations that considering
not only divisorial valuations but also all valuations in order to consider
K-stability of (X,∆). Actually, in [BJ17], they showed that the uniform
K-stability of (X,∆) is equivalent to

inf
v

A(v)

S(v)
> 1,

where v runs through all valuations on X with A(v) < +∞. See [BJ17]
in detail.

3. From test configurations to β̂

Let (X ,L)/P1 be a test configuration of (X,L) with L ample over
P1 and X0 integral. As we have seen in [Fuj19a, Proposition 2.10], we
can naturally get the divisorial valuation vX0 on X obtained by the
restriction of the valuation ordX0 . The following theorem is important
in [Fuj19a].
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Theorem 3.1 (see [Fuj19a, Theorem 5.1]). We have

DF∆(X ,L) = A(vX0) · β̂(vX0) = A(vX0)− S(vX0).

The following theorem is important in this proceedings.

Theorem 3.2. We have

∥(X ,L)∥m = A(vX0) ·
(
1− β̂(vX0)

)
= S(vX0).

Proof. The proof is similar to the proof of [Fuj19a, Theorem 5.1]. Since
X0 is integral, we may assume that L = −(KX/P1 +∆X ). Let
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be the normalization of the graph. Set

B := KY/P1 +∆Y − Π∗(KX×P1/P1 +∆X×P1)

−
(
KY/P1 +∆Y −Θ∗(KX/P1 +∆X )

)
,

where ∆Y and ∆X×P1 are the strict transforms of ∆X . By [BHJ17,
Proposition 4.11], we get

ordX0 B = ordX0

(
KY/P1 +∆Y − Π∗(KX×P1/P1 +∆X×P1)

)
= A(vX0).

Therefore, we have

∥(X ,L)∥m = =
1

(L·n)

(
1

n+ 1
(L·n+1) + (Θ∗L·n · (Π∗p∗1L−Θ∗L))

)
= −DF∆(X ,L) + 1

(L·n)
(L·n ·Θ∗B)

= −A(vX0) · β̂(vX0) +
1

(L·n)
(L·n · A(vX0)X0)

= A(vX0) ·
(
1− β̂(vX0)

)
by Theorem 3.1. �
Remark 3.3. In [Fuj19a], I showed the equality

JNA(X ,L) = 1

(L·n)
· j(vX0).

Thanks to Theorem 3.2, it is more natural to focus on ∥(X ,L)∥m than

to focus on JNA(X ,L) in order to evaluate β̂(F ).
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4. The uniform K-stability and the uniform Ding stability

Let (X ,L)/P1 be a test configuration of (X,L) with L ample over
P1. In [Fuj19a, Section 3], I considered the behavior of the invariant

Ding∆(X ,L)− δ · JNA(X ,L),

under the processes of certain minimal model programs (MMP, in
short) achieved in the important paper [LX14]. In the proceedings,
we consider the behavior of the invariant

Ding∆(X ,L)− δ · ∥(X ,L)∥m.

Actually, the invariant also non-increases under the processes of certain
MMP in [LX14]. We briefly see the proof. The proof is more or less
same as the argument in [Fuj19a, Section 3].

Theorem 4.1 (cf., [Fuj19a, Theorem 3.1]). Let π : X lc → X be the log
canonical modification of (X ,∆X+X0), that is, the pair (X lc,∆X lc+X lc

0 )
is lc and KX lc/P1 + ∆X lc + X lc

0 is π-ample. Let E be the Q-divisor

supported on X lc
0 with

E ∼Q KX lc/P1 +∆X lc + π∗L.

(Of course, E is π-ample.) For any 0 < t ≪ 1 with t ∈ Q, let us set
the ample Q-line bundle

Lt := π∗L+ tE.

Then, for any δ ∈ [0, 1/n], we have

Ding∆(X ,L)− δ · ∥(X ,L)∥m ≥ Ding∆(X lc,Llc
t )− δ · ∥(X lc,Llc

t )∥m.

Proof. From the definition of E, we have

Dt := D((X lc,∆X lc ),Llc
t ) = −(1 + t)E.

Let X lc
0 =

∑p
i=1Ei be the irreducible decomposition and let us set

E =
∑p

i=1 eiEi. We may assume that e1 ≤ · · · ≤ ep. Under the setting,
we have

lct
(
X lc,∆X lc +Dt;X lc

0

)
= 1 + (1 + t)e1.

Let
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be the normalization of the graph. Moreover, let us set ϕt := Θ∗Llc
t

and ϕtriv := Π∗p∗1L. Then we have

Ding∆(ϕt) = − (ϕ·n+1
t )

(n+ 1)(L·n)
+ (1 + t)e1,

∥ϕt∥m =
1

(L·n)

(
(ϕtriv · ϕ·n

t )−
n

n+ 1
(ϕ·n+1

t )

)
.

Thus we get

(n+ 1)(L·n) ((Ding∆(ϕ0)− δ · ∥ϕ0∥m)− (Ding∆(ϕt)− δ · ∥ϕt∥m))
= −(ϕ·n+1

0 ) + (n+ 1)e1(L
·n)− δ(n+ 1)(ϕtriv · ϕ·n

0 ) + δn(ϕ·n+1
0 )

−
(
−(ϕ·n+1

t ) + (n+ 1)(1 + t)e1(L
·n)− δ(n+ 1)(ϕtriv · ϕ·n

t ) + δn(ϕ·n+1
t )

)
= (1− δn)

(
(ϕ·n+1

t )− (ϕ·n+1
0 )

)
− t(n+ 1)e1(L

·n)

+ δ(n+ 1)(ϕtriv · (ϕ·n
t − ϕ·n

0 ))

= (1− δn)
n∑

j=0

(
(ϕ·j+1

t · ϕ·n−j
0 )− (ϕ·j

t · ϕ·n+1−j
0 )− te1(L

·n)
)

+ δ(n+ 1)
n−1∑
j=0

(
(ϕtriv · ϕ·j+1

t · ϕ·n−1−j
0 )− (ϕtriv · ϕ·j

t · ϕ·n−j
0 )− te1(L

·n)
)

= (1− δn)t
n∑

j=0

(
ϕ·j
t · ϕ·n−j

0 ·Θ∗(E − e1X lc
0 )
)

+ δ(n+ 1)t
n−1∑
j=0

(
ϕtriv · ϕ·j

t · ϕ·n−1−j
0 ·Θ∗(E − e1X lc

0 )
)

≥ 0.

This completes the proof. �
Theorem 4.2 (cf. [Fuj19a, Theorem 3.2]). Assume that (X ,∆X+X0) is
lc. Let σ : X 0 → X be a Gm-equivariant small Q-factorial modification.
Fix l ≫ 0 such that

H0 :=
1

l + 1

(
lL0 − (KX 0/P1 +∆X 0)

)
is semiample and big over P1, where L0 := σ∗L. As in [LX14, Theorem
3], let us consider a (KX 0/P1 +∆X 0)-MMP

X 0 99K X 1 99K · · · 99K X k

over P1 with scaling H0. Set λ0 := l + 1 and

λj+1 := min{λ | KX j/P1 +∆X j + λHj is nef over P1},
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where Hj is the strict transform of H0 on X j. Then we get

l + 1 = λ0 > λ1 ≥ · · · ≥ λk > λk+1 = 1

(see [LX14, Theorem 3]). For any 0 ≤ j ≤ k−1 and λ ∈ [λj+1, λj]∩Q,
let us set

Lj
λ :=

1

λ− 1

(
KX j/P1 +∆X j + λHj

)
.

Moreover, let (X ac,Lac)/P1 be the ample model of (X k,Lk
λk
) over P1.

Then, for any δ ∈ [0, 1/n], we have

Ding∆(X ,L)− δ · ∥(X ,L)∥m ≥ Ding∆(X ac,Lac)− δ · ∥(X ac,Lac)∥m.

Proof. Let E be the Q-divisor on X 0 supported on X 0
0 such that E ∼Q

KX 0/P1 +∆X 0 +H0. Then we have

Dλ := D((X j ,∆Xj ),Lj
λ)

= − λ

λ− 1
Ej,

where Ej is the strict transform of E on X j. In order to prove Theorem
4.2, it is enough to show the inequality

Ding∆(X j,Lj
λj
)−δ·∥(X j,Lj

λj
)∥m ≥ Ding∆(X j,Lj

λj+1
)−δ·∥(X j,Lj

λj+1
)∥m

for any 0 ≤ j ≤ k − 1. Let
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be the normalization of the graph. Let Ej =
∑p

i=1Ei be the irreducible
decomposition and let us set Ej =

∑p
i=1 eiEi. We may assume that

e1 ≤ · · · ≤ ep. Moreover, let us set ϕλ := Θ∗Lj
λ and ϕtriv := Π∗p∗1L.

Then we have

Ding∆(ϕλ) = − (ϕ·n+1
λ )

(n+ 1)(L·n)
+

λ

λ− 1
e1.

Note that

ϕλj+1
− ϕλj

= −Dλj+1
+Dλj

=

(
λj+1

λj+1 − 1
− λj

λj − 1

)
Ej.
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Thus we have

(n+ 1)(L·n)
((
Ding∆(ϕλj

)− δ · ∥ϕλj
∥m
)
−
(
Ding∆(ϕλj+1

)− δ · ∥ϕλj+1
∥m
))

= −(ϕ·n+1
λj

) +
λj

λj − 1
(n+ 1)e1(L

·n)− δ(n+ 1)(ϕtriv · ϕ·n
λj
) + δn(ϕ·n+1

λj
)

−
(
−(ϕ·n+1

λj+1
) +

λj+1

λj+1 − 1
(n+ 1)e1(L

·n)− δ(n+ 1)(ϕtriv · ϕ·n
λj+1

) + δn(ϕ·n+1
λj+1

)

)
= (1− δn)

(
(ϕ·n+1

λj+1
)− (ϕ·n+1

λj
)
)
−
(

λj+1

λj+1 − 1
− λj

λj − 1

)
(n+ 1)e1(L

·n)

+ δ(n+ 1)(ϕtriv · (ϕ·n
λj+1

− ϕ·n
λj
))

=

(
λj+1

λj+1 − 1
− λj

λj − 1

)(
(1− δn)

n∑
j=0

(
ϕ·j
λj+1

· ϕ·n−j
λj

·Θ∗(E − e1X j
0 )
)

+ δ(n+ 1)
n−1∑
j=0

(
ϕtriv · ϕ·j

λj+1
· ϕ·n−1−j

λj
·Θ∗(E − e1X j

0 )
))

≥ 0.

This completes the proof. �

Theorem 4.3 (cf. [Fuj19a, Theorem 3.3]). Assume that (X ,∆X +X0)
is lc and L = −(KX/P1+∆X ). Assume also that there exists a birational
map

X 99K X s

over P1 such that (X s,−(KX s/P1 +∆X s))/P1 is a special test configura-
tion and the discrepancy of (X ,∆X ) along X s

0 is equal to zero. (By
[LX14, Theorem 4], such birational map always exists after a base
change of X over P1.) Then, for any δ ∈ [0, 1/n], we have

Ding∆(X ,L)− δ · ∥(X ,L)∥m ≥ Ding∆(X s,Ls)− δ · ∥(X s,Ls)∥m.

Proof. There exists the extraction π : X ′ → X of X s
0 and we have

KX ′/P1 +∆X ′ = π∗(KX/P1 +∆X ). Let

X × P1 YΠoo

Θ
��

Ξ // X s

X ′

be a common resolution of the base locus of birational maps. Set ϕ0 :=
Θ∗(−(KX ′/P1 +∆X ′)), ϕ1 := Ξ∗(−(KX s/P1 +∆X s)) and ϕtriv := Π∗p∗1L.
Let E be the Q-divisor on Y supported on Y0 with E ∼Q ϕ1−ϕ0. Since
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−E is Ξ-nef and Ξ-exceptional, E is effective by negativity lemma.
Therefore, we have

(n+ 1)(L·n) ((Ding∆(ϕ0)− δ · ∥ϕ0∥m)− (Ding∆(ϕ1)− δ · ∥ϕ1∥m))
= −(ϕ·n+1

0 )− δ(n+ 1)(ϕtriv · ϕ·n
0 ) + δn(ϕ·n+1

0 )

−
(
−(ϕ·n+1

1 )− δ(n+ 1)(ϕtriv · ϕ·n
1 ) + δn(ϕ·n+1

1 )
)

= (1− δn)
(
(ϕ·n+1

1 )− (ϕ·n+1
0 )

)
+ δ(n+ 1)(ϕtriv · (ϕ·n

1 − ϕ·n
0 ))

= (1− δn)
n∑

j=0

(
ϕ·j
1 · ϕ·n−j

0 · E
)
+ δ(n+ 1)

n−1∑
j=0

(
ϕtriv · ϕ·j

1 · ϕ·n−1−j
0 · E

)
≥ 0.

This completes the proof. �

Corollary 4.4 (cf. [Fuj19a, Corollary 3.4]). Take any δ ∈ [0, 1/n].
The following are equivalent:

(1) For any test configuration (X ,L)/P1, we have the inequality
DF∆(X ,L) ≥ δ · ∥(X ,L)∥m.

(2) For any test configuration (X ,L)/P1, we have the inequality
Ding∆(X ,L) ≥ δ · ∥(X ,L)∥m.

(3) For any special test configuration (X ,L)/P1, we have the in-
equality DF∆(X ,L) ≥ δ · ∥(X ,L)∥m.

Proof. Follows immediately from Theorems 4.1, 4.2 and 4.3. �

5. A simplified proof

We recall the following theorem:

Theorem 5.1 ([Fuj19a, Theorem 4.1]). Assume that there exists δ ∈
[0, 1) such that, for any test configuration (X ,L)/P1of (X,L), the in-
equality Ding∆(X ,L) ≥ δ · JNA(X ,L) holds. Then, for any prime
divisor F over X, we have β(F ) ≥ δ · j(F ).

Remark 5.2. One of the idea of the proof of Theorem 5.1, which was
already appeared in [Fuj18], is to consider a sequence of test configura-
tions and taking a kind of limit. The proof is technical and complicated.
It is an interesting problem to simplify the proof of the Theorem 5.1. In
particular, I want to rephrase Theorem 5.1 without using the language
of JNA(X ,L) and j(F ). More precisely, I want to get a direct proof of
Corollary 5.4.

We also recall the following easy lemma, proven by the log-concavity
of the volume function (and the restricted volume function).
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Lemma 5.3 (see [FO18, Lemma 1.2] and [Fuj19b, Theorem 2.3]). For
any prime divisor F over X, we have

1

n+ 1
τ(F ) ≤ j(F )

(L·n)
≤ n

n+ 1
τ(F ).

As a consequence, we have the following corollary.

Corollary 5.4. If there exists δ ∈ [0, 1) such that, for any test configu-
ration (X ,L)/P1 of (X,L), the inequality Ding∆(X ,L) ≥ δ · ∥(X ,L)∥m
holds. Then, for any prime divisor F over X, we have

β̂(F ) ≥ δ

n(n+ 1)
.

Proof. By Proposition 1.7 (1) and Theorem 5.1, we have β(F ) ≥ (δ/n)j(F ).
If τ(F ) ≤ A(F ), then we have

β̂(F ) ≥ 1−

(
A(F )
n

n+1
τ(F )

)−1

≥ 1

n+ 1

by Lemma 5.3. Thus we may assume that τ(F ) > A(F ). In this case,
by Lemma 5.3, we have

β̂(F ) ≥ δ

n
· j(F )

A(F )(L·n)
≥ δ

n(n+ 1)
· τ(F )

A(F )
>

δ

n(n+ 1)
.

Thus the assertion follows. �
As a consequence, although there is an unsatisfactory point (the

proof of Corollary 5.4), we can get a simple proof of Theorem 2.3.

Simplified proof of Theorem 2.3. By Corollary 4.4, we have already seen
that the following three conditions are equivalent:

(i) (X,∆) is uniformly K-stable.
(ii) (X,∆) is uniformly Ding stable.
(iii) There exists δ ∈ (0, 1) such that, for any special test configura-

tion (X ,L)/P1 of (X,L), we have DF∆(X ,L) ≥ δ · ∥(X ,L)∥m.
By Corollary 5.4, the condition (ii) implies that the condition (2) in
Theorem 2.3. Obviously, the condition (2) in Theorem 2.3 implies the
condition (3) in Theorem 2.3. By Theorems 3.1 and 3.2, the condition
(3) in Theorem 2.3 implies that the condition (iii). �

References

[BBJ15] R. Berman, S. Boucksom and M. Jonsson, A variational approach to the
Yau-Tian-Donaldson conjecture, arXiv:1509.04561v1.

[Ber16] R. Berman, K-polystability of Q-Fano varieties admitting Kähler-Einstein
metrics, Invent. Math. 203 (2016), no. 3, 973–1025.



K-STABILITY OF LOG FANO PAIRS 13

[BHJ17] S. Boucksom, T. Hisamoto and M. Jonsson, Uniform K-stability,
Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier
(Grenoble) 67 (2017), no. 2, 743–841.

[BJ17] H. Blum and M. Jonsson, Thresholds, valuations, and K-stability,
arXiv:1706.04548v1.

[Der16] R. Dervan, Uniform stability of twisted constant scalar curvature Kähler
metrics, Int. Math. Res. Not. IMRN 2016, no. 15, 4728–4783.

[Don02] S. Donaldson, Scalar curvature and stability of toric varieties, J. Differen-
tial Geom. 62 (2002), no. 2, 289–349.

[Fuj18] K. Fujita, Optimal bounds for the volumes of Kähler-Einstein Fano mani-
folds, Amer. J. Math. 140 (2018), no. 2, 391–414.

[Fuj19a] K. Fujita, A valuative criterion for uniform K-stability of Q-Fano vari-
eties, J. Reine Angew. Math. 751 (2019), 309–338.

[Fuj19b] K. Fujita, Uniform K-stability and plt blowups of log Fano pairs, Kyoto J.
Math. 59 (2019), no. 2, 399–418.

[FO18] K. Fujita and Y. Odaka, On the K-stability of Fano varieties and anti-
canonical divisors, Tohoku Math. J. 70 (2018), no. 4, 511–521.

[KM98] J. Kollár and S. Mori, Birational geometry of algebraic varieties, With the
collaboration of C. H. Clemens and A. Corti. Cambridge Tracts in Math., 134,
Cambridge University Press, Cambridge, 1998.

[Laz04a] R. Lazarsfeld, Positivity in algebraic geometry, I: Classical setting: line
bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete.
(3) 48, Springer, Berlin, 2004.

[Laz04b] R. Lazarsfeld, Positivity in algebraic geometry, II: Positivity for Vector
Bundles, and Multiplier Ideals, Ergebnisse der Mathematik und ihrer Gren-
zgebiete. (3) 49, Springer, Berlin, 2004.

[Li17] C. Li, K-semistability is equivariant volume minimization, Duke Math. J.
166 (2017), no. 16, 3147–3218.

[LX14] C. Li and C. Xu, Special test configuration and K-stability of Fano varieties,
Ann. of Math. 180 (2014), no. 1, 197–232.

[Oda13] Y. Odaka, A generalization of the Ross-Thomas slope theory, Osaka. J.
Math. 50 (2013), no. 1, 171–185.

[Tia97] G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent.
Math. 130 (1997), no. 1, 1–37.

[Wan12] X. Wang, Height and GIT weight, Math. Res. Lett. 19 (2012), no. 4,
909–926.

Department of Mathematics, Graduate School of Science, Osaka
University, Toyonaka, Osaka 560-0043, Japan

E-mail address: fujita@math.sci.osaka-u.ac.jp


