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THA VG L, RSN ML T, M 2EMT 2 ROGRESEAZ
HOUHT I Eicdh s, M HPSHEAERIL St DYAE spherical design & FEIXI, M 2% v
HORDOEEV D k HilyHEA2E () (Johnson 7YV ¥ L—va v A¥—2A4 J(v,k) &
HIEEILS) D IE combinatorial design & FFIXN S, Z O TIX, /&9, spherical
t-designs & & U8 combinatorial t-designs D& D MGEmOWINE %2, F6HI, FLERME, HEK
i, Fisher A, tight t-designs, ARHER & OBENE, & EZHOIIDORD,

RIZ, t-design DEEZ DA RYLRE L X Z U D TOWFEDOBUR (531 5 41T s
THZR D 720 D 222 Hulil) iR %, (Bannai-Bannai-Tanaka-Zhu, Design theory
from the viewpoint of algebraic combinatorics, Graphs and Combinatorics (2017) Z#.)

Bf2IC M 2% unitary group U(d) DD t-designs (unitary t-designs) 122V TR
%, ZOMERIVHOBTFEROZI CRICHAI N TREL, U(d) D t-design ZILHH DS
BEIC 2> T BIR, Z3UZ untary t-group EFFIEN S, fEED t > 2 12X L TD unitary
t-groups DED (WHOSTE CIIR#ELEEZEZ 6N TV LI THDDY), FHix d>5
DIRflE Guralnick-Tiep, Decompositions of small tensor powers and Larsen’s conjecture,
Rep. Theory (2005) THEICHIGNTWBE I %, F/o7d = 2,3,4 DEAHD DM
HHEETH 5 T & %, Bannai-Navarro-Rizo-Tiep, Unitary t-groups, arXiv:1810.02507 (to
appear in J. Math. Soc. Japan) (/8 L7z, £ Z DR 2T, # Sp(4,3) 2w
TDU(4) D unitary 4-design O BRI ZRERLIC S ) L 72 (Bannai-Nakahara-Zhao-Zhu,
On the explicit constructions of certain unitary ¢-designs, arXiv:1906.04583).
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THA 2 & ED (What is a design 7)

THA VHEROHNWIE, 525N M I LT M zaetke LTROAEMT 2 HR
HTEEA X (C M) ZH21F 52 L12dH 5. (The purpose of design theory is, for a given
space M, to find good finite subsets X that approximate the whole space M well.)

2T, Y, M ODERI S B XY M A3 Johnson association scheme J(v, k) @
LiteHEZ5. 22T, Juk) 3o lrok26RESV O kL HDILI S % 58550
FEORKZRT, J(v, k) FRERVICIINTRRE S, OETRE Sk x S,y 1T X 2 H 22
So/(SpxSy_p) ZERT. ZDEAITIE association scheme & FFIXN ZHEEDIA D, Johnson
association scheme J(v, k) &WHEN S,

DIT ¢t AR ET .,

EE. A t-TYA > (Spherical t-design) (Delsarte-Goethals-Seidel, 1977)
Let S ' = {(z1,29,...,7,) € R" | 23 + 23+ --- + 22 = 1} be the unit sphere. A finite
subset X of S™ ! is called a spherical t-design on S™71, if

1
G o, S0 = 157 DI

zeX

for all f(z) = f(x1,22,...,2,), polynomials of degree < ¢.

EE. #HEE t-TY A 2 (Combinatorial ¢-design) (a classical concept).
A subset X of (})(= J(v,k)) is called a combinatorial t-design (a t-(v, k, \) design), if

{A € X | T C A}| = M(=constant, indep. of the choice of T')

holds for all T € (Y),
BECREIRCRD3IDOMEZINOHKRS .

(i) What problems we are most interested in, in particular from the viewpoint of Alge-
braic Combinatorics. First, we will discuss this in the context of spherical t-designs and
combinatorial t-designs.

(Part I : Spherical ¢-designs & combinatorial ¢-designs (22> T DHF.)

(ii) What kinds of generalizations of t-design concept we would like to consider. (There
are generalizations in several different directions.)

(Part IT : t-design OWBRZ DML DILIRZEZ 5.)

(iii) Explanations of some new results, in particular on unitary ¢-designs.
(Part III : Unitary t-groups & unitary t-designs 122 T DT L WHFGHRDFEIN)



Part 1
B t-THA Y EHEEt-TH1Y

(Spherical t-designs and combinatorial t-designs)
I-1. ERE ¢-7H'1 > (Spherical t-designs)
(1) S ! D t-FHF A > Dl (Examples of spherical t-designs)

For n = 2, the t+ 1 vertices of a regular (¢ + 1)-gon inscribed in S*(C R?) form a ¢-design.
(So, we mostly consider the cases n > 3 in what follows.)

For n = 3, the set of vertices of the 5 regular polyhedrons inscribed in S? C R? becomes
a spherical t-design for the following .

e 4 vertices of a regular tetrahedron form a 2-design.

e 6 vertices of a regular octahedron form a 3-design.

e 8 vertices of a cube form a 3-design.

e 12 vertices of a regular icosahedronn form a 5-design.

e 20 vertices of a regular dodecahedron form a 5-design.

Question. Can you find spherical t-designs for bigger t in S2 ?
(I think you will find that this question is not so easy indeed.)

b H7efl E LT3,
en=8DLE, Eg-—FRD 20 DN — b Dafk (RS 1ICIEBEL
72H D) 1F spherical 7-design TH 5.
oen=24DLE, Leech IFD 196560 D min vectors DA (B 1 ICIERMLL
723 ?D) X spherical 11-design TH 5,
(For n = 8,n = 24, the 240 min. vectors of Eg-lattice and the 196560 min. vectors
of Leech lattice make a 7-design in S” and an 11-design in S?® respectively.)

RERLLITHLT, £F4KE%R n I LT, spherical t-designs in S"~! DFET 20 %
TR TE 208 ) DIFAMETIE 2, (ZHUSBIL TEgibT %)

AR, BTFZRAVWTORETY 1 > D

(constructions of spherical t-designs obtained from finite groups and lattices)

I -7 A4 v D% S OHMEBIORRIZ, PITO X9 ICHREEE X O+ 6 HRICH
55,
(a) G % FEIZEEE O(n) DHRIHTEE T3, ([EEORMAS Lz e R O G 12 X
28 X =2 ={29|ge G} L LTHON%.
(b) L C R" &+ (lattice) £ 5. L DRI /m D shell L, ={z €L |z -z=m}
»6 X ==Ly, ELTRG6NS,
(Many examples of spherical ¢-designs are obtained either as:
(a) an orbit of a finite group G C O(n), or



(b) a shell of a lattice L C R", i.e., X = {\/Lm:c |z € L, x-x=m} for a fixed m.)

LoL, LOEEIZEWT, (a) 2w TRHsNTwLHIE2Tt <19 (forn>3) T
HY, (b) ICEWTIFHSN TV 24134 Tt <11 (forany n > 2) TH 5,

(However, those known examples are always ¢t < 19 for (a) (for n > 3), ¢ < 11 for (b) (for
any n > 2).)

COZEIFHRREED 2 Vg2 HARICHKSZ D DZ2EZ T3 TIRRARDH 2
L) ZE2ERT S b,

Note that, for each of (a) and (b), it seems that

“ Whether t is always bounded by an absolute constant independent of n
in each of the cases (a) and (b) ”

is an interesting open problem.

AEEERE . AT THA Bl T RIS 72 2 & BRI D Lo a2, Thb
5, AREHAED 2V 32— P2 oo slEGE -7V A v 2EE T 5 2 LiF, kD
HRTELE b,
Many examples of combinatorial ¢-designs are obtained either as:

(a") an orbit of a finite permutation group G C S, or

(0') a shell of a (linear) code C' C (IF3)?, i.e., X = {support(x) | x € C, weight(x) = k}

for a fixed k.

However, for each of (a’) and (¥'), t is bounded by an absolute constant for all known
examples !

We can ask whether ¢ is always bounded by an absolute constant in each of the above
cases (a') and (V') ! ((d’) is answered yes, by using the classification of finite simple
groups, but (b') is still open, I believe.)

(2) IRME t-TYA > DFEMRE (the existence of spherical t-designs)

e There exist t-designs on S™! for any pair of n and ¢ !
(Seymour-Zaslavsky, Advances in Math., 1984)

e Many proofs are known, but they only show the existence, and good explicit
constructions are not yet known.

e The best existence result is due to Bondarenko-Radchenko-Viazovska (Annals of
Math.,2013) that shows the existence of ¢-designs with the sizes asymptotically the
same order as the best possible bound., if n is fixed and t — co. However, it seems
that if ¢ is fixed and n — oo, then good bounds are unknown. (This is an interesting
open problem.)



e Most of known existence proofs use the continuous property of real numbers.
A new existence proof was obtained by Zhen Cui, Jiacheng Xia, and Ziqing Xiang:
”Rational designs” (Advances in Math., 2019).

(3) ¥RE t-TY1 > DEFERNGEKICDWT (Explicit constructions of
spherical t-designs)

e Some are known (Kuperberg, 2005, for n = 3). See also, for n = 3, | X| = (¢t + 1)?
with ¢ < 100 (Chen-Frommer-Lang, 2011)

e Ziqing Xiang: Explicit spherical designs, (preprint, 2018) gives a more general
explicit constructions. (However, note that It is a delicate question what are good
explicit constructions. Good explicit constructions are yet to be given !)

It is easy to see that, if X C S™~!is a spherical t-design, then for any orthogonal transfor-
mation g € O(n), X9 C 8" ! is a spherical t-design. Moreover, if X; and X, are spherical
t-designs, then X; U X5 is a spherical ¢t-design.

So, we are naturally interested in the spherical t-designs of small sizes.

Problems.
(i) Are there any natural theoretical lower bounds of the size of spherical ¢-designs on
S™=1? (Yes. Fisher type inequality below.)

(i) For a given pair of ¢ and n, determine the spherical ¢-designs of the smallest size
(“optimal” aspherical t-designs) in S"~!. (This is the most fundamental problem in

design theory, but not easy in general.)

Here, we mainly consider the Problem (i).

(4) |X| OBRABRTRE tight ¢-FH1 >
(Fisher type lower bound and tight ¢-designs)

For a spherical t-design X on S"~1, the following Fisher type lower bounds for | X| hold:

—1 —1 —1
|X|z(” +e)+(“ o ) it =2,
e e —

-1
]X\zQ(n +€), it =2 +1.
e

If the equality holds in one of above inequalities, then X is called a tight spherical ¢-design.
(We are interested in the classification problem of tight spherical ¢-designs.)



(5) Tight spherical t-designs D 5EICDWT.
(Classification of tight t-design on S™™1)

n =2 = X is a regular (¢ + 1)-gon
(So we assume n > 3 in what follows)

e We get t € {1,2,3,4,5,7,11} (Bannai-Damerell, 1979,1980).

Tight t-designs on S™ are classified for all ¢, except t = 4,5,7. Some further non-
existence results for ¢ = 4,5,7 are known. (Bannai-Munemasa-Venkov (2004), Nebe-
Venkov (2013).) But the problem is still open for ¢t =4,5,7.

I-2. iETFY1Y

(A) The existence and the construction problems of combinatorial t-(v, k, A)
designs have a long history in combinatorics.
(Kirkman, Steiner, Witt, Ray-Chaudhuri, Wilson, Teirlinck, Keevash, etc.)

The general existence result for t = 2 was shown by Wilson (1974). Teirlinck (1987) proved
the existence of t-designs for any ¢, but for some specific £ and A, by using induction.

Recently, Keevash (2019+) proved the general existence proof (corresponding to Wilson’s
for t = 2), by using the probabilistic methods. The explicit constructions are not yet
possible. For example, it seems no explicit 6 - (v, k, 1) designs are explicitly described yet.

(B) Fisher type lower bound for combinatorial ¢t-designs in J (v, k), and tight
combinatorial ¢-designs

Fisher type lower bound becomes, for ¢t = 2e,

\X!z(Z).

We say X is a tight 2e-design in J(v, k), if “=" holds.

The classification of tight combinatorial ¢-designs have very much studied, by Ray-Chaudhuri-
Wilson (1977), Enomoto-Ito-Noda (1977), Bannai (1978), Dukes and Short-Gershman
(2012), Z. Xiang (2018), etc.. Note that tight 2-designs are symmetric designs and since
there are too many examples, the classifications are certainly impossible, The classifica-
tion is still open for t = 2e > 20. (The concept and the classification problem of tight
t(= 2e + 1)-designs are reduced to the case of tight 2e-designs.)



Part II.
t-THA VOB DR

(Generalizations of t-design concept)

Generalization (I). Change the space M.

Change sphere S"~! to compact symmetric spaces of rank 1

(= projective spaces over R, C, H, Q.)

Or, change J(v, k) to other Q-polynomial association schemes.
There are more generalizations. I will come back to this important topic later in my talk.
So, let me discuss some other kinds of generalizations first.

Generalization (II). Allow weight function w (Cubature formula)

o Let X C S™! and let w : X — R.g. Then the pair (X, w) is called a weighted
spherical t-design, if

1

T f(z)do(x) = w(z)f(),
’S | snt zeX
for Vf(z) = f(x1,29,...,2,), polynomials of degree < t.

o Let X C M = (‘;), and let w : X — R.y. Then the pair (X, w) is called a weighted

combinatorial t-design, if

Z w(A) = const (independent of T e (V) >
TCAeX t

Generalization (IIT). Allow different block sizes.
Euclidean t-designs and relative t-designs.

For spherical t-designs, consider several concentric spheres of radii {ry,79,...,7,}. Let
X, =X NS ! Then (X,w) is called an Euclidean ¢-design on S,, U S,,,U---U S, if
¢ w(XTu)
d o f(z)do(x) =) w(x)f(w).
v=1 |STV | Sﬁ;l zeX

For combinatorial ¢-designs or more generally for a Q-polynomial association scheme X =
(M,{R;}o<i<a), and a fixed xy € M, a pair (X,w) with X C M, is callled a relative
t-design with respect to xp € M, if Ei¢xw) € (i) holds for i = 1,2,...,t, where
¢ (xw) is the characteristic vector of (X, w), namely ¢(x,.)(y) = w(y) if y € X and = 0, if
y¢X.



Note that the concept of ”combinatorial t-design” was (algebraically) generalized for any
Q-polynomial association schemes (Delsarte (1973)).

Let X = (M, {R;}o<i<a) be a Q-polynomal association scheme.
Let A = (Ao, Ay, ..., Ag) = (Eo, E1, . .., Eg) be the Bose-Mesner algebra and let Fy, 1, . .., Ey
be the primitive idempotents. Then X C M is a t-design, if

Epx =0fort=1,2,...,t,
where ¢x is the characteristic vector (column vector) for X.

Note that t-design in Johnson association scheme J(v,k) is equivalent to the concept
of combinatorial ¢-(v, k, \) design. While, ¢-design in the Hamming association scheme
H(d, q) is equivalent to the concept called an orthogonal array of strength ¢.

For the study of Euclidean t-designs, in particular of Fisher type bounds and of tight
designs, see many papers of Eiichi and Etsuko Bannai (2005~). This concept was started
by Neumaier-Seidel (1988) and Delsarte-Seidel (1989).

For the study of relative t-designs on association schemes, cf. Bannai-Bannai-Tanaka-Zhu
(2017), etc. Fisher type lower bounds and the classification problems of certain tight
t-designs were mainly studied.

The concept of relative ¢-designs was first conceived and studied by Delsarte (1977): Pairs
of vectors in the space of association schemes (1977). However, this theory was seriously
studied only recently (last less than 10 years), after imitating the study of Euclidean
t-designs.

The relative t-design on binary Hamming association schemes H(d, 2) is equivalent to the
concept of 7 (weighted) regular t-wise balanced design”, namely combinatorial ¢-designs
which allow different sizes of blocks.

Fisher type lower bound for H(d,2) was first obtained by Z. Xiang (2012).
Generalization (IV). T-designs.

e For spherical designs, let T C {1,2,3,---}. We say X C S""! is a spherical T-design,
if the following holds

Z f(x) =0, for all f(x) € Harm;(R"), with ¢ € 7.

zeX

e For combinatorial T-design (or Q-polynomial association schemes), X is a T-design
(where T'C {1,2,...,d), if E;¢x =0, forallieT.



Note that if T'= {1,2,...,t}, then T-design is an ordinary ¢-design.

This concept of T-design is due to Delsarte (1973). However, that there is an interest-
ing Fisher type lower bound for T = {t} was first observed by Bannai-Okuda-Tagami
(2015). Then tight spherical {4}-designs were classified by Okuda-Yu (2017), and more
general cases were studied by Zhu-Bannai-Bannai-Kim-Yu (Electronic J Comb., 2017),
say, spherical {8,4}-designs.

Note that spherical 2-designs are equivalent to tight frames (on the unit sphere).
Generalization (I). Change the space M (again).

For the spherical case, we already mentioned the cases taking M as compact rank 1
symmetric spaces (=projective spaces), (Cf. Hoggar (1982).)

(i) Compact symmetric spaces of arbitrary ranks.

(i-a) Homogeneous spaces G/H, for Lie group G.
Say, real Grassmannian spaces (Bachoc-Coulangeon-Nebe (2002), Bachoc-Bannai-Coulangeon(2004);
complex Grassmannian spaces (Roy, 2010), etc.

(i-b) G itself is a Lie group,
Cf. Unitary t-designs, Roy-Scott, 2009, etc.

(ii) Complex sphere (Roy-Suda, 2011).

(This space is not a symmetric space.)

(iii) There are many many interesting spaces and we can study
the concept of t-designs (or T-designs) in various situations.

Part III. Unitary t-groups and unitary t-designs

III-1. Unitary t-designs.

WD k), THA VEEROARE L, G A o220 M T LT M 2 &
AT 2 AR EA X ZROUOIRT 2 2 LicdH s, M BRI DR H3 BRifi 7
YA THY, M D Johnson 7V ¥ T —>a vy A¥x—»40 J(v, k) DRBFHEE T A ~
(Combinatorial t-(v, k,\) design ) & \WI EETHE. M 32=% Y —Hf U(d) DEFIC
=8 =R U(d) ZiEf3 2 ROARIBITES X 2% unitary t-design TdH 5. Unitary
t-design D—DDEZIFXD LI ITHZ 6N 5.



Uld) Z dxd D=8 —{THREDIEL@EFEDOL=85Y) —fE L, ZOILNU =
(ui,j)lgigd,lgigd T?%g h‘(b) % & ‘3_%) HOT)’l(U(d),T, S) % Uy 5 ;‘%CCEQ LT r—b’(, WJ i%
WBL T s-ROFRLLIHERBERDOMEL M E T 2. U(d) DETHEA X 23 unitary t-
design TH % &%, X 13 U(d) 2T 2 ROERBOIEETHH, RO X ) ITEEI N
% . Spherical t-design (Cf. Delsarte-Goethals-Seidel [9] (1977) ¥ & U’ Roy-Suda [14] 7
) LoFPIC b HEI N .

EFE. A finite set X C U(d) is called a unitary t-design, if

i = L or a om
(i) /U(d)f(U)dU— 5% > f(U), forall f e Hom(U(d),t,1).

veX

C DM (1) 1ZRD 2 DDA (i), (i) & SFETH 5.
1
i U @ (UN®dU = — Y U @ (U,
(i) /U(d) U7) x| 2 U)

1
iii tr(U)|*dU =
i) [ OV = g

(fthiz & [l 2 S 385 < 5 )

> UV

uveXx

Unitary t-design DEZLZIIY (B EHRMH) THE-72LH)THD, ZOEKORE
127X % (i) Gross-Audenaert-Eisert [10](2007), (ii) Scott [15](2008) 7 £ D3RI F# X
N7k E b . IR FERE X 2009 FFI272 % 53,
(iii) Dankert-Cleve-Emerson-Livine [7] (2009) (arXiv: quant-ph/0606161)

23 unitary t-design & 29 BEEZ M S 7RO X T [10], [15] bZHUEH> TS LD
YHDOANDFETH 5. £72, o EHOEE L Y OHIX S H 0, "twirl” & v ) Biass
unitary t-design DITGICHE STV E EDBEZLNLLEWV)HETHS. WTNIIE L, 2=%
U= U(d) BYBEICE W T H a4 DIFTARERICEN 2 D TZDOAHRMED I X 2 UL
ZIEFARSL O DD E b S . (iv) Roy-Scott DL [13] (2009) IFEANNIED 6
A2 52 T\ b, RaLDOEE L & L TE (v) Zhu-Kueng-Grassl-Gross [17]
(2016, arXiv: 1609.08172) %% 2SI N7z v, I BIFFITL DI D 5.

I1I-2. Unitary t-groups

RIZ U(d) DEREIEE LD unitary t-design ICB>T02HGEZEZ L), Tk
bbb, U(d) DEREIRE G T G HEDS unitary t-design & 7% > T\ 5 H D% unitary
t-group EMPRZ LICT D ZDEERDED 12D,

Let x be the natural representation (of degree d) of U(d). Then a finite subgroup G of
U(d) is called a unitary t-group, if

1
= = r(U)|*dU.
G o = [ )

geG
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2018 4 8 HUH £ TR TIE, unitary 3-groups in U(d) ZPA T D X9 BAlICA S5 K
I, W ODPHAIS LT 2, F 72 unitary 4-groups (& d > 3 1T L TE—2dbHAISNT
WRWEWVIPRWTH 7. ZZNSIFHFELEVWES) LllbhitwktEbbins
D3, ZNENT 2 EIRIERICNEETH 5 ) E—RINICEZ S NTwk bk,

Unitary 3-designs D5l

(i) Clliford groups: d = 2™, G, = Zy * 217" Sp(2m, 2),
(ii) Sporadic examples:

d - 3, 3.A6,

d=4, 6.4, Sp(4,3)

d=6, 6.Ls(4).21,6,U4(3)

d=12, 6.Suz,

d=18, 3.Js.

d =2 12X L T unitary 5-group (B 21X G = SL(2,5) ) YA TV 5.
—J7, d > 3 1% L T unitary 4-groups in U(d) ZETET 2 E01% (MBELCEB VW) K
Rk e BRIRGRTETH 5 L ZEZ o N T L illbnT:.

WEAE (2018 4F)8 H D2 S F — D42 unitary t-group D3EICEI L T, Tiep & D3
42U 7. Z OFEH unitary t-groups O73%HIE Guralnick-Tiep [11] (2005) THEAMIZIZ Y
BHOREN R TTICHRINTL S 2 e gh ol IEMEICE ) &, 2 2 TR
2 (HBREMRED 2% full ICHWT) d > 5 DA unitary 4-group DIEFFEDR &
N, £/ d>5 DFEMED B & T unitary 2 group DD FHEMICH ST, 2L
[11] & unitary t-groups & OBH#IFIZ & A ERIS T8> 7. Eiichi Bannai, Gabriel
Navarro, Noelia Rizo, Pham Huu Tiep [5] ® 35w 3" Unitary t-groups” 1&, 2D I & %
(VB D AMERRTED B GRTIE T TIT [11] TRENICHERIN T2 L %) Bl M
IZ [11] THERIN TV d=2,3,4 DEEOTHLERI ¥ T4bb [11] ] 2HbHE
T, EEDt>2 EAFED d> 2 12/ L TP unitary t-groups D5EE DI S 17
RTH 5. CONFRPIEMTDH 22, HiRFZNHBIFEE I CHHCEEbNns L, Y
B EANDIEH &V BRTHIFFICRII D L b, ZOSEOFEMICBIL T,
[11, 5] Z2Z I i\,

I1I-3. Explicit constructions of some unitary t-designs.

Unitary t-designs in U(d) 13EED d > 2 EEED ¢ WL THET 5 2 L IFAIS
T 5. (Seymour-Zaslavsly (1984) DJf&TdH %.) —77 unitary t-designs in U(d) D
HARNZERIZIZEA EA SN TR o7, K2 d > 3 Tt > 3 OEAITIE unitary
3-groups & L THIS LT W5 b DL IE, AEITIZ BN ZEBIIR I L Twied o
7o Bbis. 2 TIEFHC unitary 4-design in U(4) D&% % ik % | Eiichi Bannai,
Mikio Nakahara, Da Zhao, Yan Zhu [6] (2019) IZFEDWTHAMNT 5. —MRAVIC R DFG R %
55.
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EIE 1 (Bannai-Nakahara-Zhao-Zhu [6]).
Let x be the natural representation of U(d) (of degree d). Let G be a unitary ¢-group in
U(d). Suppose that

(Xt—l—l’ Xt+1)G — (Xt—i—l7 Xt+1)U(d) + 1.

( Note that (x*', x"")e = (X', X" )@ is equivalent to the condition that G is a
unitary (¢ + 1)-group. Also note that (x**', x"*')y =d!, if d > ¢.)

Then

(i) There is a unique non-trivial G x G-invariant f € Hom(U(d),t + 1,t + 1).

(i) Let zo be any zero (in U(d)) of f. (There are many such zeros, since f is nontrivial.)
Then, the orbit X of xy by the action of G x G is a unitary (¢ 4 1)-design in U(d).

=
— HH
AN\
20
p%
=

e following groups G are unitary 3-groups in U(d) with the property that

=T7(= (X", x v +1).
G = Sp(4,3).
G

=12, G =6.5uz.

ii) ([6]) We can construct unitary 4-designs in U(4) explicitly (numerically). (Z#1id I
CHRZEH 1 2 FEITTHILICLDERINSG.) TDEZD design X DY A X |X| IF
1Sp(4,3)[2/6 = 447897600 & 75 5.

—Ji d=06,d =12 OHEFEENITRO 210ida v Ea—F —DFHHET O AR, G
FEORTSOMFICHES. LY RVaryEao—% —BENHIULFEMIICIZNEETSH 5.

I11-4. EX fc \LWHIRE
BBICW L DD OELTOMER R T 2. BkD 2 H 0Pk Z L £ 7.

_— N N N N N

REREE (FREEDIIEDLS)

(i) Let G be a subgroup of O(d), (d > 3).
Let y; be the irreducible representation of O(d) on Harm,(R?).
Then G acts on the space Harm;(R?). The paper of Tiep [16] (2006) classifies those G
with x1 ¢ and xs lg being irreducible.
Can we classify those G C O(d) with (1, x;)g =0 fori=1,2,... k7
In particular,
is there any finite GG such that this holds for £k =12 7
No example is known, but the non-existence is still an open problem.

(Note that
Xi 4o are irreducible for i = 1,2,... s,
implies that
(1,x:)g =0 for i =1,2,...,2s, but the converse does not necessarily hold. )
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(ii) Let G be an irreducible finite subgroup of U(d), and let x be the natural representation
of G. Then, can we determine G such that (x?, x*)¢ = 3. (Note that (x*, x*)v@) = 2.)
We believe that the method of [11] can be applied. From such G, we can construct
unitary 2-designs in U(d).

(Note that some constructions of unitary 2-designs in U(d) are known, but this will add

many more new examples.)

(Note that the key of the proof of ZE# 2 above was to find a unitary ¢-group in U(d) such

that (X', x't")e = dl + 1, where (x'**, x'*!)y(g) = d!. This is the case of ¢ = 1 in EH

1.)

REERPOMRE

(i) Zhu-Kueng-Grassl-Gross [17] 3 XD Z &2 PR L, KRFRRETEE L THREL TW»
5. $bb, Clifford group G = G,, % unitary 3- d681gn ThHhr I EPHENTVWS
G =Gy i?‘ﬁ??%fﬁ'/%ﬁﬂ CP M Iz BRI . 29 € CPY @ G 12 X % orbit 28 projective
4-design 1272 % 7o & DLEAS] %1’4‘ 1%, 20 2% CP"! @ non-trivial % (unique IZE % %)
BASER c OBIUL>TOB I ETHD, JOLE,

F#8 (Conjecture 2 in [17]). 2D X HIZLTTE % orbit 4% projective 4-design TdH
UL AT unitary 5-design 127> T 5,

ZDOFPRIL, G-invariant % Harm(C"1,5,5) WAELZWI L LFETH 5. BIEZ D
FRBIELWI & 2R 75 i%(ﬁfqu“(c‘f) %. Z#UZ Da Zhao £ X O Kifiz: & D HL[FE
%8 Td 1, Nebe-Rains-Sloane [12] @ real Clifford group DAZEHUZEI$ 2555 D complex
Clifford group G,, IZX9 % version 155 Z LI X DAEHI L 5.

(ii) Unitary 3-group T % Clifford group G,, % M\ > T unitary 4-design in U(2™) 23J5#
MICHER T E 5. FHT, Gy Z M\ T unitary 4-designs in U(4) 7% explicit 12 (numerical
I2) FERTE 5. (Da Zhao & DILFIFNIF) |

(iii) —MD d B X ¢ IZX LT, unitary t-designs in U(d) 23EBICHELTE % L b
N5, (WHESEIC X 2E0 N RERDTATOIEN D 5, JEIRZ DTk &R &
B 280035 5. FEMIIBIEDOH L2l wE 2 A 2D Z0ELDH 5.)

2019 ¥ 12 AR RICH T SEM & XEEA

(1) Part T IZBJ L T Spherical t-design (22 TDREARNZ CHR X, Delsarte-Goethals-
Seidel [9], ]RATE— « J]KATEA [2], HTADE— < RALA - GHREERR [3], Bannai-Bannai [1]
7t E RS X 47\, Combinatorial t-design IZDWT D% L D XE L AL H 503,
B AT D7 6 13 Delsarte [8] 23— D KA TH 5. WNT— « IRAPLT- - PHRGE
BB [3] DA F Ickh s L b s, (A TRDIED 5 D Combinatorial t-designs
DRIFIFFEIHEL L H B.)

(2) Part 11 IZBY L TI3, Bannai-Bannai-Tanaka-Zhu [4] IZHDWTWw 5, #IITAYICIE (1],
2], 3] BEBZSHBIChD EbNET,

13



(3) Part 11T (B9 2 3CHkIE, [13], [11], [17], [5], [6] BEZSML TSI Ww, LoD
Part 111 @ (i) “Cﬁf\trﬁ%%Ci Eiichi Bannai, Manabu Oura, Da Zhao @ 3 £ DL
i & U CHEfig 9, —J (i), (iil) Tl x_n'ﬁ%ki BIAE Eiichi Bannai, Yoshifumi
Nakata, Tkayuki Okuda, Da Zhao D 4 D HEF L E L CHEfiiH T, Z DBZE DX
Tl3, unitary t-designs in U(d) O BRI 28582 X0 d 1IZBIT % induction % V> THE
RTEET, BENAET VY AL 252 T, £ A Z“@Eﬁﬂﬁ?@) ELALHEON
FIH, BAENAHRRREEALEAMA T DT, ETEFTHERMELIOPE VI H

iﬁﬁﬁﬁ'ﬁiiﬁiofb) ¥ 9. 7E 2 D unitary t-designs DIERIE X spherlcal t-designs in

S”1® %E%%&ﬁbw%&%#%6ﬂ6®f ZORTHHERE W EEbiE
?._mQZO@mii(H,H&a% ) CONHOBEICHEREZ LI LBTE

HDTIE RV EHALTWET.

(4) 22— F. Unitary t-design Z@# U T, AR, 794 >, HEE®ROM RN
ERAR7po DT, PHERCHSZVLIEbH Y AR TIZLEALRR SN EE
AT L7, VIHEBIFROD unitary t-design & BT 2 Rl DI [6] DXHkEZ S L T
C7Z& W, FHA 35 F THEIT exact 72 unitary t-design & FEIXIL2 b D D AICHLERZ £F -
THFE L CT&E £ L %53, approximate unitary t-design & WIH&ED H->T, WHTIZZ
NHEZoN, LLOMADBINTETVET. Exact b D2HE R 5 EMIIIEH ICHE
L THDOIMFEBH L ThPBDPFEBIIGHTZES L) BHDIEFAST SN VDT,
approximate 72 b DT L TEBRIIIGHICEZ 2 X ) b D2 BOF v ivw) Dhsz
D k,u\zbﬂi@‘ ([6] DCHERFE 1F approximate unitary t-design bEATWVWET,) L
o> LIEAIIZIE (R, & 5 WIdREMIH A IRD T > T) exact 72 DIZE# L
f:b)c‘:%’»o"(b)i@‘.
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