FROBENIUS SUMMANDS OF GRADED RINGS

NOBUO HARA

We are motivated by a question arising from commutative algebra, asking what
kind of graded rings in characteristic p have finite F-representation type (FFRT).
In geometric setting, this is related to the problem of looking out for Frobenius
summands. Namely, given a line bundle L on a projective variety X, we want to
know how many and what kind of indecomposable direct summands appear in the
direct sum decomposition of the iterated Frobenius push-forwards F¢(L*), where e, i
are non-negative integers with 0 < i < p® — 1. We will consider the problem in the
following two cases.

(1) two-dimensional normal graded rings (a joint work with Ryo Ohkawa [HO])
(2) the anti-canonical ring of a quintic del Pezzo surface

After reviewing the preliminary results in Section 1, we will take a look at the
result obtained in [HO] in Section 2. Our description here is based on the Pinkham—
Demazure construction: A two-dimensional normal graded ring R is isomorphic to
the graded ring R(C, D) = B, H*(C,Oc(|nD])), where D is an ample Q-divisor
on the smooth curve C' = Proj R. We introduce the invariant § = deg(K¢+ D’), the
degree of the canonical divisor of C' plus the “fractional part” D’ of D. It is known
that Spec R has a log terminal singularity if and only if 6 < 0, and in this case, R
has FFRT (Proposition 2.2). On the other hand, we will see in Theorem 2.3 that
if 0 > 0, then R has FFRT only in the exceptional cases where the characteristic p
divides a denominator of the fractional coefficient of D.

In Section 3, we introduce an attempt to looking out for Frobenius summands on
a quintic del Pezzo surface X and its anti-canonical ring R(X, —Kx). Unlike case
(1) above, the present situation in this case (2) is far from satisfactory, and we have
not yet come to a conclusion whether the anti-canonical ring has FFRT or not. We
give partial results and examples on the Frobenius summands of F*(wy") mainly in

. . 6_
the cases ¢ = 0 and ¢ = ”Tl.

1. PRELIMINARIES

Throughout this note, we work over an algebraically closed field k of characteristic
p > 0. For a noetherian commutative ring R over k, the Frobenius ring homomor-
phism sending a € R to a? € R will be denoted by F': R — R. For a k-scheme
X, we denote the (absolute) Frobenius morphism (idx, F): (X,O0x) — (X, Ox) by
F: X — X and its associated ring homomorphism by F': Ox — F.Ox as well.

From now on, We always assume that R is an F-finite (i.e., F': R — R is module-
finite) integral domain. In this case, we can identify the e-times iterated Frobenius
ring homomorphism F¢: R — R and the inclusion map R < RY?° into the ring
RYP° of pe-th roots of R, for all e =0,1,2,. ..
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When R is an N-graded ring R = @nzo R, over Ry = k, the ring R'/?" has a nat-
ural Q-grading (actually, a #Z—grading) and the inclusion map R < R'/? preserves
the grading. Note that the category of finitely generated Q-graded R-modules is a

Krull-Schmidt category. For each e = 0,1, 2, ..., we have a decomposition
(*> Rl/pE IMl(e)EBEBMT(nee)

in the category of finitely generated Q-graded R-modules with each Mi(e) indecom-
posable.

Definition 1.1 (Smith-Van den Bergh [SVdB]). Let R be an N-graded ring over
Ry = k such that each RY?" has a decomposition as (¥). We say that R has finite
F-representation type (FFRT) if the set

(M@ e=0,1,2,...:i=12,... . m)}/ =
is finite, where = denotes isomorphism of graded R-modules admitting degree shift.

Example 1.2 (rings of FFRT).
(1) Let R = k[x1,...,x,] be a polynomial ring. Then R has FFRT, since

Rl/Q_k[ 1/‘1 . ;/Q] — @ Rl’lf/q---,x;"/q%REBqn
0<it,..yin<q—1

is a free R-module for all ¢ = p°.

(2) Two-dimensional rational double points have FFRT (Artin—Verdier [AV]).

(3) Tame quotient singularities have FFRT ([SVdB]). Namely, if R = S¢ is the
invariant subring of finite group G of order not divisible by p acting on a
polynomial ring S, then R has FFRT.

(4) A Cohen—Macaulay ring R is called a Frobenius sandwich if an iterated Frobe-
nius ring homomorphism of a polynomial ring S factors through R, i.e., there
exists a power ¢ of p such that S C R C S. If R is a Frobenius sandwich,
then it has FFRT. For example, R = k[z,y, z|/(2? — f(z,y)) has FFRT.

Remark 1.2.1. Rings in (1), (2) have stronger property “finite representation type,”
i.e., there exist only finitely many isomorphism classes of maximal Cohen-Macaulay
R-modules. On the other hand, rings in (3), (4) do not necessarily have this property.

Remark 1.2.2. Rings in (1)—(3) are F-regular, but Frobenius sandwiches are not
F-regular in general. It seems natural to ask if F-regular implies FFRT, since this
is true in dimension < 2. But this implication fails in higher dimension ([SS], [TT]).

Section rings. The first example of a two-dimensional graded ring that does not
have FFRT was found by Smith-Van den Bergh [SVdB]. Let us review their con-
struction. Let X be a smooth projective variety over k, L an ample invertible sheaf
on X and let
R=R(X,L)= P H"(X, L")t
n>0

be the section ring associated to (X, L), where t is a homogeneous element of degree
1. In what follows we denote the n-times tensor power L®" of L simply by L".
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For each ¢ = p°, the éZ—graded R-module R4 decomposes as

qg—1
RV = @ HO(X, FE(L)" = @D (RY)i/q moa 2.
n>0 i=0
where the graded R-modules
(R ijgmoaz = @ HUX, Fo(L)t" = @ HOX, Fi(L') @ L™)
0<n =i mod q m>0

appearing as the direct summands are in one-to-one correspondence with the coher-

ent sheaves F¢(L') on X. Thus the decomposition of (RY9); /qmod z into indecom-

posable graded R-modules are described in terms of the decomposition
FeL)y=Fg.. . oFed

Me i

of the vector bundles F¢(L") into indecomposable bundles .7:;e’i) in Coh(X).

Proposition-Definition 1.3. Let the notation be as above. Then R = R(X, L) has
FFRT if and only if the set of isomorphism classes in Coh(X),

(FV e €N i=0,1,....p =1 j=1,...,me;}/=

is finite. In this case, the pair (X, L) is said to have globally finite F-representation
type (GFFRT).

The following proposition generalizes [SVdB, Example 3.1.7].

Proposition 1.4. Let C' be a smooth projective curve over k of genus g(C') > 1 and
let L be an ample invertible sheaf on C. Then the section ring R = R(C, L) does
not have FFRT.

Proof. In view of Proposition 1.3, it is sufficient to show that there appear infinitely
many isomorphism classes of indecomposable direct summands of FfOs when e
ranges over all non-negative integers. This is verified case by case as follows:

Case 1: ¢(C) = 1. If C is an ordinary elliptic curve, then FfQO¢ splits into p°
distinct p°-torsion line bundles. If C' is supersingular, then FfO¢ is isomorphic to
Atiyah’s indecomposable vector bundle Fe; see [A].

Case 2: ¢g(C) > 2. In this case, the vector bundle FfO¢ is stable and so is
indecomposable for all e > 0 (Sun [Sul, see also Kitadai-Sumihiro [KS], Mehta-
Pauly [MP]). O

2. FFRT PROPERTY OF TWO-DIMENSIONAL GRADED RINGS

In this section, we consider the condition for two-dimensional normal graded rings
to have FFRT. Specifically, we will answer the following question:

Question (H. Brenner). Does the ring R = k[z,y, 2]/(2? + v + 27) have FFRT?

It is known that two-dimensional F-regular rings have FFRT. On the other hand,
due to Proposition 1.4 we could expect that a two-dimensional normal graded ring
R has FFRT only if Proj R = P!; see Theorem 2.1. So, Brenner’s question is in
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a critical case, because the ring R = k[z,vy, 2]/(2? + y> + 27) is not F-regular and
Proj R = P!, In this case, however, it is known that R has FFRT if p < 7, since it
is a Frobenius sandwich in characteristic p = 2, 3,7 (Shibuta [Sh]).

Pinkham-Demazure construction ([P], [D]). Let R be a two-dimensional nor-
mal graded ring over Ry = k. Then there exists an ample Q-Cartier divisor D on
C' = Proj R such that

R R(C,D) =@ H’(C,Oc(|nD]))t".

n>0

Let g(C) denote the genus of the smooth projective curve C. We write
m si
D=|D —P;
D] + ;_1 -

with closed points P; of C' and coprime integers r; > 2 and s;. We then put

m

D,:ZTZT_l_PZ

=1

and call it the fractional part of D.
We now state the main results of Hara-Ohkawa [HO]. Let the notation be as
above.

Theorem 2.1 ([HO)). If g(C) > 1, then R = R(C, D) does not have FFRT.
Proposition 2.2 ([HO)). If deg(K¢ + D’) <0, then R = R(C, D) has FFRT.

Remark 2.2.1. Note that deg(Kc + D’) < 0 if and only if C = P! and m < 2
orm =3 and (ry,7m9,73) = (2,2,7),(2,3,3),(2,3,4),(2,3,5). These are exactly the
cases where R(C, D) has a log terminal singularity.

Theorem 2.3 ([HOJ). Suppose C = P!, deg(K¢ + D’) >0 and ry,...,7, are not
divisible by p. Then R = R(P', D) does not have FFRT.

Idea of proof. In what follows, we briefly sketch the idea of the proof of the
theorems. When D is an integral divisor, then R is the section ring associated to
the line bundle L = O¢(D), and we have the correspondence between the direct
summands (RY?);/, moa z of RY? and the vector bundles F¢(L?) on C as described
in Section 1. The obstruction is that we do not have this correspondence in the case
where D is not an integral divisor.

To overcome the above difficulty, we import notions from the theory of algebraic
stacks [B], [Ol]. What we will use is the orbifold curve

¢c=C[VP,..., %/P,] = C.

This is not a scheme (if D is not integral) but is a one-dimensional root stack of
weight (r1,...,7y) over Py, ..., P, € C. The orbifold curve € is something like the
“minimal covering” of C' on which D becomes integral. We summarize properties of
¢ in the following lemma.
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Lemma 2.4. For eachi =1,...,m, there is a “stacky point” Q); on € lying over P,
satisfying the following properties.
(1) m: € = C is an isomorphism away from Q; and P;.
(2) Q; is a Cartier divisor on € and 7 P; = r;Q;.
(3) If E is a Q-divisor on C such that ™ E is integral, then
1,.0¢(m*E) 2 Oc(| E]) and R'7,O¢(7*E) = 0.
(4) € has a dualizing sheaf
We = 7T*U.)C X O@(Z(T’Z — 1)@1)
i=1
It follows from the lemma that 7*D is an integral Cartier divisor on € and if we
denote £ = O¢(m*D), then
HY(e, L) = H°(C,0c(|nD)))
for all n € Z. Thus
R=R(C,D)= R(€,L)
is the section ring associated to the line bundle £ on €.

Corollary 2.5. R = R(C, D) has FFRT if and only if (€, L) has GFFRT in the
same sense as in Proposition-Definition 1.5.

Now let ¢ = degwe. Then d¢ = deg(K¢ + D’) by Lemma 2.4 (4). If §¢ < 0, then
(€, £) has GFFRT by [CB, Theorem 1], from which Proposition 2.2 follows.

To prove that R does not have FFRT in Theorems 2.1 and 2.3, it is sufficient
to show that infinitely many indecomposable summands appear in FfO¢, when e
ranges over all non-negative integers. In case g(C) > 1 (Theorem 2.1), this follows
as in the proof of Proposition 1.4, since 1, FO¢ = F¢O¢ by Lemma 2.4 (3).

The proof of our Main Theorem 2.3 is again due to case-by-case verification.

Case Jz = 0. In this case, it follows that m = 3 or 4 and the weight (r1,...,7,)
ordered as ry < -+ <, = r is either one of the following: (2, 3,6),(2,4,4), (3,3, 3),
(2,2,2,2). We have a separable r-fold covering f: E — C' = P! from an elliptic
curve F with assigned ramification indexes (71,...,7y,). It factors through € as

f-ES e 50
with ¢ unramified. We can use the unramified morphism ¢: £ — € to prove the
following; see [HO] for details.

(1) If E is supersingular, then ¢*FfQO¢ is isomorphic to the Atiyah’s indecom-
posable bundle Fj. of rank p® and degree zero [A]. Hence FfOg itself is
indecomposable.

(2) If E is ordinary, then p =1 (mod r) and there are exactly s = 2= equiva-

lence classes of non-trivial p®-torsion line bundles on E with respect to the
action of Gal(E/C). If Ly,..., Ly are complete representatives thereof, then

FiO¢ Z O @ L1 @& -+ - @ pilLs,

where ¢, L1, --- ,p.Ls are non-isomorphic indecomposable r-bundles on €.
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Case §¢ > 0. In this case, we have the following theorem, which follows similarly
as in the case of smooth projective curves of genus g > 2 [Su, Theorem 2.2].

Theorem 2.6. If ¢ > 0 and ry,...,r, are not divisible by p, then F¢Og is stable
and so indecomposable for all e > 0.

Example 2.7. Let R = k[z,y,z]/(z* + v* + 27), the ring in Brenner’s question.
This is not a rational singularity but Proj R = P! and R = R(P!, D) for a Q-divisor

D = (00)—5(0)—2(1) on P'. By Theorem 2.3, R does not have FFRT if p # 2,3, 7.

Example 2.8. Let R = R(P*, D) for a Q-divisor D = £(oc0) + 3(0) — 1(1) on P.
This is a rational log canonical singularity but not log terminal. The ring R does not
have FFRT if and only if p # 3. In the exceptional case when p = 3, the weighted

projective line € of weight (3,3, 3) is a Frobenius sandwich.

3. THE ANTICANONICAL RING OF THE QUINTIC DEL PEZZO SURFACE

The FFRT problem for graded rings is wide open yet in higher dimension (i.e.,
dim R > 3). We do not know even the answer to the following question.

Question. Let X be the smooth quintic del Pezzo surface in characteristic p > 0
with anticanonical bundle L = wy'. Does the section ring R(X, —Kx) = R(X, L)
have FFRT?

The setup in the question above is considered one of the simplest non-trivial cases
because of the following reasons:

(1) Del Pezzo surfaces of degree K? > 6 are toric surfaces. In this case, the
Frobenius push-forward of any line bundle splits into line bundles [Tol, and
it is easy to see that the anticanonical ring has FFRT.

(2) In order to prove that R(X, L) is FFRT, one has to know the decomposition
of F¢(LY) for all i with 0 < i < p°—1. However, when L = wy', it is enough to
consider 0 < i < -1 since FE(L7) is dual to F(wy ” @ L™%) = Fe(LP' 1),

In this section, we will study the structure of F¢(L*) mainly in the extremal cases
1 =0and i = 1%. Since the quintic del Pezzo surface X is obtained by blowing
up the projective plane P? at four points in general position, we work under the

following notation throughout this section.

Notation. Let 7: X — P? be the blow-up at four points P, P, P3, Py € P? in
general position. Let H be a line in P? and E; = 7~ !(P;) the exceptional curve over
P;. Also let E = Fy + Ey + E3+ Ey.

Theorem 3.1 (case i = 0 [H]). Any indecomposable direct summand of FfOx
(e =1,2,...) coincides with one of the following vector bundles of rank < 3.

(1) line bundles Ox, Ly = Ox(E—21*H) and L; = Ox(E;—7n*H),i=1,2,3,4;
(2) an indecomposable rank two bundle G given by a unique non-trivial extension
0— Ox(—m"H) - G — Ly — 0;
(3) an indecomposable rank three bundle B given by a non-trivial extension
0= L1 ®Ly—B—Ox(Es+ Ey—7n"H) — 0.
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Furthermore, for any power q = p° of p with e > 1 one has

4
FOx =2 0x® @L?(q—m DB g@%;q_g)

i=0
Case 1 = 1%. Let L = w)_(l and assume that the characteristic p is an odd prime.
We consider the decomposition of F¢(L?) in the other extremal case, i.e., i = i

2
Let ¢ = p¢ for e = 0,1,2,... Note that the vector bundle Ff(Lq;Ql) is self-dual.
We begin with constructing the L-stable bundle F of rank three which is supposed

to be a unique non-trivial indecomposable summand of Ff(L%). We require F to
sit in an exact sequence

0—-G2rm"H—FE)—F - Ox(E—7"H) — 0,

where G is the rank two bundle given in Theorem 3.1 (2). To identify the isomor-
phism class of F, we also need the following splitting condition: For i = 1,2, 3,4,
the restriction of F to U; = X \ F; splits into line bundles as

(%) Flo, =2 Op,(n*H — E) @ Oy, ® Oy, (E — n*H).
We fix an open covering X = U UV with U = X \ Ey, V = X \ E; and let
Fu=0y(n"H —E)® Oy ® Oy(E —7n*H),
Fv =Oy(r"H — E)® Oy © Oy(E — " H).

Then F is given by gluing Fy; and Fy via an isomorphism ¢py : Fulvnvy — Fvluav
corresponding to a transition matrix

1 o v
Topy=10 1 f
0 0 1

with o, 8,v € k.
Proposition 3.2. Let F, . denote the vector bundle given by gluing Fy and Fv
with the transition matriz T, 5 .
(1) Fap~ satisfies condition (x) for i =1,2,3,4 if and only if aff = 2.
(2) If F is an indecomposable bundle satisfying condition (x) for i = 1,2,3,4,
then F= ]:1’171/2.
Conjecture 3.3. Assume that p is an odd prime and let ¢ = p° for e =0,1,2, ...

(1) The rank of the maximal free summand of Ff(L%) is hO(Lq%l) = —5(1?3.
. B
(2) FE(LT) 2 OY F & (Friape)®

Proposition 3.4. Conjecture 3.3 (1) implies Conjecture 3.3 (2).

q2

-1
8 .

54243

Proof. 1f Conjecture 3.3 (1) is true, then Ff(Lq;'zl) = Oi ® @& for a vector bundle
& of rank 3n, where n = (¢*> — 1)/8. It follows that £ is obtained by gluing

Er = Oy(r*H — E)*" & 0" & Oy(E — 7" H)®",
Ev = Ov(n"H — E)®" & OF" & Oy (E — 7" H)®"
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with the transition matrix

I, A T
O I, B
o 0 1I,

Here we note that £|y, splits into line bundles for each i = 1,2, 3,4, since U; = X \ E;
is isomorphic to an open set of the sextic del Pezzo surface, which is toric. As in
Proposition 3.2, this splitting condition implies that AB = 2I". On the other hand,
we see that the line bundles Ox (E—n*H) and Ox (7" H—E) are not direct summands
of Ff(qu;l) (and hence of £). This implies that rank A = rank B = n. Then the
transition matrix is transformed under elementary transformations within row and
column blocks to

L, I, i,
O L, L, | =T,
o o0 1,
It follows that & = (fl’l’l/g)@n. OJ

Remark 3.4.1. Conjecture 3.3 (1) holds if and only if the natural pairing

Hom(Ox, L%) X Hom(L%, Ox) — Hom(Ox, Ox)
is a perfect paring. Choosing appropriate affine coordinates x,y on P2, we can
identify Hom(Oy, Lq%l) &~ Hom(L%7 Ox) = HY(X, L%l) with a subspace of V' =
<:L’"yj |0<4,7<qg—1and q;—l <i+j< %> Then the pairing above is identified
with the pairing

(,): HYX,L'T) x HY(X,L'T ) — k

given by

(¢,1)) = the coefficient of the product ¢1) in (xy)?*

for ¢,v € HY(X, Lq%l) C V. Taking this into account, we can rephrase Conjecture

3.3 (1) into the assertion that a certain ‘fT_l X q:%l matrix is invertible mod p.
M. Tano has implemented a computer program to examine this assertion and verified

that it is true up to p® < 100.

Finally, we shall take a look at examples which we hope illustrate the behavior of
the single Frobenius push-forwards F,(L?) for all ¢ in the range 0 < i < p%l. In the
following, we put M, ; = Ox(E; + E; —n*H) for 1 <i < j <4.

Example 3.5 (p = 5).

4
F.Ox=0xo@P LY &BoG*,

=0

4
FL=0Fe@ox(-B)e H  M,;eB%

i=1 (4,5)=(1,2),(1,3),(1,4),
(2,3),(2,4),(3,4)

F*(LZ) o~ O??l(i D JT_‘EBZ')
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Example 3.6 (p = 7).

4
F.Ox=0xae@PLPeBa g™

1=0

4 4
FL=0YePLrfe@ox-E)e P  M;eB™,
1=0 =1

(4,5)=(1,2),(1,3),(1,4),
(2,3),(2,4),(3,4)

4
F(L*) =09 e P Ox(—-E)* b vFaes
=1

(4,7)=(1,2),(1,3),(1,4),
(2,3),(2,4),(3,4)

F(L%) = O3 @ F°
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