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Arguably klt singularities form the most important class of singularities from
the viewpoint of birational geometry. It is well-known that in characteristic zero,
klt singularities are Cohen-Macaulay. Recently many counterexamples to this fact
in positive characteristics were constructed. In this note, we review them.

1. Klt, CM and rational

Throughout the note, we work over an algebraically closed field k of characteristic
p ≥ 0.

Let us first recall basic classes of singularities. Let X be a normal variety. We
say that X is Q-Gorenstein if its canonical divisor KX is Q-Cartier. For a normal
modification f : Y → X (a proper birational morphism with Y normal), we can
define the relative canonical divisor KY/X = KY −f∗KX , which is a Q-divisor with
support contained in the exceptional locus of f . Let us write KY/X =

∑
E aEE,

where E runs over exceptional prime divisors and aE ∈ Q.

Definition 1.1. We say that X is terminal (resp. canonical, klt, log canonical) if
for every normal modification f : Y → X and for every exceptional prime divisor
E on Y , we have aE > 0 (resp. ≥ 0, > −1, ≥ −1).

We also consider klt singularities of pairs and potentially klt singularities which
does make sense even if X is not Q-Gorenstein.

Definition 1.2. Let X be a normal variety and D an effective Q-divisor on X.
Suppose that KX + D is Q-Cartier. We say that (X,D) is klt if for any normal
modification f : Y → X, KY/(X,D) = KY − f∗(KX +D) has coefficients > −1. We
say that a normal variety X is potentially klt if there exists an effective Q-divisor
D such that (X,D) is klt.

Definition 1.3. We say that X is Cohen-Macaulay (for short, CM) if for every
point x ∈ X, the local ring OX,x is CM.

Definition 1.4. In characteristic zero, we say that a normal variety X has rational
singularities if for any resolution f : Y → X and for i > 0, Rif∗OY = 0.

In characteristic zero, potentially klt singularities are rational [Elk81, KMM87]
and rational singularities are CM [KKMSD73]. Thus:

Theorem 1.5. In characteristic zero, potentially klt singularities are CM.

In characteristic p > 0, being CM is often included in the definition of rational
singularities rather than it is a property. Let us adopt the following definition by
Kovács.
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Definition 1.6 ([Kov17]). In characteristic p > 0, we say that a normal variety X
has rational singularities if for any modification f : Y → X such that Y is CM and
for i > 0, Rif∗OY = 0.

Theorem 1.7 ([Kov17]). Potentially klt singularities which are CM are rational.
Namely, for potentially klt singularities, being CM is equivalent to being rational.

2. Non-CM klt singularities

In positive characteristics, potentially klt singularities are not necessarily CM.
The existence of non-CM potentially klt singularities had not appeared in the liter-
ature until recently, however some specialists had known that such singularities of
dimension 7 and characteristic 2 can be constructed from examples of Fano varieties
violating Kodaira vanishing from [HL93, LR97]. In the last 6 years, many examples
of such singularities appeared in the literature, some in lower dimensions and some
in arbitrary characteristics. We now briefly review them in the chronological order.

(1) Yasuda [Yas14] constructed canonical singularities which are not Cohen-
Macaulay in arbitrary characteristic. His examples are quotient varieties
of affine spaces by linear actions of the cyclic group of order p. The lowest
dimension of such examples is 6 in characteristic 2, 5 in characteristic 3 and⌈√

2p+ 1
4 + 1

2

⌉
in characteristic p ≥ 5.

(2) Gongyo, Nakamura and Tanaka [GNT15] constructed a 4-dimensional po-
tentially klt variety X in characteristic 2 such that for a resolution f : Y →
X, R1f∗OY ̸= 0. (From Kovács’ result, X is not CM.)

(3) Cascini and Tanaka [CT16] constructed 3-dimensional non-CM klt singu-
larities in characteristic two.

(4) Kovács [Kov] constructed 7-dimensional non-CM canonical singularities in
characteristic two.

(5) Bernasconi [Ber] constructed a 3-dimensional non-CM klt singularity in
characteristic 3.

(6) Totaro [Tot] constructed an isolated non-CM terminal singularity in char-
acteristic p ≥ 3 of dimension 2p+ 2.

(7) Yasuda [Yas] showed that quotients of affine spaces by the cyclic group of
order p are often even terminal (and non-CM). The lowest dimension of
non-CM terminal singularities by this construction is 6 in characteristic 2,

5 in characteristic 3 and
⌊√

2p+ 1
4 + 1

2

⌋
+ 1 in characteristic p ≥ 5.

(8) Totaro [Tot] construted an isolated 3-dimensional terminal singularity in
characteristic 2. This is the quotient of a smooth 3-fold by a non-linear
action of the cyclic group of order 2.

Note that normal surface singularities are always CM. Thus dimension 3 is the
lowest possible for non-CM singularities. In the above list, constructions 1, 7 and
8 are by taking quotients of smooth varieties by the cyclic group of order p. The
others are constructed from counterexamples of Kodaira or Kawamata-Viehweg
vanishing theorem.

On the opposite direction, Hacon-Witaszek proved:

Theorem 2.1 ([HW]). There exists p0 ∈ N such that in characteristic p ≥ p0,
every klt 3-fold is CM.
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Problem 2.2. (1) Can we generalize the theorem of Hacon-Witaszek to higher
dimensions?

(2) If we could do so, determine the lowest possible p0 for each dimension.

Results of Totaro and Yasuda mentioned above seem to suggest that the answer
to the first problem would be positive.

3. Failure of Kodaira vanishing and cone construction

For a normal projective varietyX and an ample line bundle L onX, let Ca(X,L) :=
Spec

⊕
n≥0 H

0(X,Ln) be the associated affine cone. Whether Ca(X,L) is CM or

not is characterized as follows (for instance, see [Kol13]):

Proposition 3.1. Suppose that X is CM. Then Ca(X,L) is CM if and only if
H0(X,Ln) = 0 for every n ∈ Z and every i ∈ Z with 0 < i < dimX.

Proposition 3.2. Let D be an effective Q-divisor on X and D̃ be the corresponding
Q-divisor on Ca(X,L). Suppose that −(KX + D) ∼Q rL for some r ∈ Q. Then

(Ca(X,L), D̃) is terminal (resp. canonical, klt) if and only if (X,D) is terminal
(resp. canonical, klt) and r > −1 (resp. ≥ −1, > 0).

In particular, if X is a smooth Fano variety and L is a line bundle with rL ∼Q
−KX for some integer r > 1 (resp. ≥ 1, > 0), then Ca(X,L) is terminal (resp.
canonical, klt). If Hi(Ln) ̸= 0 for some n ∈ Z and i ∈ Z with 0 < i < dimX, then
Ca(X,L) is non-CM. Note that Hi(Ln) ̸= 0 for some n ∈ Z violates the Kodaira
vanishing.

If X is a smooth Fano variety and L is an ample line bundle some power of which
violates Kodaira vanishing, then Ca(X,L) is non-CM and potentially klt.

Constructions 2, 3, 4, 5 and 6 in Section 2 are based on Fano type varieties
violating Kodaira or Kawamata-Viehweg vanishing and take the

4. Quotient singularities I

An alternative construction of non-CM klt singularities is by means of quotient
singularities. Note that in characteristic zero, quotient singularities are klt and
hence CM. For the construction, it is enough to consider the case of cyclic group
of order p. We first recall construction by Yasuda.

Let G = ⟨g⟩ ∼= Z/p be the cyclic group of order p with a generator g. Suppose
that G acts on an affine space V = Ad

k linearly. Considering the Jordan normal
form of the action of a generator g ∈ G, we see that the action is determined by
sizes of Jordan blocks. Note that the only eigenvalue of g is 1 and a Jordan block
is determined by its size. Moreover sizes do not exceed p because of the order of g.

We say that g is a pseudo-reflection if the fixed point locus V G has codimension
one. This is the case exactly when there is one Jordan block of size 2 and all the
other blocks have size 1. In this case, we can easily see that the quotient variety
V/G is again isomorphic to Ad

k. If g is not a pseudo-reflection, then V/G is singular.

Proposition 4.1 ([ES80]). Suppose that g is not a pseudo-reflection. Then V/G
is CM if and only if V G has codimension 2.

This holds only if either

(1) there are 2 Jordan blocks of size 2 and all the other blocks have size 1, or
(2) there is 1 Jordan block of size 3 and all the other blocks have size 1.
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Thus V/G is almost always non-CM. Let d1, . . . , dl be the sizes of Jordan blocks of
g and let D :=

∑
i di(di − 1)/2.

Proposition 4.2 ([Yas14, Yas]). Suppose that g is not a pseudo-reflection. Then
V/G is terminal (resp. canonical, log canonical) if and only if D > p (resp. ≥ p,
≥ p− 1).

The outline of the proof is as follows. We can determine if V/G is terminal,
canonical or log canonical by looking at the convergence/divergence of the stringy
invariant of V/G, which is defined as a certain motivic integral on the arc space
of V/G. By the wild McKay correspondence, this is equivalent to the conver-
gence/divergence of weighted counts of Artin-Schreier extensions of k((t)). We can
compute the latter quite explicitly thanks to the Artin-Schreier theory and deter-
mine whether the weighted count converges or diverges.

Example 4.3. (1) Suppose p = 2. If G = Z/2 acts on V = A6
k by 3 Jordan

blocks of size 2, then D = 3 > 2 and codimV G = 3. Thus V/G is non-CM
and terminal.

(2) Suppose p = 3. If G = Z/3 acts on V = A5
k by one block of size 3 and one

of size 2, then D = 4 > 3 and codimV G = 3. Thus V/G is non-CM and
terminal.

(3) For p ≥ 5, suppose that G = Z/p acts on V = Ad
k with d ≤ p by a

single Jordan block. If d ≥
⌊√

2p+ 1
4 + 1

2

⌋
+ 1, then D ≥ p + 1 and

codimV G = d− 1 ≥ 3. Thus V/G is non-CM and terminal.

5. Quotient singularities II

Lastly we briefly review Totaro’s construction of 3-dimensional non-CM terminal
singularity in characteristic 2. Let G = Z/2 be the cyclic group of order 2 and let
G act on G3

m by the involution (x, y, z) 7→ (1/x, 1/y, 1/z). The only fixed point is
(1, 1, 1). From [Fog81] (a result similar to one in [ES80] for (necessarily non-linear)
actions which are free outside a unique fixed point), the quotient variety G3

m/G is
non-CM.

Theorem 5.1 ([Tot]). The variety G3
m/G is terminal.

To prove this, he takes equivariant blowups of G3
m until the associated quotient

variety becomes smooth. When the quotient variety is smooth is determined by
the following criterion.

Proposition 5.2 ([KL13] ). Suppose that G = Z/p acts on a smooth variety X.
Then X/G is smooth if and only if the fixed point scheme XG is a Cartier divisor
of X.

Remark 5.3. We have a Z/2-equivariant embedding G3
m ↪→ A6

k, where Z/2 acts on
A6

k by three Jordan blocks of size two. Thus G3
m/(Z/2) is a closed subvariety of the

quotient variety A6
k/(Z/2) in Example 4.3, (1). The author expects that we can

similarly construct 3-dimensional non-CM terminal singularities in characteristics
3 and 5 as closed subvarieties of A5

k/(Z/3) and A4
k/(Z/4) respectively.
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