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1. Definitions of symbolic powers and symbolic Rees rings

Throughout this section, we assume that R is a Noetherian ring and I is a proper ideal
of R. Moreover, Min I denotes the set of minimal prime ideals containing I. We put
N = {1, 2, 3, · · · } and N0 = {0, 1, 2, 3, · · · }. For any r ∈ Z, we set

I(r) =
∩

P∈Min I

(IrRP ∩R)

= { a ∈ R | There exists s ∈ R \
∪

P∈Min I P such that sa ∈ Ir}

and call it the r-th symbolic power of I . Then we obviously have I(r) ⊇ Ir and I(r) ⊇ I(r+1)

for any r ∈ Z.

Proposition 1.1. The following assertions hold.

(1) If R is Cohen-Macaulay and I is generated by a regular sequence, we have I(r) = Ir

for any r ∈ Z .
(2) If

√
I = I , we have I(r) =

∩
P∈Min I P (r) for any r ∈ Z .

Let t be an indeterminate. We put

Rs(I ) =
∑
r∈N0

I(r)tr ⊂ R[t]

and call it the symbolic Rees ring of I. Since I(r)I(s) ⊆ I(r+s) for any r, s ∈ Z, Rs(I ) is a
graded subring of R[t]. Moreover, we set

R ′
s(I) =

∑
r∈Z

I(r)tr ⊂ R[t, t−1].

Theorem 1.2. The following conditions are equivalent.

(1) Rs(I ) is finitely generated.
(2) R ′

s(I) is finitely generated.
(3) There exists k ∈ N such that I(kr) = (I(k))r for any r ∈ Z.

2. Historical background

First, let us recall Nagata’s counterexample to Hilbert’s 14th problem. Let R =
K[x, y, z] be a polynomial ring over a field K. Let { (αi : βi : γi) }i=1,··· ,m be a set of
points in P 2

K . We set

Pi = I2

(
x y z
αi βi γi

)
∈ SpecR
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and IH =
∩m

i=1 Pi. Then we have I
(r)
H =

∩m
i=1 P

r
i for all r ∈ Z. Now, let K = C,

and assume that H is consisting of independent generic points, i.e., {αi, βi, γi }i=1,··· ,m is
algebraically independent over Q.

Theorem 2.1. (Nagata [13], 1954) The following assertions hold.

(1) There exists a polynomial ring S and a group G acting on S such that

SG ∼= R ′
s(IH).

(2) R ′
s(IH) is not finitely generated if m = 42, 52, 62, . . . .

Next, let us recall Cowsik’s question. Let (R,m) be a local ring such that R/m is
infinite and dimR = d > 0. Let P be a prime ideal of R such that dimR/P = 1.

Theorem 2.2. (Cowsik [2], 1984) If Rs(P ) is Noetherian, then P is a set theoretic
complete intersection.

Proof. As Rs(P ) is Noetherian, there exists k ∈ N such that P (kr) = (P (k))r for any
r ∈ Z. Let I = P (k). Then we have depthR/Ir > 0 for any r ∈ N. Let

F = ⊕r∈N0 I
r/mIr

be the fiber cone of I. Then by Burch’s inequality (cf. [1]),

dimF ≤ dimR− inf{ depthR/Ir}r=1,2,... ≤ d− 1.

Hence there exist a1, · · · , ad−1 ∈ I such that Ir+1 = (a1, · · · , ad−1)I
r for r ≫ 0. Thus we

see P =
√
I =

√
(a1, · · · , ad−1)R. □

Question 2.3. (Cowsik [2], 1984) Is Rs(P ) Noetherian if R is a regular local ring and
P ∈ SpecR ?

Example 2.4. The following is a list of negative answers to Cowsik’s question.

(1) (cf. [15], 1985)) Roberts gave the first counterexample in the case where dimR = 3
using Nagata’s counterexample to Hilbert’s 14th problem. Unfortunately, in this
example, P̂ is not a prime ideal in R̂.

(2) (cf. [16], 1990) Roberts gave another counterexample. In this example, R is com-
plete, dimR = 7 and dimR/P = 4 .

(3) (cf. [7], 1994) Goto, Nishida and Watanage found counterexamples among the
ideals defining space monomial curves in the case where the base field has charac-
teristic zero. In their examples, the minimum value of e(R/P ) is 25.

(4) (cf. [4], 2016) González and Karu extended the class of ideals described in (3). In
their examples, the minimum value of e(R/P ) is 7.

(5) (cf. [17], 2017) Sannai and Tanaka constructed a counterexample in the polynomial
ring with 12 variables over any field.
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3. Remarks on a system of parameters for a two dimensional regular
local ring

In this section, we assume that (R,m) is a 2-dimensional regular local ring and a1, a2
is an sop for R such that ai ∈ mri for i = 1, 2 , where ri ∈ N . We set

R(R) =
∞∑
r=0

mrtr,

which is a graded subring of R[t]. Let R(R)+ be the ideal generated by {mrtr}r=1,2,....

Lemma 3.1. The following conditions are equivalent.

(1) R(R)+ =
√

(a1tr1 , a2tr2)R(R).
(2) mr = a1m

r−r1 + a2m
r−r2 for r ≫ 0.

(3) m2r1r2 = Qmr1r2, where Q = (ar21 , ar12 )R ⊂ mr1r2.

Proof. All implications (1) ⇒ (2) ⇒ (3) ⇒ (1) can be verified directly. □

The following fact plays a key role in this report.

Lemma 3.2. We have ℓR(R/(a1, a2)R) ) ≥ r1r2, where the equality holds if and only if

R(R)+ =
√
(a1tr1 , a2tr2)R(R) .

Proof. We put Q = (ar21 , ar12 )R ⊂ mr1r2 . Then

r1r2 · ℓR(R/(a1, a2)R ) = ℓR(R/Q ) = e(Q) ≥ e(mr1r2) = (r1r2)
2 · e(m) = r21r

2
2.

Therefore the required inequality follows. Moreover,

ℓR(R/(a1, a2)R ) = r1r2 ⇔ e(Q) = e(mr1r2)

⇔ Q is a reduction of mr1r2 .

Consequently, we get the last assertion by 3.1. □

4. Radical ideals of regular local rings of dimension three

Throughout this section, we assume that (R,m) is a 3-dimensional regular local ring.

Moreover, I is an ideal of R such that
√
I = I and dimR/I = 1. Then I =

∩
P∈Min I P and

R/I is a CM ring. Furthermore, we have ht P = 2 and IRP = PRP for any P ∈ Min I.
Hence, for f ∈ R and r ∈ Z, we see that f ∈ I(r) if and only if f ∈ P rRP for any
P ∈ Min I.

Theorem 4.1. Let ξi ∈ I(ri) for i = 1, 2, where ri ∈ N. Let u ∈ m be an sop for R/I

such that
√

(x, ξ1, ξ2)R = m. Then

euR(R/(ξ1, ξ2)R) ≥ r1r2 · euR(R/I).
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Proof. If P ∈ Min I, we have ξi ∈ P riRP for i = 1, 2. We put P = Min (ξ1, ξ2)R ⊇ Min I.
Then, applying the additive formula of multiplicity and Lemma 3.2, we get

euR(R/(ξ1, ξ2)R) =
∑
P∈P

ℓ(RP/(ξ1, ξ2)RP ) · euR(R/P )

≥
∑

P∈Min I

ℓ(RP/(ξ1, ξ2)RP ) · euR(R/P )

≥
∑

P∈Min I

r1r2 · euR(R/P )

= r1r2 ·
∑

P∈Min I

ℓ(RP/IRP ) · euR(R/P )

= r1r2 · euR(R/I).

□
Now we introduce Huneke’s Condition. Let ξi ∈ I(ri) for i = 1, 2 , where ri ∈ N.

Definition 4.2. If there exists an sop u ∈ m for R/I such that
√

(u, ξ1, ξ2)R = m and

(∗) euR(R/(ξ1, ξ2)R) = r1r2 · euR(R/I),

we say that ξ1 and ξ2 satisfy HC on I.

Lemma 4.3. The following conditions are equivalent.

(1) ξ1 and ξ2 satisfy HC on I.

(2) m =
√
(u, ξ1, ξ2)R for any sop u ∈ m for R/I and (∗) holds.

(3) I =
√
(ξ1, ξ2)R and R(RP )+ =

√
(ξ1tr1 , ξ2tr2)R(RP ) for any P ∈ Min I.

Proof. Let u ∈ m be an sop for R/I such that
√

(u, ξ1, ξ2)R = m. From the proof of
Theorem 4.1, we see that

euR(R/(ξ1, ξ2)R) = r1r2 · euR(R/I)

holds if and only if

Min (ξ1, ξ2)R = Min I and ℓ(RP/(ξ1, ξ2)RP ) = r1r2 for any P ∈ Min I.

Of course, Min (ξ1, ξ2)R = Min I holds if and only if
√

(ξ1, ξ2)R = I. Moreover, Lemma
3.2 implies that, for any P ∈ Min I, ℓ(RP/(ξ1, ξ2)RP ) = r1r2 holds if and only if

R(RP )+ =
√

(ξ1tr1 , ξ2tr2)R(RP ). Therefore we get (1) ⇒ (3) and (3) ⇒ (2) of Lemma
4.3. The implication (2) ⇒ (1) holds obviously. □

The next result is called the Huneke’s criterion.

Theorem 4.4. (cf. [11, 12]) The following conditions are equivalent.

(1) Rs(I ) is finitely generated.
(2) There exist r1 , r2 ∈ N for which we can choose elements ξ1 ∈ I(r1) and ξ2 ∈ I(r2)

satisfying HC on I.
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Huneke’s criterion was first found by Huneke (cf. [11]) in the case where I is a prime ideal
and R/m is infinite. Kurano and Nishida (cf. [12]) gave the generalized version together
with a totally different proof for (2) ⇒ (1). The assumption that R is local is essential
for (1) ⇒ (2). There exists a graded version for (2) ⇒ (1), which will be explained in
the following. For that purpose, let us recall some basic facts on the localization by the
irrelevant maximal ideal.

Let S = K[x, y, z] be the polynomial ring over a field K. We regard S as an N0-graded
ring putting suitable weight on each variable, and set n = (x, y, z)S. Suppose that a is a
homogeneous ideal of S such that

√
a = a and dimS/a = 1. We put R = Sn and I = aR.

Then, the basic assumptions on R and I of this section are satisfied. It is easy to see that,
for any homogeneous ideal b of S, we have ℓ(S/b ) = ℓ(R/bR ). Moreover, the following
assertions hold.

Proposition 4.5. For any r ∈ Z , a(r) is homogeneous and a(r)R = I(r). Moreover, Rs(a )
is finitely generated if and only if so is Rs(I )

Let ξi ∈ a(ri) for i = 1, 2, where ri ∈ N. Then the image of ξi in R is in I(ri).

Definition 4.6. We say that ξ1 and ξ2 satisfy HC on a, if the images of those elements
in R satisfy HC on I.

Proposition 4.7. Rs(a ) is finitely generated if and only if there exist r1, r2 ∈ N for which
we can choose elements ξ1 ∈ a(r1) and ξ2 ∈ a(r2) satisfying HC on a.

Let us notice that the elements ξ1 and ξ2 satisfying HC on a are not necessarily homoge-
neous.

5. Radical ideals of K[x, y, z] generated by homogeneous polynomials

Throughout this section, we assume that R = K[x, y, z] is a polynomial ring over a field
K. We put m = (x, y, z)R and regard R as an N0-graded ring setting deg x = deg y =

deg z = 1. Let I be a homogeneous ideal of R such that
√
I = I and dimR/I = 1. We

put e = e(R/I) . Then I =
∩

P∈Min I P and R/I is a homogeneous Cohen-Macaulay ring.

Let us regard Rs(I ) as an N2-graded ring. If f ∈ [I(r)]d, then the degree of ftr ∈ Rs(I )
is (r, d).

It is obvious that any P ∈ Min I is homogeneous and ht P = 2. Hence, for any
P ∈ Min I, we have IRP = PRP , so

ℓRP
(RP/I

(r)RP ) = ℓRP
(RP/P

rRP ) = 1 + 2 + · · ·+ r =
r(r + 1)

2
.

Then, by additive formula of multiplicity, we see

e(R/I(r)) =
∑

P∈Min I

ℓ(RP/I
(r)RP ) e(R/P ) =

r(r + 1)

2

∑
P∈Min I

e(R/P ) .

Thus we get the following result.
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Proposition 5.1. e(R/I(r)) =
r(r + 1)

2
· e for any r ∈ N .

Let us notice that R/I(r) is a 1-dimensional graded Cohen-Macaulay ring. Hence R/I(r)

has a homogeneous non-zero-divisor of degree one. Therefore

[R/I(r)]d ↪→ [R/I(r)]d+1

for any d ∈ N. By Propsosition 5.1, we see

dimK [R/I(r)]d =
r(r + 1)

2
· e

for d ≫ 0, and so

dimK [I
(r)]d = dimK Rd − dimK [R/I(r)]d

≥
(
d+ 2

2

)
− e · r(r + 1)

2

=
1

2
{(d+ 2)(d+ 1)− er(r + 1)}

=
1

2
{d2 + 3d+ 2− er(r + 1)} .

If d ≥
√
e(r + 1), then d2 ≥ e(r + 1)2 > er(r + 1), so dimK [I

(r)]d > 0. Consequently, we
get the following result.

Proposition 5.2. [I(r)]d ̸= 0 for any (r, d) ∈ N2 satisfying d ≥
√
e · r +

√
e.

Here, let us introduce the condition NC as follows.

Definition 5.3. We say that I satisfies NC if [I(r)]d = 0 for any (r, d) ∈ N2 satisfying
d/r ≤

√
e.

As is well known, if e is not a square number, then
√
e ̸∈ Q, and so we may replace the

inequality d/r ≤
√
e in Definition 5.3 with d/r <

√
e.

Conjecture 5.4. (Nagata’s conjecture) Let K = C and let H be a set of independent
generic m points in P2

C. If m ≥ 10, then IH satisfies NC.

Nagata himself proved that his conjecture is true if m = 42, 52, 62, . . . (cf. [13]).

Theorem 5.5. If I satisfies NC, then Rs(I ) is not finitely generated.

Proof. Suppose that I satisfies NC. Let us take finitely many non zero homogeneous
elements f1 ∈ [I(r1)]d1 , f2 ∈ [I(r2)]d2 , . . . , fn ∈ [I(rn)]dn arbitrarily, where ri, di ∈ N for
i = 1, . . . , n. Setting T = R[ f1t

r1 , f2t
r2 , . . . , fnt

rn ], We aim to show T ⊊ Rs(I ).
Let a = min{ d1/r1, d2/r2, . . . , dn/rn }. Since I satisfies NC, we have a >

√
e. On

the other hand, if T(r,d) ̸= 0, it follows that d/r ≥ a. Let us notice that there exists
(r′, d′) ∈ N2 such that a > d′/r′ >

√
e and d′ ≥

√
e · r′ +

√
e. Then we have T(r′,d′) = 0

and [I(r
′)]d′ ̸= 0 by Proposition 5.2. Therefore we see T ⊊ Rs(I ) □

The next result is the homogeneous version of Theorem 4.1.
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Theorem 5.6. Suppose ξi ∈ [I(ri)]di for i = 1, 2, where ri, di ∈ N. Assume that ξ1, ξ2 is
an R-regular sequence. Then we have

d1
r1

· d2
r2

≥ e

Proof. We may assume that K is infinite. Let us choose sufficiently general element
u ∈ R1. Since ξi ∈ (IRm)

(ri) for i = 1, 2 and u is an sop for Rm/(ξ1, ξ2)Rm, by Theorem
4.1 we get

euRm(Rm/(ξ1, ξ2)Rm) ≥ r1r2 · euRm(Rm/IRm).

The left hand side coincides with e(R/(ξ1, ξ2)R) = d1d2. Moreover, we have

euRm(Rm/IRm) = e(R/I) = e .

Hence we get the required inequality. □

Here, let us review the condition HC.

Lemma 5.7. Let ξi ∈ [I(ri)]di for i = 1, 2, where ri, di ∈ N. We assume that ξ1, ξ2 is an
R-regular sequence. Then ξ1 and ξ2 satisfy HC on I if and only if

(∗) d1
r1

· d2
r2

= e .

.
Therefore, by Huneke’s criterion we get the next result.

Theorem 5.8. Rs(I ) is finitely generated if there exist r1, d1, r2, d2 ∈ N satisfying the
following conditions ;

(1) the equality (∗) holds, and
(2) there exist ξi ∈ [I(ri)]di for i = 1, 2 such that ξ1, ξ2 is an R-regular sequence.

Remark 5.9. Let ξi ∈ [I(ri)]di for i = 1, 2, where ri, di ∈ N. We assume that ξ1 and ξ2
satisfy HC on I, i.e.,

d1
r1

· d2
r2

= e .

Then the following two cases can not happen ;

(i)
di
ri

>
√
e for i = 1, 2 ; (ii)

di
ri

<
√
e for i = 1, 2.

Hence, replacing the subscripts 1 and 2 with each other if necessary, we have

d1
r1

≤
√
e and

d2
r2

≥
√
e.
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6. Fermat Ideals

Throughout this section, we assume that R = K[x, y, z] is a polynomial ring over a
field K. We set m = (x, y, z)R and regard R as an N0-graded ring setting deg x = deg y =
deg z = 1. Let 3 ≤ n ∈ N. We assume that chK ∤ n if chK > 0 and there exists a
primitive n-th root of unity θ in K.

Let H be the set of the following n2 + 3 points in P2
K ;

{ (1 : 0 : 0) , (0 : 1 : 0) , (0 : 0 : 1) } ∪ { (1 : θ i : θ j) | i, j = 1, 2, . . . , n }.
Then we have

IH = (y, z) ∩ (z, x) ∩ (x, y) ∩
n∩

i, j=1

Pij ,

where Pij = (y − θ ix, z − θ jx). Here we set f = yn − zn, g = zn − xn and h = xn − yn.
Since f + g + h = 0, we have (f, g) = (g, h) = (h, f). Moreover, we can prove

IH = (xf, yg, zh) and (f, g) =
n∩

i, j=1

Pi,j.

Therefore, the following assertion holds.

Lemma 6.1. I
(r)
H = (y, z)r ∩ (z, x)r ∩ (x, y)r ∩ (f, g)r for any r ∈ Z.

Harbourne and Seceleanu proved that Rs(IH ) is finitely generated if n = 3 (cf. [9]).
Moreover, Nagel and Seceleanu proved that Rs(IH ) is still finitely generated even if n ≥ 4
(cf. [14]). Here, we would like to give another proof using Huneke’s criterion.

First, let us consider the case where n = 3. We set

ξ1 = fgh ∈ [I
(3)
H ]9 and ξ2 = xf · yg + yg · zh+ zh · xf ∈ [I 2

H ]8 .

Since (9/3) ·(8/2) = 12 = e(R/IH), it follows that ξ1 and ξ2 satisfies HC on IH by Lemma
5.7. Next, we consider the case where n ≥ 4. Choosing α ∈ K \ {0, 1}, we set

ξ1 = (fgh)(αf + g)n−3 and ξ2 = (xf)2(yg)n−2 + (yg)2(zh)n−2 + (zh)2(xf)n−2 + fn−2gh.

Then ξ1 ∈ I
(n)
H and ξ2 ∈ I n

H . Although ξ2 is not homogeneous, we can prove that ξ1 and
ξ2 satisfy HC on IH using Lemma 4.3.

7. Ideals of Z[x, y, z] generated by quasihomogeneous polynomials
of type (a, b, c)

Throughout this section, we assume that S = Z[x, y, z] is a polynomial ring over Z.
We put n = (x, y, z)S. Let K be a field. We set SK = K ⊗Z S = K[x, y, z], and for an
ideal J of S, we denote JSK by JK . Moreover, for an element ξ ∈ S, we denote its image
in SK by ξK . Let us regard S and SK as N0-graded rings setting deg x = a , deg y = b ,
deg z = c, where a, b, c ∈ N. We assume that I is a homogeneous ideal of S such that√
xS + I = n,

√
IK = IK and dimSK/IK = 1 for any field K. Finally, throughout this

section p denotes a prime number.

Definition 7.1. Let K be a field, k ∈ N and f ∈ I
(k)
K . We define

HC(IK ; k, f) := { ℓ ∈ N | There exists g ∈ I
(ℓ)
K such that f and g satisfy HC on IK } .
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Proposition 7.2. Let k = 1 or 2, and let f ∈ I
(k)
K . We assume that there exists i ∈ N

such that f ≡ yi mod xSK and HC(IK ; k, f) ̸= ϕ. We set m = min HC(IK ; k, f). Then
the following assertions hold.

(1) HC(IK ; k, f) = {m, 2m, 3m, . . . }.
(2) SK [ IKt, I

(2)
K t2, . . . , I

(m−1)
K tm−1 ] ⊊ Rs(IK ).

Definition 7.3. For any r ∈ Z, we set I(r, x) =
∞∪
i=1

(Ir :R xi).

If ξ ∈ I(r, x), it is easy to see ξK ∈ I
(r)
K for any field K.

Proposition 7.4. The following assertions hold.

(1) (IQ)
(r) = (I(r, x))Q and (IFp)

(r) = (I(r, x))Fp for p ≫ 0.

(2) Let ξ ∈ I(k, x) and η ∈ I(ℓ, x), where k, ℓ ∈ N. Suppose that ξQ and ηQ satisfy HC
on IQ. Then ξFp and ηFp satisfy HC on IFp for p ≫ 0.

(3) Suppose that k ∈ N, ξ ∈ I(k, x) and ξ ≡ yi mod xS for some i ∈ N. Then we have
HC(IQ; k, ξQ) = HC(IFp ; k, ξFp) for p ≫ 0.

Theorem 7.5. Let k = 1 or 2. Let ξ ∈ I(k, x) and ξ ≡ yi mod xS for some i ∈ N.
Suppose that there exists r ∈ N such that, for any p ≫ 0, rpep ∈ HC(IFp ; k, ξFp) holds for
some ep ∈ N. Then the following conditions are equivalent.

(1) Rs(IQ ) is finitely generated.
(2) HC(IQ; k, ξQ) ̸= ϕ.
(3) r ∈ HC(IQ; k, ξQ).
(4) r ∈ HC(IFp ; k, ξFp) for p ≫ 0.

Under the assumption of Theorem 7.5, it follows that Rs(IQ ) is not finitely generated if
r ̸∈ HC(IQ; k, ξQ).

8. Ideals defining space monomial curves

Throughout this section we assume that S = Z[x, y, z] is a polynomial ring over Z. We
put n = (x, y, z)S. Let K be a field. We set SK = K ⊗Z S = K[x, y, z]. Moreover, for an
element ξ ∈ S, we denote its image in SK by ξK . Let us regard S and SK as N0-graded
rings setting deg x = a , deg y = b , deg z = c, where a, b, c ∈ N.
Let φ : SK → K[t] be the homomorphism of K-algebras such that φ(x) = ta, φ(y) = tb

and φ(z) = tc. We set
pK(a, b, c) = Kerφ ,

which is a homogeneous prime ideal of SK of height 2. If pK(a, b, c) is not a complete
intersection, then it is generated by the maximal minors of a matrix of the following form;

(♯)

(
yt3 zu1 xs2

zu2 xs3 yt1

)
,

where s2, s3, t1, t3, u1, u2 are positive integers which are determined without depending on
the field K (cf. [10]). Let p(a, b, c) be the ideal of S generated by the maximal minors of

(♯). Then we have
√

xS + p(a, b, c) = n and p(a, b, c)SK = pK(a, b, c) for any field K.
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The ideals defining space monomial curves explained above are deeply related to the
defining ideals of certain finite set of points in P2

K . Let us verify this fact in the case where
K = C. We put θn = e2πi/n ∈ C for n ∈ N. Let H(a, b, c) be the set of the following
points in P 2

C ;

{ (θ i
a : θ

j
b : θ k

c ) | i = 1, . . . , a ; j = 1, . . . , b ; k = 1, . . . , c }.
Taking new variables X,Y, Z, we set T = C[X,Y, Z]. We consider the defining ideal of
H(a, b, c) in T , i.e.,

IH(a,b,c) =
∩
i,j,k

I2

(
X Y Z

θ i
a θ j

b θ k
c

)
.

Let us regard SC as a subring of T setting x = Xa, y = Y b, z = Zc. Then the equality

I
(r)

H(a,b,c) = pC(a, b, c)
(r)T

holds for any r ∈ Z and we have the following.

Proposition 8.1. Rs(IH(a,b,c) ) is finitely generated if and only if so is Rs(pC(a, b, c) ).

It is not so difficult to find concrete examples of pK(a, b, c) whose symbolic Rees algebras
are finitely generated by using Huneke’s criterion. For example, Huneke himself proved
that Rs(pK(a, b, c) ) is finitely generated if min{ a, b, c} ≤ 4 and chK ̸= 2 (cf. [11]). On
the other hand, constructing infinitely generated Rs(pK(a, b, c) ) is hard. Goto, Nishida
and Watanabe found concrete examples of pK(a, b, c) with infinitely generated symbolic
Rees rings for the first time (cf. [7]), and later González and Karu extended such class
of ideals much wider (cf. [4]). In the following, we give examples of infinitely generated
Rs(p(a, b, c) ) of new type.

First, we choose α ∈ Q with 1 < α < 5/4 arbitrary. Then, as 2 < (17− 10α)/(6− 3α),
we can choose β ∈ Q so that 2 < β < (17 − 10α)/(6 − 3α). Next, we write α = u2/u1

and β = s2/s3, taking u2, u1, s2, s3 ∈ N suitably. Let t1 = t3 = 1 and a = 2u1 + u2,
b = s3u2 + s2u1 + s2u2, c = s2 + 2s3t1.

Example 8.2. ([12]) If GCD{a, b, c} = 1, then pK(a, b, c) is minimally generated by
the maximal minors of the matrix (♯) stated above for any field K. We can find ξ ∈
p(a, b, c)(2,x) satisfying the following conditions ;

(i) ξ ≡ y3 mod xS,
(ii) for any prime number p, 3pep ∈ HC(pFp(a, b, c); 2, ξFp) if ep ≫ 0, and
(iii) 3 ̸∈ HC(IQ; 2, ξQ).

Consequently, it follows that Rs(pQ(a, b, c) ) is not Noetherian.

The simplest case is α = 6/5 and β = 49/24. In this case a = 16, b = 683 and c = 97.
In order to explain what is new about the example stated above, let us recall the notion
of negative curve (cf. [3]). First, we have to consider the irreducible decomposition of
elements in [ pK(a, b, c)

(r) ]d , where r, d ∈ N. We put R = SK and P = pK(a, b, c). Let
ξ ∈ [P (r)]d \ P (r+1).

Lemma 8.3. Let ξ = ξ1ξ2 · · · ξs, where ξi ∈ [R]di for i = 1, 2, · · · , s. We set ri = max{ ℓ |
ξi ∈ P ℓRP }. Then the following assertions hold.
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(1) ξi ∈ [P (ri)]di for i = 1, 2, · · · , s.
(2) r1 + r2 + · · ·+ rs = r and d1 + d2 + · · ·+ ds = d.
(3) If d/r < α ∈ R, then di/ri < α for some i = 1, 2, . . . , s.

Proof. The assertion (1) and d1+d2+ · · ·+ds = d is obvious. We get r1+r2+ · · ·+rs = r
by considering the initial forms of ξ1, · · · , ξs in the associated graded ring of RP , which
is an integral domain. Suppose that di/ri ≥ α for any i = 1, 2, · · · , s. Then we have

d = d1 + d2 + · · ·+ ds ≥ α(r1 + r2 + · · ·+ rs) = αr ,

which means d/r ≥ α. □

Definition 8.4. Let ξ ∈ [ pK(a, b, c)
(r) ]d, where r, d ∈ N. If ξ is irreducible and

d

r
<

√
abc ,

ξ is called a negative curve.

Theorem 8.5. Assume that a, b, c are pairwise coprime and abc is not a square number.
Then there exists a negative curve if Rs(pK(a, b, c) ) is finitely generated.

Proof. Let us give an algebraic proof in the case where K = C. We put R = SC,
P = pC(a, b, c) andH = H(a, b, c) ⊂ P 2

C . Let us define IH to be an ideal of T = C[X,Y, Z].
We assume that Rs(P ) is Noetherian. Then Rs(IH ) is also Noetherian. Hence IH
does not satisfy NC by Theorem 5.5. This means that there exist r, δ ∈ N such that

[I
(r)
H ]δ ̸= 0 and δ/r <

√
abc (δ/r =

√
abc can not happen as abc is not a square number).

Since I
(r)
H = P (r)T , we have [P (r)]d ̸= 0 for some d ∈ N with d ≤ δ. Let us notice

d/r ≤ δ/r <
√
abc.

Now we take an element 0 ̸= ξ ∈ [P (r)]d. Let ξ = ξ1ξ2 · · · ξs be the irreducible de-
composition, where ξi ∈ [R]di . We set ri = max{ℓ | ξ ∈ P ℓRP} for i = 1, 2, · · · , s. By

Lemma 8.3, we have di/ri <
√
abc for some i = 1, 2, · · · , s. Then ξi is a negative curve

as ξi ∈ [P (ri)]di . □

Cutkosky proved that the converse of Theorem 8.5 holds if chK > 0.

Theorem 8.6. We assume that a, b, c are pairwise coprime. Let ξi ∈ [ pK(a, b, c)
(ri) ]di

for i = 1, 2, where ri, di ∈ N. Let ξ1, ξ2 be an SK-regular sequence. Then the following
assertions hold.

(1)
d1
r1

· d2
r2

≥ abc.

(2) The equality holds in (1) if and only if ξ1 and ξ2 satisfies HC on pK(a, b, c) .

If K = C , Theorem 8.6 follows from Theorem 5.5, Lemma 5.6 and Proposition 8.3 as
e(T/IH(a,b,c)) = ♯H(a, b, c) = abc .

The following result explains the uniqueness of negative curve.

Theorem 8.7. We assume that a, b, c are pairwise coprime. Let ξi ∈ [pK(a, b, c)
(ri)]di for

i = 1, 2, where ri, di ∈ N. If both ξ1 and ξ2 are negative curves, then ξ1 ∼ ξ2.
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Proof. Suppose that ξi is a negative curve for i = 1, 2 and ξ1 ̸∼ ξ2. Then, as di/ri <
√
abc

for i = 1, 2, we have (d1/r1)(d2/r2) < abc. On the other hand, ξ1, ξ2 is SK-regular as ξi
is irreducible for i = 1, 2. So, by TheoremrefT8.7 we have (d1/r1)(d2/r2) ≥ abc, which is
impossible. Therefore the required assertion follows. □

Let pQ(a, b, c) be one of the examples found by Goto, Nishida, Watanabe (cf. [7]) and
González, Karu (cf. [4]). Then it has a negative curve in the first symbolic power.

Example 8.8. (cf. [12]) Let pQ(a, b, c) be the example given in Example 8.2. Let ξ be the
element in p(a, b, c)(2, x) used for proving that Rs(pQ(a, b, c) ) is infinitely generated. Then,
for any field K, ξK ∈ pK(a, b, c)

(2) and it is a negative curve.
For example, if P = pK(16, 683, 97), then ξK ∈ [P (2)]2049 . One can check 2049/2 <√
16 · 683 · 97 directly.

Recently, for any k ∈ N, González and Karu found examples of pQ(a, b, c) such that
Rs(pQ(a, b, c) ) is infinitely generated and there exists a negative curve in pQ(a, b, c)

(k) (cf.
[5]).
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