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1. DEFINITIONS OF SYMBOLIC POWERS AND SYMBOLIC REES RINGS

Throughout this section, we assume that R is a Noetherian ring and [ is a proper ideal
of R. Moreover, Min I denotes the set of minimal prime ideals containing I. We put
N={1,2,3,---} and Ny = {0, 1,2,3,--- }. For any r € Z, we set

M = () I'RpNR)
PeMin I
= {a € R | There exists s € R\ Upepg, s P such that sa € I"}

and call it the r-th symbolic power of I . Then we obviously have [ ) D> 1" and 1) D [0r+Y)
for any r € Z.

Proposition 1.1. The following assertions hold.

r

(1) If R is Cohen-Macaulay and I is generated by a regular sequence, we have 1™ = T
foranyr eZ.
(2) If VI =1, we have I = \pergins P for anyr € Z.

Let ¢t be an indeterminate. We put
R(1) =Y 17t C Rt]
reNg
and call it the symbolic Rees ring of I. Since I ) C 10+ for any r, s € Z, Z(I ) is a
graded subring of R[t]. Moreover, we set
(1) =Y IVt C R[t,t7].
reZ

Theorem 1.2. The following conditions are equivalent.

(1) Z4(1) is finitely generated.

(2) Z.(I) is finitely generated.

(3) There exists k € N such that I*") = (I*))" for any r € Z.

2. HISTORICAL BACKGROUND

First, let us recall Nagata’s counterexample to Hilbert’s 14th problem. Let R =
Kz,y, z] be a polynomial ring over a field K. Let {(a; : 5; : %) }iz1....m be a set of
points in PZ. We set

PiZIQ( * g Z>€SpecR

% Vi



and Iy = (-, Pi. Then we have I}(Ir) = N2, P! for all » € Z. Now, let K = C,
and assume that H is consisting of independent generic points, i.e., { o, Bi, Vi Fiet,. m 18
algebraically independent over Q.

Theorem 2.1. (Nagata [13], 1954) The following assertions hold.
(1) There exists a polynomial ring S and a group G acting on S such that
SY > R (Iy).

(2) Z.(1y) is not finitely generated if m = 4% 5% 6%, ... .

Next, let us recall Cowsik’s question. Let (R,m) be a local ring such that R/m is
infinite and dim R = d > 0. Let P be a prime ideal of R such that dim R/P = 1.

Theorem 2.2. (Cowsik [2], 1984) If %Zs(P) is Noetherian, then P is a set theoretic
complete intersection.

Proof. As %,(P) is Noetherian, there exists & € N such that P*") = (P®)" for any
r € Z. Let I = P®. Then we have depth R/I" > 0 for any r € N. Let

y - @TENO [T/m[r
be the fiber cone of I. Then by Burch’s inequality (cf. [1]),
dim.# < dim R —inf{depth R/I"},_15  <d—1.

Hence there exist ay, -+ ,aq_1 € I such that I"™ = (ay,-+ ,a4_1)I" for r > 0. Thus we
see P=+T1=/(ay, - ,a41)R. O

Question 2.3. (Cowsik [2], 1984) Is Zs(P ) Noetherian if R is a regular local ring and
P € SpecR?

Example 2.4. The following is a list of negative answers to Cowsik’s question.

(1) (cf. [15], 1985)) Roberts gave the first counterezample in the case where dim R = 3
using Nagata’s counterexample to Hilbert’s 14th problem. Unfortunately, in this
example, P is not a prime ideal in R.

(2) (cf. [16], 1990) Roberts gave another counterexample. In this example, R is com-
plete, dim R =7 and dim R/P =4 .

(3) (cf. [7], 1994) Goto, Nishida and Watanage found counterexamples among the
ideals defining space monomial curves in the case where the base field has charac-
teristic zero. In their examples, the minimum value of e(R/P) is 25.

(4) (cf. [4], 2016) Gonzdlez and Karu extended the class of ideals described in (3). In
their examples, the minimum value of e(R/P) is 7.

(5) (cf. [17],2017) Sannai and Tanaka constructed a counterezample in the polynomial
ring with 12 variables over any field.



3. REMARKS ON A SYSTEM OF PARAMETERS FOR A TWO DIMENSIONAL REGULAR
LOCAL RING

In this section, we assume that (R, m) is a 2-dimensional regular local ring and a;, ay
is an sop for R such that a; € m" for i = 1,2, where r; € N. We set

Z(R) = i m't"
r=0

which is a graded subring of R[t]. Let Z(R)+ be the ideal generated by {m"t"},_; »

geee

Lemma 3.1. The following conditions are equivalent.
(1) Z(R)+ = /(art™, ast™) % (R).
(2) m" = aym" " + agm” "2 forr > 0.
(3) m?"1r2 = Qm™"2 where Q = (a}?,ah )R C m™72,

Proof. All implications (1) = (2) = (3) = (1) can be verified directly. O

The following fact plays a key role in this report.

Lemma 3.2. We have (g( R/(a1,a2)R)) > rira, where the equality holds if and only if

R(R); =/ (a1t axt™)Z(R) .
Proof.  We put Q = (a}?,a5')R C m""2. Then
riry - Lr( R/ (a1, a2)R) = (r(R/Q) = e(Q) > e(m™™) = (r11y)? - e(m) = rir3.
Therefore the required inequality follows. Moreover,

KR( R/(al, CLQ)R) =TT = G(Q) = e(m””)

< (Q is a reduction of m™"2,

Consequently, we get the last assertion by 3.1. 0

4. RADICAL IDEALS OF REGULAR LOCAL RINGS OF DIMENSION THREE

Throughout this section, we assume that (R, m) is a 3-dimensional regular local ring.
Moreover, I is an ideal of R such that v/ = I and dim R/I = 1. Then I = Mpenin P and
R/I is a CM ring. Furthermore, we have ht P = 2 and IRp = PRp for any P € Min [.
Hence, for f € R and r € Z, we see that f € I if and only if f € P"Rp for any
P € Min I.

Theorem 4.1. Let & € 1) fori = 1,2, where r; € N. Let u € m be an sop for R/I

such that \/(x,&1,&)R =m. Then

eur(R/(&1,82)R) > m1ra - eur(R/1).



Proof. If P € Min I, we have §; € P"Rp fori =1,2. We put & = Min (£,&)R 2 Min I.
Then, applying the additive formula of multiplicity and Lemma 3.2, we get

cun(R/(€,&)R) = Y U(Rp/(&,&)Rp) - cur(R/P)

Pew
> Z ((Rp/(&1,62)Rp) - eur(R/P)
> Z 172 - eur(R/P)
= 779 Z ((Rp/IRp)-e,r(R/P)

PeMin I

= TTr9- euR(R/I)

Now we introduce Huneke’s Condition. Let & € I for i = 1,2, where r; € N.

Definition 4.2. If there exists an sop u € m for R/I such that \/(u,&;,&)R =m and
(*)  ewr(R/(&,&)R) = riry - eur(R/1),
we say that & and & satisfy HC on 1.

Lemma 4.3. The following conditions are equivalent.
(1) & and & satisfy HC on 1.
(2) m = \/(u,&,&)R for any sop uw € m for R/I and (%) holds.
(3) I =+/(&1,&)R and Z(Rp)+ = +/(&1t™, &t2)%(Rp) for any P € Min I.

Proof. Let u € m be an sop for R/I such that \/(u,&,&)R = m. From the proof of
Theorem 4.1, we see that

eur(R/(&1,&2)R) = r1ra - eur(R/1)
holds if and only if
Min (&,&)R = Min I and ¢( Rp/(&1,&)Rp ) = g for any P € Min I.

Of course, Min (£1,&)R = Min [ holds if and only if 1/(&1, &) R = I. Moreover, Lemma
3.2 implies that, for any P € MinlI, {(Rp/(&1,&)Rp) = rire holds if and only if
H(Rp)y = /(&t,&12)Z(Rp). Therefore we get (1) = (3) and (3) = (2) of Lemma
4.3. The implication (2) = (1) holds obviously. O

The next result is called the Huneke’s criterion.

Theorem 4.4. (cf. [11, 12]) The following conditions are equivalent.
(1) Z4(1) is finitely generated.
(2) There exist r1,1m9 € N for which we can choose elements & € I and & € 102
satisfying HC on I.



Huneke’s criterion was first found by Huneke (cf. [11]) in the case where [ is a prime ideal
and R/m is infinite. Kurano and Nishida (cf. [12]) gave the generalized version together
with a totally different proof for (2) = (1). The assumption that R is local is essential
for (1) = (2). There exists a graded version for (2) = (1), which will be explained in
the following. For that purpose, let us recall some basic facts on the localization by the
irrelevant maximal ideal.

Let S = K|x,y, z] be the polynomial ring over a field K. We regard S as an Ny-graded
ring putting suitable weight on each variable, and set n = (x,y, 2)S. Suppose that a is a
homogeneous ideal of S such that v/a = a and dimS/a=1. We put R = S, and I = aR.
Then, the basic assumptions on R and [ of this section are satisfied. It is easy to see that,
for any homogeneous ideal b of S, we have ¢(S/b) = ¢( R/bR). Moreover, the following
assertions hold.

r

Proposition 4.5. For anyr € Z, a'") is homogeneous and a"™ R = I"). Moreover, Z(a)
is finitely generated if and only if so is Xs(I)

Let & € a™) for i = 1,2, where 7; € N. Then the image of & in R is in 1),

Definition 4.6. We say that & and & satisfy HC on a, if the images of those elements
i R satisfy HC on I.

Proposition 4.7. Z(a) is finitely generated if and only if there exist 1,79 € N for which
we can choose elements & € a™) and & € a'"?) satisfying HC on a.

Let us notice that the elements &; and & satisfying HC on a are not necessarily homoge-
neous.

5. RADICAL IDEALS OF K|z,y, 2] GENERATED BY HOMOGENEOUS POLYNOMIALS

Throughout this section, we assume that R = K|z, y, 2] is a polynomial ring over a field
K. We put m = (z,y,2)R and regard R as an Ny-graded ring setting degz = degy =
degz = 1. Let I be a homogeneous ideal of R such that v/I = I and dim R/I =1. We
put e = e(R/I). Then I = (\poyy, P and R/ is a homogeneous Cohen-Macaulay ring.
Let us regard %,(I ) as an N-graded ring. If f € [I(™],, then the degree of ft" € Z,(I)
is (r,d).

%t is> obvious that any P € Min/ is homogeneous and ht P = 2. Hence, for any
P € Min I, we have IRp = PRp, so

r(r—+1)
5 )

gRP(RP/I(T)RP) :gRP(Rp/PTRp) =142+ +r=

Then, by additive formula of multiplicity, we see

e(R/IM) =Y " U(Rp/T"Rp)e(R/P) = > e(Rr/P).

PeMin I PeMin I

r(r+1)

Thus we get the following result.



r(r+1)
2

Proposition 5.1. e(R/IM) = e for any r € N.

Let us notice that R/I™ is a 1-dimensional graded Cohen-Macaulay ring. Hence R/I(")
has a homogeneous non-zero-divisor of degree one. Therefore
[R/T0)a = [R/T] a1
for any d € N. By Propsosition 5.1, we see
r(r+1)

dimg [R/TM]y = 5

- €
for d > 0, and so
dimg[IM]y = dimg Ry — dimg[R/TM),

> (d+2> _e'r(r—kl)

2 2

= @+ 2+ 1) —er(r+ 1)}

1
= §{d2+3d+2—er(r~|—1)}.

If d > \/e(r +1), then d> > e(r + 1)2 > er(r + 1), so dimg[I™]; > 0. Consequently, we
get the following result.

Proposition 5.2. [IM]; # 0 for any (r,d) € N? satisfying d > /e - + \/e.
Here, let us introduce the condition NC as follows.

Definition 5.3. We say that I satisfies NC if [I7]y = 0 for any (r,d) € N? satisfying
d/r < \/e.

As is well known, if e is not a square number, then /e ¢ Q, and so we may replace the
inequality d/r < /e in Definition 5.3 with d/r < 4/e.

Conjecture 5.4. (Nagata’s conjecture) Let K = C and let H be a set of independent
generic m points in P%. If m > 10, then Iy satisfies NC.

Nagata himself proved that his conjecture is true if m = 4% 52,62, ... (cf. [13]).
Theorem 5.5. If [ satisfies NC, then %Zs(I) is not finitely generated.

Proof. Suppose that [ satisfies NC. Let us take finitely many non zero homogeneous
elements f; € 1"V, fo € Iy, ..., f, € [I)],, arbitrarily, where r;,d; € N for
i=1,...,n. Setting T' = R[ fit™, fot", ..., fut™ ], We aim to show T' C Z,(1).

Let a = min{d;y/r1,da2/rs,...,d,/rn }. Since I satisfies NC, we have a > /e. On
the other hand, if (.4 # 0, it follows that d/r > a. Let us notice that there exists
(r',d’) € N? such that a > d'/r’ > /e and &’ > /e - 1" + \/e. Then we have T(, gy = 0
and [I7)]y # 0 by Proposition 5.2. Therefore we see T C Z,(I) O

The next result is the homogeneous version of Theorem 4.1.



Theorem 5.6. Suppose & € [y fori = 1,2, where r;,d; € N. Assume that &, &, is
an R-regular sequence. Then we have

dy d
i e
rn T

Proof. We may assume that K is infinite. Let us choose sufficiently general element
u € Ry. Since & € (IRy)") for i = 1,2 and u is an sop for Ry /(£1,&) Ry, by Theorem
4.1 we get

Curn (Bm/ (&1, &) Rn) > 7179 - €upy (R /I Rin).
The left hand side coincides with e(R/(&1,&2)R) = didy. Moreover, we have

Cun (Ru/IRw) = e(R/I) = ¢.

Hence we get the required inequality. O

Here, let us review the condition HC.

Lemma 5.7. Let & € [1))y fori = 1,2, where r;,d; € N. We assume that &, &, is an
R-regular sequence. Then & and & satisfy HC on I if and only if

dy dy

<*) T2

=e.

Therefore, by Huneke’s criterion we get the next result.

Theorem 5.8. Z,(1) is finitely generated if there exist r1,dy,72,dy € N satisfying the
following conditions ;

(1) the equality (x) holds, and
(2) there exist & € [I))y, for i = 1,2 such that &, & is an R-reqular sequence.

Remark 5.9. Let & € [IU9)],, fori = 1,2, where r;,d; € N. We assume that & and &
satisfy HC on I, i.e.,

4 d

rL T

=e.
Then the following two cases can not happen;
oA : oy d .
(i) =>+Ve fori=1,2 ; (i) —<+e fori=1,2.
T r;

Hence, replacing the subscripts 1 and 2 with each other if necessary, we have

d d
—1§\/E and —22\/5.
™ T2



6. FERMAT IDEALS

Throughout this section, we assume that R = KJz,vy, 2] is a polynomial ring over a
field K. We set m = (z,y, z) R and regard R as an Ny-graded ring setting degz = degy =
degz = 1. Let 3 < n € N. We assume that ch K 1 n if ch K > 0 and there exists a
primitive n-th root of unity # in K.

Let H be the set of the following n? + 3 points in P% ;

{(1:0:0), (0:1:0), (0:0:1)}U{(1:0":07)|i,j=1,2,...,n}.
Then we have .
IH = (y,Z) N (Z,I) N (I7y) N m Pij7
i, j=1
where Pj; = (y — 0"z, 2 — 07x). Here we set f =y" — 2", g = 2" — 2" and h = 2" — y™.
Since f 4+ g+ h =0, we have (f,g) = (g, h) = (h, f). Moreover, we can prove

Iy = (xf,yg,zh) and (f,g9)= () P

i, j=1
Therefore, the following assertion holds.

Lemma 6.1. ]IY) =(y,2)"N(z,2)" N (z,y)" N (f,g)" for anyr € Z.

Harbourne and Seceleanu proved that %,(Iy ) is finitely generated if n = 3 (cf. [9]).
Moreover, Nagel and Seceleanu proved that Z(1y ) is still finitely generated even if n > 4
(cf. [14]). Here, we would like to give another proof using Huneke’s criterion.

First, let us consider the case where n = 3. We set

&= fohellly and & =xf -yg+yg-zh+zh-xf € [If]s.
Since (9/3)-(8/2) = 12 = e(R/Iy), it follows that & and &, satisfies HC on Iy by Lemma
5.7. Next, we consider the case where n > 4. Choosing o € K \ {0, 1}, we set
1= (fgh)(af +9)" Pand& = (2)*(yg)" " + (yg)*(zh)" ™ + (zh)*(@f)" 2 + f*“gh.

Then & € Ih(,n) and & € I,7. Although & is not homogeneous, we can prove that & and
& satisfty HC on Iy using Lemma 4.3.

7. IDEALS OF Zx,y, 2] GENERATED BY QUASIHOMOGENEOUS POLYNOMIALS
OF TYPE (a,b,c)

Throughout this section, we assume that S = Z[z,y, 2] is a polynomial ring over Z.
We put n = (z,y,2)S. Let K be a field. We set Sy = K ®7 S = K|z,y, 2], and for an
ideal J of S, we denote JSk by Jx. Moreover, for an element £ € S, we denote its image
in Sk by £k. Let us regard S and Sk as Ny-graded rings setting degx = a, degy = b,
deg z = ¢, where a,b,¢c € N. We assume that [ is a homogeneous ideal of S such that
VS +1 =n, \Ix = Ix and dim Sk /I = 1 for any field K. Finally, throughout this

section p denotes a prime number.

Definition 7.1. Let K be a field, k € N and f € I, We define
HC(Ik; k, f) :={ ¢ € N | There exists g € Il(f) such that f and g satisfy HC on Ik }.



Proposition 7.2. Let k =1 or 2, and let f € ]l({k). We assume that there exists 1 € N
such that f = y* mod xSk and HC(Ix; k, f) # ¢. We set m = min HC(If; k, f). Then
the following assertions hold.

(1) HC(Ik; k, f) = {m,2m,3m,...}.

(2) Skl Ixt, I, . 1L Dim=1] C 2, (I ).

o0

Definition 7.3. For any r € Z, we set [»%) = U (I" g ).
i=1

If £ € I®) it is easy to see &k € Ig) for any field K.

Proposition 7.4. The following assertions hold.
(1) (Ig)" = (I")q and (Ig,) ") = (I")g, for p>> 0.
(2) Let € € I®2) and n € 1) where k,¢ € N. Suppose that &y and ng satisfy HC
on Ig. Then &, and ny, satisfy HC on Iy, for p > 0.
(3) Suppose that k € N, £ € I®?) and € = y* mod xS for some i € N. Then we have
HC(IQ; k:,f@) = HC([IFP; k’,fﬂi‘p) f07“p > 0.

Theorem 7.5. Let k = 1 or2. Let £ € I®% and € = y* mod xS for some i € N.
Suppose that there exists 1 € N such that, for any p > 0, rp € HC(Ig,; k,&r,) holds for
some e, € N. Then the following conditions are equivalent.

(1) Zs(1g) is finitely generated.

(2) HC(Iq; k, &o) # ¢

(3) r € HC(Ig; k, &o)-

(4) r € HC(Ig,; k,&r,) for p> 0.

Under the assumption of Theorem 7.5, it follows that Z,(Ig ) is not finitely generated if

8. IDEALS DEFINING SPACE MONOMIAL CURVES

Throughout this section we assume that S = Z|x, y, 2] is a polynomial ring over Z. We
put n = (z,y, 2)S. Let K be a field. We set Sx = K ®z S = K|z,y, z]. Moreover, for an
element £ € S, we denote its image in Sk by &x. Let us regard S and Sk as Ny-graded
rings setting degx = a, degy = b, deg 2z = ¢, where a,b,c € N.

Let ¢ : Sk — K|[t] be the homomorphism of K-algebras such that p(z) =t* p(y) =1t
and p(z) = t°. We set

b

pK(a, b, C) = Kergp,
which is a homogeneous prime ideal of Sk of height 2. If pg(a,b,c) is not a complete
intersection, then it is generated by the maximal minors of a matrix of the following form;

t3 ul So
yB o 2"
(ﬁ) < Z’u,z I.Sg ytl ) 9
where sg, 3,11, t3, u1, ug are positive integers which are determined without depending on
the field K (cf. [10]). Let p(a, b, c) be the ideal of S generated by the maximal minors of

(#). Then we have /xS + p(a,b,c) = n and p(a, b, c)Sk = pk(a,b,c) for any field K.
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The ideals defining space monomial curves explained above are deeply related to the
defining ideals of certain finite set of points in P%.. Let us verify this fact in the case where
K = C. We put 6, = >/ € C for n € N. Let H(a,b,c) be the set of the following
points in PZ ;

{(95:85:«98]“)|i:1,...,a;j:1,...,b;kzl,...,c}.
Taking new variables XY, Z, we set T = C[X,Y, Z]. We consider the defining ideal of

H(a,b,c)in T, i.e.,
XY Z
[H a,b,c) — IQ( i i ) .
( ) ﬂ 0(1 ebj gck

irjik
Let us regard Sc as a subring of 1" setting x = X,y = Y?, 2 = Z¢. Then the equality

[H(Zz,b,c) - pc(a, b, C)(T)T
holds for any r € Z and we have the following.

Proposition 8.1. Z,(I(p,.c) ) is finitely generated if and only if so is Z(pc(a,b,c)).

It is not so difficult to find concrete examples of px (a, b, ¢) whose symbolic Rees algebras
are finitely generated by using Huneke’s criterion. For example, Huneke himself proved
that Zs(pk(a,b,c)) is finitely generated if min{ a,b,c} <4 and ch K # 2 (cf. [11]). On
the other hand, constructing infinitely generated Zs(pk(a,b,c)) is hard. Goto, Nishida
and Watanabe found concrete examples of px(a, b, ¢) with infinitely generated symbolic
Rees rings for the first time (cf. [7]), and later Gonzalez and Karu extended such class
of ideals much wider (cf. [4]). In the following, we give examples of infinitely generated
Hs(p(a,b,c)) of new type.

First, we choose a € Q with 1 < o < 5/4 arbitrary. Then, as 2 < (17 — 10«) /(6 — 3cv),
we can choose f € Q so that 2 < 5 < (17 — 10«) /(6 — 3a). Next, we write a = ug/uy
and 5 = sy/s3, taking ug, uy, $2,53 € N suitably. Let t; = t3 = 1 and a = 2uy + us,
b= S3Uo + SolUp + SoUg, C = 89 + 283t1.

Example 8.2. ([12]) If GCD{a,b,c} = 1, then pi(a,b,c) is minimally generated by
the mazimal minors of the matriz (§) stated above for any field K. We can find £ €
p(a, b, c)®?) satisfying the following conditions ;
(i) € =y® mod xS,
(ii) for any prime number p, 3p® € HC(pg, (a,b, c);2,&r,) if e, >0, and
(i) 3 ¢ HC(Ig: 2, €0).
Consequently, it follows that %s(pg(a,b,c)) is not Noetherian.

The simplest case is & = 6/5 and [ = 49/24. In this case a = 16, b = 683 and ¢ = 97.
In order to explain what is new about the example stated above, let us recall the notion
of negative curve (cf. [3]). First, we have to consider the irreducible decomposition of
elements in [px(a,b,c)™ ]y, where r,d € N. We put R = Sk and P = pg(a,b,c). Let
£ c [P(r)]d \ pl+1)

Lemma 8.3. Let £ = && -+ - &, where & € [R]y, fori=1,2,--- s. We set r; = max{/ |
& € P'Rp }. Then the following assertions hold.
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(1) & € [PU)y, fori=1,2,--- 5.
(2) ri4+ro+--+rs=randdi +do+---+ds =d.
(3) If d/r < a € R, then d;/r; < « for somei=1,2,...,s.

Proof. The assertion (1) and d; +ds+---+ds = d is obvious. We get r1 +7ro+-+-+ry =7

by considering the initial forms of &;,--- , & in the associated graded ring of Rp, which

is an integral domain. Suppose that d;/r; > « for any i = 1,2,--- ,s. Then we have
d=dy+do+---+ds > alri+ro4 - +71,) =ar,

which means d/r > a. O

Definition 8.4. Let £ € [px(a,b,¢)™) |4, where r,d € N. If £ is irreducible and

d
- < Vabc,
r

& 15 called a negative curve.

Theorem 8.5. Assume that a,b, ¢ are pairwise coprime and abc is not a square number.
Then there ezists a negative curve if Zs(pr(a,b,c)) is finitely generated.

Proof. Let us give an algebraic proof in the case where K = C. We put R = Sg,
P =ypc(a,b,c)and H = H(a,b,c) C P2. Let us define Iy to be an ideal of T = C[X, Y, Z].
We assume that Zs(P) is Noetherian. Then Z,(Iy ) is also Noetherian. Hence Iy
does not satisfy NC by Theorem 5.5. This means that there exist 7,0 € N such that
[Ig)](; # 0 and §/r < vabe (§/r = v/abc can not happen as abe is not a square number).
Since Ig) = PUT, we have [P"]; # 0 for some d € N with d < §. Let us notice

d/r < §/r < Vabe.
Now we take an element 0 # ¢ € [P™];. Let & = & -+ & be the irreducible de-

composition, where & € [R]g,. We set r; = max{l | ¢ € P'Rp} fori = 1,2, --- ,s. By
Lemma 8.3, we have d;/r; < vabc for some i = 1,2, --- | s. Then §; is a negative curve
as 5@ € [P(Ti)]di' O

Cutkosky proved that the converse of Theorem 8.5 holds if ch K > 0.
Theorem 8.6. We assume that a,b,c are pairwise coprime. Let & € [px(a,b,c)" ],

for i = 1,2, where r;,d; € N. Let &,& be an Sk -reqular sequence. Then the following
assertions hold.

r T

(2) The equality holds in (1) if and only if & and & satisfies HC on pg(a, b, c) .

If K = C, Theorem 8.6 follows from Theorem 5.5, Lemma 5.6 and Proposition 8.3 as
e(T/In(ape) = tH(a,b,c) = abc.

The following result explains the uniqueness of negative curve.

Theorem 8.7. We assume that a,b,c are pairwise coprime. Let & € [px(a, b, c)"]y, for
1 =1,2, where r;,d; € N. If both & and & are negative curves, then & ~ &.
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Proof. Suppose that §; is a negative curve for i = 1,2 and &; £ &. Then, as d;/r; < Vabc
for i = 1,2, we have (dy/r1)(dy/r2) < abe. On the other hand, &,&; is Sk-regular as &;
is irreducible for i = 1,2. So, by TheoremrefT8.7 we have (d;/ry)(dy/rs) > abc, which is
impossible. Therefore the required assertion follows. 0

Let pg(a, b, ¢) be one of the examples found by Goto, Nishida, Watanabe (cf. [7]) and
Gonzélez, Karu (cf. [4]). Then it has a negative curve in the first symbolic power.

Example 8.8. (cf. [12]) Let pg(a, b, c) be the example given in Example 8.2. Let & be the
element in p(a, b, c)>® used for proving that Zs(po(a,b,c)) is infinitely generated. Then,
for any field K, £k € pr(a,b,c)® and it is a negative curve.

For exzample, if P = pr(16,683,97), then £x € [P®]yug. One can check 2049/2 <

V16 - 683 - 97 directly.

Recently, for any k£ € N, Gonzédlez and Karu found examples of pg(a,b,c) such that
Zs(pola,b, c)) is infinitely generated and there exists a negative curve in pg(a, b, ¢)® (cf.
[5])
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