# Unbounded polytopes and toric type cusp singularities

Masanori Ishida Mathematical Institute, Tohoku University

December 27, 2017

#### Introduction

In the theory of toric varieties, a fundamental result is the fact that a toric variety of dimension r with an ample invertible sheaf corresponds to a convex polytope with integral vertices in  $\mathbb{R}^r$ . In this note, we define quasi-polyhedral sets in  $\mathbb{R}^r$  as a generalization of convex polytopes. For a quasi-polyhedral set P, the cc-dimension is defined as the dimension of the characteristic cone of P. A convex polytope is the case of cc-dimension zero. We call P a quasi-polytope if every proper face of P is bounded.

We recall the theory of cusp singularities defined by Tsuchihashi in this view point. This cusp singularity is defined for a pair of an open convex cone C and a discrete linear group  $\Gamma$  acting on it. Since the cusp singularity is constructed by contracting a toric divisor, it is important to consider the singularity with the toric resolution. In Section 4, we describe the construction over an arbitrary field by using a formal scheme, and algebraize the toric resolution to a scheme morphism. In Section 5, we consider a quasi-polytope of maximal cc-dimension with a group action. Such a quasi-polytope gives a cusp singularity if the action satisfies some conditions. Finally, in Section 6, we introduce beautiful examples obtained by Tsuchihashi recently. The four-dimensional example has a simple normal crossing exceptional divisor consisting of four irreducible components with 48 quadruple points.

### 1 Quasi-polyhedral sets

Let r be a non-negative integer and let M, N be mutually dual free **Z**-modules of rank r. We denote  $M_{\mathbf{R}} = M \otimes_{\mathbf{Z}} \mathbf{R}$  and  $N_{\mathbf{R}} = N \otimes_{\mathbf{Z}} \mathbf{R}$ , which are real spaces of dimension r. Then there exists a natural perfect bilinear map

$$\langle , \rangle : M_{\mathbf{R}} \times N_{\mathbf{R}} \longrightarrow \mathbf{R} .$$

Although M and N have standard roles in the theory of toric varieties, we may exchange the roles in the study of dualities (cf. [I3]). Points in M and N are called *lattice points*, and those in  $M_{\mathbf{Q}}$  and  $N_{\mathbf{Q}}$  are rational points.

Since each  $u \in N_{\mathbf{R}}$  is a linear function of  $M_{\mathbf{R}}$  by the bilinear map,  $\{x \in M_{\mathbf{R}} : \langle x, u \rangle \geq a\}$  is a closed half space of  $M_{\mathbf{R}}$  for every  $a \in \mathbf{R}$  if  $u \neq 0$ . We denote it by  $(u \geq a)$ . The closed half space  $(u \leq a)$  and open half spaces (u > a), (u < a) as well as the hyperplane (x = a) are defined similarly. We will use this notation also for u = 0, where the set is not a half space nor a hyperplane.

A non-empty subset  $C \subset M_{\mathbf{R}}$  is called a *polyhedral cone* if there exist  $x_1, \ldots, x_s \in M_{\mathbf{R}}$  with  $C = \mathbf{R}_0 x_1 + \cdots + \mathbf{R}_0 x_s$ , where  $\mathbf{R}_0 = \{c \in \mathbf{R} : c \geq 0\}$ . It is known that C is also expressed as  $(u_1 \geq 0) \cap \cdots \cap (u_t \geq 0)$  with  $u_1, \ldots, u_t$  in  $N_{\mathbf{R}}$  (cf. [O, A.1]). We say C is *rational* if  $x_1, \ldots, x_s$ , or equivalently  $u_1, \ldots, u_t$ , are rational points. In this case, we can take these points in M and N, respectively.

For a subset  $E \subset M_{\mathbf{R}}$  and  $x \in M_{\mathbf{R}}$ , we denote  $E - x = \{y - x \; ; \; y \in E\}$ . A subset E is said to be locally polyhedral at x if E - x is equal to a polyhedral cone in a neighborhood of the origin. This is equivalent to the condition that  $x \in E$  and E is equal to  $(u_1 \geq a_1) \cap \cdots \cap (u_t \geq a_t)$  for some  $u_1, \ldots, u_t \in N_{\mathbf{R}}$  and  $a_1, \ldots, a_t \in \mathbf{R}$  in a neighborhood of x. If dim E = r, then we may assume that  $\langle x, u_i \rangle = a_i$  and  $u_i$  defines an (r-1)-dimensional face of the polyhedral cone for every i by reducing redundant members. A non-empty convex subset P is called a quasi-polyhedral set if P is locally polyhedral at every point  $x \in \overline{P}$ . Then it follows that  $P = \overline{P}$ , i.e., P is closed. A quasi-polyhedral set P is P is rational if P, P is and P is called a face if there exist P is an P and P

For a non-empty closed convex set D, the characteristic cone cc(D) is defined by

$$cc(D) = \{ y \in M_{\mathbf{R}} ; x + \mathbf{R}_0 y \subset D \}$$

for  $x \in D$  (cf. [G, p.24]). This is a closed convex cone which does not depend on the choice of x since we assume D closed. We define cc-dimension by cc-dim $(D) = \dim cc(D)$  which has a value between 0 and r, and is zero if and only if D is bounded (cf. [G, p.24]).

## 2 Open cone with lattice

We fix Euclidean metrics on the real spaces  $N_{\mathbf{R}}$  and  $M_{\mathbf{R}}$ . The metrics are used in the proof of Theorem 2.3 and in the definition of the characteristic function of a cone.

Let C be an open convex cone in  $N_{\mathbf{R}}$ , i.e., C is the interior of a full-dimensional closed convex cone in  $N_{\mathbf{R}}$ . We assume the closure  $\overline{C}$  of C is strongly convex. Then the dual cone  $\overline{C}^{\vee}$  in  $M_{\mathbf{R}}$  is also a strongly convex closed cone of dimension r. We set  $C^* = \operatorname{int}(\overline{C}^{\vee})$ , which is an open convex cone in  $M_{\mathbf{R}}$ . Note that if  $x \in C^*$  then  $\{u \in \overline{C} : \langle x, u \rangle \leq a\}$  is bounded for any  $a \geq 0$ . Actually, there exist linearly independent  $x_1, \ldots, x_r \in C^*$  with  $x = x_1 + \cdots + x_r$  since  $C^*$  is an open convex cone. Then the set is contained in  $(x_1 \geq 0) \cap \cdots \cap (x_r \geq 0) \cap (x_1 + \cdots + x_r \leq a)$  which is clearly bounded.

For a subset  $S \subset C^*$ , we set

$$K(S) = \{u \in N_{\mathbf{R}} \; ; \, \langle x, u \rangle \geq 1 \text{ for all } x \in S\} = \bigcap_{x \in S} (x \geq 1)$$
 .

Clearly, K(S) is a closed convex set of  $N_{\mathbf{R}}$  which might be empty.

**Lemma 2.1** Assume that  $S \subset C^*$  is discrete in  $M_{\mathbf{R}}$ . Let u be a point of C. Then (1) u is outside K(S) if  $S \cap (u < 1) \neq \emptyset$ , (2) K(S) is locally equal to the convex set  $\bigcap_{x \in S \cap (u=1)} (x \geq 1)$  at u if  $S \cap (u < 1) = \emptyset$ . A point u is in the interior of K(S) if  $S \cap (u \leq 1) = \emptyset$ . In particular, K(S) is locally polyhedral at every point of  $\overline{K(S)} \cap C$ .

Proof If there exists  $x \in S \cap (u < 1)$ , then u is outside  $K(S) \subset (x \ge 1)$ . Assume  $S \cap (u < 1) = \emptyset$ . Set  $S_1 = S \cap (u = 1)$  and  $S_2 = S \cap (u > 1)$ . Since  $u \in C = \operatorname{int}(\overline{C})$ ,  $C^* \cap (u < c)$  is bounded and  $S \cap (u < c)$  is a finite set for any c > 0. Hence  $S_1$  is finite, and there exists  $a = \min\{\langle x, u \rangle : x \in S_2\} > 1$  if  $S_2 \ne \emptyset$ . Then  $a^{-1}u \in K(S_2)$  and  $a^{-1}u + C \subset K(S_2)$ . Since  $a^{-1}u + C$  is an open set which contains  $u = a^{-1}u + (1 - a^{-1})u$  and  $K(S) = K(S_1) \cap K(S_2)$ , K(S) is equal to  $K(S_1) = \bigcap_{x \in S_1} (x \ge 1)$  in this neighborhood of u. It is locally polyhedral since  $S_1$  is finite. QED

**Lemma 2.2** Let  $A \subset N_{\mathbf{R}}$  be a bounded closed convex subset and  $u_0 \in N_{\mathbf{R}}$  a point such that the convex hull  $B = \operatorname{conv}(A \cup \{u_0\})$  is of dimension r. Let D be the cone generated by  $A - u_0$ . Then, for any subsets  $E \subset N_{\mathbf{R}}$  and  $F \subset (D + u_0) \setminus B$ , we have

$$B \cap \operatorname{conv}(A \cup E) = B \cap \operatorname{conv}(A \cup E \cup F)$$
.

In particular, if  $conv(A \cup E)$  is a polyhedron, then  $P = conv(A \cup E \cup F)$  is locally polyhedral at each point of  $\overline{P} \cap int(B)$ .

Proof By a translation, we may assume  $u_0 = 0$ . If  $0 \in A$ , then B = A and the assertion is obvious. We assume  $0 \notin A$ . Then  $B \setminus A$  is an open subset of D (see Remark 2.3). Let u be a point of  $B \cap \text{conv}(A \cup E \cup F)$ . It suffices to show that u is in  $\text{conv}(A \cup E)$ . We may assume  $u \notin A$ . Since  $u \in \text{conv}(A \cup E \cup F)$ , there exist s > 0,  $v_1, \ldots, v_s \in A \cup E \cup F$  and  $a_1, \ldots, a_s > 0$  with

$$a_1(v_1 - u) + \dots + a_s(v_s - u) = 0$$
.

If  $v_i \in F$  for an i, then take the maximal  $c_i \geq 0$  with  $v_i' = u + c_i(v_i - u) \in B$ . Clearly  $c_i < 1$  since  $v_i \notin B$ . Since  $u + c'(v_i - u) \in D \setminus B$  for  $c_i < c' \leq 1$ ,  $v_i' \in B$  is in the closure of  $D \setminus B$ , and is in A since  $B \setminus A$  is open in D. In particular,  $c_i$  is positive. Namely, we can replace  $a_i(v_i - u)$  by  $(a_i/c_i)(v_i' - u)$  in the equality. If we do it for all  $v_i$ 's in F, we get an equality which says that u is in  $conv(A \cup E)$ .

**Remark 2.3** Here we prove this fact. Let w be a point in  $B \setminus A$ . Then there exist  $p \in A$  and  $0 \le a < 1$  with w = ap. Since A is closed, there exists an open convex neighborhood U of w in  $N_{\mathbf{R}}$  which does not intersect A. Suppose that U contains a point z of  $D \setminus B$ . Then there exist  $q \in A$  and b > 1 with z = bq. For the real numbers  $0 \le a < 1$ , b > 1, the equation ta + (1 - t)b = 1 has a solution 0 < t < 1. Then tw + (1 - t)z = tap + (1 - t)bq is in  $U \cap A$ , which is a contradiction since  $U \cap A = \emptyset$ . Hence  $w \in U \cap D \subset B \setminus A$ , which means  $B \setminus A$  is open in D.

Let  $S_C$  be the set of elements  $m \in M \cap C^*$  such that there exists  $u \in C$  with  $\langle m, u \rangle = 1$  and  $\langle m', u \rangle > 1$  for  $m' \in (M \cap C^*) \setminus \{m\}$ . If  $(m_1 \geq 1) \cap \cdots \cap (m_t \geq 1)$  is the irredundant expression of  $K(M \cap C^*)$  at a point u, then  $m_1, \ldots, m_t$  are in  $S_C$ . We see easily that  $K(M \cap C^*) \cap C = K(S_C) \cap C$ , and hence  $K(M \cap C^*) = K(S_C)$  as closures. We set  $Q_m = K(S_C) \cap (m = 1)$  for  $m \in S_C$ , which is locally equal to the hyperplane (m = 1) at u in the definition of  $S_C$ . Then, we get one-to-one correspondences  $m \mapsto Q_m$  between  $S_C$  and the set of codimension one faces of  $K(S_C)$ .  $N \cap (\overline{C} \setminus \{0\})$  is contained in  $K(S_C)$  since  $\langle x, u \rangle$  is a positive integer for  $x \in M \cap C^*$  and  $u \in N \cap (\overline{C} \setminus \{0\})$ . In particular,  $K(S_C)$  is not necessarily contained in C (cf. [AMRT, II, 5.3]).

**Theorem 2.4** Let  $\Theta$  be the convex hull of  $N \cap C$ . If C contains  $K(S_C)$  and  $\Theta$  contains  $K_d = dK(S_C)$  for a positive integer d, then  $\Theta$  is a locally polyhedral closed subset of  $N_{\mathbf{R}}$ . The vertices of  $\Theta$  are in  $N \cap C$ .

Proof Since  $N \cap C \subset K(S_C)$ ,  $\Theta$  is a subset of the closed convex set  $K(S_C)$ . Since we assume  $K(S_C) \subset C$ , the closure of  $\Theta$  is contained in C. Hence it suffices to show that  $\Theta$  is locally polyhedral at every point  $u \in \overline{\Theta}$  with assuming  $u \in C \setminus \operatorname{int}(K_d)$ . Set  $S_1 = \{m \in S_C \; ; \; \langle m, u \rangle \leq d\}$  and  $S_2 = S_C \setminus S_1$ . Then  $a = \min\{\langle m, u \rangle \; ; \; m \in S_2\}$  is greater than d.

We set b = d/a, which is a positive number less than 1. Since (1/d)u is outside int  $K(S_C)$ ,  $S_1$  is not empty by Lemma 2.1. Let  $A_0$  be the union of (r-1)-dimensional polytopes  $K_d \cap (m = d)$  for  $m \in S_1$ .

We set u' = bu and will show that  $E = \{v \in N \cap C : \overline{u'v} \cap K_d = \emptyset\}$  is finite. If it failed, we get a sequence  $\{v_i\}$  from this set such that  $\lim_{i \to \infty} |v_i| = \infty$  and  $|v_i|^{-1}v_i$  converges to a unit vector w. Since  $v_i$ 's are in C, w is in  $\overline{C} \setminus \{0\}$ . Hence  $\langle m, w \rangle > 0$  for every  $m \in S_C$ . Since  $\langle m, u' + cw \rangle = \langle m, u' \rangle + c \langle m, w \rangle$  and  $\langle m, u' \rangle < d$  for  $m \in S_1$ , there exists c > 0 such that  $\min\{\langle m, u' + cw \rangle : m \in S_1\} = d$ . Note that  $\langle m, u' \rangle = b \langle m, u \rangle \geq ba = d$  and  $\langle m, u' + cw \rangle > d$  for  $m \in S_2$ . Hence u' + cw is a point of  $A_0$  which is not on  $K_d \cap (m = d)$  for any  $m \in S_2$ . Furthermore, u' + c'w is a point of  $\inf(K_d)$  for c' > c. Since w is also the limit of  $w_i = |v_i|^{-1}(v_i - u')$ , and since  $v_i = u' + |v_i|w_i$ , the segment  $\overline{u'v_i}$ , which contains  $u' + c'w_i$  if  $c' < |v_i|$ , intersects  $K_d$  for large i. This is a contradiction.

Assume that  $v \in N \cap C$  and  $\overline{u'v}$  intersects  $K_d$ . Let  $c \geq 0$  be the minimal number with  $v' = u' + c(v - u') \in K_d$ . Since  $K_d = dK(S_1) \cap dK(S_2)$  and  $\overline{u'v'} \subset dK(S_2)$ , there exists  $m \in S_1$  with  $\langle m, v' \rangle = d$ , and hence v' is an intersection point of  $\overline{u'v}$  and  $A_0$ . Let  $A = \operatorname{conv}(A_0)$  and  $B = \operatorname{conv}(A \cup \{u'\})$ . Then u is in the interior of B unless  $S_1 = \{m_0\}$  and u is on  $K_d \cap (m_0 = d)$ . In this case u is in the interior of  $\Theta$  or locally defined by  $(m_0 \geq d)$  at u. We assume u is in the interior of B. Set  $F = (N \cap C) \setminus E$ . Then by applying Lemma 2.2 for  $u_0 = u'$ ,  $\Theta = \operatorname{conv}(E \cup F)$  is locally polyhedral at each point of int  $B \cap \overline{\Theta}$ , in particular, at u. If u is a vertex of  $\Theta$ , then  $u \in E \subset N \cap C$ . QED

The characteristic function  $\phi$  of a strongly convex open cone C is defined by

$$\phi(u) = \int_{C^*} \exp(-\langle x, u \rangle) dx$$

for  $u \in C$ . Important properties of  $\phi$  are written and proved in Vinberg [V1, §2]. In particular,  $\phi(u)$  is a positive valued differentiable convex function satisfying  $\phi(\lambda u)$  =

 $\lambda^{-r}\phi(u)$  for  $\lambda > 0$ , here r is the dimension of  $N_{\mathbf{R}}$ . Furthermore, by defining  $\phi(u) = \infty$  for  $u \in \overline{C} \setminus C$ , the map  $\phi : \overline{C} \to (0, \infty]$  is continuous, and  $\{u \in C : \phi(u) \leq a\}$  is a closed convex subset of  $N_{\mathbf{R}}$  for every a > 0.

A subgroup  $\Gamma$  of GL(N) is also considered as the subgroup  $\{{}^{t}g^{-1} : g \in \Gamma\}$  of GL(M), and acts on both  $N_{\mathbf{R}}$  and  $M_{\mathbf{R}}$  linearly from the left. Namely, the equality  $\langle g(x), g(u) \rangle = \langle x, u \rangle$  holds for  $g \in \Gamma$ ,  $x \in M_{\mathbf{R}}$  and  $u \in N_{\mathbf{R}}$ . We say  $\Gamma$  acts on C if g(C) = C for all  $g \in \Gamma$ . Then  $\Gamma$  acts also on  $C^*$ . Since g(M) = M,  $\Gamma$  acts on  $K(S_C)$  and  $K(S_C) \cap C$ . Note that  $\det(g) = \pm 1$  is uniquely defined for  $g \in \Gamma$ .

Let  $C/\mathbf{R}_+$  be the set of half lines  $\{\mathbf{R}_+u : u \in C\}$  with the topology as the quotient space of C. For any  $\lambda > 0$ ,  $\{u \in C : \phi(u) = \lambda\}$  is homeomorphic to  $C/\mathbf{R}_+$ . The following projective transformation maps C to the cylindrical area  $\mathbf{R}_+ \times (C/\mathbf{R}_+)$ .

Take points  $n_0 \in C$  and  $x_0 \in C^*$  with  $\langle x_0, u_0 \rangle = 1$ . Let  $p : N_{\mathbf{R}} \to N_{\mathbf{R}}/\mathbf{R}n_0$  be the natural surjection, and let  $D_C = p(C \cap (x_0 = 1))$ . Then, the map

$$q: C \longrightarrow \mathbf{R}_+ \times D_C$$
,  $q(u) = \left(\frac{1}{\langle x_0, u \rangle}, \frac{p(u)}{\langle x_0, u \rangle}\right)$ ,

is a homeomorphic projective transformation. For  $x \in C^*$  and a > 0, the subset  $C \cap (x \geq a)$  is mapped to  $\{(t,v) \in \mathbf{R}_+ \times D_C : at \leq l_x(v)\}$ , where  $l_x$  is the affine function on  $N_{\mathbf{R}}/\mathbf{R}n_0$  such that  $l_x(p(u)) = \langle x, u \rangle$  for  $u \in (x_0 = 1)$ . Since  $x \in C^*$ , there exist  $m_x, M_x > 0$  with  $m_x \leq l_x \leq M_x$ . For  $S \subset C^*$ ,  $q(K(S) \cap C) = \{(t,v) : t \leq l_x$  for all  $x \in S\}$ . We regard  $D_C$  as the quotient  $C/\mathbf{R}_+$  through this homeomorphism. If a linear automorphism g of  $N_{\mathbf{R}}$  fixes the cone C, then g induces a homeomorphism on  $D_C$  which is compatible with that on C. We see  $\phi q^{-1}$  is also a differentiable convex function, which satisfies  $\phi q^{-1}(\lambda t, v) = \lambda^r \phi q^{-1}(t, v)$  for  $\lambda > 0$ . In particular,  $\{u \in C : \phi(u) = a\}$  is homeomorphic to  $D_C$  for any a > 0. Furthermore, q extends to a homeomorphism  $\overline{C} \setminus \{0\} \to \mathbf{R}_+ \times \overline{D_C}$ .

**Lemma 2.5** If a subgroup  $\Gamma \subset GL(N)$  acts on C and the quotient  $D_C/\Gamma$  is compact, then the condition of Theorem 2.4 is satisfied.

Proof Let  $\partial K(S_C)$  be the boundary of  $K(S_C)$ . Then  $\Gamma$  acts on  $\partial K(S_C) \cap C$  which is naturally homeomorphic to  $C/\mathbb{R}_+$ . Since  $\phi$  is constant on each orbit of  $\Gamma$  and  $(C/\mathbb{R}_+)/\Gamma$  is compact,  $\phi$  is bounded on  $\partial K(S_C) \cap C$  and has the maximum  $\lambda$ . Let u be a point in the interior of  $K(S_C)$ . Then  $a = \min\{\langle m, u \rangle : m \in S_C\} > 1$  and  $(1/a)u \in \partial K(S_C) \cap C$ . Hence  $\phi(u) = a^{-r}\phi((1/a)u) < \lambda$ . Since  $K(S_C)$  is the closure of its interior as a convex set,  $\phi$  is at most  $\lambda$  on  $K(S_C)$ . Hence  $K(S_C) \subset \phi^{-1}((0, \lambda])$  is contained in C. The vertices of  $K(S_C)$  are rational points and form a finite number of orbits since  $D_C/\Gamma$  is compact. Hence there exists d > 0 such that all vertices of  $dK(S_C)$  are in N. Since  $K(S_C)$  is the convex hull of the union of proper faces, and hence of vertices,  $dK(S_C)$  is contained in the convex hull of  $N \cap C$ .

### 3 Toric type cusp singularity

Let  $C \subset N_{\mathbf{R}}$  be an open convex cone such that  $\overline{C}$  is strongly convex. In this section, we assume that a group  $\Gamma \subset \operatorname{GL}(N)$  acts on C and the quotient  $D_C/\Gamma$  is compact. When

the action of  $\Gamma$  on C is free, a singularity, which we call a *toric type cusp singularity*, is constructed by Tsuchihashi [T1, Proposition 1.7] (see also [AMRT, p.162, Appendix]). In this paper, we call such pair  $(C, \Gamma)$  a *Tsuchihashi pair* if the action is free. We will discuss on  $\Gamma$ -invariant fans and their blowups.

We define the canonical fan  $\Pi$  by the convex closure  $\Theta$  of  $N \cap C$  as follows. Let  $F(\Theta)$  be the set of proper faces of  $\Theta$ . We get the following lemma by Theorem 2.4.

**Lemma 3.1** Each  $Q \in F(\Theta)$  is a polytope whose vertices are points of  $N \cap C$ .

Since  $Q \in F(\Theta)$  is a polytope in a hyperplane (x = a) with  $x \in C^*$  and a > 0,  $\mathbf{R}_0 Q$  is a rational polyhedral cone generated by the set of the vertices of Q. Define

$$\Pi = \{ \mathbf{R}_0 Q : Q \in F(\Theta) \} \cup \{ \mathbf{0} \}$$

where  $\mathbf{0} = \{0\}$ , i.e., the zero cone. The following lemma is easy.

**Lemma 3.2** Under the assumption of this section,  $\Pi$  is a fan of  $N_{\mathbf{R}}$  with the support  $C \cup \{0\}$ . The action of  $\Gamma$  on C induces an action on  $\Pi \setminus \{\mathbf{0}\}$  such that  $(\Pi \setminus \{\mathbf{0}\})/\Gamma$  is finite and every stabilizer is finite. The action is free if and only if that on C is free.

Similarly, we can also define a fan  $\Pi_0$  from the  $\Gamma$ -invariant quasi-polytope  $K(S_C)$ . We consider the case that  $\Gamma$  acts on a fan  $\Sigma$  of  $N_{\mathbf{R}}$  with the support  $C \cup \{0\}$  which is locally finite at each point of C. Then  $\Sigma$  is said to be  $\Gamma$ -invariant or  $\Gamma$ -admissible if  $(\Sigma \setminus \{\mathbf{0}\})/\Gamma$  is finite (cf. [AMRT, Chapter 2]). In our case, this finite condition follows from the compactness of  $D_C/\Gamma$ .

Let  $\Sigma$  be a  $\Gamma$ -invariant fan. A support function of  $\Sigma$  is a real-valued function h on  $C \cup \{0\}$  such that the restriction to each  $\sigma \in \Sigma$  is linear and  $\mathbb{Z}$ -valued on  $N \cap \sigma$ , i.e., there exists  $m_{\sigma} \in M$  with  $h = m_{\sigma}$  as functions on  $\sigma$ . We call it a support  $\mathbb{Q}$ -function if we weaken the last condition to  $\mathbb{Q}$ -valued on  $N \cap \sigma$ . A support function h is continuous on C since  $\Sigma$  is locally finite. We say h is convex if  $h(u + v) \geq h(u) + h(v)$  for any  $u, v \in C$ , and strictly convex if h(u + v) > h(u) + h(v) for u, v which are not in a common cone of  $\Sigma$ . For example,  $h(u) = \min\{\langle x, u \rangle : x \in M \cap C^*\}$  is a strictly convex support function of  $\Pi_0$ .

For an element  $\rho \in \Sigma \setminus \{0\}$ , we set  $\Sigma(\rho \prec) = \{\tau \in \Sigma : \rho \prec \tau\}$ . Let  $\rho \in \Sigma$  be an element of dimension at least two such that  $\Sigma(\rho \prec) \cap g(\Sigma(\rho \prec)) = \emptyset$  for every  $g \in \Gamma \setminus \{1\}$ . Let u be an element of  $N \cap \text{rel.}$  int  $\rho$ . For each  $\tau \in \Sigma(\rho \prec)$ , we set

$$F(\tau, \rho) = \{ \sigma \prec \tau : u \notin \sigma, (\mathbf{R}_0 u + \sigma) \cap \text{rel. int } \tau \neq \emptyset \}$$

which does not depend on the choice of u. Then, the  $\Gamma$ -equivariant blowup, or star subdivision,  $\mathrm{Bl}_{\Gamma,u} \Sigma$  of  $\Sigma$  at u is defined by

$$\mathrm{Bl}_{\Gamma,u} \Sigma = (\Sigma \setminus \bigcup_{g \in \Gamma} g(\Sigma(\rho \prec))) \cup (\bigcup_{g \in \Gamma} g(\Delta)) ,$$

where

$$\Delta = \{ \mathbf{R}_0 u + \sigma ; \sigma \in F(\tau, \rho), \tau \in \Sigma(\rho \prec) \} .$$

Note that, if  $\Gamma$  acts on  $\Sigma$  freely, then  $\rho \in \Sigma$  of dimension r satisfies the condition since  $\Sigma(\rho \prec) = \{\rho\}$ . Clearly,  $\mathrm{Bl}_{\Gamma,u} \Sigma$  is  $\Gamma$ -invariant. The barycentric subdivision of  $\Sigma$  is done by iterating the blowups for all elements of dimensions from r to 2 in  $\Sigma$  in this order. Namely, let  $\overline{\Sigma}$  be a set of representatives of  $\Sigma/\Gamma$ , and take a primitive element  $u_{\rho} \in N \cap \mathrm{rel}$ . int  $\rho$  for all  $\rho \in \overline{\Sigma}$ . The  $\Gamma$ -equivariant blowups at  $u_{\rho}$  for all  $\rho \in \overline{\Sigma}(r)$  do not depend on the order, and all cones of  $\overline{\Sigma}\backslash\overline{\Sigma}(r)$  remain in the obtained fan. Furthermore, cones in  $\overline{\Sigma}(r-1)$  satisfy the condition in the new fan. Thus we can blowup  $\Sigma$  at all cones of dimension greater than one. A subdivision of  $\Sigma$  to a non-singular fan can also be done by these blowups if we take  $u_{\rho}$ 's properly.

**Lemma 3.3** If  $\Sigma$  has a strictly convex support function h, then  $\mathrm{Bl}_{\Gamma,u} \Sigma$  has also a strictly convex support function.

Proof Let  $U = \bigcup_{\tau \in \Sigma(\rho \prec)}$  rel. int  $\tau$ . If  $v \in U$  is in rel. int  $\tau$  and v = au + u' with  $a \in \mathbf{R}_0$  and  $u' \in \sigma \in F(\tau, \rho)$ , then define l(v) = a. For  $v \in C$ , we set  $l(v) = l(g^{-1}(v))$  if there exists  $g \in \Gamma$  with  $v \in g(U)$ , and define l(v) = 0, otherwise. Then l is a support  $\mathbf{Q}$ -function on  $\mathrm{Bl}_{\Gamma,u} \Sigma$  which is strictly convex on the subdivision of each  $\tau \in \Sigma(\rho \prec)$ , while h is linear on these cones. Now, we replace l by a multiple cl of an integer c > 0 so that l has integral values on  $N \cap C$ . Then the finiteness of  $\Sigma/\Gamma$  implies that, for a sufficiently large positive integer d, dh + l is a strictly convex support function of  $\mathrm{Bl}_{\Gamma,u} \Sigma$ .

We assume that  $\Sigma$  has a  $\Gamma$ -invariant strictly convex support function h. For each  $\gamma \in \Sigma(1)$ , denote the associated prime divisor by  $V(\gamma)$ . Since the toric variety  $Z(\Sigma)$  is not of finite type, a divisor on it may be an infinite sum. Namely, an infinite sum  $D = \sum a_{\gamma}V(\gamma)$  is a Cartier divisor if the restriction  $D|U(\sigma)$  to the affine toric variety  $U(\sigma)$  is principal for every  $\sigma \in \Sigma \setminus \{0\}$ . A Cartier divisor  $D = \sum a_{\gamma}V(\gamma)$  is  $\Gamma$ -invariant if  $a_{\gamma} = g(a_{\gamma})$  for all  $\gamma \in \Sigma(1)$  and  $g \in \Gamma$ . The associated invertible sheaf  $\mathcal{O}_{Z(\Sigma)}(D)$  is also  $\Gamma$ -invariant if D is so. For a support function h of  $\Sigma$ , the associated Cartier divisor is defined by  $D_h = -\sum h(n_{\gamma})V(\gamma)$ , where  $n_{\gamma}$  is the primitive generator of  $\gamma$  (cf. [O, p.69]). When h has only non-negative values, the coefficients of  $D_h$  are non-positive, i.e.,  $\mathcal{O}_{Z(\Sigma)}(D_h)$  is an ideal sheaf.

**Lemma 3.4** For a strictly convex support function h, the restriction of  $\mathcal{O}_{Z(\Sigma)}(D_h)$  to  $V(\gamma)$  is ample for all  $\gamma \in \Sigma(1)$ .

Proof We set  $N(\gamma) = N \cap (\gamma + (-\gamma))$  and  $N[\gamma] = N/N(\gamma)$ . Then  $V(\gamma)$  is the (r-1)-dimensional complete toric variety defined by the complete fan  $\Sigma[\gamma] = \{\sigma[\gamma] ; \sigma \in \Sigma(\gamma \prec)\}$  of  $N[\gamma]_{\mathbf{R}}$ , where  $\sigma[\gamma]$  is the image of  $\sigma$  in  $N[\gamma]_{\mathbf{R}} = N_{\mathbf{R}}/N(\gamma)_{\mathbf{R}}$  (cf. [O, Corollary 1.7]). There exists an element  $m_0 \in M$  such that  $h = m_0$  on  $\gamma$ . Then  $\{(h - m_0) | \sigma ; \sigma \in \Sigma(\gamma \prec)\}$  induces a strictly convex support function  $\bar{h}$  of  $\Sigma[\gamma]$  which defines an invertible sheaf isomorphic to  $\mathcal{O}_{Z(\Sigma)}(D_h)|V(\gamma)$ . Hence it is ample by [O, Corollary 2.14].

### 4 Power series ring

We fix a field k of an arbitrary characteristic from this section.

Let  $\sigma$  be a strongly convex rational polyhedral cone of  $N_{\mathbf{R}}$ , and let  $\{n_1, \ldots, n_s\}$  be the set of primitive generators of the one-dimensional faces. In particular,  $\sigma^{\vee} = (n_1 \geq 0) \cap \cdots \cap (n_s \geq 0)$ . We consider the topology of the ring  $k[M \cap \sigma^{\vee}]$  defined by the ideals

$$I_d = \langle \mathbf{e}(m) ; m \in M \cap (n_1 \ge d) \cap \cdots \cap (n_s \ge d) \rangle_k$$

for  $d \geq 0$ . We denote by  $k[M \cap \sigma^{\vee}]^{\wedge}$  the completion of  $k[M \cap \sigma^{\vee}]$  with respect to this topology.

We denote by  $\langle\langle M\rangle\rangle_k$  the k-vector space  $\prod_{m\in M} k\mathbf{e}(m)$ , which is not a ring if  $r\geq 1$ . An element of  $\langle\langle M\rangle\rangle_k$  is written as an infinite sum  $\sum a_m\mathbf{e}(m)$ . We regard  $k[M\cap\sigma^\vee]^\wedge$  a vector subspace for every cone  $\sigma$ . Then  $\sum a_m\mathbf{e}(m)$  is in  $k[M\cap\sigma^\vee]^\wedge$  if and only if  $a_m=0$  for  $m\notin M\cap\sigma^\vee$  and there exist only finite m with  $a_m\neq 0$  outside  $m_0+M\cap\sigma^\vee$  for every  $m_0\in M\cap\sigma^\vee$ . Note that  $\langle\langle M\rangle\rangle_k$  has a structure of k[M]-module.

Let  $(C, \Gamma)$  be a Tsuchihashi pair. We consider a  $\Gamma$ -invarinat fan  $\Sigma$  satisfying the following conditions.

- (1) For any  $\sigma, \tau \in \Sigma \setminus \{\mathbf{0}\}$ , there exist at most one  $g \in \Gamma$  with  $g(\sigma) \cap \tau \neq \mathbf{0}$ . In particular,  $g(\sigma) \neq \sigma$  if  $g \neq 1$ .
- (2) There exists a strictly upper convex  $\Gamma$ -invariant support  $\mathbf{Q}$ -function h on  $\Sigma$ , i.e., h(g(u)) = h(u) for  $u \in C$  and  $g \in \Gamma$ ,  $h(u + u') \ge h(u) + h(u')$  for  $u, u' \in C$  and the equality holds if and only if u and u' are in a common cone  $\sigma \in \Sigma$ , and h(u) are rational for all  $u \in N \cap C$ .

Since  $(\Sigma \setminus \{\mathbf{0}\})/\Gamma$  is finite, we may assume that  $h(u) \in \mathbf{Z}$  for every  $u \in N \cap C$  by replacing h by dh for a positive integer d, if necessary. For each  $\gamma \in \Sigma(1)$ , let  $n_{\gamma}$  be the primitive generator and  $V(\gamma)$  the associated prime divisor of the toric variety  $Z(\Sigma)$ . Then  $D_h = -\sum_{\gamma} h(n_{\gamma})V(\gamma)$  is a Cartier divisor. The restriction of the line bundle  $\mathcal{O}_{Z(\Sigma)}(D_h)$  to each prime divisor  $V(\gamma)$  is ample by Lemma 3.4.

We consider the reduced divisor  $D(\Sigma) = Z(\Sigma) \setminus T_N$ , and let  $\widehat{Z}(\Sigma)$  be the formal completion of  $Z(\Sigma)$  along  $D(\Sigma)$ . The formal scheme  $\widehat{Z}(\Sigma)$  is covered by affine formal schemes  $\widehat{U}_{\sigma} = \operatorname{Spf} k[M \cap \sigma^{\vee}]^{\wedge}$  for  $\sigma \in \Sigma \setminus \{\mathbf{0}\}$ .

The quotient  $\widehat{Z}(\Sigma)/\Gamma$  is defined naturally. Namely,  $\widehat{W} = \widehat{Z}(\Sigma)/\Gamma$  is covered by  $\widehat{U}_{\sigma}$  for  $\sigma$  in the set of representatives  $\overline{\Sigma}$  of  $(\Sigma \setminus \{\mathbf{0}\})/\Gamma$ , and  $\widehat{U}_{\sigma} \cap \widehat{U}_{\tau}$  is  $\widehat{U}_{\rho}$  if there exist  $g_1, g_2 \in \Gamma$  with  $\rho = g_1(\sigma) \cap g_2(\tau) \in \overline{\Sigma}$  and empty if otherwise. Note that the  $\rho$  here exists uniquely by the property (1). It follows also that  $\widehat{W}$  is separated.

Let  $A(C^*)$  be the completion of the semigroup ring  $k[M \cap C^*]$  with respect to the topology defined by all monomial ideals of finite codimensions.  $A(C^*)$  is described as  $\prod_{m \in M \cap C^*} k\mathbf{e}(m)$ , and each element is denoted as an infinite sum  $\sum_{m \in M \cap C^*} a_m \mathbf{e}(m)$  or simply  $\sum a_m \mathbf{e}(m)$ . For  $g \in \Gamma$ , we define the automorphism  $g^*$  of  $A(C^*)$  by

(4) 
$$g^*(\sum a_m \mathbf{e}(m)) = \sum a_m \mathbf{e}(g^{-1}(m))$$
.

Note that  $(g_1g_2)^* = g_2^*g_1^*$ , i.e.,  $\Gamma$  acts on  $A(C^*)$  from the right. We denote the invariant subring  $A(C^*)^{\Gamma}$  by  $B(C^*, \Gamma)$ , which is integrally closed since so is  $A(C^*)$ .

**Proposition 4.1**  $\widehat{Z}(\Sigma)$  is a formal scheme over Spf  $A(C^*)$ , and  $H^0(\widehat{W}, \mathcal{O}_{\widehat{W}}) = B(C^*, \Gamma)$ .

Proof The action of  $\Gamma$  on  $A(C^*)$  can be extended to  $\langle\langle M\rangle\rangle_k$  by applying (4). Since  $\widehat{W}$  is covered by open subspaces  $\widehat{U}_{\sigma}$  for  $\sigma \in \overline{\Sigma}$ , a section of  $\mathcal{O}_{\widehat{W}}$  is written as  $(s_{\sigma})_{\sigma \in \overline{\Sigma}}$  with  $s_{\sigma} \in k[M \cap \sigma^{\vee}]^{\wedge}$ . We will show that each  $s_{\sigma}$  is in  $B(C^*, \Gamma)$ . Let g be an arbitrary element of  $\Gamma$ . Take a point x in the relative interior of  $\sigma$ . Since  $\sigma \neq \mathbf{0}$ , x and g(x) are in C. Hence the segment  $E = \overline{xg(x)}$  is contained in C. Since C is the disjoint union of rel. int  $\sigma'$  for  $\sigma' \in \Sigma \setminus \{\mathbf{0}\}$  and the intersection  $E \cap \sigma'$  is a closed segment or a point if non-empty, there exist a sequence

$$\sigma = \sigma_0, \sigma_1, \dots, \sigma_l = g(\sigma_0) \in \Sigma \setminus \{\mathbf{0}\}\$$

such that  $x \in \text{rel. int } \sigma_0, g(x) \in \text{rel. int } \sigma_l \text{ and } E \cap \sigma_{i-1} \cap \sigma_i \neq \emptyset \text{ for } i = 1, \dots, l.$  Since  $\sigma_{i-1} \cap \sigma_i$  is in  $\Sigma \setminus \{\mathbf{0}\}$ , by adding this cone if necessary, we may assume  $\sigma_{i-1} \prec \sigma_i$  or  $\sigma_i \prec \sigma_{i-1}$  for all i. Then we can take  $\tau_0, \dots, \tau_l \in \overline{\Sigma}$  and  $g_0, \dots, g_l \in \Gamma$  with  $\sigma_i = g_i(\tau_i)$  for all i since  $\overline{\Sigma}$  is a set of representatives. We have  $\tau_l = \tau_0$  since  $g(\sigma_0) = \sigma_l$ . By assumption,  $g_i^{-1}(g_{i-1}(\tau_{i-1})) \prec \tau_i$  or  $g_{i-1}^{-1}(g_i(\tau_i)) \prec \tau_{i-1}$ , and hence  $(g_{i-1}^{-1}g_i)^*(s_{\tau_{i-1}}) = s_{\tau_i}$  as an element of  $\langle \langle M \rangle \rangle_k$  for each i. Hence

$$s_{\tau_l} = (g_{l-1}^{-1}g_l)^* \cdots (g_0^{-1}g_1)^* (s_{\tau_0}) = (g_0^{-1}g_l)^* (s_{\tau_0}).$$

Since  $\sigma_0 = \sigma \in \overline{\Sigma}$ , we have  $\tau_0 = \tau_l = \sigma$ ,  $g_0 = 1$  and  $g_l = g$ . Hence  $g^*(s_\sigma) = s_\sigma$ . Since g is arbitrary,  $s_\sigma$  is in  $B(C^*, \Gamma)$ .

If  $\sigma, \tau \in \overline{\Sigma}$  has the relation  $g(\sigma) \prec \tau$  for an element  $g \in \Gamma$ , there exists a restriction map  $\mathcal{O}_{\widehat{W}}(\widehat{U}_{\tau}) \to \mathcal{O}_{\widehat{W}}(\widehat{U}_{\sigma})$  which is given by  $g^*$ . Hence  $s_{\sigma} = g^*(s_{\tau}) = s_{\tau}$ . Since any two elements of  $\overline{\Sigma}$  is connected by this relation, all  $s_{\sigma}$ 's are equal. Thus we know  $H^0(\widehat{W}, \mathcal{O}_{\widehat{W}}) \subset B(C^*, \Gamma)$ .

Conversely, for any element  $s \in B(C^*, \Gamma)$ ,  $(s_{\sigma})_{\sigma \in \overline{\Sigma}}$  defined by  $s_{\sigma} = s$  for all  $\sigma$  is clearly an element of  $H^0(\widehat{W}, \mathcal{O}_{\widehat{W}})$ . We are done. QED

Assume that  $\Sigma$  is non-singular and has a positive valued strictly convex  $\Gamma$ -invariant support function h. For each  $\sigma \in \Sigma(r)$ , there exists a unique  $m_{\sigma} \in M$  with  $h = m_{\sigma}$  on  $\sigma$ . The toric variety  $Z(\Sigma)$  is covered by  $U_{\sigma} = \operatorname{Spec}(k[M \cap \sigma^{\vee}])$  for  $\sigma \in \Sigma(r)$ , and the invertible sheaf  $\mathcal{O}_{Z(\Sigma)}(D_h)$  is the associated sheaf of the ideal  $k[M \cap \sigma^{\vee}]\mathbf{e}(m_{\sigma})$  on each affine open set  $U(\sigma)$ . Hence the induced sheaf  $\mathcal{O}_{\widehat{Z}(\Sigma)}(D_h)$  on the formal scheme  $\widehat{Z}(\Sigma)$  is that of the ideal  $k[M \cap \sigma^{\vee}]^{\wedge}\mathbf{e}(m_{\sigma}) \subset k[M \cap \sigma^{\vee}]^{\wedge}$  on each  $\widehat{U}(\sigma)$ .

**Proposition 4.2** Let  $\hat{p}: \widehat{Z}(\Sigma) \to \widehat{W}$  be the natural morphism. Then there exists an invertible ideal sheaf  $\widehat{\mathcal{L}} \subset \mathcal{O}_{\widehat{W}}$  such that  $p^*\widehat{\mathcal{L}} = \mathcal{O}_{\widehat{Z}(\Sigma)}(D_h)$ .

Proof It is enough to show that  $k[M \cap \sigma^{\vee}] \hat{\mathbf{e}}(m_{\sigma})$  on each  $\widehat{U}(\sigma)$  for  $\sigma \in \overline{\Sigma}$  form an invertible sheaf on  $\widehat{W}$ . For  $\sigma, \tau \in \overline{\Sigma}$ , the intersection  $\widehat{U}(\sigma) \cap \widehat{U}(\tau)$  is covered by  $\widehat{U}(\rho)$  such that there exist  $g_1, g_2 \in \Gamma$  with  $\rho = g_1(\sigma) \cap g_2(\tau) \in \overline{\Sigma}$ . Since  $\mathbf{e}(g_1(m_{\sigma}))$ ,  $\mathbf{e}(g_2(m_{\tau}))$  and  $\mathbf{e}(m_{\rho})$  defines a same Cartier divisor on  $U(\rho)$ ,  $\mathbf{e}(g_1(m_{\sigma}) - g_2(m_{\tau}))$  is invertible in  $k[M \cap \rho^{\vee}]^{\wedge}$ . Hence the restriction of  $k[M \cap \sigma^{\vee}] \hat{\mathbf{e}}(m_{\sigma})$  and  $k[M \cap \tau^{\vee}] \hat{\mathbf{e}}(m_{\tau})$  to  $\widehat{U}(\rho)$ 

through  $(g_1^{-1})^*$  and  $(g_2^{-1})^*$ , respectively, are equal. Hence these invertible sheaves on the affine formal schemes are patched together to an invertible sheaf  $\widehat{\mathcal{L}}$ . The relation  $\widehat{p}^*\widehat{\mathcal{L}} = \mathcal{O}_{\widehat{\mathcal{L}}(\Sigma)}(D_h)$  is clear by the construction. QED

Here we omit the proof of the following theorem (cf. [I4, Theorem 2.4]).

**Theorem 4.3** The ring  $B(C^*, \Gamma)$  is a quotient of a formal power series ring of finite variables, i.e., a complete noetherian local ring with the residue field k.

**Lemma 4.4** The morphism  $\hat{q}: \widehat{W} \to \widehat{S} = \operatorname{Spf} B(C^*, \Gamma)$  of formal schemes is adic of finite type (cf. [EGA, I, 10.12, 10.13]).

Proof For  $m \in M \cap C^*$ , the infinite sum  $\sum_{g \in \Gamma} \mathbf{e}(g(m))$  is an element of the maximal ideal of  $B(C^*, \Gamma)$ . Take a positive valued  $\Gamma$ -invariant strictly convex support function h of  $\Sigma$ . Then  $P = \{x \in M_{\mathbf{R}} \; ; \; \langle x, n_{\gamma} \rangle \geq h(n_{\gamma}) \}$  is a quasi-polytope contained in  $C^*$ . For each  $\sigma \in \Sigma(r)$ ,  $m_{\sigma} \in M \cap C^*$  with  $h = m_{\sigma}$  on  $\sigma$  is a vertex of P such that  $P - m_{\sigma}$  is locally equal to  $\sigma^{\vee}$  at the origin. We set  $f_{\sigma} = \sum_{g \in \Gamma} \mathbf{e}(g(m_{\sigma}))$ . Let  $\{\gamma_1, \ldots, \gamma_r\}$  be the set of edges of  $\sigma$ . We set  $x_i = \mathbf{e}(\gamma_i)$  for  $i = 1, \ldots, r$ , then  $k[M \cap \sigma^{\vee}]^{\wedge}$  is the completion of the polynomial ring  $k[x_1, \ldots, x_r]$  by the monomial ideal  $I = (x_1 \cdots x_r)$ . For  $g \in \Gamma \setminus \{1\}$ ,  $g(m_{\sigma})$  is not on the face  $P \cap (n_{\gamma_i} = h(n_{\gamma_i}))$  of P for  $i = 1, \ldots, r$  by the condition (1), and hence  $\mathbf{e}(g(m_{\sigma}) - m_{\sigma})$  is in the ideal I. If we write  $f_{\sigma} = u\mathbf{e}(m_{\sigma})$  in the k[M]-module  $\langle \langle M \rangle \rangle_k$ , then u is in  $1 + I^{\wedge} \subset k[M \cap \sigma^{\vee}]^{\wedge}$ . Hence u is a unit on the affine formal scheme  $\widehat{U}_{\sigma}$ , and  $f_{\sigma}$  generates a defining ideal of  $\widehat{U}(\sigma)$  with the residue  $k[x_1, \ldots, x_r]/(\mathbf{e}(m_{\sigma}))$ . Hence the morphism  $\widehat{q}: \widehat{W} \to \widehat{S}$  is adic of finite type. QED

Let  $q_0: \widehat{W}_0 \to \operatorname{Spec} k$  be the fiber over the residue field. By this lemma,  $\widehat{W}_0$  is a k-scheme and  $(\widehat{W}_0)_{\text{red}}$  is a union of  $V(\gamma)$  for  $\gamma \in \overline{\Sigma}(1)$ .

**Lemma 4.5** The morphism  $\hat{q}$  is proper and  $\widehat{\mathcal{L}}|\widehat{W}_0$  is ample.

Proof Since each  $V(\gamma)$  is a compact toric variety and  $\overline{\Sigma}(1)$  is finite,  $\widehat{W}_0$  is also complete. Hence  $\hat{q}$  is proper (cf. [EGA, III, 3.4]). Since the restriction  $\widehat{\mathcal{L}}|V(\gamma)$  is isomorphic to  $\mathcal{O}_{\widehat{\mathcal{L}}(\Sigma)}(D_h)|V(\gamma)$ , it is ample by Lemma 3.4. Hence  $\widehat{\mathcal{L}}|\widehat{W}_0$  is ample.

QED

By this lemma,  $\hat{q}$  is algebraizable to a scheme morphism [EGA, III, Théorèm 5.4.5]. Namely, there exists a proper morphism  $q: W \to \operatorname{Spec} B(C^*, \Gamma)$  such that  $\widehat{W}$  is the completion of W along the closed fiber. Furthermore, there exists an ample invertible sheaf  $\mathcal{L}$  on W such that  $\widehat{\mathcal{L}}$  is the pull-back to  $\widehat{W}$ . We have  $q_*\mathcal{O}_W = \mathcal{O}_{\operatorname{Spec} B(C^*,\Gamma)}$  by Proposition 4.1. If regard  $-D_h = D_{-h}$  as a closed subscheme of  $Z(\Sigma)$ , then the quotient  $\overline{D} = D_{-h}/\Gamma$  is a scheme with the structure sheaf  $\mathcal{O}_{\widehat{W}}/\widehat{\mathcal{L}}$ . The exact sequence

$$0 \longrightarrow \widehat{\mathcal{L}} \longrightarrow \mathcal{O}_{\widehat{W}} \longrightarrow \mathcal{O}_{\overline{D}} \longrightarrow 0$$

is algebraized to

$$0 \longrightarrow \mathcal{L} \longrightarrow \mathcal{O}_W \longrightarrow \mathcal{O}_{\overline{D}} \longrightarrow 0.$$

Let  $s_0$  be the closed point of  $S = \operatorname{Spec} B(C^*, \Gamma)$ . Then  $W_0 = q^{-1}(p_0)$  is equal to  $\widehat{W}_0$ , and is a subscheme of  $\overline{D}$  with the same support  $(\widehat{W}_0)_{\text{red}}$ .

**Theorem 4.6** Then k-scheme  $S \setminus \{s_0\}$  is geometrically regular at every point, i.e.,  $s_0$  is an isolated singularity of S.

Proof Since the toric variety  $Z(\Sigma)$  is smooth over k, the local rings of  $\widehat{W}$  are geometrically regular. Hence every point of W is also geometrically regular. The proper morphism  $q': W \setminus W_0 \to S \setminus \{s_0\}$  is isomorphic since  $\mathcal{L}|(W \setminus W_0)$  is trivial and q'-ample. In other words, q is the contraction of  $W_0$  to the point  $s_0$ . Hence each point of  $S \setminus \{s_0\}$  is geometrically regular. QED

By Theorem 4.6, we can apply Artin's algebraization theorem [A, Theorem 3.8]. Namely, there exists a closed point v of an algebraic variety V, and  $B(C^*, \Gamma)$  is isomorphic to the completion of the local ring  $\mathcal{O}_v$  by the maximal ideal. Namely, the cusp singularity is realized as a k-rational isolated singularity of an algebraic variety.

# 5 Quasi-polytope with group action

We say a quasi-polyhedral set  $P \subset M_{\mathbf{R}}$  non-degenerate if P contains an interior point, and strongly convex if P contains no line (cf. [I5, §1]).

Let P be a non-degenerate strongly convex rational quasi-polyhedral set. For each point  $x \in P$ , we denote by  $C_x$  the cone generated by P-x. Since P is non-degenerate, locally polyhedral and rational,  $C_x$  is a rational polyhedral cone of dimension r. Hence the dual cone  $C_x^{\vee} \subset N_{\mathbf{R}}$  is a strongly convex rational polyhedral cone. We set

$$\Sigma(P) = \{C_x^{\vee} ; x \in P\} .$$

Then  $\Sigma(P)$  is a fan of  $N_{\mathbf{R}}$  with the support  $|\Sigma(P)|$  such that

$$\operatorname{int}(\operatorname{cc}(P)^{\vee}) \subset |\Sigma(P)| \subset \operatorname{cc}(P)^{\vee}$$

(cf. [I5, Theorem 1.4]). There exists a one-to-one correspondence  $Q \mapsto \sigma_Q$  from the set of faces of P to  $\Sigma(P)$  such that  $x \in \text{rel. int } Q$  gives  $\sigma_Q = C_x^{\vee}$ , and rel. int  $\sigma_Q$  is contained in  $\text{int}(\text{cc}(P)^{\vee})$  if and only if Q is bounded (cf. [I5, Theorem 1.5, Proposition 1.6]). If P is a quasi-polytope, i.e., if every proper face of P is bounded, then  $|\Sigma(P)| = \text{int}(\text{cc}(P)^{\vee}) \cup \{0\}$  [I5, Lemma 3.2].

Let P be a quasi-polytope of cc-dimension r. We consider the case where an affine transformation group  $\widetilde{\Gamma}$  of M is acting on P. Namely, each  $\widetilde{g} \in \widetilde{\Gamma}$  is an affine transformation  $x \mapsto g(x) + m_g$  for  $x \in M_{\mathbf{R}}$  with  $g \in \mathrm{GL}(M)$  and  $m_g \in M$ . We denote also g the element  ${}^{\mathrm{t}}g^{-1} \in \mathrm{GL}(N)$ . Then the group  $\Gamma = \{g : \widetilde{g} \in \widetilde{\Gamma}\}$  acts on both M and N from the left. The corresponding ring isomorphism  $g^* : k[M] \to k[M]$  is defined by the map  $\mathbf{e}(m) \mapsto \mathbf{e}(g^{-1}(m))$ .

We define

$$\widehat{P} = \{(x,t) \in M_{\mathbf{R}} \times \mathbf{R} ; t \ge 0, x \in tP\} ,$$

where  $0P = \operatorname{cc}(P)$ . Then  $\widehat{P}$  is a strongly convex closed cone (cf. [I5, Lemma 2.2]). For  $\mathcal{A}(P) = (M \oplus \mathbf{Z}) \cap \widehat{P}$ , the semigroup ring  $A(P) = k[\mathcal{A}(P)]$  has a grading defined by

$$A(P)_d = \bigoplus_{m \in M \cap dP} k\mathbf{e}(m, d)$$

for  $d \geq 0$ . Here we denote  $\mathbf{e}(m,d)$  for  $\mathbf{e}((m,d))$ . The action of  $\widetilde{\Gamma}$  on M induces a linear action on  $M \oplus \mathbf{Z}$  such that  $\widetilde{g}(x,t) = (g(x) + tm_g,t)$  for  $(x,t) \in M_{\mathbf{R}} \times \mathbf{R}$ , which fix the cone  $\widehat{P}$ . Then  $Z(P) = \operatorname{Proj} A(P)$  is equal to the toric variety on which  $\widetilde{\Gamma}$  acts (cf. [I5, Proposition 2.5]).

Now we assume that  $\widetilde{\Gamma}$  acts on the set of proper faces of P freely, and it has only finite orbits. If we set  $C = \operatorname{int} \operatorname{cc}(P)^{\vee}$  and  $\Gamma = \{g : \widetilde{g} \in \widetilde{\Gamma}\}$ , then  $(C, \Gamma)$  is a Tsuchihashi pair and we get a cusp singularity (cf. [I5, Proposition 3.3]).

The rational support function  $h_P$  on  $|\Sigma(P)|$  is defined by

$$h_P(u) = \min\{\langle x, u \rangle \; ; x \in P\}$$

for  $u \in |\Sigma(P)| = C^* \cup \{0\}$ . If Q is a face of P, then  $h(u) = \langle x, u \rangle$  for  $x \in Q$  and  $u \in \sigma_Q$ . We have  $h_P(g(u)) = h_P(u) + \langle m_g, g(u) \rangle$  for  $\tilde{g} \in \tilde{\Gamma}$ . Hence  $h_P(g(u)) - h_P(u)$  is an integer if  $u \in N \cap C$ . Since  $\Sigma(P) \setminus \{\mathbf{0}\}$  has only finite cones modulo  $\Gamma$ , there exists a positive integer d such that  $dh_P$  is integral on  $N \cap C$ . We take the minimal d. Then  $dh_P$  defines a Cartier divisor  $D_P = D_{h_P} = -\sum_{\gamma \in \Sigma(P)} dh_P(n_\gamma)V(\gamma)$  and an invertible sheaf  $\mathcal{O}_{Z(P)}(D_P)$ . Since  $g^{-1}(D_P) = D_P - (\mathbf{e}(dg^{-1}(m_g)))$  as divisor, we have an isomorphism

$$g^*(\mathcal{O}_{Z(P)}(D_P)) \simeq \mathcal{O}_{Z(P)}(D_P)$$

of invertible sheaves by multiplying  $\mathbf{e}(dg^{-1}(m_g))$ . We denote the formal completion of Z(P) along  $Y(P) = Z(P) \setminus T_N$  by  $\widehat{Z}(P)$ , and pull-back of this invertible sheaf by  $\mathcal{O}_{\widehat{Z}(P)}(D_P)$ . If the morphism  $\hat{p}: \widehat{Z}(P) \to \widehat{Z}(P)/\Gamma$  is defined, there exists an invertible sheaf  $\widehat{\mathcal{L}}_P$  such that  $\hat{p}^*\widehat{\mathcal{L}}_P = \mathcal{O}_{\widehat{Z}(P)}(D_P)$  by the above isomorphisms for  $g \in \Gamma$ .

Although the fan  $\Sigma(P)$  might be singular and does not satisfy the condition (1) in Section 4, the algebraization of the quotient of  $\widehat{Z}(P)$  by  $\Gamma$  to a scheme morphism  $q:W\to \operatorname{Spec} B(C^*,\Gamma)$  by  $\widehat{\mathcal{L}}_P$  is possible as in Section 4. Namely, the condition (1) is satisfied if we replace  $\Gamma$  by a sufficiently small normal subgroup  $\Gamma'$  of finite index. The assertion corresponding to Lemma 4.4 is also proved by taking a sufficiently small  $\Gamma'$ , while  $\Sigma$  being non-singular is not necessary. Thus we get a projective morphism  $q':W'\to \operatorname{Spec} B(C^*,\Gamma')$  for  $\Gamma'$ , then q is obtained by taking the quotient by the action of the finite group  $\Gamma/\Gamma'$ . Then q is the contraction of  $Y(P)/\Gamma$  to the closed point  $s_0$  of  $S=\operatorname{Spec} B(C^*,\Gamma)$ . The algebraization  $\mathcal{L}_P$  of  $\widehat{\mathcal{L}}_P$  defines an invertible sheaf on  $S\setminus\{s_0\}$ .

**Example 5.1** Let  $\{p_i ; i \in \mathbf{Z}\}$  be a set of points in  $M_{\mathbf{R}} = \mathbf{R}^2$  defined by the recurrence relation

$$p_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
,  $p_{i+1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} p_i + \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ ,

and let P be the convex closure of this set. Then P is a quasi-polytope of cc-dimension two with a cyclic group action.

Also, for any  $\Gamma$ -invariant subdivision  $\Sigma'$  of  $\Sigma$ , we can algebraize  $\hat{q}': \widehat{Z(\Sigma')}/\Gamma \to \widehat{S} = \operatorname{Spf} B(C^*, \Gamma)$  to a scheme morphism as a toroidal modifications of  $q: W \to S$  if the toroidal embedding  $(W, S \setminus \{s_0\})$  is without self-intersection [KKMS, II, §2].

### 6 Examples by Tsuchihashi

Cusp singularities in arithmetic quotient spaces of  $\mathbf{Q}$ -rank one are classified by Satake [S, §3]. In particular, there are 3- and 4-dimensional examples obtained from quaternion algebras over  $\mathbf{Q}$  or an imaginary quadratic field. Some explicit calculations are done in [Ch]

A beautiful 4-dimensional example of cusp singularity is obtained by Tsuchihashi [T2, §6]. The Dynkin diagram

$$\Lambda:$$

$$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$$

which we denote by  $\Lambda$ , gives an infinite Coxeter group.

This group is realized as a linear Coxeter group [V2, Definition 2] as follows. Let K be the simplicial cone generated by the standard basis  $\{e_1, \ldots, e_4\}$  of  $\mathbf{R}^4$ . For the vertices of this diagram labeled from 1 to 4, define the matrices by

$$s_1 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad s_2 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix},$$

$$s_3 = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \quad s_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

which operate on  $\mathbf{R}^4$  with the coordinates  $(x_1, x_2, x_3, x_4)$  from the left. Then the subgroup  $G = \langle s_1, s_2, s_3, s_4 \rangle \subset \mathrm{GL}(4, \mathbf{Z})$  is isomorphic to the Coxeter group. Namely, the relations

$$s_1^2 = s_2^2 = s_3^2 = s_4^2 = 1$$
,  $(s_1 s_4)^2 = (s_2 s_3)^2 = 1$ ,  
 $(s_1 s_2)^3 = (s_3 s_4)^3 = 1$ ,  $(s_1 s_3)^4 = (s_2 s_4)^4 = 1$ 

are checked easily. Each  $s_i$  fixes the facet  $K \cap (x_i = 0)$  of K for i = 1, ..., 4. Then by Vinberg's result [V2, Theorem 2], G is a linear Coxeter gorup, and these are actually the defining relations of the group. We denote the set  $\{s_1, s_2, s_3, s_4\}$  by  $S = S_{\Lambda}$ . Then the parabolic subgroup  $H_i$  generated by  $S \setminus \{s_i\}$  is a finite group of order 48 for each i. On the other hand, the Dynkin diagram obtained by removing the edge connecting 1 and 3 (resp. 2 and 4) defines a Coxeter group of order 1152, which is isomorphic to the automorphism group of a regular 24-cell (cf. [C2, p.148]). These groups have an important role in the construction. It follows from [V2, Theorem 2] that there exists an open convex cone C, and we have

$$\bigcup_{g \in G} g(K) = C \cup \{0\} \ .$$

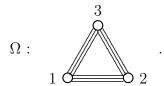
Tsuchihashi found a subgroup  $\Gamma \subset G$  of index 48 such that  $H_i \cap \Gamma = \{1\}$  for every i. Then  $\Gamma$  acts on C freely, and  $(C, \Gamma)$  is a Tsuchihashi pair. The cone  $\sigma_0 = K$  is non-singular and the 4-dimensional cones  $g(\sigma_0)$  and their faces for  $g \in \Gamma$  form a  $\Gamma$ -invariant non-singular fan with the support  $C \cup \{0\}$ . There exists a strictly positive h, and we get  $g: W \to \operatorname{Spec} B(C^*, \Gamma)$  as in previous sections. This is a resolution of the cusp singularity since  $\Sigma$  is non-singular.

Let  $\gamma_i = \mathbf{R}_0 e_i$  for i = 1, ..., 4. Then  $\Sigma_i = \Sigma[\gamma_i]$  is a 3-dimensional complete non-singular fan on which  $H_i$  acts. Let  $V_i$  be the complete non-singular toric variety associated to  $\Sigma_i$  for each i. Although the canonical divisor of W is not q-ample,  $-(4V_1 + 3V_2 + 3V_3 + 4V_4)$  is q-ample.

These 3-dimensional fans are described as follows. Let  $\{e_1, e_2, e_3\}$  be the standard basis of  $\mathbf{R}^3$ . For an order (i, j, k) of  $\{1, 2, 3\}$  and  $\epsilon_i, \epsilon_j, \epsilon_k = \pm 1$ , the cone generated by  $\{\epsilon_i e_i, \epsilon_i e_i + \epsilon_j e_j, \epsilon_i e_i + \epsilon_j e_j + \epsilon_k e_k\}$  is a nonsingular cone in  $\mathbf{R}^3$  with the lattice  $Z^3$ . There are exactly 48 such cones and form a non-singular complete fan  $\Delta_1$ . Then,  $\Sigma_2$  and  $\Sigma_3$  are isomorphic to  $\Delta_1$ . The fan  $\Delta_2$  consists of the same set of cone but in  $\mathbf{R}^3$  with the lattice  $\mathbf{Z}^3 + \mathbf{Z}(1/2, 1/2, 1/2)$ , which is also a non-singular complete fan. The fans  $\Sigma_1$  and  $\Sigma_4$  are isomorphic to  $\Delta_2$ . Hence, each of  $V_i$  has 48 torus action invariant points corresponding to the 48 maximal cones.

The exceptional divisor of q is a simple normal crossing divisor consisting of these four toric varieties. There are 48 quadruple points, and all four components go through each of these points at an invariant point. For a choice of the group  $\Gamma$ , I have calculated the intersection of the four irreducible components. By cutting the fan  $\Sigma_i$  with a cube with the center at the origin, each square face is triangulated to six triangles. Figures 1 through 4 are the nets of the cubes and each triangle on the net presents an invariant point of the component. The invariant points of each component are numbered from 0 to 47, and the four points labeled a same number form a quadruple point of the normal crossing exceptional divisor.

Tsuchihashi also found a very nice example in dimension three. Let  $\Omega$  be the Dynkin diagram:



Define the matrices

$$s_1 = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, \quad s_2 = \begin{pmatrix} 1 & 3 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad s_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & -1 \end{pmatrix}.$$

Then  $S = S_{\Omega} = \{s_1, s_2, s_3\}$  generates a linear Coxeter group acting on  $\mathbb{R}^3$ , with the base cone K generated by the standard basis of  $\mathbb{R}^3$ . Let  $\widetilde{G}$  be the linear group generated by S and the order 3 rotation

$$r = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

Let  $\Sigma$  be the fan consisting of the 3-dimensional cones g(K) and their faces for all  $g \in \widetilde{G}$ . Then the subgroup

$$H = \langle rs_1s_2s_3, rs_2s_3s_1, rs_3s_1s_2 \rangle \subset \tilde{G}$$

of index 12 acts on  $\Sigma \setminus \{0\}$  freely. Thus we get a 3-dimensional toric type cusp singularity. This example is analyzed more precisely in [K].

In this example,  $\Sigma(1)$  has only one orbit and  $\Sigma(3)$  has four. Hence the exceptional set E of this cusp is a normal crossing irreducible divisor with four triples points. Furthermore,  $h: C \cup \{0\} \to \mathbf{R}$  defined by  $h(u) = \min\{\langle x, u \rangle : x \in M \cap C^*\}$  is a strictly convex support function of  $\Sigma$ . In this case,  $h(n_{\gamma}) = 1$  for the primitive generator  $n_{\gamma}$  for all  $\gamma \in \Sigma(1)$ . Hence  $D_h$  is the canonical divisor of the toric variety  $Z(\Sigma)$  (cf. [O, 2.1]). The canonical divisor is defined by the Euler form

$$\omega = \frac{d\mathbf{e}(m_1)}{\mathbf{e}(m_1)} \wedge \frac{d\mathbf{e}(m_2)}{\mathbf{e}(m_2)} \wedge \frac{d\mathbf{e}(m_3)}{\mathbf{e}(m_3)} ,$$

where  $\{m_1, m_2, m_3\}$  is a basis of M. Hence  $g^*\omega = \det(g)\omega$  for  $g \in GL(N)$ . Since  $\det(g) = \pm 1$ ,  $\omega^{\otimes 2}$  is invariant by the action of  $\Gamma$ . Hence we know  $\mathcal{O}_W(-2E) \simeq \omega_W^{\otimes 2}$ , where  $\omega_W$  is the canonical invertible sheaf of W. Since  $\mathcal{O}_W(-E)$  is relatively ample for the contraction morphism  $q: W \to \operatorname{Spec} B(C^*, \Gamma)$ , so is the canonical sheaf  $\omega_W$ .

#### References

- [A] M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. **36**, (1969), 23–58.
- [AMRT] A. Ash, D. Mumford, M. Rapoport and Y. Tai, Smooth compactification of locally symmetric varieties, Lie Groups: History Frontiers and Applications IV, Math. Sci. Press, Brookline, Mass. 1975; Second edition, Cambridge University Press, 2010.
- [C1] H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of Math. (2) **35** (1934), 588–621.
- [C2] H. S. M. Coxeter, Regular Polytopes, the third edition, Dover Publications, Inc, New York, 1973.
- [Ch] K. Chinda, Cusp singularities constructed from maximal orders of a quaternion algebra (in Japanese), Master's thesis at Tohoku University, in preparation.
- [EGA] A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique I, II, III, IV, Inst. Hautes Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32, (1960-1967).
- [G] B. Grünbaum, Convex Polytopes, Second edition, Graduate Texts in Math.
   221, Springer-Verlag, New York, Berlin, Heidelberg, 2003.

- [I1] M. Ishida, Convex bodies and algebraic geometry toric varieties and applications, II, in Proc. of the Seminar in Algebraic Geometry, Singapore 1987, World Scientific Publishing CO., Singapore, 1988, 15–32.
- [I2] M. Ishida, Cusp singularities given by reflections of stellable cones, International J. Math. 2, (1991), 635–657.
- [I3] M. Ishida, The duality of cusp singularities, Math. Ann. 294, (1992), 81–97.
- [I4] M. Ishida, The graded rings associated to cusp singularities, preprint, (included in the proceedings of Symposium of Algebraic Geometry in Kinosaki 2012)
- [I5] M. Ishida, Cusp singularities and quasi-polyhedral sets, to appear in ASPM 75.
- [KKMS] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal embeddings I, Lecture Notes in Math. 339, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
- [K] Y. Komatsu, Construction of cusp singularities by Coxeter groups (in Japanese), Master's thesis at Tohoku University, in preparation.
- [N1] Y. Namikawa, Toroidal compactification of Siegel spaces, Lecture Notes in Math. 812, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [O] T. Oda, Convex Bodies and Algebraic Geometry, An Introduction to the Theory of Toric Varieties, Ergebnisse der Math. (3), **15**, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988.
- [S] I. Satake, On numerical invariants of arithmetic varieties (The case of **Q**-rank one), Sugaku Expo., **1**, (1988), Amer. Math. Soc., 59–74.
- [T1] H. Tsuchihashi, Higher dimensional analogues of periodic continued fractions and cusp singularities, Tohoku Math. J. **35**, (1983), 607–639.
- [T2] H. Tsuchihashi, Examples of four dimensional cusp singularities, to appear in J. of MSJ.
- [V1] È. B. Vinberg, The theory of convex homogeneous cones, Trans. Moscaw Math. Soc. 12 (1967), 303–368.
- [V2] È. B. Vinberg, Discrete linear groups generated by reflections, Izv. Akad. Nauk SSSR, Ser. Mat. **35** (1971), 1083–1119.

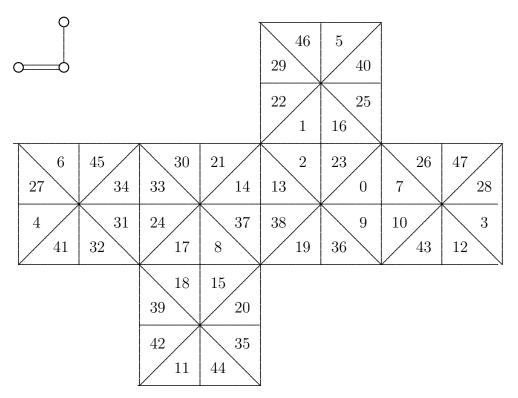


Figure 1:

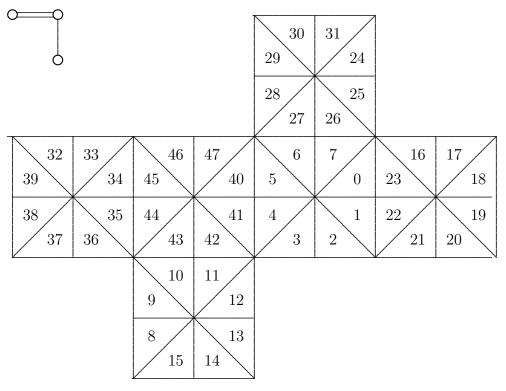


Figure 2:

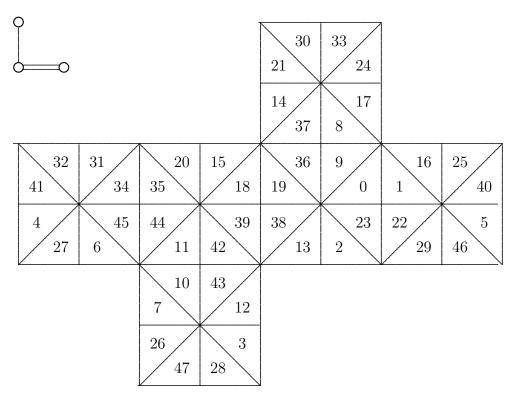


Figure 3:

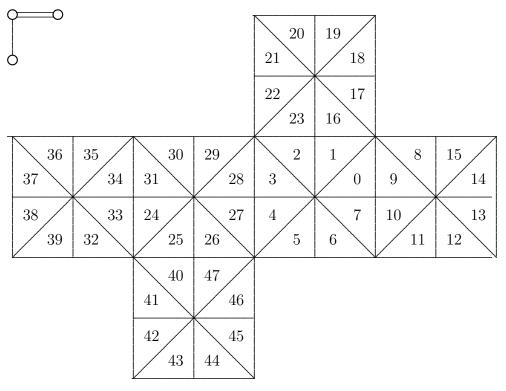


Figure 4: