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Introduction

In the theory of toric varieties, a fundamental result is the fact that a toric variety
of dimension r with an ample invertible sheaf corresponds to a convex polytope with
integral vertices in R". In this note, we define quasi-polyhedral sets in R as a general-
ization of convex polytopes. For a quasi-polyhedral set P, the cc-dimension is defined
as the dimension of the characteristic cone of P. A convex polytope is the case of
cc-dimension zero. We call P a quasi-polytope if every proper face of P is bounded.

We recall the theory of cusp singularities defined by Tsuchihashi in this view point.
This cusp singularity is defined for a pair of an open convex cone C and a discrete
linear group I' acting on it. Since the cusp singularity is constructed by contracting a
toric divisor, it is important to consider the singularity with the toric resolution. In
Section 4, we describe the construction over an arbitrary field by using a formal scheme,
and algebraize the toric resolution to a scheme morphism. In Section 5, we consider a
quasi-polytope of maximal cc-dimension with a group action. Such a quasi-polytope
gives a cusp singularity if the action satisfies some conditions. Finally, in Section 6, we
introduce beautiful examples obtained by Tsuchihashi recently. The four-dimensional
example has a simple normal crossing exceptional divisor consisting of four irreducible
components with 48 quadruple points.

1 Quasi-polyhedral sets

Let r be a non-negative integer and let M, N be mutually dual free Z-modules of rank
r. We denote Mr = M ®z R and Ng = N ®z R, which are real spaces of dimension
r. Then there exists a natural perfect bilinear map

<,>1MRXNR—>R.

Although M and N have standard roles in the theory of toric varieties, we may ex-
change the roles in the study of dualities (cf. [I3]). Points in M and N are called lattice
points, and those in Mq and Nq are rational points.
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Since each u € Ng is a linear function of My by the bilinear map, {x € Mg ;
(x,u) > a} is a closed half space of Mg for every a € R if u # 0. We denote it by
(u > a). The closed half space (u < a) and open half spaces (v > a), (u < a) as well as
the hyperplane (x = a) are defined similarly. We will use this notation also for u = 0,
where the set is not a half space nor a hyperplane.

A non-empty subset C' C Mg is called a polyhedral cone if there exist x,...,x, €
Mg with C' = Roz; + - - - + Roxs, where Ry = {c € R ; ¢ > 0}. It is known that C is
also expressed as (u; > 0)N---N(u; > 0) with uy,...,u; in Ng (cf. [O, A.1]). We say
C is rational if x4, ..., x4, or equivalently wuq,...,u;, are rational points. In this case,
we can take these points in M and N, respectively.

For a subset £ C Mg and x € Mg, we denote £ — 2z = {y —x ; y € E}. A
subset F is said to be locally polyhedral at x if E — x is equal to a polyhedral cone in
a neighborhood of the origin. This is equivalent to the condition that z € E and E is
equal to (ug > a1)N---N (u > a;) for some uy,...,u; € Ng and aq,...,a; € Rin a
neighborhood of z. If dim E = r, then we may assume that (z,u;) = a; and w; defines
an (r — 1)-dimensional face of the polyhedral cone for every i by reducing redundant
members. A non-empty convex subset P is called a quasi-polyhedral set if P is locally
polyhedral at every point z € P. Then it follows that P = P, i.e., P is closed. A
quasi-polyhedral set P is rational if uy,...,u; and aq, ..., a; above are rational for all
. A non-empty subset () of a quasi-polyhedral set P C Mg is called a face if there
exist w € Ng and a € R such that P C (u > a) and Q = PN (u=a). If dimP =r
and P has an irredundant expression (u; > a1)N---N(us > a;) at a point z € P, then
P is contained in (u; > a;) and PN (u; = a;) is a face of dimension r — 1 for each i.
We call P a quasi-polytope if every proper face of P is bounded.

For a non-empty closed convex set D, the characteristic cone cc(D) is defined by

ce(D)={y € Mg ;x+ Roy C D}

for z € D (cf. [G, p.24]). This is a closed convex cone which does not depend on
the choice of x since we assume D closed. We define cc-dimension by cc-dim(D) =
dim cc(D) which has a value between 0 and r, and is zero if and only if D is bounded

(ct. [G, p.24]).

2 Open cone with lattice

We fix Euclidean metrics on the real spaces Ng and Mg. The metrics are used in the
proof of Theorem 2.3 and in the definition of the characteristic function of a cone.
Let C' be an open convex cone in Ng, i.e., C is the interior of a full-dimensional
closed convex cone in Ng. We assume the closure C of C is strongly convex. Then
the dual cone C'* in Mp is also a strongly convex closed cone of dimension r. We set
C* = int(C"), which is an open convex cone in Mg. Note that if z € C* then {u €
C ; (z,u) < a} is bounded for any a > 0. Actually, there exist linearly independent
r1,...,x, € C* with x = x1 4+ -+ + x, since C* is an open convex cone. Then the set

is contained in (x; > 0)N---N(x, > 0)N (21 + - -+, < a) which is clearly bounded.



For a subset S C C*, we set
K(S)={ue Ng;(z,u)>1forallze S}=()(z>1).

€S

Clearly, K(S) is a closed convex set of Ng which might be empty.

Lemma 2.1 Assume that S C C* is discrete in Mg. Let u be a point of C. Then
(1) w is outside K(S) if SN (u < 1) # 0, (2) K(S) is locally equal to the convex set
Meesn=n(® > 1) at w if SN (u < 1) = 0. A point u is in the interior of K(S) if

SN (u<1)=0. In particular, K(S) is locally polyhedral at every point of K(S) N C.
Proof If there exists x € SN (u < 1), then u is outside K (S) C (z > 1). Assume

SNu<1)=0. Set S; =SN(u=1)and S, = SN (u>1). Since u € C = int(C),
C*N (u < ¢) is bounded and S N (u < c¢) is a finite set for any ¢ > 0. Hence S is
finite, and there exists a = min{(z,u) ; z € Sp} > 1if Sy # 0. Then a™'u € K(S,)
and a 'u+C C K(S,). Since a 'u+ C is an open set which contains u = a 'u+ (1 —
aNu and K(S) = K(S1) N K(S2), K(S) is equal to K(S1) = Nyes, (z > 1) in this
neighborhood of u. It is locally polyhedral since S is finite. QED

Lemma 2.2 Let A C Nr be a bounded closed convex subset and ug € Nr a point
such that the conver hull B = conv(A U {uo}) is of dimension r. Let D be the cone
generated by A — ug. Then, for any subsets E C Ng and F' C (D + ug) \ B, we have

BNconv(AUE)=BNconv(AUEUF).

In particular, if conv(A U E) is a polyhedron, then P = conv(A U E U F) is locally
polyhedral at each point of P Nint(B).

Proof By a translation, we may assume ug = 0. If 0 € A, then B = A and the
assertion is obvious. We assume 0 ¢ A. Then B\ A is an open subset of D (see
Remark 2.3). Let u be a point of BNconv(AU E U F). It suffices to show that u is in
conv(AU E). We may assume u ¢ A. Since u € conv(AU E U F), there exist s > 0,
v1,...,0s € AUEUF and aq,...,as > 0 with

ar(vy —u) 4+ -+ as(vy —u) =0.

If v; € F for an 7, then take the maximal ¢; > 0 with v] = u + ¢;(v; — u) € B. Clearly
¢; < lsince v; € B. Since u+c'(v; —u) € D\ B for ¢; < ¢ <1, v, € B is in the closure
of D\ B, and is in A since B \ A is open in D. In particular, ¢; is positive. Namely,
we can replace a;(v; —u) by (a;/¢;)(vi — u) in the equality. If we do it for all v;’s in F
we get an equality which says that u is in conv(A U E). QED

Remark 2.3 Here we prove this fact. Let w be a point in B\ A. Then there exist
p€ Aand 0 < a < 1 with w = ap. Since A is closed, there exists an open convex
neighborhood U of w in Ng which does not intersect A. Suppose that U contains a
point z of D\ B. Then there exist ¢ € A and b > 1 with z = bg. For the real numbers
0 <a <1 b>1, the equation ta + (1 —¢)b = 1 has a solution 0 < ¢t < 1. Then
tw+ (1 —t)z =tap+ (1 — t)bg is in U N A, which is a contradiction since U N A = ().
Hence w € UN D C B\ A, which means B\ A is open in D.
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Let Sc be the set of elements m € M N C* such that there exists u € C' with
(m,u) =1and (m',u) > 1form’ € (MNC*)\{m}. If (m; > 1)N---N(my > 1) is the
irredundant expression of K(M NC*) at a point u, then my, ..., m; are in Sc. We see
easily that K(M NC*)NC = K(S¢)NC, and hence K (M NC*) = K(S¢) as closures.
We set Q,, = K(S¢) N (m = 1) for m € S¢, which is locally equal to the hyperplane
(m = 1) at u in the definition of S¢. Then, we get one-to-one correspondences m — Q,,
between S¢ and the set of codimension one faces of K(S¢). NN (C\ {0}) is contained
in K(S¢) since (x,u) is a positive integer for x € M N C* and w € NN (C \ {0}). In
particular, K(S¢) is not necessarily contained in C' (cf. [AMRT, II, 5.3]).

Theorem 2.4 Let © be the convex hull of N N C. If C' contains K(S¢) and ©
contains Kqg = dK(S¢) for a positive integer d, then © is a locally polyhedral closed
subset of Ng. The vertices of © are in NN C.

Proof Since NNC C K(S¢), © is a subset of the closed convex set K(S¢). Since
we assume K (S¢) C C, the closure of © is contained in C. Hence it suffices to show
that © is locally polyhedral at every point u € © with assuming v € C'\ int(Ky). Set
S1={m € Sc ; (m,u) < d} and Sy = S\ S1. Then a = min{(m,u) ; m € Sy} is
greater than d.

We set b = d/a, which is a positive number less than 1. Since (1/d)u is outside
int K(S¢), S1 is not empty by Lemma 2.1. Let Ay be the union of (r — 1)-dimensional
polytopes K4 N (m = d) for m € 5.

We set ' = bu and will show that F = {v € NNC ; v'vN Ky = 0} is finite. If
it failed, we get a sequence {v;} from this set such that lim; . |v;] = co and |v;| 1oy
converges to a unit vector w. Since v;’s are in C, w is in C \ {0}. Hence (m,w) > 0
for every m € Sc. Since (m, v’ + cw) = (m,u’) + ¢(m,w) and (m,v') < d for m € Sy,
there exists ¢ > 0 such that min{(m,u' + cw) ; m € S;} = d. Note that (m,u') =
b{m,u) > ba = d and (m,u' + cw) > d for m € Sy. Hence u'+cw is a point of Ay which
is not on KyN (m = d) for any m € Sy. Furthermore, v’ 4+ ¢'w is a point of int(Ky) for
¢ > c. Since w is also the limit of w; = |v;] ™} (v; — «'), and since v; = v’ + |v;|w;, the
segment u/v;, which contains u' + cw; if ¢ < |v;], intersects K, for large 4. This is a
contradiction.

Assume that v € N N C and «/v intersects K;. Let ¢ > 0 be the minimal number
with v/ = v/ + ¢(v — u') € Ky. Since Ky = dK(S1) NdK(S;) and u/'v" C dK(Ss), there
exists m € Sy with (m,v’) = d, and hence v’ is an intersection point of /v and A,. Let
A = conv(Ap) and B = conv(AU{w'}). Then w is in the interior of B unless S1 = {mq}
and u is on Ky N (mo = d). In this case u is in the interior of © or locally defined by
(mo > d) at u. We assume v is in the interior of B. Set ' = (N N C)\ E. Then by
applying Lemma 2.2 for uy = v/, © = conv(F U F) is locally polyhedral at each point
of int BN O, in particular, at u. If u is a vertex of ©, thenu € E C NNC. QED

The characteristic function ¢ of a strongly convex open cone C' is defined by
o(u) = [ exp(~(z,uw)da

for uw € C. Important properties of ¢ are written and proved in Vinberg [V1, §2]. In
particular, ¢(u) is a positive valued differentiable convex function satisfying ¢(Au) =
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A" ¢(u) for A > 0, here r is the dimension of Ng. Furthermore, by defining ¢(u) = oo
for u € C'\ C, the map ¢ : C — (0,00] is continuous, and {u € C' ; ¢(u) < a} is a
closed convex subset of Ng for every a > 0.

A subgroup T' of GL(N) is also considered as the subgroup {'¢! ; g € T'} of
GL(M), and acts on both Ng and Mg linearly from the left. Namely, the equality
(9(z),g(u)) = (z,u) holds for g € I', x € Mg and u € Ng. We say I' acts on C' if
g(C)=C for all g € I'. Then I acts also on C*. Since g(M) = M, I" acts on K(S¢)
and K (S¢) N C. Note that det(g) = £1 is uniquely defined for g € T

Let C'/R. be the set of half lines {R,u ; u € C'} with the topology as the quotient
space of C. For any A > 0, {u € C' ; ¢(u) = A} is homeomorphic to C/R,. The
following projective transformation maps C' to the cylindrical area R, x (C/R.).

Take points ng € C and xy € C* with (zg,up) = 1. Let p : Ng — Ngr/Rng be the
natural surjection, and let Do = p(C' N (g = 1)). Then, the map

. (1 pu)
q:C— Ry X Dc, qlu)= <<$07u>7 <xo,u>> ,

is a homeomorphic projective transformation. For x € C* and a > 0, the subset
C N (z > a) is mapped to {(t,v) € Ry X D¢ ; at < [,(v)}, where [, is the affine
function on Nr/Rng such that [, (p(u)) = (z,u) for u € (xg = 1). Since x € C*, there
exist my, M, > 0 with m, <1, < M,. For § C C*, ¢(K(S)NC) = {(t,v) ; t <
I, for all x € S}. We regard D¢ as the quotient C'/R, through this homeomorphism.
If a linear automorphism g of Ng fixes the cone C', then g induces a homeomorphism
on D¢ which is compatible with that on C. We see ¢q ! is also a differentiable
convex function, which satisfies ¢q~1(At,v) = N'¢pg~'(¢,v) for X > 0. In particular,
{u e C; ¢(u) = a} is homeomorphic to D¢ for any a > 0. Furthermore, ¢ extends to
a homeomorphism C \ {0} — R, x De¢.

Lemma 2.5 If a subgroup I' C GL(N) acts on C and the quotient Do /T is com-
pact, then the condition of Theorem 2./ is satisfied.

Proof Let OK(Sc) be the boundary of K(S¢). Then I' acts on 0K (S¢) N C
which is naturally homeomorphic to C'/R,. Since ¢ is constant on each orbit of T
and (C/R;)/T" is compact, ¢ is bounded on 0K (S¢) N C' and has the maximum .
Let u be a point in the interior of K(S¢). Then a = min{(m,u) ; m € S¢} > 1 and
(1/a)u € OK(Sc)NC. Hence ¢(u) = a "¢((1/a)u) < A. Since K(S¢) is the closure of
its interior as a convex set, ¢ is at most A on K(S¢). Hence K(Sc¢) C ¢71((0,)]) is
contained in C. The vertices of K(S¢) are rational points and form a finite number
of orbits since D¢/I' is compact. Hence there exists d > 0 such that all vertices of
dK(Sc) are in N. Since K(S¢) is the convex hull of the union of proper faces, and
hence of vertices, dK(S¢) is contained in the convex hull of N N C. QED

3 Toric type cusp singularity

Let C' C Ng be an open convex cone such that C is strongly convex. In this section, we
assume that a group I' € GL(N) acts on C' and the quotient D¢ /I is compact. When
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the action of I" on C'is free, a singularity, which we call a toric type cusp singularity, is
constructed by Tsuchihashi [T1, Proposition 1.7] (see also [AMRT, p.162, Appendix]).
In this paper, we call such pair (C,I') a Tsuchihashi pair if the action is free. We will
discuss on I'-invariant fans and their blowups.

We define the canonical fan 11 by the convex closure © of N N C as follows. Let
F(©) be the set of proper faces of ©. We get the following lemma by Theorem 2.4.

Lemma 3.1 Fach Q € F(©) is a polytope whose vertices are points of N N C.

Since @) € F(O©) is a polytope in a hyperplane (z = a) with x € C* and a > 0,
R, (@ is a rational polyhedral cone generated by the set of the vertices of ). Define

I={RoQ;Q € F(©)}u{0}
where 0 = {0}, i.e., the zero cone. The following lemma is easy.

Lemma 3.2 Under the assumption of this section, 11 is a fan of Nr with the
support C'U {0}. The action of T' on C induces an action on 11 \ {0} such that
(IT\ {0})/T is finite and every stabilizer is finite. The action is free if and only if that
on C 1is free.

Similarly, we can also define a fan Il from the I-invariant quasi-polytope K (S¢).
We consider the case that I' acts on a fan ¥ of Ng with the support C'U {0} which is
locally finite at each point of C'. Then ¥ is said to be I'-invarinat or I'-admissible if
(X\ {0})/T is finite (cf. [AMRT, Chapter 2]). In our case, this finite condition follows
from the compactness of D¢ /T

Let X be a ['-invariant fan. A support function of ¥ is a real-valued function h on
C' U {0} such that the restriction to each o € X is linear and Z-valued on N No, i.e.,
there exists m, € M with h = m, as functions on . We call it a support Q-function if
we weaken the last condition to Q-valued on NNo. A support function h is continuous
on C since ¥ is locally finite. We say h is convex if h(u + v) > h(u) + h(v) for any
u,v € C, and strictly convez if h(u + v) > h(u) + h(v) for u,v which are not in a
common cone of ¥. For example, h(u) = min{(z,u) ; x € M NC*} is a strictly convex
support function of IIj.

For an element p € ¥\ {0}, we set X(p<) = {7 € ¥ ; p < 7}. Let p € ¥ be an
element of dimension at least two such that X(p<)Ng(3(p=<)) = 0 for every g € T\ {1}.
Let u be an element of N Nrel.int p. For each 7 € 3(p<), we set

F(r,p)={o<7;udo,(Rou+o)Nrel.int 7 # 0} ,

which does not depend on the choice of u. Then, the I'-equivariant blowup, or star
subdivision, Blp, X of ¥ at u is defined by

Blr, ¥ = (2\ [ g9(Z(p=))) U (U 9(Q)),

gerl’ gerl’

where
A={Rou+o;0€ F(r,p), T € X(p=<)}.
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Note that, if I' acts on X freely, then p € ¥ of dimension r satisfies the condition
since X(p=<) = {p}. Clearly, Blr, ¥ is [-invariant. The barycentric subdivision of 3
is done by iterating the blowups for all elements of dimensions from r to 2 in ¥ in this
order. Namely, let 3 be a set of representatives of X /T, and take a primitive element
u, € NNrel.int p for all p € 3. The I'equivariant blowups at u,, for all p € 3(r) do not
depend on the order, and all cones of ¥\ X(r) remain in the obtained fan. Furthermore,
cones in X(r — 1) satisfy the condition in the new fan. Thus we can blowup ¥ at all
cones of dimension greater than one. A subdivision of 3 to a non-singular fan can also
be done by these blowups if we take u,’s properly.

Lemma 3.3 If ¥ has a strictly convex support function h, then Blp, X has also a
strictly convex support function.

Proof Let U = U,es(pxrel.int7. If v € U is in rel.int 7 and v = au + v’ with
a € Ry and v’ € o € F(1,p), then define I(v) = a. For v € C, we set [(v) = (g7 (v))
if there exists g € I with v € g(U), and define [(v) = 0, otherwise. Then [ is a support
Q-function on Blr,, ¥ which is strictly convex on the subdivision of each 7 € ¥ (p=<),
while h is linear on these cones. Now, we replace [ by a multiple ¢l of an integer ¢ > 0
so that [ has integral values on N N C. Then the finiteness of ¥/I" implies that, for
a sufficiently large positive integer d, dh + [ is a strictly convex support function of
Bl , X. QED

We assume that 3 has a [-invariant strictly convex support function h. For each
v € (1), denote the associated prime divisor by V(). Since the toric variety Z (%)
is not of finite type, a divisor on it may be an infinite sum. Namely, an infinite sum
D =% a,V(y) is a Cartier divisor if the restriction D|U(c) to the affine toric variety
U(o) is principal for every o € ¥\ {0}. A Cartier divisor D =} a,V () is [-invariant
if a, = g(ay) for all v € ¥(1) and g € I'. The associated invertible sheaf Oz (D) is
also ['-invariant if D is so. For a support function h of 3, the associated Cartier divisor
is defined by D;, = — 3 h(n,)V(y), where n, is the primitive generator of v (cf. [O,
p.69]). When h has only non-negative values, the coefficients of Dj are non-positive,
i.e., Oz)(Dy) is an ideal sheaf.

Lemma 3.4 For a strictly convex support function h, the restriction of Ozxy(Dp)
to V() is ample for all v € ¥(1).

Proof We set N(y) = NN (v + (—v)) and N[y] = N/N(vy). Then V() is the
(r — 1)-dimensional complete toric variety defined by the complete fan X[y] = {o[v] ;
o € X(y=<)} of N[y]r, where o[y] is the image of o in N[y|]g = Nr/N(7)r (cf. [O,
Corollary 1.7]). There exists an element mg € M such that A = my on 7. Then
{(h —my)|o ; 0 € B(y=<)} induces a strictly convex support function h of X[y] which
defines an invertible sheaf isomorphic to Oz (Dy)|V (7). Hence it is ample by [O,
Corollary 2.14]. QED



4 Power series ring

We fix a field k of an arbitrary characteristic from this section.

Let o be a strongly convex rational polyhedral cone of Ng, and let {ny,...,ns} be
the set of primitive generators of the one-dimensional faces. In particular, 0¥ = (n; >
0)N---N(ns > 0). We consider the topology of the ring k[M N ¢V] defined by the
ideals

Ip={(e(m);meMnN(ng >d)N---N(ns >d))x

for d > 0. We denote by k[M Na¥]" the completion of k[M N V] with respect to this
topology.

We denote by ((M))y the k-vector space [I,,car k€(m), which is not a ring if r > 1.
An element of ((M)) is written as an infinite sum Y- a,,e(m). We regard k[M NoV]"
a vector subspace for every cone o. Then Y a,e(m) is in k[M NoV]" if and only if
a, =0 form & MNoY and there exist only finite m with a,, # 0 outside mq+ M No"
for every my € M NoY. Note that ((M)), has a structure of k[M]-module.

Let (C,I') be a Tsuchihashi pair. We consider a I'-invarinat fan ¥ satisfying the
following conditions.

(1) For any 0,7 € ¥\ {0}, there exist at most one g € I' with g(o) N7 # 0. In

particular, g(o) # o if g # 1.
(2) There exists a strictly upper convex I'-invariant support Q-function h on ¥,

i.e., h(g(u)) = h(u) for u € C and g € I', h(u+ ') > h(u) + h(v') for u,u’ € C and
the equality holds if and only if v and «’ are in a common cone o € 3, and h(u) are
rational for all u € NN C.

Since (X '\ {0})/T" is finite, we may assume that h(u) € Z for every u € N N C by
replacing h by dh for a positive integer d, if necessary. For each v € ¥(1), let n, be the
primitive generator and V() the associated prime divisor of the toric variety Z(X).
Then D, = — >, h(n,)V () is a Cartier divisor. The restriction of the line bundle
Oz)(Dpy) to each prime divisor V(7y) is ample by Lemma 3.4.

We consider the reduced divisor D(X) = Z(£) \ T, and let Z(X) be the formal
completion of Z(X) along D(). The formal scheme Z(X) is covered by affine formal
schemes U, = Spf k[M N¢V]" for o € £\ {0}.

The quotient Z (3)/T" is defined naturally. Namely, W=2 (3)/T is covered by U,
for o in the set of representatives ¥ of (X \ {0})/T, and U, N U, is U, if there exist
g1,92 € T with p = ¢1(0) N g2(7) € 3 and empty if otherwise. Note that the p here
exists uniquely by the property (1). It follows also that W is separated.

Let A(C*) be the completion of the semigroup ring k[M N C*| with respect to the
topology defined by all monomial ideals of finite codimensions. A(C*) is described as
[Tnerno+ ke(m), and each element is denoted as an infinite sum >°,,c ysno+ Gme(m) or
simply 3 a,,e(m). For g € I, we define the automorphism g* of A(C*) by

(4) g (O ame(m)) =3 ame(g™" (m)) .

Note that (g192)* = g597, i.e., I acts on A(C*) from the right. We denote the invariant
subring A(C*)' by B(C*,T'), which is integrally closed since so is A(C*).



Proposition 4.1 Z() is a formal scheme over Spf A(C*), and HO(W, Og) =
B(C*T).

Proof The action of I' on A(C*) can be extended to ((M));, by applying (4). Since
W is covered by open subspaces U, for o € T, a section of Oy is written as (sq),c5
with s, € k[M NoY]". We will show that each s, is in B(C*,T"). Let g be an arbitrary
element of I'. Take a point z in the relative interior of o. Since ¢ # 0, z and g(z) are
in C'. Hence the segment £ = xg(z) is contained in C. Since C' is the disjoint union
of rel.int ¢’ for o/ € ¥\ {0} and the intersection £ N o’ is a closed segment or a point
if non-empty, there exist a sequence

0-:0-070-17"'70-l:g(0-0) 62\{0}

such that x € rel.int oy, g(x) € rel.int oy and ENo;_1 No; # 0 for i = 1,...,1. Since
oi—1No; is in X\ {0}, by adding this cone if necessary, we may assume o; 1 < 0; or
0; < 0;_1 for all i. Then we can take 19,...,7 € ¥ and go, ..., € I’ with o; = ¢;(7;)
for all i since ¥ is a set of representatives. We have 7, = 7y since g(oy) = 0;. By
assumption, g; *(g;_1(7i_1)) < 7 or g; 4 (gi(7)) < Ti_1, and hence (g;4.9;)*(55,_,) = 5r,
as an element of ((M)); for each i. Hence

e = (9h90" (90 '91)* (s7) = (90" 90) (57, -

Since 0y = 0 € ¥, we have 1o = 7, = 7, go = 1 and g, = g. Hence g*(s,) = s,. Since g
is arbitrary, s, is in B(C*,T).

If o, 7 € ¥ has the relation g(c) < 7 for an element g € T, there exists a restriction
map OW(ﬁT) — OW(UU) which is given by ¢g*. Hence s, = ¢*(s;) = s,. Since any
two elements of X is connected by this relation, all s,’s are equal. Thus we know
HO(W,0p) C B(C*,T).

Conversely, for any element s € B(C*,T), (8,),ex defined by s, = s for all o is
clearly an element of HO(W, Op;). We are done. QED

Assume that ¥ is non-singular and has a positive valued strictly convex I'-invariant
support function h. For each o € Y(r), there exists a unique m, € M with h = m, on
o. The toric variety Z(X) is covered by U, = Spec(k[M N¢V]) for o € X(r), and the
invertible sheaf Oz s (D},) is the associated sheaf of the ideal k[M No¥]e(m,) on each

affine open set U(c). Hence the induced sheaf Og(z)(Dh) on the formal scheme Z(X)

is that of the ideal k[M N oV] e(m,) C k[M N o¥]" on each U(o).

Proposition 4.2 Let p : Z(E) — W be the natural morphism. Then there exists
an invertible ideal sheaf L C O, such that p*L = (’)2(2)(Dh) .

Proof It is enough to show that k[M N V] e(m,)™ on each U(c) for o € & form
an invertible sheaf on W. For 0,7 € ¥, the intersection U(c)NTU(7) is covered by U(p)
such that there exist g1, g2 € I with p = g1(0)Nga(7) € X. Since e(g1(m,)), e(ga(m,))
and e(m,) defines a same Cartier divisor on U(p), e(g1(my) — g2(m,)) is invertible in
k[MNpY]". Hence the restriction of k[M Nc¥]"e(m, )™ and k[M N7 e(m, )™ to U(p)
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through (g;1)* and (g5 ')*, respectively, are equal. Hence these invertible sheaves on
the affine formal schemes are patched together to an invertible sheaf £. The relation

PpL= (92(2)(Dh) is clear by the construction. QED

Here we omit the proof of the following theorem (cf. [I4, Theorem 2.4)).

Theorem 4.3 The ring B(C*,T") is a quotient of a formal power series ring of
finite variables, i.e., a complete noetherian local ring with the residue field k.

Lemma 4.4 The morphism §: W — § = Spf B(C*,T") of formal schemes is adic
of finite type (cf. [EGA, 1, 10.12, 10.13]).

Proof Form € MNC*, the infinite sum Y- 1 e(g(m)) is an element of the maximal
ideal of B(C*,T"). Take a positive valued I'-invariant strictly convex support function
h of ¥. Then P = {z € Mg ; (z,n,) > h(n,)} is a quasi-polytope contained in C*.
For each o € X(r), m, € M NC* with h = m, on o is a vertex of P such that P —m,,
is locally equal to ¢" at the origin. We set f, = > cre(g(ms)). Let {y1,...,%}
be the set of edges of 0. We set z; = e(y;) for ¢ = 1,...,r, then k[M NoV]" is the
completion of the polynomial ring k[xy, ..., z,| by the monomial ideal I = (x;---z,).
For g € I'\ {1}, g(m,) is not on the face P N (n,, = h(n,,)) of P for i = 1,...,r by
the condition (1), and hence e(g(m,) —m,) is in the ideal I. If we write f, = ue(m,)
in the k[M]-module ((M))y, then u is in 1+ I C k[M No¥]"*. Hence u is a unit on
the affine formal scheme U, and f, generates a defining ideal of U (o) with the residue
k[z1,...,2,]/(e(m,)). Hence the morphism ¢ : W — S is adic of finite type. QED

Let qo : WO — Speck be the fiber over the residue field. By this lemma, WO is a
k-scheme and (Wp),eq is a union of V(v) for v € X(1).

Lemma 4.5 The morphism § is proper and EA\WO is ample.

Proof Since each V(v) is a compact toric variety and (1) is finite, 17[/0 is also
complete. Hence g is proper (cf. [EGA, III, 3.4]). Since the restriction L[V (v) is
isomorphic to (’)2(2)(Dh)|‘/(7), it is ample by Lemma 3.4. Hence £|W; is ample.

QED

By this lemma, § is algebraizable to a scheme morphism [EGA, III, Théorem 5.4.5].
Namely, there exists a proper morphism ¢ : W — Spec B(C*,T") such that W is the
completion of W along the closed fiber. Furthermore, there exists an ample invertible
sheaf £ on W such that £ is the pull-back to W. We have ¢.Ow = Ospec (1)

by Proposition 4.1. If regard —Dj, = D_j, as a closed subscheme of Z(X), then the

quotient D = D_;,/T" is a scheme with the structure sheaf O /L. The exact sequence
0—L—05 — 05 —0

is algebraized to

0 —L— 0w — 05 —0.

Let so be the closed point of S = Spec B(C*,I"). Then W, = q (po) is equal to Wo,
and is a subscheme of D with the same support (W) req-
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Theorem 4.6 Then k-scheme S\ {so} is geometrically reqular at every point, i.e.,
So s an isolated singularity of S.

Proof Since the toric variety Z(3) is smooth over k, the local rings of W are
geometrically regular. Hence every point of W is also geometrically regular. The
proper morphism ¢’ : W\ Wy — S\ {so} is isomorphic since L|(W \ W) is trivial and
¢-ample. In other words, ¢ is the contraction of Wy to the point so. Hence each point
of S\ {so} is geometrically regular. QED

By Theorem 4.6, we can apply Artin’s algebraization theorem [A, Theorem 3.8].
Namely, there exists a closed point v of an algebraic variety V', and B(C*,T") is isomor-
phic to the completion of the local ring O, by the maximal ideal. Namely, the cusp
singularity is realized as a k-rational isolated singularity of an algebraic variety.

5 Quasi-polytope with group action

We say a quasi-polyhedral set P C Mg non-degenerate if P contains an interior point,
and strongly convez if P contains no line (cf. [I5, §1]).

Let P be a non-degenerate strongly convex rational quasi-polyhedral set. For each
point x € P, we denote by C, the cone generated by P —x. Since P is non-degenerate,
locally polyhedral and rational, C, is a rational polyhedral cone of dimension r. Hence
the dual cone C)Y C Ng is a strongly convex rational polyhedral cone. We set

Y(P)={C);x € P}.
Then Y(P) is a fan of Ng with the support |X(P)| such that
int(cc(P)Y) C [Z(P)] C ce(P)Y

(cf. [I5, Theorem 1.4]). There exists a one-to-one correspondence () — o¢ from the set
of faces of P to X(P) such that = € rel.int @ gives 0g = C/, and rel. int o, is contained
in int(cc(P)Y) if and only if @ is bounded (cf. [I5, Theorem 1.5, Proposition 1.6]).
If P is a quasi-polytope, i.e., if every proper face of P is bounded, then [3(P)| =
int(cc(P)Y) U {0} [I5, Lemma 3.2].

Let P be a quasi-polytope of cc-dimension r. We consider the case where an
affine transformation group I of M is acting on P. Namely, each § € T is an affine
transformation x + g(x) +m, for v € Mg with g € GL(M) and m, € M. We denote
also ¢ the element *¢~' € GL(N). Then the group I' = {g ; ¢ € '} acts on both M
and N from the left. The corresponding ring isomorphism ¢* : k[M] — k[M] is defined
by the map e(m) — e(g~(m)).

We define

P={(z,t)e Mg xR;t >0,z € tP},

where 0P = cc(P). Then P is a strongly convex closed cone (cf. [I5, Lemma 2.2]). For
A(P) = (M & Z) N P, the semigroup ring A(P) = k[A(P)] has a grading defined by

A(P)g = @ ke(m,d)

meMNdP
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for d > 0. Here we denote e(m, d) for e((m,d)). The action of I' on M induces a linear
action on M & Z such that g(x,t) = (g(z) +tmy, t) for (x,t) € Mg x R, which fix the
cone P. Then Z(P) = Proj A(P) is equal to the toric variety on which T acts (cf. [I5,
Proposition 2.5]).

Now we assume that I acts on the set of proper faces of P freely, and it has only
finite orbits. If we set C' = intce(P)Y and T' = {g ; § € T'}, then (C,I") is a Tsuchihashi
pair and we get a cusp singularity (cf. [I5, Proposition 3.3]).

The rational support function hp on |3(P)| is defined by

hp(u) = min{{(z,u) ; x € P}

for u € [X(P)| = C*U{0}. If Q is a face of P, then h(u) = (z,u) for z € Q and
u € og. We have hp(g(u)) = hp(u) + (mg, g(u)) for g € I'. Hence hp(g(u)) — hp(u)
is an integer if u € N N C. Since X(P) \ {0} has only finite cones modulo I', there
exists a positive integer d such that dhp is integral on N N C'. We take the minimal
d. Then dhp defines a Cartier divisor Dp = Dp,, = — 3 ex(p) dhp(n,)V(7) and an
invertible sheaf Ozpy(Dp). Since g~ (Dp) = Dp — (e(dg~*(my))) as divisor, we have
an isomorphism

9" (Ozpp)(Dp)) = Ozp)(Dp)

of invertible sheaves by multiplying e(dg—'(m,)). We denote the formal completion
of Z(P) along Y(P) = Z(P)\ Ty by Z(P), and pull-back of this invertible sheaf by
OE(P)(DP)' If the morphism p : Z(P) — Z(P)/T is defined, there exists an invertible
sheaf £p such that ﬁ*EAp = 02( P)(Dp) by the above isomorphisms for g € T
Although the fan ¥(P) might be singular and does not satisfy the condition (1)
in Section 4, the algebraization of the quotient of Z (P) by I' to a scheme morphism
q: W — Spec B(C*,T") by Lp is possible as in Section 4. Namely, the condition (1)
is satisfied if we replace I' by a sufficiently small normal subgroup I of finite index.
The assertion corresponding to Lemma 4.4 is also proved by taking a sufficiently small
I, while ¥ being non-singular is not necessary. Thus we get a projective morphism
q : W' — Spec B(C*,T”) for I, then ¢ is obtained by taking the quotient by the action
of the finite group I'/T”. Then ¢ is the contraction of Y (P)/I" to the closed point sy of
S = Spec B(C*,T'). The algebraization Lp of Lp defines an invertible sheaf on S\ {so}.

Example 5.1 Let {p; ; i € Z} be a set of points in Mg = R? defined by the
recurrence relation

o] 28] L [-2
Do = 0 y Dit1 = -1 ) Di 1 9

and let P be the convex closure of this set. Then P is a quasi-polytope of cc-dimension
two with a cyclic group action.

 Also, for any I'-invariant subdivision 3’ of 3, we can algebraize ¢ : Z@’) /T —
S = Spf B(C*,T') to a scheme morphism as a toroidal modifications of ¢ : W — S if
the toroidal embedding (W, S\ {so}) is without self-intersection [KKMS, II, §2].
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6 Examples by Tsuchihashi

Cusp singularities in arithmetic quotient spaces of Q-rank one are classified by Satake
[S, §3]. In particular, there are 3- and 4-dimensional examples obtained from quater-
nion algebras over (Q or an imaginary quadratic field. Some explicit calculations are
done in [Ch]

A beautiful 4-dimensional example of cusp singularity is obtained by Tsuchihashi
[T2, §6]. The Dynkin diagram

which we denote by A, gives an infinite Coxeter group.

This group is realized as a linear Coxeter group [V2, Definition 2] as follows. Let
K be the simplicial cone generated by the standard basis {e1,...,es} of R*. For the
vertices of this diagram labeled from 1 to 4, define the matrices by

-1 0 0 O 1 100

5 = 1 100 5y = 0 -1 0 0
2010’ o 01 0 [’
0001 0 101
10 10 100 O

5y = 01 00 5y = 010 2
00 -1 0| o0 1 11|
00 11 000 -1

~—

which operate on R* with the coordinates (1, zs, 3, 2z4) from the left. Then the
subgroup G = (s1, 9, S3,54) C GL(4,Z) is isomorphic to the Coxeter group. Namely,
the relations

si=sy=s3=s1=1, (5151)° = (s283)" = 1,

(5159)% = (s354)° =1, (5183)" = (s284)* =11

are checked easily. Each s; fixes the facet K N (x; = 0) of K for i =1,...,4. Then by
Vinberg’s result [V2, Theorem 2|, G is a linear Coxeter gorup, and these are actually
the defining relations of the group. We denote the set {s1, 2, 83,84} by S = Sx. Then
the parabolic subgroup H; generated by S\ {s;} is a finite group of order 48 for each
7. On the other hand, the Dynkin diagram obtained by removing the edge connecting
1 and 3 (resp. 2 and 4) defines a Coxeter group of order 1152, which is isomorphic to
the automorphism group of a regular 24-cell (cf. [C2, p.148]). These groups have an
important role in the construction. It follows from [V2, Theorem 2] that there exists
an open convex cone C'; and we have

Ug(K):CU{O}.

geG
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Tsuchihashi found a subgroup I' C G of index 48 such that H; N T = {1} for every i.
Then I" acts on C freely, and (C,T") is a Tsuchihashi pair. The cone 0y = K is non-
singular and the 4-dimensional cones g(og) and their faces for g € I" form a ['-invariant
non-singular fan with the support C'U {0}. There exists a strictly positive h, and we
get ¢ : W — Spec B(C*,T") as in previous sections. This is a resolution of the cusp
singularity since Y is non-singular.

Let v; = Ryge; for i = 1,...,4. Then ¥, = X[y] is a 3-dimensional complete
non-singular fan on which H; acts. Let V; be the complete non-singular toric variety
associated to >; for each i. Although the canonical divisor of W is not g-ample,
—(4V4 + 3V, + 3V3 + 4V}) is g-ample.

These 3-dimensional fans are described as follows. Let {e1, €2, e3} be the standard
basis of R3. For an order (i,j,k) of {1,2,3} and €, ¢€;,6, = £1, the cone generated
by {eiei, €iei + €j¢€;, €;6; + €je; + erex} is a nonsingular cone in R? with the lattice Z3.
There are exactly 48 such cones and form a non-singular complete fan A;. Then, ¥,
and Y3 are isomorphic to A;. The fan A, consists of the same set of cone but in R?
with the lattice Z* + Z(1/2,1/2,1/2), which is also a non-singular complete fan. The
fans ¥, and ¥4 are isomorphic to A,. Hence, each of V; has 48 torus action invariant
points corresponding to the 48 maximal cones.

The exceptional divisor of ¢ is a simple normal crossing divisor consisting of these
four toric varieties. There are 48 quadruple points, and all four components go through
each of these points at an invariant point. For a choice of the group I', I have calculated
the intersection of the four irreducible components. By cutting the fan ¥; with a cube
with the center at the origin, each square face is triangulated to six triangles. Figures 1
through 4 are the nets of the cubes and each triangle on the net presents an invariant
point of the component. The invariant points of each component are numbered from 0
to 47, and the four points labeled a same number form a quadruple point of the normal
crossing exceptional divisor.

Tsuchihashi also found a very nice example in dimension three. Let €2 be the
Dynkin diagram:

3
Q
1 2
Define the matrices
-1 00 1 30 1 0 0
s = 110, s9=10 =1 0|, s3=1] 0 1 3
301 0 01 00 -1

Then S = S = {s1, 52, 53} generates a linear Coxeter group acting on R?, with the
base cone K generated by the standard basis of R?. Let G be the linear group generated
by S and the order 3 rotation
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Let ¥ be the fan consisting of the 3-dimensional cones g(K) and their faces for all
g € G. Then the subgroup

H = (rs;5953, 1528351, 7535152) C G

of index 12 acts on X \ {0} freely. Thus we get a 3-dimensional toric type cusp
singularity. This example is analyzed more precisely in [K].

In this example, 3(1) has only one orbit and ¥(3) has four. Hence the exceptional
set E of this cusp is a normal crossing irreducible divisor with four triples points.
Furthermore, h : CU{0} — R defined by h(u) = min{(z,u) ; x € MNC*} is a strictly
convex support function of ¥. In this case, h(n,) = 1 for the primitive generator n,
for all v € 3(1). Hence D}, is the canonical divisor of the toric variety Z(X) (cf. [O,
2.1]). The canonical divisor is defined by the Euler form

_ de(my) de(my)  de(ms)
= etm) " e(ma) " elmy)

where {mq,mo,m3} is a basis of M. Hence g*w = det(g)w for g € GL(N). Since
det(g) = £1, w®? is invariant by the action of I'. Hence we know Oy (—2E) ~ wi?,
where wyy is the canonical invertible sheaf of W. Since Oy (—FE) is relatively ample
for the contraction morphism ¢ : W — Spec B(C*,T"), so is the canonical sheaf wyy.
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46 | 5
29 40
22 25
1 116
6 | 45 30 | 21 2 |23 26 | 47
27 34 | 33 14 | 13 0 7 28
4 31 | 24 37 | 38 9 | 10 3
41 | 32 171 8 19 | 36 43 | 12
18 | 15
39 20
42 35
11 | 44
Figure 1:
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29 24
28 25
27 | 26
32 |1 33 46 | 47 6 7 16 | 17
39 34 | 45 40 | 5 0 |23 18
38 35 | 44 41 | 4 1 ] 22 19
37 | 36 43 | 42 3 2 21 | 20
10 | 11
9 12
8 13
15 | 14
Figure 2:

17




30 | 33
21 24
14 17
371 8
32 | 31 20 | 15 36 | 9 16 | 25
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27 1 6 11 | 42 131 2 29 | 46
10 | 43
7 12
26 3
47 | 28
Figure 3:
20 | 19
21 18
22 17
23 | 16
36 | 35 30 | 29 2 1 8 | 15
37 34 | 31 28 | 3 0 9 14
38 33 | 24 27 | 4 7 |10 13
39 | 32 25 | 26 5 6 11 | 12
40 | 47
41 46
42 45
43 | 44
Figure 4:
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