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1. Introduction

This article is based on the works jointly with Shiro Goto, Ryo Takahashi, Naoyuki
Matsuoka, and Ken-ichi Yoshida ([8, 9, 10, 11, 15]).
There are known numerous examples of Cohen-Macaulay rings and among the

progress of the theory of Cohen-Macaulay rings, we often encounter non-Gorenstein
Cohen-Macaulay rings in the field of not only commutative algebra, but also algebraic
geometry, representation theory, invariant theory, and combinatorics. On all such occa-
sions, we have a natural query of why there are so many Cohen-Macaulay rings which
are not Gorenstein.
The goal of this research is to find a new class of Cohen-Macaulay rings, which may

not be Gorenstein, but sufficiently good next to the Gorenstein rings. One of the
candidates for such a class is almost Gorenstein rings, which was originally studied by
V. Barucci and R. Fröberg [2] in 1997. One can refer to [2] for a beautiful theory of
almost symmetric numerical semigroups. Nevertheless, since the notion given by [2] was
not flexible for the analysis of analytically ramified case, in 2013 S. Goto, N. Matsuoka
and T. T. Phuong [7] extended the notion over one-dimensional Cohen-Macaulay local
rings, using the first Hilbert coefficients of canonical ideals. More recently, in 2015 S.
Goto, R. Takahashi and the author [15] finally gave the definition of almost Gorenstein
graded/local rings of higher dimension.
Let us start on the definition of almost Gorenstein ring in the sense of [15].

The author was partially supported by JSPS Grant-in-Aid for Scientific Research 26400054.
1



2 NAOKI TANIGUCHI

Definition 1.1. Let R be a Noetherian local ring with maximal ideal m. Then R is
said to be an almost Gorenstein local ring, if the following conditions are satisfied.

(1) R is a Cohen-Macaulay local ring, which possesses the canonical module KR and
(2) there exists an exact sequence

0 → R → KR → C → 0

of R-modules such that µR(C) = e0m(C).

Here µR(C) denotes the number of elements in a minimal system of generators for C,

e0m(C) = lim
n→∞

ℓR(C/m
n+1C)

nd−1
· (d− 1)!

is the multiplicity of C with respect to m, and d = dimR.

Notice that every Gorenstein local ring is almost Gorenstein (take C = (0)) and the
converse is also true, if R is Artinian. In the exact sequence quoted in Definition 1.1
(2), if C ̸= (0), then C is a Cohen-Macaulay R-module with dimR C = d − 1 and one
has the equality

mC = (f2, f3, . . . , fd)C

for some elements f2, f3, . . . , fd ∈ m, provided the residue class field R/m of R is infinite.
Hence C is a maximally generated Cohen-Macaulay R-module in the sense of [3], which
is called in the present article an Ulrich R-module. Roughly speaking, Definition 1.1
requires that if R is an almost Gorenstein local ring, then R might be a non-Gorenstein
local ring but the ring R can be embedded into its canonical module KR so that the
difference KR/R should be tame and well-behaved.
In the case where d = 1, if R is an almost Gorenstein local ring, then mC = (0) and

R is an almost Gorenstein local ring exactly in the sense of [7, Definition 3.1]. The
converse is also true, if R/m is infinite. We will later show that many results of [7] of
dimension one are extendable over higher-dimensional local rings, which supports the
appropriateness of our definition.
In what follows, unless otherwise specified, let R denote a Noetherian local ring with

maximal ideal m. For each finitely generated R-module M , let µR(M) (resp. ℓR(M))
denote the number of elements in a minimal system of generators for M (resp. the
length of M). We denote by e0m(M) the multiplicity of M with respect to m.

2. Survey on one-dimensional almost Gorenstein rings

Throughout this section, let R be a Cohen-Macaulay local ring with maximal ideal
m and dimR = 1. Let KR stand for the canonical module of R. Then an ideal I of R
is called canonical, if I ̸= R and I ∼= KR as an R-module. Notice that this definition
implicitly assume the existence of the canonical module. By the result [16, Satz 6.21]
of J. Herzog and E. Kunz, R possesses a canonical ideal if and only if the total ring of

fractions Q(R̂) of R̂ is Gorenstein, where we denote by R̂ the m̂-adic completion of R.
Hence the ring R contains a canonical ideal I if it is analytically unramified. Since I
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is faithful and dimR = 1, I is an m-primary ideal of R. Therefore there exist integers
e0(I) > 0 and e1(I) such that

ℓR(R/I
n+1) = e0(I)

(
n+ 1

1

)
− e1(I)

for all integers n ≫ 0. The integers ei(I)’s are called the Hilbert coefficients of R with
respect to I. These integers describe the complexity of given local rings, and there are
a huge number of preceding researches about them, e.g., [5, 6, 7, 12, 13]. In particular,
the integer e0(I) > 0 is called the multiplicity of R with respect to I and has been
explored very intensively.
Let r(R) stand for the Cohen-Macaulay type of R ([16, Definition 1.20]). Then the

almost Gorenstein ring is defined as follows.

Definition 2.1 ([7]). We say that R is an almost Gorenstein local ring, if R possesses
a canonical ideal I of R such that e1(I) ≤ r(R).

Remember that if R is Gorenstein, then any parameter ideal Q of R is canonical and
hence e1(Q) < r(R) = 1, which implies that every Gorenstein local ring is an almost
Gorenstien ring.
We now assume that I contains a parameter ideal Q = (a) as a reduction, namely

Ir+1 = QIr for some integer r ≥ 0. Note that this assumption is automatically satisfied,
if the residue class field R/m of R is infinite. We set

K =
I

a
=

{x
a
| x ∈ I

}
⊆ Q(R).

Notice that K is a fractional ideal of R such that

R ⊆ K ⊆ R and K ∼= KR

where R denotes the integral closure of R in Q(R). Then the result [7, Theorem 3.11]
says that R is an almost Gorenstein ring if and only if mK ⊆ R, or equivalently
mI = mQ. The latter condition is the original definition of almost Gorenstein ring in

the sense of [2]. Therefore if R is analytically unramified, that is R̂ is reduced, then
the these two definitions of almost Gorenstein ring coincides, provided the residue class
field R/m of R is infinite.
Before entering the higher dimensional case, let us give examples of almost Gorenstein

local rings of dimension one.

Example 2.2. Let k be an infinite field. The following are almost Gorenstein rings.

(1) k[[t3, t4, t5]]
(2) k[[ta, ta+1, . . . , t2a−3, t2a−1]] (a ≥ 4)
(3) k[[X,Y, Z]]/(X, Y ) ∩ (Y, Z) ∩ (Z,X)
(4) k[[X,Y, Z, U, V,W ]]/I, where

I = (X3 − Z2, Y 2 − ZX) + (U, V,W )2

+ (Y U −XV,ZU −XW,ZU − Y V, ZV − YW,X2U − ZW ).
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3. Almost Gorenstein local rings of higher dimension

In this section we summarize some basic results on almost Gorenstein rings of arbi-
trary dimension. Almost all the results are proved in [15].
In what follows, let (R,m) be a Cohen-Macaulay local ring with d = dimR possessing

the canonical module KR. For simplicity we assume that the residue class field R/m of
R is infinite.

Definition 3.1 ([15]). We say that R is an almost Gorenstein local ring, if there exists
an exact sequence

0 → R → KR → C → 0

of R-modules such that µR(C) = e0m(C), where µR(C) (resp. e0m(C)) stands for the
number of elements in a minimal system of generators for C (resp. the multiplicity of
C with respect to m).

We look at an exact sequence

0 → R → KR → C → 0

of R-modules. Here we do not need to assume that R is almost Gorenstein. If C ̸= (0),
then C is a Cohen-Macaulay R-module of dimension d− 1. Set R = R/[(0) :R C] and
let m denote the maximal ideal of R. Choose elements f1, f2, . . . , fd−1 ∈ m such that
(f1, f2, . . . , fd−1)R forms a minimal reduction of m. Then we have

e0m(C) = e0m(C) = ℓR(C/(f1, f2, . . . , fd−1)C) ≥ ℓR(C/mC) = µR(C).

Therefore e0m(C) ≥ µR(C) and we say that C is an Ulrich R-module if e0m(C) = µR(C),
since C is a maximally generated maximal Cohen-Macaulay R-module in the sense of
B. Ulrich ([3]). Thus C is an Ulrich R-module if and only if

mC = (f1, f2, . . . , fd−1)C.

Therefore if dimR = 1, then the Ulrich property for C is equivalent to saying that
C is a vector space over R/m. Therefore we have the following, which ensures that
Definition 3.1 is a natural generalization of the definition of almost Gorenstein rings
given by S. Goto, N. Matsuoka, and T. T. Phuong [7].

Remark 3.2. Let (R,m) be a one-dimensional Cohen-Macaulay local ring. Then the
following conditions are equivalent.

(1) R is an almost Gorenstein local ring in the sense of Definition 3.1
(2) R is an almost Gorenstein local ring in the sense of [7, Definition 3.1].

One can construct many examples of almost Gorenstein rings of higher dimen-
sion. The significant examples of almost Gorenstein rings are one-dimensional Cohen-
Macaulay local rings of finite Cohen-Macaulay representation type and two-dimensional
rational singularity. Therefore every two-dimensional finite Cohen-Macaulay represen-
tation type is almost Gorenstein. Furthermore, for all the known examples of finite
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Cohen-Macaulay representation type are almost Gorenstein. Thus, it might be true
that for any finite Cohen-Macaulay representation type is almost Gorenstein for arbi-
trary dimension, which we leave as an open question.
Let us recall the fundamental results on almost Gorenstein rings. We begin with the

following, which is called non-zerodivisor characterization.

Theorem 3.3. Let f ∈ m and assume that f is R-regular.

(1) If R/(f) is an almost Gorenstein local ring, then R is an almost Gorenstein local
ring. Moreover if R is not a Gorenstein ring, then f ̸∈ m2.

(2) Conversely, suppose that R is a non-Gorenstein almost Gorenstein local ring. Con-
sider the exact sequence

0 → R → KR → C → 0

of R-modules such that µR(C) = e0m(C). If f is superficial for C with respect to m

and d ≥ 2, then R/(f) is an almost Gorenstein local ring.

Proof. We set R = R/(f). Remember that KR/fKR = KR, since f is R-regular.
(1) We take an exact sequence

0 → R
ψ−→ KR → D → 0

of R-modules so that D is an Ulrich R-module of dimension d − 2. Let ξ ∈ KR such
that ψ(1) = ξ, where ξ denotes the image of ξ in KR = KR/fKR. We now consider the
exact sequence

R
φ−→ KR → C → 0

of R-modules with φ(1) = ξ. Then, because ψ = R ⊗R φ, we get D = C/fC, whence
dimR C < d, because dimRD = d − 2. Consequently, the homomorphism φ must be
injective, and hence C is a Cohen-Macaulay R-module of dimension d − 1. Therefore,
f is C-regular, so that C is an Ulrich R-module and f ̸∈ m2. Hence R is almost
Gorenstein.
(2) Notice that f is a C-regular element, because f is superficial for C with respect

to m and dimR C = d − 1 > 0. Therefore the exact sequence 0 → R → KR → C → 0
gives rise to the exact sequence of R-modules

0 → R → KR → C/fC → 0

where C/fC is an Ulrich R-module. Hence R is an almost Gorenstein local ring. □

We apply Theorem 3.3 (1) to get the following.

Corollary 3.4. Suppose that d > 0. If R/(f) is an almost Gorenstein local ring for
every non-zerodivisor f ∈ m, then R is a Gorenstein local ring.

Let us note one example of almost Gorenstein local rings.
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Example 3.5 (cf. [18]). Let S = k[[X1, X2, . . . , Xn, Y1, Y2, , . . . , Yn]] (n ≥ 2) be the
formal power series ring over a field k and put

R = S/I2(M)

where I2(M) denotes the ideal of S generated by 2× 2 minors of the matrix

M =
(
X1 X2 ··· Xn
Y1 Y2 ··· Yn

)
.

Then R is an almost Gorenstein local ring with dimR = n+ 1 and r(R) = n− 1.

Proof. It is well-known that R is a Cohen-Macaulay normal local ring with dimR = n+1
and r(R) = n− 1. The sequence {Xi − Yi−1}1≤i≤n (here Y0 = Yn for convention) forms
a regular sequence in R and

R/(Xi − Yi−1 | 1 ≤ i ≤ n)R ∼= k[[X1, X2, . . . , Xn]]/I2(N) =: T

where

N =
(
X1 X2 ··· Xn−1 Xn

X2 X3 ··· Xn X1

)
.

Then T is a Cohen-Macaulay local ring with dimT = 1, such that n2 = x1n and KT
∼=

(x1, x2, . . . , xn−1), where n stands for the maximal ideal of T and xi denotes the image of
Xi in T . Hence T is an almost Gorenstein local ring, because n(x1, x2, . . . , xn−1) ⊆ (x1).
Thus R is an almost Gorenstein local ring by Theorem 3.3 (1). □

We are now interested in the question of how the almost Gorenstein property is
inherited under flat local homomorphisms of Noetherian local rings. Let us begin with
the following.

Theorem 3.6. Let (S, n) be a Noetherian local ring and let φ : R → S be a flat local
homomorphism such that S/mS is a regular local ring. Then R is an almost Gorenstein
local ring if and only if so is S.

Proof. Suppose that R is an almost Gorenstein local ring and consider an exact sequence

0 → R → KR → C → 0

of R-modules such that µR(C) = e0m(C). If C = (0), then R is a Gorenstein ring, so
is S. Suppose C ̸= (0). Then S ⊗R C is an Ulrich S-module, because C is an Ulrich
R-module. Note that KS

∼= S ⊗R KR as S-modules, since S/mS is a Gorenstein local
ring. Thus S is almost Gorenstein, thanks to the exact sequence of S-modules

0 → S → KS → S ⊗R C → 0.

Suppose now that S is an almost Gorenstein local ring. Let n = dimS/mS. We have
to show that R is an almost Gorenstein local ring. Assume the contrary and choose
a counterexample S so that dimS = n + d is as small as possible. Then S is not a
Gorenstein ring, so that dimS = n+ d > 0. We take an exact sequence

0 → S → KS → D → 0
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of S-modules with µS(D) = e0n(D). Suppose n > 0. If d > 0, then choose an element
g ∈ n so that g is superficial for D with respect to n and g is a part of a regular system
of parameters of S/mS, where g denotes the image of g in S/mS. Then g is S-regular

and the composite homomorphism R
φ→ S → S/gS is flat. Therefore the minimality

of n + d forces R to be an almost Gorenstein local ring, because S/gS is an almost
Gorenstein local ring by Theorem 3.3 (2). Thus d = 0 and p = mS is a minimal prime

ideal of S. Hence the induced flat local homomorphism R
φ→ S → Sp shows that R is

a Gorenstein ring, because Sp is a Gorenstein ring. Thus n = 0 and n = mS.
Suppose now that d ≥ 2. Then because n = mS, we may choose an element f ∈ m so

that f is R-regular and φ(f) is superficial for D with respect to n. Then by Theorem 3.3
(2) S/fS is an almost Gorenstein local ring, while the homomorphism R/fR→S/fS is
flat. Consequently, R/fR is an almost Gorenstein local ring, so that by Theorem 3.3
(1) R is an almost Gorenstein local ring.
Thus d = 1 and n = mS, so that R is an almost Gorenstein local ring by [7, Propo-

sition 3.3], which is the required contradiction. □

The following plays an important role when we consider the almost Gorenstein prop-
erty of the Rees algebras.

Lemma 3.7. Let R be an almost Gorenstein local ring and choose an exact sequence

0 → R
φ−→ KR → C → 0

of R-modules such that µR(C) = e0m(C). If φ(1) ∈ mKR, then R is a regular local ring.
Therefore µR(C) = r(R)− 1, provided R is not regular.

Proof. Suppose φ(1) ∈ mKR. Then C ̸= (0) and therefore d > 0. Assume d = 1. Then
Q(R) is a Gorenstein ring. Therefore we get an exact sequence

0 → R
ψ−→ I → C → 0

of R-modules with ψ(1) ∈ mI, where I (⊊ R) is an ideal of R such that I ∼= KR as
an R-module. Let a = ψ(1). Then mI = (a), because mC = (0) and a ∈ mI. Hence
R is a discrete valuation ring. Let d > 1 and assume that our assertion holds true for
d− 1. Let f ∈ m be a non-zerodivisor of R such that f is superficial for C with respect
to m. We set R = R/(f) and C = C/fC. Then by Theorem 3.3 (2) R is an almost
Gorenstein local ring with the exact sequence

0 → R
φ−→ KR → C → 0

of R-modules, where φ = R⊗Rφ and KR = KR/fKR. Therefore, because φ(1) ∈ mKR,
the induction argument on d shows R is regular and hence so is R.
The second assertion follows from the fact that

µR(C) = µR(KR)− 1 = r(R)− 1

since φ(1) ̸∈ mKR. □
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When R contains a prime ideal p such that R/p is a regular local ring of dimension
d− 1, we have the following characterization for A = R⋉ p to be an almost Gorenstein
local ring, which is a generalization of [7, Theorem 6.5].

Theorem 3.8. Suppose that d = dimR > 0. Let p ∈ SpecR and suppose that R/p is a
regular local ring of dimension d− 1. Then the following conditions are equivalent.

(1) A = R⋉ p is an almost Gorenstein local ring.
(2) R is an almost Gorenstein local ring.

The following example extends [7, Example 6.10].

Example 3.9. Suppose that R is a Gorenstein local ring of positive dimension. Let
p ∈ SpecR and assume that R/p is a regular local ring of dimension d − 1. We set
A = R ⋉ p. Then, thanks to Theorem 3.8, A is an almost Gorenstein local ring.
Therefore because p× p ∈ SpecA with A/[p× p] ∼= R/p, setting

Rn =

{
R (n = 0)

Rn−1 ⋉ pn−1 (n > 0)
, pn =

{
p (n = 0)

pn−1 ⋉ pn−1 (n > 0)
,

we get an infinite family {Rn}n≥0 of almost Gorenstein local rings. Note that Rn is not
a Gorenstein ring, if n ≥ 2 (see [7, Lemma 6.6]).

Example 3.10. Let k be an infinite field and S = k[[X,Y, Z, U, V,W ]] a formal power
series ring over k. Set

A = k[[X,Y, Z, U, V,W ]]/I

where

I = (X3 − Z2, Y 2 − ZX) + (U, V,W )2 + (Y U −XV,ZU −XW,ZU − Y V,ZV − YW,X2U − ZW ).

Then it is routine to check that the isomorphism

A ∼= k[[t4, t5, t6]]⋉ (t4, t5, t6)

and hence A is an almost Gorenstein local ring.

Let us note a characterization of almost Gorenstein property in terms of canonical
ideals, which is a generalization of [7, Theorem 3.11].

Theorem 3.11. Suppose that d = dimR > 0 and Q(R) is a Gorenstein ring. Let
I (⊊ R) be an ideal of R such that I ∼= KR. Then the following conditions are equivalent.

(1) R is an almost Gorenstein local ring.
(2) R contains a parameter ideal Q = (f1, f2, . . . , fd) such that f1 ∈ I and m(I +

Q) = mQ.

When this is the case, if d ≥ 2 and R is not a Gorenstein ring, we have the following,
where J = I +Q.

(a) redQ(J) = 2.
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(b) ℓR(R/J
n+1) = ℓR(R/Q)·

(
n+d
d

)
− r(R)·

(
n+d−1
d−1

)
+
(
n+d−2
d−2

)
for ∀n ≥ 0.

Hence e1(J) = r(R).
(c) Let G = grJ(R). Then f2, f3, . . . , fd is a super-regular sequence with respect to

J and depthG = d− 1.

Theorem 3.12 (S. Goto). Suppose that R is a non-Gorenstein almost Gorenstein local
ring with dimR ≥ 1. Let M be a finitely generated R-module. If

ExtiR(M,R) = (0)

for all i≫ 0, then pdRM <∞.

As a direct consequence of Theorem 3.12, we have the following.

Corollary 3.13. Suppose that R is an almost Gorenstein local ring with dimR ≥ 1. If
R is not a Gorenstein ring, then R is G-regular in the sense of [17], that is

GdimRM = pdRM

for every finitely generated R-module M .

4. Semi-Gorenstein local rings

In this section we maintain the notation as in Section 3. Let F = {In}n∈Z denote a
filtration of ideals of R such that I0 = R, I1 ̸= R. We now consider the R-algebras

R =
∑
n≥0

Int
n ⊆ R[t], R′ =

∑
n∈Z

Int
n ⊆ R[t, t−1], and G = R′/t−1R′

associated to F , where t is an indeterminate. Notice that R′ = R[t−1] and that G =
⊕n≥0In/In+1. Let N denote the graded maximal ideal of R′.
Let us begin with the following.

Theorem 4.1. Suppose that R is a Noetherian ring. If GN is an almost Gorenstein
local ring and r(GN) ≤ 2, then R is an almost Gorenstein local ring.

Proof. We may assume r(GN) = 2. Since R′
N is an almost Gorenstein local ring with

r(R′
N) = 2, we have

0 → R′
N → K(R′

N ) → C → 0

where C is isomorphic to a regular local ring of dimension d. Let p = mR[t, t−1] and set
P = p∩R′. Then P ⊆ N , so that R[t, t−1]p is an almost Gorenstein local ring, because

R[t, t−1]p = R′
P = (R′

N)PR′
N
.

Hence R is an almost Gorenstein local ring, since R → R[t, t−1] → R[t, t−1]p is a flat
homomorphism. □
Example 4.2 (Barucci-Dobbs-Fontana). Let R = k[[x4, x6 + x7, x10]] ⊆ V , where
V = k[[x]] denotes the formal power series ring over an infinite field k of ch k ̸= 2.
Let H = {v(a) | 0 ̸= a ∈ R} be the value semigroup of R. We consider the filtration
F = {(xV )n ∩R}n∈Z of ideals of R. We then have the following.
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(1) H = ⟨4, 6, 11, 13⟩.
(2) G ∼= k[x4, x6, x11, x13] (⊆ k[x]) and GN is an almost Gorenstein local ring with

r(GN) = 3.
(3) R is not an almost Gorenstein local ring and r(R) = 2.

Therefore (R′
N)PR′

N
is not an almost Gorenstein local ring. Hence local rings Rp (p ∈

SpecR) of an almost Gorenstein local ring R are not necessarily almost Gorenstein in
general. Now we deal with the special class of almost Gorenstein rings which preserves
under localization.

Definition 4.3. We say that R is a semi-Gorenstein local ring, if R is an almost
Gorenstein local ring which possesses an exact sequence

0 → R → KR → C → 0

such that either C = (0), or C is an Ulrich R-module and C = ⊕ℓ
i=1Ci for some cyclic

R-submodule Ci of C.

Hence every Gorenstein local ring is a semi-Gorenstein local ring and every one-
dimensional almost Gorenstein local ring is semi-Gorenstein, since mC = (0). We
notice that in exact sequence of Definition 4.3, if C ̸= (0), then each Ci is a cyclic
Ulrich R-module of dimension d− 1, whence

Ci ∼= R/pi

for some prime ideal pi of R such that R/pi is a regular local ring of dimension d− 1.
We note the following.

Proposition 4.4. Let R be a semi-Gorenstein local ring. Then Rp is semi-Gorenstein
for ∀p ∈ SpecR.

Proof. We may assume that R is not a Gorenstein ring. Choose an exact sequence

0 → R → KR → C → 0

of R-modules which satisfies the condition as in Definition 4.3. Hence C = ⊕ℓ
i=1R/pi,

where for each 1 ≤ i ≤ ℓ, pi ∈ SpecR and R/pi is a regular local ring of dimension
d− 1. Let p ∈ SpecR. Then since KRp = (KR)p, we get an exact sequence

0 → Rp → KRp → Cp → 0

of Rp-modules, where Cp = ⊕pi⊆pRp/piRp is a direct sum of finite cyclic Ulrich Rp-
modules Rp/piRp, so that by definition the local ring Rp is semi-Gorenstein. □
Let us now consider a characterization of semi-Gorenstein local rings in terms of their

minimal free resolutions, which is a natural generalization of [7, Corollary 4.2].

Theorem 4.5. Let (S, n) be a regular local ring and a ⊊ S an ideal of S with n = htSa.
Let R = S/a. Then the following conditions are equivalent.

(1) R is a semi-Gorenstein local ring but not a Gorenstein ring.



ALMOST GORENSTEIN RINGS 11

(2) R is Cohen-Macaulay, n ≥ 2, r = r(R) ≥ 2, and R has a minimal S-free resolution
of the form:

0 → Fn = Sr
M→ Fn−1 = Sq → Fn−2 → · · · → F1 → F0 = S → R → 0

where

tM =


y21y22 · · · y2ℓ y31y32 · · · y3ℓ · · · yr1yr2 · · · yrℓ z1z2 · · · zm
x21x22 · · · x2ℓ 0 0 0 0

0 x31x32 · · · x3ℓ 0 0 0
...

...
. . .

...
...

0 0 0 xr1xr2 · · · xrℓ 0,

 ,

ℓ = n+ 1, q ≥ (r− 1)ℓ, m = q − (r− 1)ℓ, and xi1, xi2, . . . , xiℓ is a part of a regular
system of parameters of S for every 2 ≤ i ≤ r.

When this is the case, one has the equality

a = (z1, z2, . . . , zm) +
r∑
i=2

I2 (
yi1 yi2 ··· yiℓ
xi1 yi2 ··· xiℓ ) ,

where I2(N) denotes the ideal of S generated by 2 × 2 minors of the submatrix N =
( yi1 yi2 ··· yiℓ
xi1 yi2 ··· xiℓ ) of M.

We explore one example.

Example 4.6. Let V = k[[t]] be the formal power series ring over an infinite field k

and set R = k[[t5, t6, t7, t9]]. Let S = k[[X,Y, Z,W ]] be the formal power series ring
and let φ : S → R be the k-algebra map defined by

φ(X) = t5, φ(Y ) = t6, φ(Z) = t7, and φ(W ) = t9.

Then R has a minimal S-free resolution of the form

0 → S2 M→ S6 → S5 → S → R → 0,

where
tM =

(
W X2 XY Y Z Y 2−XZ Z2−XW
X Y Z W 0 0

)
.

Hence R is a semi-Gorenstein local ring with r(R) = 2 and

Kerφ = (Y 2 −XZ,Z2 −XW ) + I2
(
W X2 XY Y Z
X Y Z W

)
.

5. Almost Gorenstein graded rings

Let us now discuss the graded ring. Let R =
⊕

n≥0Rn be a Cohen-Macaulay graded
ring and assume that R0 is a local ring and there exists the graded canonical module
KR. Let a = a(R) be an a-invariant of R.
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Definition 5.1. Then R is called an almost Gorenstein graded ring, if there exists an
exact sequence

0 → R → KR(−a) → C → 0

of graded R-modules such that µR(C) = e0M(C), where M is the unique graded maximal
ideal of R. Remember that KR(−a) stands for the graded R-module whose underlying
R-module is the same as that of KR and whose grading is given by [KR(−a)]n = [KR]n−a
for all n ∈ Z.

Note that Gorenstein graded ring is by definition an almost Gorenstein graded ring.
If R is an almost Gorenstein graded ring, then the local ring RM is an almost Gorenstein
local ring. Unfortunately, the converse is not true in general.

Example 5.2. Let U = k[s, t] be the polynomial ring over an infinite field k and look
at the subring R = k[s, s3t, s3t2, s3t3] ⊆ U . Let S = k[X,Y, Z,W ] be the weighted
polynomial ring such that

degX = 1, deg Y = 4, degZ = 5, and degW = 6.

Let ψ : S → R be the k-algebra map defined by

ψ(X) = s, ψ(Y ) = s3t, ψ(Z) = s3t2, and ψ(W ) = s3t3.

Then Kerψ = I2
(
X3 Y Z
Y Z W

)
and R has a graded minimal S-free resolution

0 → S(−13)⊕ S(−14)

(
X3 Y
Y Z
Z W

)
−−−−−−−→ S(−10)⊕ S(−9)⊕ S(−8)

(∆1 ∆2 ∆3)−−−−−−−−−→ S ψ
−→ R → 0

where ∆1 = Z2 − YW , ∆2 = X3W − Y Z, and ∆3 = Y 2 −X3Z. Therefore, because KS
∼= S(−16),

we get

(♯) S(−6)⊕ S(−7)⊕ S(−8)

(
X3 Y Z
Y Z W

)
−−−−−−−→ S(−3)⊕ S(−2)

ε−→ KR → 0.

Hence a(R) = −2. Let ξ = ε(
(
1
0

)
) ∈ [KR]3 and we have

0 → R
φ−→ KR(3) → S/(Y, Z,W )(1) → 0

where φ(1) = ξ. Hence RM is a semi-Gorenstein local ring.
On the other hand, by (♯) we get [KR]2 = kη ̸= (0), where η = ε(

(
0
1

)
). Hence if R is

an almost Gorenstein graded ring, we must have

µR(KR/Rη) = e0M(KR/Rη)

which is impossible, because KR/Rη ∼= [S/(X3, Y, Z)](−3).

We explore the almost Gorenstein property of the homogeneous ring.

Theorem 5.3. Let R = k[R1] be a Cohen-Macaulay homogeneous ring with d =
dimR ≥ 1. Suppose that k is an infinite field and R is not a Gorenstein ring. Then
the following conditions are equivalent.

(1) R is an almost Gorenstein graded ring and level.



ALMOST GORENSTEIN RINGS 13

(2) Q(R) is a Gorenstein ring and a(R) = 1− d.

Let us consider a few examples.

Example 5.4 (cf. [18]). Let S = k[Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ n ] (2 ≤ m ≤ n) be the
polynomial ring over an infinite field k and put

R = S/It(X)

where 2 ≤ t ≤ m, X = [Xij]. Then R is an almost Gorenstein graded ring if and only
if either m = n, or m ̸= n and t = m = 2.

Example 5.5. Let R = k[X1, X2, . . . , Xd] (d ≥ 1) be a polynomial ring over an infinite
field k. Let n ≥ 1 be an integer. Then the following assertions are hold.

(1) R(n) = k[Rn] is an almost Gorenstein graded ring, if d ≤ 2.
(2) Suppose that d ≥ 3. Then R(n) is an almost Gorenstein graded ring if and only

if either n | d, or d = 3 and n = 2.

6. Two-dimensional rational singularities

Let (R,m) denote a Cohen-Macaulay local ring of dimension d ≥ 0, admitting the
canonical module KR. We assume that R/m is infinite. Let v(R) = µR(m) and e(R) =
e0m(R). We denote by

G = grm(R) =
⊕

mn/mn+1

the associated graded ring of m and put M = G+. The purpose of this section is mainly
to study the question of when G is an almost Gorenstein graded ring. Remember that
v(R) = e(R)+d−1 if and only if m2 = Qm for some (and hence any) minimal reduction
Q of m. When this is the case, G is a Cohen-Macaulay ring and a(G) = 1−d, provided
R is not a regular local ring.
The answer for the above question is stated as follows.

Theorem 6.1. The following assertions hold true.

(1) Suppose that R is an almost Gorenstein local ring with v(R) = e(R) + d− 1. Then
G is an almost Gorenstein level graded ring.

(2) Suppose that G is an almost Gorenstein level graded ring. Then R is an almost
Gorenstein local ring.

Proof. We only prove the assertion (1). We may assume that R is not a Gorenstein
local ring. Hence d > 0 and a(G) = 1−d. We will show that G is an almost Gorenstein
graded ring by induction on d. First we consider the case d = 1. Let R denote the
integral closure of R in Q(R). Choose an R-submodule K of R so that R ⊆ K ⊆ R and
K ∼= KR as an R-module. We have mK ⊆ R by [7, Theorem 3.11] as R is an almost
Gorenstein local ring. Hence mK = m, and mnK = mn for all n ≥ 1. Let C = K/R

and consider the m-adic filtrations of R, K, and C. We then have the exact sequence

(♯) 0 → G→ grm(K) → grm(C) → 0
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of graded G-modules induced from the canonical exact sequence

0 → R → K → C → 0

of filtered R-modules. Note that grm(C) = [grm(C)]0. By the exact sequence (♯), G is
an almost Gorenstein graded ring, because grm(K) ∼= KG as a graded G-module.
Suppose that d > 1 and that our assertion holds true for d− 1. Let

0 → R → KR → C → 0

be an exact sequence of R-modules such that µR(C) = e0m(C). We take a ∈ m so that a
is a part of a minimal reduction of m and a is superficial for C with respect to m. Let
f = a (∈ m/m2) denote the image of a in G = grm(R). We then have

G/fG = grm(R/(a))

and v(R/(a)) = e(R/(a)) + d − 2. By the induction argument, G/fG is an almost
Gorenstein graded ring, because R/(a) is an almost Gorenstein local ring. Choose an
exact sequence

0 → G/fG→ KG/fG(d− 2) → X → 0

of graded G/fG-modules so that µG/fG(X) = e0[G/fG]+
(X). Recall that KG/fG(d− 2) ∼=

KG/fKG
(d− 1) as a graded G-module and we get an exact sequence

0 → G→ KG(d− 1) → Y → 0

of graded G-modules such that µG(Y ) = e0M(Y ). Consequently G is an almost Goren-
stein graded ring. □
In the case where R has a minimal multiplicity, the almost Gorenstein property of R

is equivalent to the Gorenstein property of Q(G).

Corollary 6.2. Suppose that v(R) = e(R) + d− 1. Then the following are equivalent.

(1) R is an almost Gorenstein local ring,
(2) G is an almost Gorenstein graded ring,
(3) Q(G) is a Gorenstein ring.

We say that m is a normal ideal, if mn is an integrally closed ideal for every n ≥ 1.

Corollary 6.3. Suppose that v(R) = e(R) + d − 1 and that R is a normal ring. If m
is a normal ideal, then R is an almost Gorenstein local ring.

Proof. Let R′ = R′(m) = R[mt, t−1] be the extended Rees algebra of m, where t is an
indeterminate. Then R′ is a normal ring, because R is a normal local ring and m is a
normal ideal. Hence the total ring of fractions of G = R′/t−1R′ is a Gorenstein ring,
so that R is almost Gorenstein by Corollary 6.2. □
The following is a direct consequence of Corollary 6.3.

Corollary 6.4. Every 2-dimensional rational singularity is an almost Gorenstein local
ring.
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By the result of M. Auslander [1], every two-dimensional Cohen-Macaulay complete
local ring R of finite Cohen-Macaulay representation type is a rational singularity,
provided R contains a field of characteristic 0. Hence we get the following.

Corollary 6.5. Every two-dimensional Cohen-Macaulay complete local ring R of finite
Cohen-Macaulay representation type is an almost Gorenstein local ring, provided R
contains a field of characteristic 0.

7. Almost Gorenstein Rees algebras

In this section we study the problem of when the Rees algebras of ideals and modules
over two-dimensional regular local rings are almost Gorenstein graded rings.
Let (R,m) be a Gorenstein local ring with dimR = 2 and let I ⊊ R be an m-primary

ideal of R. Assume that I contains a parameter ideal Q = (a, b) of R such that I2 = QI.
We set J = Q : I. Let

R = R[It] ⊆ R[t] and T = R[Qt] ⊆ R[t],

where t stands for an indeterminate over R. Notice that the Rees algebra R of I is a
Cohen-Macaulay ring with a(R) = −1 and

R = T + T ·It
while the Rees algebra T of Q is a Gorenstein ring of dimension 3 and a(T ) = −1. Hence
KT (1) ∼= T as a graded T -module, where KT denotes the graded canonical module of
T .
Let us begin with the following, which is a special case of [19, Theorem 2.7 (a)].

Lemma 7.1. KR(1) ∼= JR as a graded R-module.

Proof. Since R is a module-finite extension of T , we get

KR(1) ∼= HomT (R,KT )(1) ∼= HomT (R, T ) ∼= T :F R
as graded R-modules, where F = Q(T ) = Q(R) is the total ring of fractions. Therefore

T :F R = T :T It

because R = T + T ·It. Since Qn ∩ [Qn+1 : I] = Qn[Q : I] for every n ≥ 0, we have

T :T It = JT.

Hence T :F R = JT , so that JT = JR. Thus KR(1) ∼= JR as a graded R-module. □

Corollary 7.2. Suppose that R is a normal ring. Then J = Q : I is integrally closed.

Proof. Since KR(1) ∼= JR, JR is unmixed and of height one. Therefore JR is integrally
closed in R, whence J is integrally closed in R, because J ⊆ JR. □
The following is the key in our argument.

Theorem 7.3. The following conditions are equivalent.



16 NAOKI TANIGUCHI

(1) R is a strongly almost Gorenstein graded ring, namely there exists an exact
sequence

0 → R → KR(1) → C → 0

such that MC = (ξ, η)C for some homogeneous elements ξ, η ∈M .
(2) There exist elements f ∈ m, g ∈ I, and h ∈ J such that

IJ = gJ + Ih and mJ = fJ +mh

When this is the case, R is an almost Gorenstein graded ring.

Proof. (2) ⇒ (1) Notice that M·JR ⊆ (f, gt)·JR + Rh, since IJ = gJ + Ih and
mJ = fJ +mh. Consider the exact sequence

R φ−−→ JR → C → 0

of graded R-modules where φ(1) = h. We then have MC = (f, gt)C, so that
dimRM

CM ≤ 2. Hence by [15, Lemma 3.1] the homomorphism φ is injective and
R is an almost Gorenstein graded ring.
(1) ⇒ (2) We may assume that R is not a Gorenstein ring and consider the exact

sequence

0 → R φ−−→ JR → C → 0

of graded R-modules with C ̸= (0) and MC = (ξ, η)C for some homogeneous elements
ξ, η of M. Hence RM is an almost Gorenstein local ring. We set h = φ(1) ∈ J ,
m = deg ξ, and n = deg η. Hence C = JR/Rh. Remember that h ̸∈ mJ , since RM

is not a regular local ring. If min{m,n} > 0, then MC ⊆ R+C, whence mC0 = (0).
Therefore mJ ⊆ (h), so that we have J = (h) = R. Thus Rh = JR and R is a
Gorenstein ring, which is impossible. Assume m = 0. If n = 0, then MC = mC since
ξ, η ∈ m, so that

C1 ⊆ R+C0 ⊆ mC

and therefore C1 = (0). Hence IJ = Ih which shows (h) is a reduction of J , so that
(h) = R = J . Therefore R is a Gorenstein ring, which is impossible. If n ≥ 2, then
because

M·JR ⊆ ξ·JR+ η·JR+Rh,
we get IJ ⊆ ξIJ + Ih, whence IJ = Ih. This is impossible as we have shown above.
Hence n = 1. Let us write η = gt with g ∈ I and take f = ξ. We then have

M·JR ⊆ (f, gt)·JR+Rh,
whence mJ ⊆ fJ+Rh. Because h ̸∈ mJ , we get mJ ⊆ fJ+mh, so that mJ = fJ+mh,
while IJ = gJ + Ih, because IJ ⊆ fIJ + gJ + Ih. This completes the proof. □
We are now in a position to prove the following.

Theorem 7.4. Let (R,m) be a two-dimensional regular local ring with infinite residue
class field and I an m-primary integrally closed ideal in R. Then the Rees algebra R of
I is an almost Gorenstein graded ring.
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Proof. We choose a parameter ideal Q of R so that Q ⊆ I and I2 = QI, whence the Rees
algebra R = R(I) is a Cohen-Macaulay ring. Because R is a normal ring, J = Q : I
is also an integrally closed ideal in R. Consequently, choosing three elements f ∈ m,
g ∈ I, and h ∈ J so that f, h are a joint reduction of m, J and g, h are a joint reduction
of I, J , we readily get by the equalities

mJ = fJ +mg and IJ = gJ + Ih

by the result of J. Verma. Hence R = R(I) is an almost Gorenstein graded ring. □

As a direct consequence we have the following.

Corollary 7.5. Let (R,m) be a two-dimensional regular local ring with infinite residue
class field. Then R(mℓ) is an almost Gorenstein graded ring for every integer ℓ > 0.

Closing this article, let us explore the question of when the Rees algebras of socle
ideals are almost Gorenstein graded rings. Let (R,m) be a regular local ring with
d = dimR ≥ 2 possessing an infinite residue class field R/m of R. Let Q be a parameter
ideal of R such that Q ̸= m. We set

I = Q : m

the socle ideal of Q.
With this notation, we have the following.

Theorem 7.6. Suppose that d ≥ 3. Then the Rees algebra R(I) of I is an almost
Gorenstein graded ring if and only if either I = m, or d = 3 and I = (x)+m2 for some
x ∈ m \m2.

For each ideal I of R, we set

o(I) = sup{n ≥ 0 | I ⊆ mn}.

Theorem 7.7. Suppose that d = 2. Then the Rees algebra R(I) of I is an almost
Gorenstein graded ring if and only if o(Q) ≤ 2.
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