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ABSTRACT. This is a survey on recent development of theory of
motives with modulus, which generalizes Voevodsky’s theory of mo-
tives to a non-homotopy invariant framework.
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1. CONJECTURAL THEORY OF MOTIVES

In 1980’s Beilinson [1] and Deligne [8] independently formulated con-
jectures on theory of (mixed) motives:

Conjecture 1.1. Fiz a base field k. There exists an abelian tensor
category MMy of motives over k enjoying the following properties.

(1) MMy contains Grothendieck’s category My of pure motives
over k as the full subcategory of semi-simple objects.

(2) Let Sch be the category of schemes separated of finite type over
k. Then there exist a functor* 2,

Sch - D(MM,;) ; X — M(X),

where D(MMy) is the derived category of (unbounded®) com-
plexes in MM, and natural isomorphisms for X € Sch and

IThis is a covariant variant of the original formulation of Beilinson who used a
contravariant functor.
2M(X) is called the motive of X € Sch.
3In Beilinson’s original version, bounded complexes are used.
1
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n € Zxy
(1.1) Homp(viae) (M(X), Z(n)[i]) © Q = Ky 4(X)™,

where Z(n) is a distinguished object of D(MMy) called the
Tate object* and K; (X)(”) is the weight n eigenspace for Adams
operations on the algebraic K-group K;(X) of X.

The abelian groups
H'\ (X, Z(n)) := Hompm,) (M (X), Z(n)[i]) for X € Sch

should form the universal cohomology theory on Sch, and it is called
motivic cohomology.

Bloch [2] gave a cycle-theoretic description of motivic cohomology
(at least for smooth k-schemes). He introduced higher Chow groups
CH"(X,j) for X € Sch and n,j € Z>, as a generalization of Chow
groups®, and proved that the Chern class map induces an isomorphism

K;j(X)™ ~ CH"(X,j) for X € Sm.
This leads us to the following.

Conjecture 1.2. For X smooth over k, there is a natural isomorphism
H}\(X,Z(n)) ~ CH™(X,2n — ).

The category MM, has not yet been constructed while Voevodsky
[25] in 1990’s brought about a big progress in theory of motives by
constructing a triangulated category DM®! which have the properties
expected for D(MMy) at least restricted to smooth schemes over k 0

2. VOEVODSKY’S THEORY OF MOTIVES

We recall Voevodsky’s construction of triangulated categories DM®"
of motives over k in [25].

Let Sm be the category of smooth separated k-schemes and Cor be
the category which has the same objects as Sm and whose morphisms
are finite correspondences: For X, Y € Sm, we define Cor(X,Y) to
be the free abelian group on the set of integral closed subscheme Z C
X XY which are finite and surjective on a connected component of X.

Let PST be the category of additive contravariant functors from Cor
to the category Ab of abelian groups. An object F' € PST is called

4See Remark 2.5 for the definition.

SCH™(X,0) coincides with the Chow group C'H™(X) of algebraic cycles of codi-
mension n on X modulo rational equivalence

6Levine and Hanamura made independent constructions and all constructions
are now known to be equivalent.
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a preshseaf with transfers. Note that PST is an abelian category. For
X € Sm let Z(X) € PST be represented by X by Yoneda: For
Y € Sm, we have Z;,(X)(Y) = Cor(Y, X).

Recall that for X € Sm the small Nisnevich site Xy, is the cate-
gory of étale morphisms Y — X equipped with the class of Nisnevich
coverings: An étale covering {p; : U; — X };c; is a Nisnevich covering
if for all x € X, there exists i € I and y € U; such that p;(y) = = and

For FF € PST and X € Sm let F'x be the presheaf on Xyjs induced
by F'. Let NST be the full subcategory of PST consisting of F' € PST
such that Fy is a sheaf on Xyj. One easily sees Z,(X) € NST for
X € Sm.

Theorem 2.1. (Voevodsky)

(1) The natural inclusion NST — PST admits an exact left ad-
joint ayis : PST — NST such that for all X € Sm, (anisF)x
18 the Nisnevich sheafication of Fx.

(2) The category NST is Grothendieck abelian’.

(3) Let D(NST) be the derived category of unbounded complezes in
NST. For F € D(NST) and X € Sm, there is a canonical
1somorphism

H'(Xnis, Fx) =~ Hompnst) (Zi:(X), Fli]).
In what follows we write Fxis = anisF' for FF € MPST.

Definition 2.2. Define DM®" as the localization of D(NST) by the
localising subcategory generated by the complexes

Zi(X x A') = Z(X) for X € Sm,
where the maps are induced by the projections X x Al — X.
By the definition we have a functor
(2.1) M : Sm — DM

which maps X € Sm to Z(X) € NST considered as a complex
by putting it in degree 0.* By a general result of Neeman [18], the
localization functor 7 : D(NST) — DM®T admits a fully faithful right
adjoint j : DM®T — D(NST).

Tsee [24] for a definition of Grothendieck abelian categories. An important prop-

erty is that it admits enough injectives.
8This should corresponds to the functor in Conjecture 1.1(2).
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In order to state a fundamental theorem in Voevodsky’s theory, we
need introduce a construction due to Suslin®.

Definition 2.3. For X € Sm define C,(X) € NST by
Co(X)(Y) = Cor(Y x (AH", X).
We then put

C(X) = Coker (@ (p)" : @ Cui(X) = Cu(X)),

1<i<n

where (p)* is induced by the projection p? : (A!)" — (AY)"~! remov-
ing the i-th factor. For n > 1, i € {1,...,n} and € € {0,1}, define
o7, : (AN)"' — (A")™ to be the map inserting ¢ at the i-th component.
It induce maps in NST

00+ Cp(X) = Croa(X)

and define coboundary maps by

n

do =) (=171 (670, = 0fisc) 2 Cu(X) = Coa(X).

i=1
Thus we obtain a chain complex C,(X) in NST.

The following result is a key to Voevodsky’s theory of motives.

Theorem 2.4. (Voevodsky) Assume k is perfect. For X,Y € Sm,
there is a canonical isomorphism for j € Z:

(2:2) Hompygen (M (Y), M(X)[j]) ~ B (Yxis, Co(X)y).

where C,(X)y is the complex of sheaves on Yyis induced by C.(X).
Remark 2.5. Let Z(1) = M(P')[~2] € DM, where M(P') is the
kernel of the splitting epimorphism M (P') — M (Spec(k)) induced by

the projection P* — Spec(k). Define the Tate object Z(n) = Z(1)®™.
Voevodsky defines motivic cohomology as

(2.3)  HY(X,Z(n)) := Hompyges (M(X), Z(n)[i]) for X € Sm.

Using moving lemmas of algebraic cycles from [9], [23] and [2], Voevod-
sky deduced from Theorem 2.4 a natural isomorphism

(2.4) Hi (X, Z(n)) ~ CH"(X, 2n — 1)

and thus proved Conjecture 1.2.

9This is a cubical variant of the original definition of Suslin who used a simplicial
version.
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Remark 2.6. Assuming ch(k) = 0, the funcotor (2.1) is extended to a
functor '°

M :Sch — DM°T.
Hence we can define motivic cohomology for X € Sch by the formula
(2.3). However this is not expected to serve as motivic cohomology
envisioned in Conjecture 1.1 (See §3).

The proof of Theorem 2.4 is quite involved and long. It is based on
Voevosdky’s theory of homotopy invariant presheaves with transfers.

Definition 2.7. An object F' € PST is called homotopy invariant if
for any X € Sm, the projection X x A! — X induces an isomorphism
F(X) ~ F(X x A'). Let HI C PST be the full subcategory of
homotopy invariant presheaves with transfers.

It turns out that HI C PST is an abelian subcategory.
Now we state Voevodsky’s fundamental results on HI '*. Theorem
2.4 is deduced from them by general arguments in homological algebra.

Theorem 2.8. Let F' € HI. Then
(1) Fyis € HL.
(2) For a dense open immersion U — X in Sm, the restriction
Fxis(X) — Fxis(U) s ingective.

To state the second main result on HI, we introduce some notations.
For X € Smand n € Z>, let X ™) be the set of points z € X such that
the closure of x in X is of dimension n. For F' € PST and n € Z,
and S € Sm, define

F_,(S) = Coker (D F((Gm) 'xA'X(G)""%xS) = F((Gp)"%5)),
1<i<n

where A is the affine line over k and G,, = A! — 0. This gives an

endofunctor PST — PST; FF — F_,,.

Theorem 2.9. Assume k is perfect. For F € HINNST, X € Sm
and x € X™ with n € Zwy, we have

(25) Hi(XNis; Fx) =0 fOT‘ ? 7& n,
and there exists a natural isomorphism:
(26) Hw . F,n(l‘) >~ H;?(XNis; Fx)

10Shane Kelly proved that such an extension exists also in case ch(k) > 0 if one
inverts the exponential characteristic of k for DM®T.

Here we state the results for Nisnevich sheaves. Voevodsky proves also the
similar results for Zariski sheaves. In the application to theory of motives, only the
results for Nisnevich sheaves are used
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To state the last result on HI, we note the following fact: For F' €
NST and i € Z>, the presheaf X — Hi(XNiS, Fx) on Sm is considered
as an object H:. of PST."

Theorem 2.10. Assume k is perfect. For F € HINNST, we have
Hi € HI.

3. NON-HOMOTOPY INVARIANT THEORY OF MOTIVES

As we have seen, Voevodsky’s theory of motives is based on homo-
topy invariance (see Definition 2.7). This implies that the invariants
for X € Sch arising from his category DM®T such as motivic coho-
mology defined as (2.3) should have this property (see Remark 2.6).
The homotopy invariance implies also the nil-invariance, which means
the invariance when X is replaced by its reduced part X,.q. How-
ever algebraic K-theory does not have these properties: For X € Sch,
K,(X) — K,(X x A') is not an isomorphism in general unless X €
Sm, and K,,(X) is not nil-invariant in general, either.

On the other hand there are phenomena which motivates us to extend
theory of motives to non-homotopy invariant (and non-nil-invariant)
framework. One of them is the works on Grothendieck’s variational
Hodge conjecture by Bloch-Esnault-Kerz [6] and Morrow [16]. Another
is the work of Kerz-Saito [15] on wildly ramified higher dimensional
class field theory. Here we give a brief explanation on the latter.

For X € Sm choose a dense open immersion X < X such that X
is integral and proper over k and that X — X is the support of some
D € Div(X)*, where Div(X)* denotes the monoid of effective Cartier
divisors on X. In [15], for D € Div(X)*, the Chow group CHy(X|D) of
zero-cycles with modulus is introduced as a generalization of the Chow
group CHy(X) of zero-cycles on X. It is defined as a quotient of the
group of zero-cycles on X by an equivalence relation given by rational
functions on curves on X which satisfies a certain modulus condition
with respect to D. Then, putting

C(X):= lim CHy(X|D)

—
DeDiv(X)+

where D ranges over all elements of Div(X)* such that |[D| = X — X,
one can show that C'(X) is independent of the choice of X and hence
is an invariant of X € Sm.

12This is a consequence of Theorem 2.1(3).
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Theorem 3.1. ([15]) Assume k is finite and ch(k) # 2. Then there
exrists a canonical isomorphism

C(X) ~ WP(X),

where the right hand side denote the abelian Weil group of X, namely
the subgroup of the abelian fundamental group w8 (X) consisting of el-
ements whose images in the absolute Galois group of k are integral
powers of the Frobenius substitution.

Recall that W (X) carries information on wild ramification of abelian
coverings of X along X — X which is known to be not homotopy in-
variant. Hence there is no hope to recover C'(X) (and also CHy(X|D))
from Voevodsky’s category DM®T.

4. RECIPROCITY SHEAVES

In order to extend Voevodsky’s paradigm to a non-homotopy invari-
ant framework, we use a new full abelian subcategory RSC C PST of
reiprocity presheaves, which was introduced by Kahn-Saito-Yamazaki
in [10] and [14]." It contains HI and many objects of PST which are
not in HI, such as the sheaf of the additive group G, and the sheaf Q0
of Kéhler differential forms.

First we recall the following (see [17, Lem. 2.16]).

Lemma 4.1. A given F' € PST is in HI if and only if for any X € Sm
and a € F(X), the map a : Zy(X) — F in PST associated to a by
the Yoneda functor, factors through the map Zy(X) — ho(X). Here
ho(X) is a quotient of Zy(X) in PST defined by
(4.1)

ho(X)(Y) = Coker (Zy(X)(Y x A') "% Z,(X)(Y)) (Y € Sm)

— Coker (Cor(Y x A', X) =% Cor(Y, X)),
where it for e = 0,1 is the pullback by the section i. : Spec(k) — Al

The key idea to define RSC is to introduce bigger quotients ho(X')
of Z,(X) associated to X € MSm(X), where MSm(X) is the set of
pairs X = (X, X,,) of locally integral proper schemes X over k and
effective Cartier divisors X, on X such that X = X — |X| € Sm. It
is defined by

(4.2)
ho(X)(Y) = Coker (MCor(Y x O, X) “% Cor(Y, X)) (Y € Sm),

13The category RSC is denoted by SCRec in [14]. Tt is slightly smaller than
the category Rec studied in [10].
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where MCor(Y x 0, X) is the subgroup of Cor(Y x A', X) generated
by integral closed subschemes Z C Y x A' x X which are finite and
surjective over a component of Y x A! and satisfies s the following ad-
ditional condition (called modulus condition): Let Z C ¥ x P! x X
be the closure of Z and Z be its normalization with the projections
p: 7" & X and q: Z" 5 P'. Then we have the following inequality
of Caritier divisors on Z

g0 > p'X.

Definition 4.2. Let F' € PST and X € Sm. We say F' has reciprocity
if for any X € Sm and a € F(X), there exists X € MSm(X) such
that the map a : Z(X) — F associated to a € F(X) factors through
ho(X). We write RSC C PST for the full subcategory of reciprocity
presheaves.

By definition ho(X) is a quotient of hy(X') for any X € MSm(X) so
that HI € RSC. It turns out that RSC is an abelian category closed
under subobjects and quotients in PST.

We now state our main results for reciprocity sheaves. The first
result generalizes Theorem 2.8.

Theorem 4.3. ([22]) Let F € RSC. Then
(1) Fyis € RSC.
(2) For a dense open immersion U — X in Sm, the restriction
Fris(X) — Fxis(U) is injective.

Take X € Sm and = € X. Using the perfectness of k, one can show
that there is an isomorphism

S:X‘};zSpecK{tl,...,tn}.

where X"; be the henselization of X at x and K = k(x) and (¢1,...,t,)

is a system of regular parameter of X at x, and K{xy,...,z4} is the
henselization of K[zq,...,x4] at (¢1,...,t,). The second result gener-
alizes Theorem 2.9.

Theorem 4.4. ([22]) Let F € RSCNNST. For X € Sm andz € X™
with n € Z~q, we have

(43) Hi(XNis; Fx) =0 fOT‘ 1 7& n,
and there exists an isomorphism depending on €:
(44) 95 : F,n(x) >~ H;(XNis; Fx)

The last result is a variant of Theorem 2.10 for RSC.
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Theorem 4.5. ([22]) Assume ch(k) = 0 or the following condition:

(RS) For any pair (X, D) of a locally integral scheme X and an ef-
fective Cartier divisor D on X such that X —|D| € Sm and is
dense in X, there exists a proper birational map 7 : X' — X
such that X' € Sm and 7 1(D)eq is a simple normal crossing
divisor and that 7 is an isomorphism over X — |D|.

Then, for F € RSCNNST, we have H: € RSC.

The above theorems give an affirmative answer to [10, Conjecture 1]
except the part on the coincidence of Nisnevich and Zariski cohomology.

5. THEORY OF MOTIVES WITH MODULUS

In this section we explain the construction of Kahn-Saito-Yamazaki
[14] of a new triangulated category of motives with modulus, which
extends Voevodsky’s construction of his category of motives to a non-
homotopy invariant setting. For this we first need generalize the theory
of preshseaves with transfers to preshseaves with transfers with modu-
lus.

Definition 5.1. (see [14, Definitions 1.1 and 1.8]) The category MCor
of modulus pairs has objects X = (X, X,), where X € Sch is locally
integral and X, is an effective Cartier divisor on X such that X —
|Xs| € Sm and is dense in X (The case |X| = () is allowed). For
X = (X,X.), X = (X,X/)) € MCor with X = X — |X,| and
X' =X —|X'_|, the morphism group MCor(X”, X) is the subgroup of
Cor(X', X) freely generated by integral closed subschemes Z C X' x X
finite and surjective over a connected component of X’ satisfying the
following additional condition: Let ZV be the normalization of the

closure?oninyleWithp:ZN — X and ¢ : ZV — X the
projections. Then Z is proper over X' and we have the inequality
¢* X > p* X of Cartier divisors on zN

We call X proper if X is proper over k and let M(Cor denote the
full subcategory of M Cor whose objects are proper modulus pairs.

Definition 5.2. Let MPST (resp. MPST) be the abelian category of
contravariant additive functors MCor — Ab (resp. MCor — Ab).
For X € MCor (resp. X € MCor) let Z(X) € MPST (resp.
Zy(X) € MPST) be the object represented by X.

We have a functor

w: MCor — Cor ; (X, Xy) = X — |Xo,
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and a pair of adjunction

(5.1) MPST 7> MPST, MPST ' PST,
— —

where 7* is induced by the natural inclusion 7 : MCor — MCor and
7 is its left Kan extension, and w* is induced by w and wy is its left
Kan extension.

Definition 5.3. For F € MPST and X = (X, X,) € MCor write
Fy for the presheaf on the Nisnevich site X yis over X given by U —
F(Xy) for U — X étale, where Xy = (U, Xo, x5 U) € MCor. Let
MNST Cc MPST be the full subcategory of such F' € MPST that
Fy are Nisnevich sheaves for all X € MCor. Let MNST C MPST

be the full subcategory of such F' € MPST that nF' € MINST.
The following variant of Theorem 2.1 is proved in [14] ™,

Theorem 5.4. (1) The natural inclusion MNST — MPST ad-
mits an exact left adjoint anis : MPST — MNST such that
for all X € MCor, (axisF)x is the Nisnevich sheafication of
Fy.

(2) The category MNST is Grothendieck abelian.

(3) Let D(MINST) be the derived category of (unbounded) com-
plezes in MNST. For F € D(MNST) and X = (X, Xy) €
MCor, there is a canonical isomorphism

]HIi(YNiSa FX) = HomD(MNST)(Ztr(X)a F[Z])
In what follows we write Fnis = anisF' for FF € MPST.

Definition 5.5. An object F' € MPST is called C-invariant if F(X) ~
F(X x 0O) for all X € MCor, where O = (P',00) and X x O =
(X x PL X x 00+ X, x P!) € MCor for X = (X, Xo).

Definition 5.6. Define MDM as the localization of D(MNST) by
the localising subcategory generated by the complexes

Zi(X x O) — Z(X) for X € MCor,
where the maps are induced by the projections X x 0 — X.

By the definition we have a functor M : MCor — MDM which
maps X € MCor to Z(X) € MNST considered as a complex by

14The similar result holds for MNST instead of MINST.
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putting it in degree 0. We have a commutative diagram

MCor —2 5 MDMef

(5.2) wl wegl

Cor Y DM,

where weg is induced by wy from (5.1). In [14] is shown the following.

Theorem 5.7. The functor weg is a localization and admits a fully
faithful adjoint w®.

Definition 5.8. For X € MCor define C,,(X) € MNST by
Co(X)(Y) = MCor(Y x O", X).

Then the same construction as Definition 2.3 produces a chain complex
C,(X) in MNST.

We have the following variant of Theorem 2.4. TIts proof uses the
results in §4'°

Theorem 5.9. ([22]) Assume ch(k) = 0 or (RS) from Theorem 4.5.
For X, Y € MCor and j € 7, there is a canonical isomorphism,

(5.3) Hompionm (M (), M(X)[i]) ~ H (Y xis, Co(X)y)

where C,(X)y is the complex of sheaves on Y nis induced by C.(X) (it
depends on Y, not only Y. See Definition 5.3).

(5.3) implies an isomorphism for X = (X, X,) € MCor
CHy(X|X o) ~ Homypm (M (Spec(k), D), M (X)),
where the left hand side is the Chow group of zero-cycles with modulus
which appeared in §3.
6. MOTIVIC COHOMOLOGY WITH MODULUS AND OPEN QUESTIONS

In view of Voevodsky’s definition of motivic cohomology (cf. (2.3)),
we may define motivic cohomology with modulus as'®

(6.1)  H.(X,Z(n)) := Homypm (M (X),Z(n)[i]) for X € MCor
Natural questions are the following.

5Indeed we need refine the results of §4 in the new categorical framework ex-
plained above.

161t is not yet completely clear to the author what is the right definition of the
Tate object Z(n) in MDM. One option is the image of Z(n) in DM*// under wef
from Theorem 5.7 .
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Question 6.1. Can one establish an analogue of the isomorphism (2.4)
for (6.1)7

Question 6.2. Can one establish an analogue of the isomorphism (1.1)
for (6.1) by replacing algebraic K-theory with relative algebraic K-
theory for the pair A'?

In order to answer Question 6.1, one should generalize Bloch’s higher
Chow groups. Several attempts have been already made in this direc-
tion. The first attempt was due to S. Bloch and H. Esnault ([4], [5])
who introduced additive higher Chow groups of a field k. It is con-
ceived as a variant of Bloch’s higher Chow group for the modulus pair
(A},2-0). They showed that a part of these groups coincides with
the absolute differential forms of k. Riilling [21] generalized it to the
case (A}, m-0) for m € Z>; and proved that these groups give a cycle
theoretic description of the big deRham-Witt complex of Hesselholt-
Madsen. Park [19] extended the definition of Bloch-Esnault to intro-
duce additive higher Chow groups TCH" (X, n;m) for a k-scheme X.
The groups studied by Bloch-Esnault and Riilling correspond to the
case X = Speck and r = n. Motivated by a work [15] of Kerz and
the author, Park’s definition is extended in [7] to higher Chow groups
CH"(X|D,n) for a modulus pair (X, D). We have

CH"(X|D,n) = TCH"(Y,n+1;m) for (X,D)= (Y xA., m-(Y x{0})).
The definition of CH" (X |D,n) is given by
CH"(X|D,n) = H,(2"(X|D,e)),

where 2" (X|D, o) is the cycle complex with modulus, which is a subcom-
plex of the cubical version of Bloch’s cycle complex 2" (X, @) introduced
in [2], consisting of those cycles satisfying a certain modulus condition.

As in the case of Bloch’s cycle complex, 2"(X|D,e) gives rise to a
complex z"(—|D,e) of sheaves on the small étale site X¢. We then
consider the complex Z(r)x|p := 2" (—|D, 2r — e) and put

(6.2) H' (Xwis, Z(r) x|p)-
There is a natural map

CH"(X|D,n) — H" ™ (Xyis, Z(r) x|p)-
A fundamtal fact due to Bloch [3] is that this map is an isomorphism
in case D = (). However this is not true any more in general (see the
remark above [20, Th.3]). This implies that one can not expect to use
CH"(X|D,n) to answer Question 6.1 for X = (X, D). A naive hope is

then to use (6.2) for the aim. There have been further developments
in this direction: Kai [11] proved a modulus analogue of the so-called
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“easy” moving lemma in [2] to establish basic functoriality for (6.2).
Kai-Miyazaki [12] proved a modulus analogue of Suslin’s moving lemma
proved in [23]. 7

Finally we mention a work [13] of Iwasa and Kai who defined Chern
class maps from relative K-theory of the pair (X, D) to (6.2). This is
expected to give the first step toward Question 6.2.
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