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0. Introduction

We discuss certain infinite-dimensional noncommutative associative algebras.
One well-known class of infinite-dimensional associative algebras is universal en-
veloping algebras of Lie algebras. For a semi-simple Lie algebra g, the central
quotient of its universal enveloping algebra U(g)/Z(g) is naturally isomorphic to
the algebra of differential operators D(G/B) on the corresponding flag manifold
G/B. Such an isomorphism connects the representation theory of the Lie alge-
bra g and geometrical properties of the flag manifold G/B and/or its cotangent
bundle T ∗(G/B). Namely, the isomorphism leads an equivalence of categories be-
tween the category of (U(g)/Z(g))-modules and the category of DG/B-modules
where DG/B is the sheaf of differential operators. The equivalence is known as the
Beilinson-Bernstein correspondence and it is one of the most fundamental facts of
the representation theory of semi-simple Lie algebras.

The above situation can be generalized, and it achieve the notion of quantiza-
tions. Note that, in the above, the universal enveloping algebra U(g) is equipped
with a natural filtration, and the associated graded algebra gr U(g)/Z(g) with re-
spect to the filtration is naturally isomorphic to the coordinate ring C[T ∗(G/B)].
The commutator [a, b] = ab−ba on U(g) induces a Poisson bracket on gr U(g)/Z(g),
while C[T ∗(G/B)] is also equipped with a Poisson bracket induced from the sym-
plectic structure of the cotangent bundle T ∗(G/B). The isomorphism between
grU(g)/Z(g) and C[T ∗(G/B)] is not just an isomorphism of commutative algebras,
but it is an isomorphism of Poisson algebras. We say that U(g)/Z(g) is a quan-
tization of C[T ∗(G/B)] (or T ∗(G/B)). Namely, in general cases, for a symplectic
manifold X, a filtered associative algebra is called a quantization of C[X] (or of
X), if the associated graded algebra is isomorphic to C[X] as a Poisson algebra.

In the past decades, several noncommutative algebras which give quantizations
of certain symplectic manifolds were introduced. These algebras are constructed
by using so called the quantum Hamiltonian reduction, which is noncommutative
analogue of Hamiltonian reduction in symplectic geometry. These algebras, con-
structed by the quantum Hamiltonian reduction, include finite W-algebras and
rational Cherednik algebras, which play important and fundamental roles in the
representation theory of semi-simple and/or affine Lie algebras and Ariki-Koike
algebras.

When an associative algebra A is a quantization of a certain symplectic manifold
X, a natural question is if we can localize A as a sheaf of noncommutative algebras
on X: Namely, does there exist a sheaf of noncommutative algebras on X whose
algebra of global sections is isomorphic to A? And if one exists, is there an equiv-
alence of categories between their module categories like the Beilinson-Bernstein
correspondence? If the algebra A is constructed by the quantum Hamiltonian re-
duction, such problems were well studied and now we know when such a method
of localization works well.
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The present paper is a brief and introductory survey which is intended to show
an outline of the constructions of quantizations and their localization, and also
known results and applications. We also discuss quantizations of certain infinite-
dimensional manifolds, called arc spaces, and their localization. Such a quantization
is equipped with a certain infinite-dimensional algebraic structure, called a vertex
algebra. On the other hand, while we will discuss the construction by quantum
Hamiltonian reduction in a general setting, the detail of constructions of certain
concrete algebras, e.g. the rational Cherednik algebras, will not be included in the
present survey. In [K3], we have a catalog of several algebras obtained by quantum
Hamiltonian reduction such as the rational Cherednik algebras and quantized toric
algebras. Also, for the finite W-algebras, we have a nice survey [Lo1]. Refer them
for these examples.

1. Quantization of Poisson structure

Consider a complex symplectic manifold X and let OX be its structure sheaf.
Its symplectic form makes OX a sheaf of Poisson algebras on X. Namely, OX

is equipped with a C-bilinear form { , }, called a Poisson bracket, such that
{ , } is a Lie bracket on OX and {f, } is a derivation on OX for any f ∈ OX .
In particular, the coordinate ring C[X] = Γ(X,OX) is a Poisson algebra. In this
survey, we consider noncommutative algebras connected with such a Poisson algebra
structure.

Let A be a noncommutative associative algebra over C, and we assume that
there exists a filtration {FiA}i≥0 of algebras, satisfying the condition:

(1) [a, b] =
def

ab− ba ∈ Fi+j−1A, for any a ∈ FiA, b ∈ FjA.

In this situation, the associated graded algebra grF A turns out to be a Poisson
algebra whose the Poisson bracket is given by

{ā, b̄} =
def

[a, b] mod Fi+j−2A, for a ∈ FiA, b ∈ FjA

where ā (resp. b̄) is a class in grF A in which a ∈ A (resp. b) belongs. Then,
we say that the noncommutative algebra A is a quantization, i.e. noncommutative
analogue, of the Poisson algebra C[X] if there exists an isomorphism grF A and
C[X] as Poisson algebras with the above Poisson bracket.

1.1. Examples. Since Lie algebras are an algebraic structure which appears as an
algebra consisting of vector fields on a certain manifold, such a situation appears
frequently in Lie algebra theory. For example, here we see two classical and typical
examples of quantization:

1. The algebra of differential operators with polynomial coefficient (the Weyl
algebra) D(Cd) on Cd. The algebra D(Cd) is equipped with a filtration given by
order of differential operators. Namely, the filtration given by deg xi = 0 and
deg ∂/∂xi = 1 where x1, . . . , xd is the standard coordinates of Cd. The associated
graded algebra is naturally isomorphic to the coordinate ring C[T ∗Cd] of the cotan-
gent bundle T ∗Cd, and moreover the isomorphism is an isomorphism of Poisson
algebras. Thus we regard the noncommutative algebra D(Cd) as a quantization of
the Poisson algebra C[T ∗Cd]. Note that we can choose a different filtration given
by deg xi = 1/2 and deg ∂/∂xi = 1/2, and this filtration also induces the same
associated graded Poisson algebra C[T ∗Cd].

2. The universal enveloping algebra U(g) of a finite-dimensional simple al-
gebra g. Let X = G/B be the flag manifold associated with a Lie group G
with the Lie algebra g (where B is its Borel subgroup). We have an action of
G on X = G/B by left-multiplication. This action induces a homomorphism
of Lie algebras µD : g −→ Vect(X) where Vect(X) is a Lie algebra consisting
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of vector fields on X. This homomorphism induces an isomorphism of algebras
µD : U(g)/Z(g) ∼−−→D(X), where Z(g) is the center of U(g). That is, the quotient
algebra U(g)/Z(g) is a quantization of the coordinate ring C[T ∗X] ' C[N ] where
N ⊂ g is the nilpotent cone of the Lie algebra g. Note that there exists a resolution
of singularities T ∗X −→ N called the Springer resolution, and this resolution in-
duces the isomorphism between the coordinate rings C[T ∗X] and C[N ] as Poisson
algebras. Namely, U(g)/Z(g) is a quantization of C[T ∗X].

2. Localization of quantized algebras

Let X be a symplectic manifold with structure sheaf OX . Assume that we have
a noncommutative algebra A which gives a quantization of the coordinate ring
C[X] = Γ(X,OX). Theory of algebraic geometry allows us to consider localization
of the commutative algebra C[X], that is the structure sheaf OX . Namely, local-
ization of C[X] is a sheaf of commutative algebras whose algebra of global sections
turns out to be C[X]. Since our quantization A is a natural noncommutative ana-
logue of the coordinate ring C[X], it is a natural question if there exists a sheaf
of noncommutative algebras on X whose algebra of global sections turns out to
be our algebra A. We call it localization of the noncommutative algebra A. We
will require that localization A of A is a sheaf of noncommutative algebra on X,
equipped with a filtration satisfying the condition (1), and the associated graded
algebra is isomorphic to the structure sheaf OX as a sheaf of Poisson algebras. We
also require that the following diagram commutes:

A
gr // C[X]

A
gr //

Γ(X, )

OO

OX

Γ(X, )

OO

In such a situation, we also call A a quantization of the structure sheaf OX .
To be precise, we need to consider a sheaf of C[[~]]-algebras on X equipped with

a certain C∗-action, and consider the C∗-finite part of the algebra of its global
sections to extract a C-algebra from it. In the following example, we see why we
need to consider a sheaf of C[[~]]-algebras, not a sheaf of C-algebras.

2.1. Microlocalization of sheaves of differential operators. Consider the sec-
ond example of the quantizations. If we consider the flag manifold X = G/B asso-
ciated with the simple Lie algebra g = Lie(G), the algebra of differential operators
D(X) on X is isomorphic to the quotient algebra of the universal enveloping algebra
U(g)/Z(g). Thus, if we consider the sheaf of differential operators DX on X, we
have a natural isomorphism Γ(X,DX) ' U(g)/Z(g). Nevertheless, the sheaf DX is
not localization of U(g)/Z(g) in the above sense, because the sheaf DX is a sheaf
on X, not on its cotangent bundle X =

def
T ∗X. Thus, to construct localization of

U(g)/Z(g) in the above sense, we need to construct a sheaf on X, i.e. we need to
localize DX in the cotangent direction. Now we consider how such a localization A
of D(X) on the cotangent bundle X = T ∗X looks like.

Assume that we have local coordinates (x1, . . . , xd) of X. Let ∂1, . . . , ∂d ∈ DX

be the partial differential operators ∂i = ∂/∂xi associated with this coordinates.
We denote the equivalent class of ∂i in grDX ' OT∗X by yi and the equivalent class
of xi by the same symbol xi. Then (x1, . . . , xd, y1, . . . , yd) gives local symplectic
coordinates of X = T ∗X. On the open subset {yi 6= 0} ⊂ X, the localization sheaf
A has a local section ∂−1

i , which is the inverse of ∂i. Since A is localization of
D(X), it is natural that the multiplication · in A satisfies the Leibniz rule. Then,
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by the Leibniz rule, we have

∂−1
i · x−1

i = x−1
i ∂−1

i + x−2
i ∂−2

i + 2x−3
i ∂−3

i + . . . ,

and RHS turns an infinite sum. Here each term of RHS means symbols of differential
operators. Thus, to construct localization of D(X) on X = T ∗X, we need to allow
such infinite sums. Algebraically, it can be obtained by introducing a Rees algebra
with respect to the filtration of DX and taking completion of it.

Now we introduce the precise definition of deformation-quantization of the struc-
ture sheaf OX . Let ~ be an indeterminate and let A be an associative C[[~]]-algebra
such that the quotient algebra A/~A is a commutative C-algebra. Then, for any
a, b ∈ A, [a, b] = ab − ba lies in ~A, and hence {ā, b̄} = 1

~ [a, b] is well-defined on
A/~A, where ā (resp. b̄) be the class to which a (resp. b) belongs. It is easy to see
that { , } is a Poisson bracket on the quotient algebra A/~A.

Definition 2.1. For a symplectic manifold X, a deformation-quantization of OX

(or of X) is a sheaf A of associative C[[~]]-algebras, which is flat over C[[~]] and
complete in ~-adic topology, such that

(A/~A, h−1[ , ]) ' (OX , { , })
as a sheaf of Poisson algebras.

A basic example of deformation-quantization is the following ~-deformed Weyl
algebra AT∗Cd . As a vector space, we define

AT∗Cd = C[[~]][x1, . . . , xd, y1, . . . , yd],

and its defining relations are given by [yi, xj ] = yixj − xjyi = ~δij , [xi, xj ] =
[yi, yj ] = 0 where δij is Kronecker’s delta. With localizing it in a straight-forward
way, we have a sheaf AT∗Cd 'C OT∗Cd⊗C C[[~]], and this sheaf gives a deformation-
quantization of the structure sheaf OT∗Cd . Note that in AT∗Cd , we have a local
section x−1

i and y−1
i , and their product is given by the infinite sum

y−1
i · x−1

i = x−1
i y−1

i + ~x−2
i y−2

i + 2~2x−3
i y−3

i + . . . ,

which is well-defined in AT∗Cd .
To construct the localization of D(X) for the manifold X on its cotangent bun-

dle X = T ∗X, we patch up AT∗Cd with local symplectic coordinates by gluing.
Let {Uα}α be an affine open covering of X. Then we have the open covering
{T ∗Uα}α of X = T ∗X, and on each T ∗Uα, we have local symplectic coordinates
(xα

1 , . . . , xα
d , yα

1 , . . . , yα
d ). Now we can introduce a sheaf AT∗Uα on T ∗Uα, which is a

restriction of AT∗Cd with respect to the symplectic coordinates. These sheaves can
be glued together into a sheaf of C[[~]]-algebras AT∗X 'C OT∗X ⊗C C[[~]]. This
sheaf AT∗X gives a deformation-quantization of OT∗X .

One natural and fundamental problem of deformation-quantizations is if there
exists a deformation-quantization of OX and how many deformation-quantizations
exist for given complex symplectic manifold X. In this survey, we do not care this
problem and consider deformation-quantizations which can be constructed explic-
itly. For the existence and classification problem of deformation-quantization, refer
[BeKa], [Lo2] and references therein.

2.2. Quantum Hamiltonian reduction. As the above example, for a symplectic
manifold X which is the cotangent bundle X = T ∗X of a complex manifold X, we
have a deformation-quantization of OX . But an important point of deformation-
quantization is that we can also construct a deformation-quantization on a sym-
plectic manifold which is not a cotangent bundle of a certain manifold. Quantum
Hamiltonian reduction is a method to construct a noncommutative algebra which
is a quantization of a certain Poisson algebra.



5

First we review the notion of Hamiltonian reduction. It is a method to construct
a symplectic variety. The quantum Hamiltonian reduction is noncommutative ana-
logue of the Hamiltonian reduction.

Let X be a complex manifold. We assume that an algebraic/Lie group M acts on
X. Then this action naturally induces an action of M on T ∗X and on its structure
sheaf OT∗X , and the action preserves the Poisson bracket on OT∗X . Moreover, by
differentiating the induced action of M on the structure sheaf OX of X (not T ∗X),
we have a homomorphism of Lie algebras

µD : m = LieM −→ Vect(X) ⊂ D(X),

and a homomorphism of C-algebras,

µD : U(m) −→ D(X).

The homomorphism µD induces a homomorphism of commutative algebras between
their associated graded algebras

µ∗ : S(m) = C[m∗] −→ C[T ∗X]

where S(m) is the symmetric algebra over the vector space m, and m∗ is the dual
vector space of m. By considering associated morphism with µ∗ between algebraic
varieties, we have a morphism µ : T ∗X −→ m∗, called a moment map associated
with the M -action on T ∗X. By the construction, this morphism µ is compatible
with the M -action on T ∗X. Namely, the subset µ−1(χ) ⊂ T ∗X is closed under the
action of M for χ ∈ m∗. Then, we set

X0
χ = µ−1(χ)//M =

def
Spec C[µ−1(χ)]M .

The affine scheme X0
χ may have singularities, but it is a Poisson variety, whose

Poisson bracket is naturally induced from the Poisson bracket on C[T ∗X]. We may
also construct nonsingular symmetric manifold associated with the M -action by
using geometric invariant theory. Here we do not care details of geometric invariant
theory, and we assume that we can take a Zariski open subset of µ−1(χ) denoted
by µ−1(χ)ss such that the group M acts free on µ−1(χ)ss. The subset µ−1(χ)ss

is called semistable locus with respect to the action of M . Since the M -action on
µ−1(χ)ss is free, the quotient with respect to the M -action

Xχ = µ−1(χ)ss/M

turns out to be a nonsingular scheme. Moreover, the symplectic form on T ∗X
induces a symplectic form on Xχ and thus Xχ is a symplectic manifold. The
symplectic manifold Xχ is called Hamiltonian reduction of T ∗X with respect to
the M -action. Note that Xχ is a quotient of subset of the original symplectic
manifold T ∗X with respect to the M -action.

Important known algebras are obtained by quantum Hamiltonian reduction for
the case where X is a linear representation of the group M (thus is a C-vector
space), and χ = 0. For known examples of such algebras, refer [K3, Section 5].
Below we consider such a case and denote X = X0 simply.

The structure sheaf of the new symplectic manifold X can be constructed ex-
plicitly from the structure sheaf of T ∗X. While X is a quotient of subset of T ∗X,
its structure sheaf OX can be written in the form of the M -invariant subalgebra of
the quotient of OT∗X as follows:

OX '
(
p∗

(
O(T∗X)ss

/
O(T∗X)ssµ∗(m)

))M

where p : µ−1(0)ss −→ X is the projection. Namely, the structure sheaf OX is the
algebra of M -invariants of M -coinvariants of the structure sheaf OT∗X .
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The quantum Hamiltonian reduction is quantization of the Hamiltonian reduc-
tion. Namely, we consider noncommutative analogue of the above construction by
replacing the structure sheaf OT∗X by its deformation-quantization AT∗X . Let
c : m −→ C be a linear function on m which is invariant under the adjoint action
of m. This function c is a parameter of the quantization. Consider the following
sheaf of C[[~]]-algebras on the symplectic manifold X, which is a subquotient of the
deformation-quantization A(T∗X)ss :

AX,c =
(
p∗

(
A(T∗X)ss

/
A(T∗X)ss(µD − ~c)(m)

))M
.

The construction naturally implies that the sheaf of C[[~]]-algebras AX,c is a
deformation-quantization of OX . Indeed, under the following geometric conditions,
we can show that AX,c is a deformation-quantization of OX :

(1) µ−1(0)ss 6= ∅,
(2) the moment map µ is a flat morphism,
(3) the action of M on µ−1(0)ss is free,
(4) the morphism X −→ X0 is birational and X0 has only normal singularities.

2.3. Algebra of global sections. Now we make precise the connection between
the quantization of the coordinate ring C[X] and the deformation-quantization of
the structure sheaf OX .

Let X be a symplectic manifold obtained by Hamiltonian reduction, and let AX,c

be a deformation-quantization of OX as in Section 2.2. Note that AX,c is a sheaf
of C[[~]]-algebras and thus its algebra of global sections Γ(X,AX,c) is also a C[[~]]-
algebra. By construction, we have Γ(X,AX,c)/~Γ(X,AX,c) ' C[X]. In Section 1,
we defined a quantization of the Poisson algebra C[X] as a filtered C-algebra. Thus
the algebra of global sections Γ(X,AX,c) is not a quantization in that sense. But
we can obtain a quantization of C[X] by modifying the notion of “the algebra of
global sections” a little.

Recall that we assumed that X is a linear representation of M and thus X is a
C-vector space. Consider a C∗-action on T ∗X such that the induced equivariant
C∗-action on OT∗X makes the coordinate functions xi, yi of T ∗X semi-invariant
elements of weight one. By letting ~ be also a semi-invariant element of weight two,
the C∗-action lift to an equivariant action on the deformation-quantization AT∗X .
These C∗-actions induce a C∗-action on the symplectic manifold X, and also an
equivariant C∗-action on the sheaf AX,c on X. Then the algebra of global sections
Âc =

def
Γ(X,AX,c) is a C[[~]]-algebra with a C∗-action.

The algebra Âc is decomposed into a direct product of weight spaces with respect
to the C∗-action: Âc =

∏
m(Âc)m where (Âc)m is the weight space of weight m.

Consider the direct sum
⊕

m(Âc)m. Then, it is a C[~]-subalgebra of Âc. We call
it the finite part of Âc with respect to the C∗-action, and denote (Âc)C∗-fin. Now
consider the specialization ~ = 1, and we obtain a C-algebra

Ac = ΓF (X,AX,c) =
def

(Âc)C∗-fin/(~− 1)(Âc)C∗-fin.

The C[[~]]-algebra Âc is graded by the power of ~, and the grading induces a
filtration of the C-algebra Ac.

Proposition 2.2. Under the conditions (1)–(4) in Section 2.2, the algebra Ac =
ΓF (X,AX,c) is a quantization of the Poisson algebra C[X].
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We also have the following commutative diagram:

Ac
gr // C[X]

AX,c
~=0 //

ΓF (X, )

OO

OX

Γ(X, )

OO

Similarly, we can construct “the algebra of global sections” also for the deformation-
quantization AT∗X of the cotangent bundle T ∗X for a manifold X.

3. Deformation-quantization of arc spaces

3.1. Arc spaces. The notion of deformation-quantization and quantum Hamil-
tonian reduction works also for certain infinite-dimensional manifolds, not only
finite-dimensional ones. For a finite-dimensional manifold X, consider an infinite-
dimensional manifold J∞X, called an arc space or a ∞-Jet scheme on X. We
regard X as a scheme of finite type over C. Then the arc space J∞X is a scheme
whose R-valued points for a C-algebra R is given by

J∞X(R) = Hom(Spec R, J∞X) =
def

Hom(Spec R[[t]], X) = X(R[[t]]).

Namely, the arc space J∞X is a scheme, whose C-valued points are infinitesimal
arcs on X. Then, for an R-valued point x(t) of J∞X, we can regard x(t) as an
infinite-dimensional arc on X and its head x(0) is an R-valued point of X. Thus,
we have a canonical projection J∞X −→ X, x(t) 7→ x(0).

We consider a finite-dimensional symplectic manifold X. Then its structure sheaf
OX is equipped with a Poisson bracket { , }. Along with it, the structure sheaf
OJ∞X has an additional structure, called a vertex Poisson algebra. Vertex Poisson
algebras are vertex algebra analogue of Poisson algebras, which are naturally ob-
tained as an associated graded algebra of a certain vertex algebra. First, we review
briefly the definition of vertex algebras.

A vertex algebra is a quadruple of data (V,1, T, Y ( , z)), where

• V — a vector space,
• 1 ∈ V — a vector in V , called the vacuum vector
• T : V −→ V — a linear operator, called the translation operator
• Y ( , z) : V −→ EndV [[z, z−1]] — a linear operator, where Y (A, z) =∑

n∈Z A(n)z
−n−1 is a formal series of linear operators A(n) on V for each

vector A ∈ V . The operator Y (A, z) is called the vertex operator associated
with A.

These data are subject to the following axioms:

• (vacuum axiom) The vacuum vector satisfies Y (1, z) = idV , and for any
A ∈ V , we have Y (A, z)1 ∈ V [[z]], so that Y (A, z)1 can be specialized at
z = 0. Then, we have Y (A, z)1|z=0 = A. In other words, we have A(n)1 = 0
for any n ≥ 0 and A(−1)1 = A in V .

• (translation axiom) For any A ∈ V , we have

[T, Y (A, z)] = ∂zY (A, z),

and T1 = 0.
• (locality axiom) For any A, B ∈ V , the vertex operators Y (A, z) and

Y (B,w) are mutually local: Namely, there exists N ∈ Z≥0

(z − w)N [Y (A, z), Y (B,w)] = 0.
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From the above definition of vertex algebras, we obtain the following identity be-
tween coefficients of vertex operators Y (A, z) and Y (B, z) for A, B ∈ V , so called
Borcherds’ identity:∑

j≥0

(
m

j

)
(A(n+j)B)(m+l−j)

=
∑
j≥0

(−1)j

(
n

j

)
{A(m+n−j)B(l+j) − (−1)nB(n+l−j)A(m+j)}

for any l, m and n ∈ Z.
A vertex algebra V is called a commutative vertex algebra if A(n) = 0 for any

A ∈ V and n ∈ Z≥0. In this situation, operators A(−m) and B(−n) commute for any
A, B ∈ V and m, n ∈ Z≥1, and we can identify the commutative vertex algebra V
as a commutative C-algebra in infinitely many variables with the derivation T . For
any manifold X, the structure sheaf OJ∞X of the arc space J∞X has a structure
of a sheaf of commutative vertex algebras with variables f(−n) = (1/n!)Tnf for
f ∈ OX and n ∈ Z≥1. The canonical projection J∞X −→ X induces an embedding
OX ↪→ OJ∞X given by f 7→ f(−1) for f ∈ OX .

A vertex Poisson algebra is a tuple (V,1, T, Y+( , z), Y−( , z)), such that the
quadruple (V,1, T, Y+( , z)) is a commutative vertex algebra with the vertex oper-
ator Y+(A, z) =

∑
n≤−1 A(n)z

−n−1, and coefficients of Y−(A, z) =
∑

n≥0 A(n)z
−n−1

satisfies a truncation of the Borcherds’ identity. It is vertex-algebraic analogue of
Poisson algebras in the following sense; if (V,1, T, Y ( )) is a vertex algebra with
filtration and the associated graded vertex algebra grV with respect to the filtra-
tion is commutative, we can define the structure of a vertex Poisson algebra on the
associated graded vertex algebra grV .

Assume that X is a symplectic manifold. Consider the arc space J∞X, and
then the structure sheaf OJ∞X is a sheaf of commutative vertex algebras as above.
Moreover, the Poisson bracket { , } onOX induces a structure of a vertex Poisson
algebra on OJ∞X which satisfies

f(n)g =

{
{f, g} if n = 0,

0 if n ≥ 1,

for f , g ∈ OX and also satisfies the (truncated) Borcherds’ identity.

3.2. Deformation-quantization of J∞X. As deformation-quantization of the
vertex Poisson algebras, we obtain the notion of ~-adic vertex algebras, which are in-
troduced by H. Li in [Li]. An ~-adic vertex algebra is a quadruple (V,1, T, Y ( , z))
where V is a flat C[[~]]-module which is complete in ~-adic topology, such that
(V/~NV,1, T, Y ( , z)) is a vertex algebra over C for any N ≥ 0. Note that a
~-adic vertex algebra need not a vertex algebra over C[[~]].

Assume that, for an ~-adic vertex algebra (V,1, T, Y ( , z)), the quotient vertex
algebra (V/~V,1, T, Y ( , z)) is a commutative vertex algebra. Then, V/~V has
naturally the structure of vertex Poisson algebra defined by

ā(n)b̄ = ~−1a(n)b mod ~

for a, b ∈ V and n ∈ Z≥0, and where ā = a mod ~ ∈ V/~V is the equivalent class
of a.

Now we introduce the notion of deformation-quantization for vertex algebras.
Let X be a symplectic manifold, and consider the structure sheaf OJ∞X of the arc
space J∞X as a sheaf of vertex Poisson algebras. We say that the sheaf of ~-adic
vertex algebras Ach

X on J∞X is a deformation-quantization of OJ∞X (or of J∞X) if
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its quotient Ach
X /~Ach

X is isomorphic to OJ∞X as a sheaf of vertex Poisson algebras
on J∞X.

As the usual deformation-quantization, we can construct a deformation-quantization
of OJ∞X as a sheaf of ~-adic vertex algebras in the following two cases:

(1) When X is the cotangent bundle of a certain manifold X, i.e. X = T ∗X, we
may have a sheaf of vertex algebras called an algebra of chiral differential operators
(CDO) on X, denoted by Dch

X , which was introduced in [BD] and [GMS] indepen-
dently. Note that there exists an obstruction for existence of such a sheaf, but it
is known that if the second Chern class ch2(TX) vanishes, such a sheaf Dch

X exists.
See [GMS] for details.

By a similar method for localizing the sheaf of differential operators DX on T ∗X
as a deformation-quantization of X = T ∗X, we can construct localization of the
sheaf of vertex algebras Dch

X as a sheaf of ~-adic vertex algebras on X = T ∗X, and
moreover, as a sheaf on its arc space J∞X. This construction gives a deformation-
quantization of the structure sheaf OJ∞X in the above sense. We denote it Ach

X,~.
(2) When a symplectic manifold X is constructed by Hamiltonian reduction

X = µ−1(χ)ss/M as above for an action of a certain unipotent Lie group M on a
manifold X and the CDO Dch

X exists, we can construct a deformation-quantization
of OJ∞X as quantum Hamiltonian reduction of Ach

X,~. In [AKM], with using a
certain cohomological and quantum Hamiltonian reduction, called a BRST coho-
mology, a deformation-quantization of OJ∞X is constructed for a Slodowy variety
X, a symplectic manifold which is obtained by Hamiltonian reduction of a flag
variety.

As “a vertex algebra of global sections” with respect to a certain C∗-action, we
obtain (1) a vertex algebra at critical level associated with the affine Lie algebra cor-
responding to the flag variety, or (2) an affine W-algebra at critical level associated
with the Slodowy variety X, respectively. Namely, these deformation-quantizations
are regarded as localization of such vertex algebras.

4. Applications of localization to representation theory

When an associative algebra A is localized by a deformation-quantization of a
certain symplectic manifold X, the representation theory of A may be connected
with the geometrical structure of the underlying manifold X. And indeed many
applications of such a localization to the representation theory are known. In this
section, we summarize some of such results which are recently studied for algebras
obtained by quantum Hamiltonian reduction.

Throughout this section, we use the following notation. Let X be a symplectic
manifold, and let AX,c be a deformation-quantization of the structure sheaf OX

with a parameter of quantization c. Set Ac = Γ(X,AX,c)fin|~=1 be an associative
C-algebra which is obtained as “the algebra of global sections”. In this section, we
may assume that the symplectic manifold X is obtained by Hamiltonian reduction,
and the Hamiltonian reduction satisfies the assumptions (1)–(4).

4.1. Beilinson-Bernstein type correspondence. The most fundamental results
are certain equivalences of categories between the category of Ac-modules and the
category ofAX,c-modules with an equivariant torus action, which the functor of tak-
ing “global sections” gives. In the classical case of the universal enveloping algebra
of simple Lie algebra U(g), such an equivalence of categories essentially coincides
with an equivalence of abelian categories known as the Beilinson-Bernstein corre-
spondence. In the case of quantum Hamiltonian reduction, we have (1) equivalence
of triangulated categories between derived categories of module categories and (2)



10

equivalence of abelian categories which is direct analogue of the Beilinson-Bernstein
correspondence.

(1) Let Ac-mod be the abelian category of finitely-generated Ac-modules, and
let AX,c-modC∗-equiv be the abelian category of coherent AX,c-modules with the C∗-
equivariant action, which are torsion-free over C[[~]]. Then an object ofAX,c-modC∗-equiv

are a sheaf on X and thus we can consider the module of its global sections. For an
object M ∈ AX,c-modC∗-equiv, the module of global sections Γ(X,M) is a C[[~]]-
module with C∗-action, since M is equipped with the equivariant C∗-action. Then,
taking finite part with respect to C∗-action, denoted Γ(X,M)C∗-fin, we have a
C[~]-module. Finally, substituting ~ = 1, we obtain a C-vector space

ΓF (X,M) =
def

Γ(X,M)C∗-fin|~=1 = Γ(X,M)C∗-fin ⊗C[~] C1,

where C1 is the C[~]-module by augmentation at ~ = 1. Since ΓF (X,AX,c) ' Ac,
ΓF (X,M) is an Ac-module. This construction gives a functor of abelian categories

ΓF (X, ) : AX,c-modC∗-equiv −→ Ac-mod.

Consider the derived functor, and we have

RΓF (X, ) : Db(AX,c-modC∗-equiv) −→ Db(Ac-mod)

where Db( ) is a bounded derived category.
The following result is due to I. Gordon and I. Losev [GL]. Independently,

K. McGerty and T. Nevins also studied essentially the same result independently
in a little different manner in [MN1].

Theorem 4.1. If the algebra Ac has finite global dimension, we have an equivalence
of triangulated categories

RΓF (X, ) : Db(AX,c-modC∗-equiv) ∼−−→Db(Ac-mod)

with the quasi-inverse functor AX,c ⊗L
Ac

( ).

(2) Under a certain condition, the above functor ΓF (X, ) also gives an equiva-
lence of abelian categories, not only the derived equivalence. Note that the Hamil-
tonian reduction X is defined as a projective variety over X0:

X = Proj
⊕
m≥0

C[µ−1(0)]Mθm −→ X0 = Spec C[µ−1(0)]M

where θ is a certain character of the group M . From the definition, we have a line
bundleO(1) which is associated with the

⊕
m C[µ−1(0)]Mθm -module

⊕
m C[µ−1(0)]M

θ(m+1) .
Moreover, we can construct a sheaf Aθ

X,c which gives a quantization of this line bun-
dle O(1) in the sense that Aθ

X,c⊗C[[~]] C0 ' O(1) where C0 is a C[[~]]-module on C
by augmentation at ~ = 0. This sheaf is an (AX,c+dθ,AX,c)-bimodule where dθ is
a character of the Lie algebra m obtained by differentiating θ. By considering the
tensor product with Aθm

X,c over AX,c, we have a functor

Aθm

X,c ⊗AX,c
( ) : AX,c-modC∗-equiv −→ AX,c+mdθ-modC∗-equiv

for each m ∈ Z. We have Aθm

X,c ⊗C[[~]] C0 ' O(m) ' O(1)⊗m, and the functor is
an equivalence of categories whose quasi-inverse functor is given by Aθ−m

X,c+mdθ. By
applying “the functor of taking global sections” ΓF (X, ), we have functors

ΓF (X,Aθm

X,c)⊗Ac ( ) : Ac-mod −→ Ac+mdθ-mod

for each m ∈ Z.
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Theorem 4.2. Assume that the functor ΓF (X,Aθm

X,c)⊗Ac ( ) is an equivalence of
abelian categories (with the quasi-inverse given by ΓF (X,Aθ−m

X,c+mdθ)⊗Ac+mdθ
( ))

for all m ∈ Z≥0. Then,

ΓF (X, ) : AX,c-modC∗-equiv
∼−−→Ac-mod

is an equivalence of abelian categories with the quasi-inverse AX,c ⊗Ac ( ).

The theorem is analogue of well-known theorem in the representation theory of
simple Lie algebras, so called the Beilinson-Bernstein correspondence, studied in
[BB1, BB2], and also in [BrKa]. For algebras obtained by quantum Hamiltonian
reduction, it was first established for the rational Cherednik algebra of the sym-
metric group Sn by M. Kashiwara and R. Rouquier in [KR], and later for some
other cases in [BeKu], [DK] separately. Recently, K. McGerty and T. Nevins in
[MN2] gave a general criterion when such an abelian equivalence holds by using
Kashiwara’s equivalence and Kirwan-Ness stratification.

In known cases of quantum Hamiltonian reduction, the sheaf of C[[~]]-algebras
AX,c is locally isomorphic to the ~-deformed Weyl algebra

DCd,~ = C[[~]][x1, . . . , xd, y1, . . . , yd]

with defining relation given by [yi, xj ] = δij~, [xi, xj ] = [yi, yj ] = 0. Thus the
above equivalences connect the representation theory of Ac with microlocal analysis
on the symplectic manifold X through the sheaf AX,c, and hence we have many
applications in the representation theory of Ac.

First, for an Ac-module M , the support of the corresponding sheaf of modules
AX,c⊗Ac M in the symplectic manifold X is an invariant of modules. It is analogue
of characteristic varieties in D-module theory. We also have analogue of charac-
teristic cycles, cycles on X (with multiplicities) associated with the module. For
certain quantum Hamiltonian reduction Ac, characteristic cycles of some important
Ac-modules were studied in [GS] (for the rational Cherednik algebra for Sn) and
in [K1] (for the rational Cherednik algebra for Z/lZ).

Moreover, for the rational Cherednik algebra for Z/lZ, we can construct explicitly
sheaves of modules corresponding to irreducible modules and standard modules
in the category O of Ac, a highest weight category analogous to the Bernstein-
Gelfand-Gelfand category for a simple Lie algebra. ([K2]) As a consequence, it
follows that sheaves of modules corresponding to modules in the category O are
regular holonomic in the sense of microlocal analysis. Conjecturally the same fact
holds for the category O of other type of rational Cherednik algebra, but it is still
an open problem.

4.2. BRST cohomologies. The construction of the algebra Ac as quantum Hamil-
tonian reduction associated with the M -action on AT∗X induces a certain coho-
mology, called a BRST cohomology. The BRST cohomology (or so called BRST
reduction) is first introduced by theoretical physicist in the area of quantum field
theory. Mathematically, it is known that the BRST cohomology gives a cohomo-
logical interpretation of the (quantum) Hamiltonian reduction (cf. [KS], [F]). In
[K3], the explicit description of the BRST cohomology associated with the quantum
Hamiltonian reduction is given in the case where X is a linear representation of the
group M . We denote the BRST cohomology associated with the action of M on
the ring of differential operators D(X) by H•

BRST,c(m,D(X)), where m is the Lie
algebra of M and c is the parameter of the quantum Hamiltonian reduction Ac.
We can also define the sheaf version of the BRST cohomology, and it is denoted
H•BRST,c(m,A(T∗X)ss). Then, we have the following two isomorphisms of graded
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algebras (with respect to the degree of cohomologies) under certain conditions:

H•BRST,c(m,A(T∗X)ss) ' AX,c ⊗C H•
DR(M),(2)

H•
BRST,c(m,D(X)) ' Ac ⊗C H•

DR(M),(3)

where H•
DR(M) is the de Rham cohomology of M . The former isomorphism fol-

lows from the geometrical conditions in Section 2.2, and indeed it is essentially a
geometrical fact. On the other hand, to prove the latter isomorphism we need to
make advantage of the representation theory of Ac. Indeed, by using the abelian
and derived equivalences of categories in Section 4.1, we obtain (3) from (2).

4.3. Isomorphism of quantizations. Some noncommutative algebras give quan-
tizations of the same Poisson algebra. In such a case, it is a natural problem if these
quantizations are isomorphic with each other. But usually it is not easy to compare
their different constructions directly. On the other hand, the deformation theory for
deformation-quantization of a symplectic manifold is studied by R. Bezrukavnikov
and D. Kaledin in [BeKa]. As an application of their result, I. Losev proved iso-
morphisms between certain noncommutative algebras, which are constructed by
quantum Hamiltonian reduction in [Lo2]. For example, deformed preprojective
algebras introduced in [CBH] and finite W-algebras associated with a subregular
nilpotent orbit in simple Lie algebra of type ADE are isomorphic with each other.
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