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Abstract. This paper explains recent progress on the study of Grothendieck categories using
the atom spectrum, which is a generalization of the prime spectrum of a commutative ring.
As a part, we give a classification of localizing subcategories which can be applied to both
locally noetherian schemes and noncommutative noetherian rings. It is shown that the atom
spectrum of a Grothendieck category can have a rich poset structure compared with the prime
spectrum of a commutative ring. We also show some properties on minimal elements of the
atom spectrum for noncommutative noetherian rings.

1. Introduction

The aim of this paper is to explain recent progress on the study of Grothendieck categories.
We investigate a Grothendieck category by using a kind of spectrum, which we call the atom
spectrum. A typical example of a Grothendieck category is the category of modules over a ring.
In the case where the ring is commutative, the atom spectrum of the module category coincides
with the prime spectrum of the commutative ring. Therefore this theory can be regarded as
an attempt to generalize the notion of the prime spectrum to noncommutative rings. It seems
possible to understand and reformulate some classical noncommutative ring theory from the
categorical viewpoint.

The theory of atom spectrum is not only for the study of noncommutative rings. Another
example of a Grothendieck category is the category of quasi-coherent sheaves of a scheme. We
can show that the atom spectrum of the category of quasi-coherent sheaves of a locally noetherian
scheme coincides with the set of points of the scheme, and as a consequence, we can show a
classification of localizing subcategories in a general setting including both the case of locally
noetherian schemes and the case of noncommutative noetherian rings.

The reader may find the details of this paper in [Kan12a], [Kan12b], [Kan13], and [Kan14].
The reader who is unfamiliar with terms of abelian categories may be referred to [Pop73] or
[Ste75].

We start with the definition of a Grothendieck category.

Definition 1.1. An abelian category A is called a Grothendieck category if it satisfies the fol-
lowing conditions.

(1) A admits arbitrary direct sums (and hence arbitrary direct limits), and for every direct
system of short exact sequences in A, its direct limit is also a short exact sequence.

(2) A has a generator G, that is, every object in A is isomorphic to a quotient object of the
direct sum of some copies of G.

As we mentioned, the category ModΛ of right modules over a ring Λ and the category QCohX
of quasi-coherent sheaves on a scheme X (see [Con00, Lemma 2.1.7]) are Grothendieck categories.
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One might think the notion of Grothendieck categories is quite an abstract setting given in
order to include module categories. However, it is shown that every Grothendieck category is a
part of some module category.

Theorem 1.2 (Gabriel and Popescu [PG64, Proposition]). Let A be a Grothendieck category.
Then there exist a ring Λ and a localizing subcategory X of Mod Λ such that A is equivalent to
(Mod Λ)/X .

In this paper, we adopt Grothendieck categories as main objects to study. Recall that for a
commutative ring R, the prime spectrum Spec R plays an fundamental role. For a Grothendieck
category A, we will consider the atom spectrum ASpecA.

2. Atom spectrum

From now on, let A be a Grothendieck category. The atom spectrum of a Grothendieck
category is defined by using the notion of monoform objects.

Definition 2.1. A nonzero object H in A is called monoform if for each nonzero subobject L
of H, no nonzero subobject of H is isomorphic to a subobject of H/L.

In the case of a commutative ring, the following result shows how monoform objects are related
to prime ideals.

Proposition 2.2 ([Sto72, Lemma 1.5]). Let R be a commutative ring and a an ideal of R. Then
R/a is a monoform object in Mod R if and only if a is a prime ideal of R.

We state basic properties of monoform objects.

Proposition 2.3. Let H be a monoform object in A.
(1) ([Kan12a, Proposition 2.2]) Every nonzero subobject of H is again monoform.
(2) ([Kan12a, Proposition 2.6]) H is uniform, that is, for every nonzero subobjects L1 and

L2 of H, we have L1 ∩ L2 6= 0.

Even in the case of a commutative ring R, the collection of monoform objects is quite different
from the set of prime ideals. Indeed, it is known that the residue field k(p) = Rp/pRp is a
monoform object in ModR for each prime ideal p of R ([Sto72, p. 626]). Hence all its submodules
are monoform. See [Kan12a, Example 8.3] for an example of a noncommutative ring. In order to
obtain a generalization of the prime spectrum of a commutative ring, we introduce an equivalence
relation between monoform objects.

Definition 2.4. We say that monoform objects H1 and H2 in A are atom-equivalent (denoted
by H1 ∼ H2) if there exists a nonzero subobject of H1 isomorphic to a subobject of H2.

Definition 2.5. The atom spectrum ASpecA of A is defined by

ASpecA =
{monoform objects in A}

∼
.

Each element of ASpecA is called an atom in A. For each monoform object H in A, the
equivalence class of H is denoted by H.

The notion of atoms was originally introduced by Storrer [Sto72], and the generalization to
abelian categories was stated in [Kan12a].

The following result shows that the atom spectrum is a generalization of the prime spectrum
of a commutative ring.

Theorem 2.6 (Storrer [Sto72, p. 631]). Let R be a commutative ring. Then the map

Spec R → ASpec(ModR)

given by
p 7→ R/p

is bijective.
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For a locally noetherian scheme X, the atom spectrum of QCoh X coincides with the set of
points of X.

Theorem 2.7 ([Kan14, Theorem 7.6]). Let X be a locally noetherian scheme. Then the map

|X| → ASpec(QCohX)

given by
x 7→ jx∗k(x)

is bijective, where k(x) is the residue field of x, and jx : SpecOX,x → X is the canonical mor-
phism.

Matlis’ correspondence between the prime ideals and the indecomposable injective modules
can be generalized to a wide class of Grothendieck categories including the category Mod Λ for a
right noetherian ring Λ.

For an object M in a Grothendieck category A, the injective envelope E(M) of M always
exists and it is unique up to isomorphism (see [Pop73, Theorem 10.10]).

We recall the statement of Matlis’ correspondence.

Theorem 2.8 (Matlis [Mat58, Proposition 3.1]). Let R be a commutative noetherian ring. Then
the map

Spec R → { indecomposable injective R-modules }
∼=

given by
p 7→ E(R/p)

is bijective.

In order to generalize Matlis’ correspondence, we need to consider some noetherianness of a
Grothendieck category. The notion of the locally noetherianness is well-investigated one.

Definition 2.9. A Grothendieck category A is called locally noetherian if there exists a gener-
ating set G of A consisting of noetherian objects, that is, A admits a set G of noetherian objects
such that

⊕
G∈G G is a generator of A.

For a ring Λ, the Grothendieck category ModΛ is locally noetherian if and only if Λ is right
noetherian. Therefore the following generalization can be applied to right noetherian rings.

Theorem 2.10 ([Kan12a, Theorem 5.9]; see also [Sto72, Corollary 2.5]). Let A be a locally
noetherian Grothendieck category. Then the map

ASpecA → { indecomposable injective objects in A}
∼=

given by
H 7→ E(H)

is bijective.

3. Classification of localizing subcategories

In this section, we state a classification of localizing subcategories.

Definition 3.1. A full subcategory X of A is called a localizing subcategory if the following
conditions are satisfied.

(1) X is closed under subobjects, quotient objects, and extensions. In other words, for every
exact sequence

0 → L → M → N → 0
in A, we have M ∈ X if and only if L,N ∈ X .

(2) X is closed under arbitrary direct sums, that is, for every set S of objects in X , we have⊕
M∈S M ∈ X .
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We recall a classification of localizing subcategories for a commutative noetherian ring. This
classification given by [Gab62] is regarded as an origin of many kinds of classification of subcat-
egories.

For a commutative ring R, we say that a subset Φ of Spec R is closed under specialization if
for every p ⊂ q in Spec R, the assertion p ∈ Φ implies q ∈ Φ.

Theorem 3.2 (Gabriel [Gab62, Proposition VI.4]). Let R be a commutative noetherian ring.
Then the map

{ localizing subcategories of Mod R } → { specialization-closed subsets of Spec R }
given by

X 7→
⋃

M∈X
SuppM

is bijective. The inverse map is given by

Φ 7→ {M ∈ Mod R | SuppM ⊂ Φ }.
The key notion to generalize Gabriel’s classification is the “support” of an object in a

Grothendieck category. It is defined in terms of atoms as follows.

Definition 3.3. For each object M in A, define the subset ASuppM of ASpecA by

ASuppM = {H ∈ ASpecA | H ∼= L′/L for some L ⊂ L′ ⊂ M }.
This is called the atom support of M .

Proposition 3.4 ([Kan13, Proposition 3.2]). The set

{ASuppM | M ∈ A}
satisfies the axioms of open subsets of ASpecA.

This simple proposition is quite impressive from the viewpoint of ring theory. For a commu-
tative ring R, the set of subsets of the form SuppM is exactly the set of specialization-closed
subsets, and hence it is also closed under infinite intersection. However, this is not necessarily
true for a Grothendieck category. Indeed, Example 4.3 gives a counter-example.

We call the topology on ASpecA defined by Proposition 3.4 the localizing topology.
We define maps which will be used in the generalized classification of localizing subcategories.

Definition 3.5.
(1) For a full subcategory X of A, define the subset ASuppX of ASpecA by

ASuppX =
⋃

M∈X
ASuppM.

(2) For a subset Φ of ASpecA, define the full subcategory ASupp−1 Φ of A by

ASupp−1 Φ = {M ∈ A | ASuppM ⊂ Φ }.
We introduce a class of Grothendieck categories, which includes all locally noetherian

Grothendieck categories, in particular ModΛ for a right noetherian ring Λ, and QCohX for
a locally noetherian scheme X (which is not necessarily a locally noetherian Grothendieck cate-
gory. See [Har66, p. 135, Example]).

Definition 3.6. We say that a Grothendieck category A has enough atoms if A satisfies the
following conditions.

(1) Every injective object in A has an indecomposable decomposition.
(2) Each indecomposable injective object in A is isomorphic to E(H) for some monoform

object H in A.

See [Kan14] for more details on Grothendieck categories with enough atoms. It is shown in
[Kan14, Theorem 7.6] that the Grothendieck category QCoh X has enough atoms for every locally
noetherian scheme X.
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Theorem 3.7 ([Kan14, Theorem 6.8]; see also [Her97, Theorem 3.8], [Kra97, Corollary 4.3], and
[Kan12a, Theorem 5.5]). Let A be a Grothendieck category with enough atoms. Then the map

{ localizing subcategories of A} → { specialization-closed subsets of ASpecA}
given by

X 7→
⋃

M∈X
ASuppM

is bijective. The inverse map is given by

Φ 7→ {M ∈ A | ASuppM ⊂ Φ }.

For a localizing subcategory X of A, it is known that the categories A and A/X are
Grothendieck categories (see [Pop73, Corollary 4.6.2]). It is natural to ask how their atom
spectra are related to each other.

Proposition 3.8 ([Kan13, Proposition 5.12 and Theorem 5.17]; see also [Kra97, Corollary 4.4]
and [Her97, Proposition 3.6]). Let X be a localizing subcategory.

(1) ASpecX is homeomorphic to the open subset ASuppX of ASpecA.
(2) ASpec(A/X ) is homeomorphic to the closed subset ASpecA \ASuppX of ASpecA.

In particular, under the identifications by these homeomorphisms, we have

ASpecA = ASpecX qASpec
A
X

as a set.

4. Partial order

In this section, we introduce a partial order on the atom spectrum and investigate its structure.

Definition 4.1. Let α, β ∈ ASpecA. We write α ≤ β if α belongs to the topological closure {β}
of β with respect to the localizing topology.

In fact, the relation ≤ is a partial order on ASpecA (see [Kan13, Proposition 3.5]). The
following result shows that this is a generalization of the inclusion relation between prime ideals
of a commutative ring.

Proposition 4.2 ([Kan13, Proposition 4.3]). For a commutative ring R, the bijection in Theo-
rem 2.6 gives an isomorphism

(Spec R,⊂) ∼= (ASpec(ModR),≤)

of posets.

For a commutative ring R, the open subsets of Spec R with respect to the localizing topology
is exactly the specialization-closed subsets. Therefore the localizing topology on Spec R and the
poset (partially ordered set) structure of Spec R can be recovered from each other. However, as
the next example shows, the localizing topology cannot necessarily be recovered from the poset
structure for a Grothendieck category.

Example 4.3 ([Pap02, Example 4.7]). Let k be a field. We consider the graded ring k[x]
with deg x = 1. The category GrMod k[x] of Z-graded k[x]-modules with degree-preserving
homomorphisms is a locally noetherian Grothendieck category. For each object M in GrMod k[x]
and i ∈ Z, the object M(i) in GrMod k[x] is defined by M(i)j = Mi+j . Let S := k[x]/(x). Then
we have

ASpec(GrMod k[x]) = {k[x]} ∪ {S(i) | i ∈ Z }.
Note that k[x] = k[x](i) for each i ∈ Z and that S(i) = S(j) if and only if i = j.

A subset Φ of ASpec(GrMod k[x]) is open if and only if k[x] /∈ Φ or there exists n ∈ Z such
that Φn ⊂ Φ, where

Φn := {k[x]} ∪ {S(i) | i ≤ n }.
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Although all Φn are open, their intersection⋂
n∈Z

Φn = {k[x]}

is not open. Since every element of ASpec(GrMod k[x]) is a closed point, we have α ≤ β in
ASpec(GrMod k[x]) if only if α = β.

Since we have the naturally defined partial order on ASpecA, it is expected to investigate its
general property. Let us recall the case of commutative rings. For every commutative ring R, the
poset Spec R has a maximal element and a minimal element. Some other properties of Spec R
were also known (see for example, [Kap74, Theorem 11]). The next theorem, essentially shown
by Hochster [Hoc69], states all general properties of the poset Spec R. The precise statement was
given by Speed [Spe72].

Theorem 4.4 (Hochster [Hoc69, Proposition 10] and Speed [Spe72, Corollary 1]). Let P be a
poset. Then the following assertions are equivalent.

(1) There exists a commutative ring R such that P ∼= Spec R as a poset.
(2) P is an inverse limit of finite posets.

We establish the same type of result for Grothendieck categories, but the conclusion is quite
different from the case of commutative rings.

Theorem 4.5 ([Kan13, Theorem 7.27]). For every poset P , there exists a Grothendieck category
A such that P ∼= ASpecA as a poset.

The construction uses colored quivers. See [Kan13] for the details.
Theorem 4.5 shows that there are quite various kinds of Grothendieck categories compared

with commutative rings. By combining this theorem with Theorem 1.2 and Proposition 3.8, we
also realize a diversity of noncommutative rings.

Corollary 4.6 ([Kan13, Corollary 5.19]). For every poset P , there exists a ring Λ such that P
is homeomorphic to a closed subset of ASpec(ModΛ).

From now on, we state some results on the poset structure of the atom spectrum of a
Grothendieck category with some noetherian property.

Proposition 4.7 ([Kan13, Proposition 4.6]). Let A be a locally noetherian Grothendieck category.
Then ASpecA satisfies the ascending chain condition.

The previous proposition is expected from the analogous result on commutative noetherian
rings. On the other hand, we will see a different phenomenon about minimal elements. Denote
by AMinA the set of minimal elements of ASpecA.

Proposition 4.8 ([Kan13, Proposition 8.2]). There exists a locally noetherian Grothendieck
category A such that AMinA = ∅.

We regard this proposition as a consequence of the weakness of the condition of the locally
noetherianness. Instead of this condition, we consider a Grothendieck category having a noether-
ian generator. Note that for every right noetherian ring Λ, the Grothendieck category ModΛ has
the noetherian generator Λ. We obtain the following result with an impressive proof.

Theorem 4.9. Let A be a Grothendieck category with a noetherian generator.
(1) ([Kan13, Proposition 4.7]) For each β ∈ ASpecA, there exists α ∈ AMinA such that

α ≤ β.
(2) ([K]) AMinA is a finite set.

Sketch of proof. (2) It can be shown that Φ := ASpecA \AMinA is an open subset of ASpecA.
Let X := ASupp−1 Φ. Then we have ASpec(A/X ) = AMinA. Let G be a noetherian generator
of A and G′ its image in A/X . Then G′ is a generator of A/X which is of finite length. Therefore
ASpec(A/X ) = ASuppG′ is a finite set. �
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Note the following result on Grothendieck categories.

Theorem 4.10 (Năstăsescu [Nas81, Theorem 3.3]). Let A be a Grothendieck category with an
artinian generator. Then there exists a right artinian ring Λ such that A ∼= Mod Λ.

For a given right noetherian ring Λ, the category ModΛ is a Grothendieck category with
the noetherian generator Λ. By the above argument, there exists a right artinian ring Λ′ such
that A/X ∼= Mod Λ′, where X = ASupp−1(ASpecA \ AMinA). In particular, AMin(ModΛ) =
ASpec(ModΛ′). Consequently, we obtain a right artinian ring (unique up to Morita equivalence)
from a right noetherian ring in a categorical way.
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[Nas81] C. Năstăsescu, ∆-anneaux et modules ∆-injectifs. Applications aux catégories localement artiniennes,

Comm. Algebra 9 (1981), no. 19, 1981–1996.
[Pap02] C. J. Pappacena, The injective spectrum of a noncommutative space, J. Algebra 250 (2002), no. 2,

559–602.
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