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1. INTRODUCTION AND DEFINITION

Let A be a Cohen-Macaulay local ring with maximal ideal m and d = dim A > 0. Let
M be a finitely generated A-module. In [BHU] J. Brennan, J. Herzog, and B. Ulrich gave
structure theorems of MGMCM (maximally generated maximal Cohen—Macaulay)
modules that is, maximal Cohen-Macaulay A-modules M with ® (M) = p(M), where
e (M) (resp. pa(M)) denotes the multiplicity of M with respect to m (resp. the number
of elements in a minimal system of generators of M). In [HK] these modules are simply
called Ulrich modules.

The purpose of my talk is to study Ulrich modules, and ideals as well, with a slightly
generalized definition. To state our definition, let I be an m—primary ideal in A and
assume that I contains a parameter ideal () of A as a reduction; hence "™ = QI™ for
all n > 0. Remember that the latter condition, that is the existence of reductions, is

satisfied, when the residue class field A/m of A is infinite.

Definition 1.1. Let M (# (0) be a finitely generated A-module. Then we say that M
is an Ulrich A-module with respect to I, if

(1) M is a Cohen-Macaulay A-module with dimy M = d,

(2) 4(M) = Lo(M/IM), and

(3) M/IM is A/I-ree,
where (M) denotes the multiplicity of M with respect to I and £4(x) denotes the
length.

This talk is based on a work [GOTWY] jointly with R. Takahashi, K. Ozeki, K.-i. Watanabe, and
K.-i. Yoshida
AMS 2000 Mathematics Subject Classification: 13H10, 13H15, 13A30.
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Let me give a few comments about Definition 1.1. Suppose that M is a maximal
Cohen—Macaulay A-module. Then

S(M) = ey (M) = LA(M/QM) > (4(M/IM) > £4(M/mM) = ps(M).

Hence condition (2) is equivalent to saying that QM = I'M. If I = m, then condition
(3) is automatically satisfied, and in general we have 2 (M) > (M), and €% (M) =
wa(M) if and only if M is a MGMCM module in the sense of [BHU].

Definition 1.2. Our ideal I is called an Ulrich ideal of A, if
1) I2Q,
(2) I? = QI, and
(3) I/I?%is A/Ifree.

Here we notice that condition (2) equipped with (1) is equivalent to saying that the
associated graded ring
gr,(4) =P 1/
n>0
of I is a Cohen-Macaulay ring with a(gr;(A)) = 1 — d, whence Definition 1.2 is inde-
pendent of the choice of reductions @, and the blowing-up of SpecA with center V(I)
enjoys nice properties. When I = m, condition (3) is automatically satisfied and con-
dition (2) equipped with (1) is equivalent to saying that A is not a regular local ring,
but possesses maximal embedding dimension in the sense of J. Sally, i.e, the following
equality
v(A) =e(A) +dim A — 1
holds true, where v(A) and e(A) denote, respectively, the embedding dimension of A
and the multiplicity of A with respect to m.

In my talk we shall discuss several basic properties of Ulrich modules and ideals,
and the relation between them as well. In Section 2 we will summarize some auxiliary
results on Ulrich ideals for the later use.

The main result in Section 3 is the following. Let Syz’y(A/I) denote the i-th syzygy
module of A/I in a minimal A-free resolution.

Theorem 1.3 (cf. [BHU]). The following conditions are equivalent.

(1) I is an Ulrich ideal of A.
(2) Syz'y(A/I) is an Ulrich A-module with respect to I for all i > d.
(3) There exists an exact sequence

00— X —=F—-=Y —0

of finitely generated A—modules such that
(a) F is a finitely generated free A-modules,

(b) X CmF, and
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(c) both X and Y are Ulrich A-modules with respect to I.
If d > 0, we can add the following.
(4) pa(I) >d, I/1? is A/I-free, and Syz',(A/I) is an Ulrich A-module with respect
to I for some 1 > d.

In Section 4 we will give a structure theorem of minimal free resolutions of Ulrich
ideals and some applications as well. We shall discuss in Section 5 Ulrich ideals in
numerical semi-group rings.

2. PRELIMINARY STEPS
Let me begin with the following.

Example 2.1. Suppose that R is a Cohen—Macaulay local ring with maximal ideal n
and dim R = d. Let F = R" for n > 0 and A = R x F' the idealization of R over
F. Let q be a parameter ideal in R and put I = q x F' and ) = gA. Then A is a
Cohen-Macaulay local ring with maximal ideal m = n x F and dimA = d, [ is an
m-primary ideal of A which contains the parameter ideal @) of A as a reduction. We
furthermore have that I is an Ulrich ideal of A. Therefore A contains infinitely many
Ulrich ideals, if d = dim R > 0.

Question 2.2. I don’t know whether those ideals I = q x F' are all the Ulrich ideals
in A=Rx F.
Example 2.3. We have the following.
(1) In the ring A = k[[X,Y, Z]]/(Z? — XY'), the maximal ideal m = (z,y,2) is a
unique Ulrich ideal and p = (z, x) is a unique indecomposable Ulrich A-module

with respect to m.
(2) The ring A = E[[t3,#°]] = k[[X,Y]]/(X® — Y3) contains no Ulrich ideals.

We note here a proof of assertion (2). See Example 4.8 for the proof of assertion (1).

Proof of assertion (2). Let A = K[[t?,¢°]] and V = k[[t]]. Assume that A contains an
Ulrich ideal, say I, and let @ = (a) be a reduction of I. We put B =L :={Z |z ¢
I} C V. Then B = A[Z] and B is a Gorenstein local ring with p4(B) = 2, because

I =aB and I = Homy(B, A).
Thus B # V, since pua(V) = 3. We have t* € B, because A : m = A + kt” (remember

that A is a Gorenstein ring) and A C B. Hence t°V C B. Let¢c=B :q(B) V and write
¢ =t"V with n > 1. Then, since B is a Gorenstein local ring,

n = KB(V/C) = 2€B(B/C)

Hence n < 4, because t°V C B. Thus n = 2 orn = 4. If t* € B, then

3V C B, whence n = 2. Consequently, k[[t*,#3]] € B C V, and B = k[[t?,¢]],
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since Lz oy (V/E[[t?,¢°]]) = 1. This is impossible, because pa(k[[t?,¢°]]) = 3. Thus A
contains no Ulrich ideals. O

To provide examples of Ulrich modules, we need more preliminaries. For the moment,
assume that d > 0. Let a € Q\mQ and put A = A/(a), I = I/(a), and Q = Q/(a). We
then have the following. Remember that Syz’,(A/I) denotes the i-th syzygy of A/I in
a minimal A-free resolution.

Lemma 2.4 (W. V. Vasconcelos). Suppose I/I* is A/I-free. Then

Syaiy(A/T) JaSyr(A]T) = Sysi= (A/T) @) Syz5 (A/T)
for all v > d.

Proof. We have only to show [/al = A/I & I/(a). Let I = (a) + (z1,22, -+ ,Zy)

with n = pa(I) — 1. Then I/al = Aa+ ) | A%;, where @ and 7; denote the images

of a and z; in I/al, respectively. Assume that ca + Y ., ¢T; = 0 with ¢,¢; € A.

Then ca + > cix; € al C I?. Since {a,7; € I/I*}1<i<n forms a free A/I-basis

of I/I%, we have c¢,¢; € I for 1 < i < n. Therefore ca = Z?:l ¢;t; = 0, whence

I/al 2 A/T®1/(a). O
Let me note the following.

Lemma 2.5. Let I be an Ulrich ideal in a Cohen-Macaulay local ring A with d =
dimA > 0. Let a € Q\ mQ, where Q = (a1, as, ...,aq) s a reduction of I. Then I/(a)
is an Ulrich ideal of A/(a).

Proof. We set A = A/(a), I =I/(a), and Q = Q/(a). Then I 2 Q and 7' =QT. Let
us consider the exact sequence
0= [(a)+12/1> = I)I> =T/ — 0
of A-modules. We then have
/2~ A/Ia1)T,
since I/I% is A/I-free and @ which is the image of a in I/I? forms a part of A/I-free
basis of I/I?. Thus 7/72 is also A/I-free, so that I is an Ulrich ideal of A. O
We note the following. To prove it, we just remember that in the exact sequence
0—-Q/I*—=I/I*>—-1/Q— 0,
the A/I-module Q/I? = Q/QI is free and is generated by a part of a minimal basis of
1)1

Proposition 2.6. Suppose that A is a Cohen-Macaulay local ring and assume that
I? = QI. Then the following conditions are equivalent.

(1) I/1? is A/I-free.



(2) 1/Q is A/I-free.
When this is the case, I = Q 4 I, if Q C I; hence I is a good ideal of A in the sense
of [GIW], if A is a Gorenstein ring.

The following result shows the number of generators of Ulrich ideals I of A is bounded
by the Cohen-Macaulay type r(A) and the dimension of A.

Proposition 2.7. Suppose that A is a Cohen-Macaulay local ring and let I be an Ulrich
ideal of A. Then we have the following, where r(A) denotes the Cohen-Macaulay type
of A.

(1) r(A) = pa(l) —d.

(2) pa(l)=d+1 and I/Q = A/I, if A is a Gorenstein ring.
Proof. (1) Let n = pa(I) (> d). Then by Proposition 2.6, I/Q = (A/I)"~% so that
I =@ :a 1. Hencer(A) = (n —d)r(A/I) > n—d > 0, where r(A/I) denotes the
Cohen-Macaulay type of A/I.

(2) Asr(A) =1, we have n — d = 1 by assertion (1), whence I/Q = A/I. d

3. PROOF OF THEOREM 1.3; RELATION BETWEEN ULRICH IDEALS AND MODULES
The heart of the proof of the implication (3) = (1) in Theorem 1.3 is the following.

Proposition 3.1. Suppose that A is a Cohen-Macaulay local ring. Let I be an m-
primary ideal in A and assume that I contains a parameter ideal () of A as a reduction.
Assume that there exists an exact sequence

0—- X —=F—-=Y —0

of finitely generated A-modules such that

(i) F is a finitely generated free A-module,
(ii)) X # (0) and X C mF, and
(iii) Y is an Ulrich A-module with respect to I.
Then the following conditions are equivalent.
(1) X is an Ulrich A-module with respect to I.
(2) I? CQ and 1/Q is A/I-free.
When this is the case, the following assertions hold true.
(a) I? = QI and I/I? is A/I-free, if the residue class field A/m of A is infinite.
Hence I is an Ulrich ideal of A.
(b) pa(X) = ua(Y)ranka s (1/Q).

Proof. We consider the exact sequence

# 0-X—-F—-Y =0
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of A-modules. Because X # (0) and F' and Y are Cohen-Macaulay A-modules with
dimy F' = dim, Y = d, X is a Cohen-Macaulay A-module with dimy X = d. We set
m = ranks F'; hence m = u4(Y'), because X C mF. Tensoring exact sequence () by
A/Q, we get an exact sequence

0— X/QX — F/QF - Y/QY — 0

of A-modules, where Y/QY = Y/IY = (A/I)®™, because Y is an Ulrich A-modules
with respect to I and m = p4(Y). Therefore, since F/QF = (A/Q)®™, we have
X/QX = (I/Q)*™.

(1) = (2) Since IX = QX and X/QX = (I/Q)®™, we have I-(I/Q)®™ = (0),
whence I? C . Because X/IX = X/QX = (I/Q)®™ is A/I-free, the A/I-module
1/Q is also free.

(2) = (1) and (b) Since I* C Q and X/QX = (I/Q)®™, we have I-(X/QX) = (0),
whence /X = QX. Let r =rank,,;//Q. Then

X/IX = X/QX = (I/Q)*™ = (A/1)*™,

because I/Q = (A/I)®". Thus X is an Ulrich A-module with respect to I and pa(X) =
pa(Y)ranks,(1/Q).

(a) Let n = pa(l) and write I = (z1, 2, -+ ,2,). Then since the residue class field
A/m of A is infinite, we may choose a minimal basis {z;}1<i<, of I so that the ideal
(Xiy, Tiy, -+ -, T,) is a reduction of I for any set 1 < iy < iy < --- < ig < n of integers.
We now fix a subset A = {iy, 49, ,iq} of {1,2,--- ,n} and put Q = (4, Tiy, - -+ , Ti,).
We now consider the epimorphism

(A/D*" 5 T1/1* =0

of A/I-modules such that ps(e;) = 7; for all 1 <i < n, where {e;}1<;<, is the standard
basis of A/I-free module (A/I)®™ and ; denotes the image of x; in I/I%. Assume that
Sor T = 0 with ¢; € A. Then since

ZcixiGIQQQ:(l‘iHEA),

i=0
we have Zlgign,ing cix; € Q. Therefore because {Z; € I/Q}i<i<niga forms a A/I-
free basis of 1/Q), we get ¢; € I for all 1 < i < n whenever i ¢ A. After changing
A = {iy,i9,- - ,iq}, we have ¢; € I for all 1 <i <n, whence I/I* = (A/I)%".

We now show that I? = QI. Since I? C @, it is enough to check that Q N I? C QI.
Let z € Q N I? and write = Z1§j§d di,x;; with d;; € A. Then, because {77, }1<j<d
forms a part of A/I-free basis of I/I%, we have di; € I for all 1 < j < d. Hence
T =3 cjcqdi;ri; € QI s0 that I? = QI. Thus [ is an Ulrich ideal of A. O

We are now in a position to prove Theorem 1.3.
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Proof of Theorem 1.3. (1) = (2) We proceed by induction on d. Let n = pa(/) and
X; = Syz4(A/I) for all i > 1. If d = 0, then we have I> = (0) and [ = (A/I)®".
Therefore X; 2 (A/I)®"" for all i > 1. Thus X; is an Ulrich A-module with respect to
I for all 4 > 0. Assume that d > 0 and that our assertion holds true for d — 1. Let
a € Q\mQand put A= A/(a), I =1/(a), Q =Q/(a), and X; = X;/aX; for i > 1.
Then by Lemma 2.5 I is an Ulrich ideal of A. Hence the hypothesis of induction on d
guarantees that Syz%(Z/Y) is an Ulrich A-module with respect to I for all i > d — 1,
while we get by Lemma 2.4 an isomorphism

X; = Syz'; ' (A/T) @ Syz4(A/T)

of A-modules, whence X; # (0), I X; = QX;, and X;/I X; is A/I-free for all i > d.
Therefore X; # (0), IX; = QX; and X;/1X; is A/I-free for all i > d, so that X; is an
Ulrich A-module with respect to I for all i > d.

(2) = (3) This is clear.

(3) = (1) By Proposition 3.1 we get the implication, because the residue class field
A/m of A is infinite.

(2) = (4) This is clear.

(4) = (1) Let @ € Q\mQ and put A = A/(a), I = I/(a), Q@ = Q/(a), and
X; = X;/aX;. We look at the isomorphism

X = Sy (A/T) D Sy (A7)

obtained by Lemma 2.4, and set Z = Syz%_l(ﬁ/f), Z'" = Syz4(A/I). Then X, is an
Ulrich A-module with respect to I and Z # (0). If Z’ = (0), then X; = Z is A-free.
Then, since I X; = Q X;, we have I = @, which is impossible; thus Z’ # (0). We now
consider the exact sequence

02— F,_1/aF, 1 — 7 —0

of A-modules. Because Z and Z’ are Ulrich A-modules with respect to I, we have
T C @ by Proposition 3.1, whence I? C Q = (ay,as,--- ,aq4). On the other hand, since
I/I? is A/I-free and {@;}1<;<q forms a part of A/I-free basis of I/I* where @; denotes
the image of a; in I/1?, we get QN I* = QI. Thus I? = QI, whence [ is an Ulrich ideal
of A. O

4. STRUCTURE OF MINIMAL FREE RESOLUTIONS OF ULRICH IDEALS

In this section let me consider minimal free resolutions of Ulrich ideals. We fix the
following notation. Let A be a Cohen-Macaulay local ring with maximal ideal m and
d =dim A > 0. Let I be an Ulrich ideal of A and let @ = (aq, as, - ,aq) be a parameter
ideal of A which is a reduction of I. Let

F.:---—>Fiﬁ>Fi_1—>---—>F1ﬁ>F0—>A/]—>O
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be a minimal A-free resolution of A/I. For i > 0 let 3; = 84(A/I) be the i-th betti
number of A/I. Let n = #; = ua(I), the number of generators of I. We then have the
following.

Theorem 4.1. The following assertions hold true.
(1)
(n—d)=4n—-d+1)?% (i>d),
=3 () +n—-d)pi, (1<i<d),
1 (1=0)
fori>0.
(2) A/JT®40; =0 for alli> 1.
(3) Bi= (D) + (n—d)Bi_s for alli > 1.
Proof. We proceed by induction on d. Let X :_SyzfA(A/]) fori > 1. If d = 0, then
I? = (0) and I = (A/I)®". Hence X; = (A/I)®" for all i > 1. Therefore 5; = n* and
A/l ®4 0; = 0. Assume that d > 0 and that our assertion holds true for d — 1. Let
a € Q\mQ and put A = A/(a), I = I/(a), and X; = X;/aX; for i > 1. Then by
Lemma 2.5 I is an Ulrich ideal of A. By Lemma 2.4 we have an isomorphism

X, = Sy (A/T) @D Sy (/)
of A-modules for all i > 1. Hence 3; = Bi_1 + 3; for all i > 1, where f3; = 5%(2/7)
denotes the i-th betti number of A/I. Wesetn = u5(I) =n—1andd=dimA=d—1
(1) Suppose that @ > d. Then by the hypothesis of induction on d we get
Bi=m—dy -t (m—d+1)?
for j > d — 1. Hence
B = ﬁi L+ B

—d)— (n—d+1) +@—d)"(m—d+1)*
—d)"n—d+ 1)+ (n— &) (n —d+ 1)

)

)

A

n—d""(n—d+ 1" {1+ (n—d)}
n—d) =4 (n—d+1)"%

/\A/\

Suppose now that 1 < i < d. Since 1 =n = (Cll) + (n — d)fy, our assertion holds

true for the case where : = 1. If 2 <1 < d — 1, then by the hypothesis of induction on

d, we have
B = @ +(n—d)fi
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for all 1 < j < d — 1. Therefore

Bi = B+

- {(,2) +w-aps}+{ (D) + -2}
(7)) +—apm+ (1)) + -0
_ (j_1)+{()_(jjll)}+<n—d>{m+m}
PR

If : =d > 2, then by the hypothesis of induction on d we have

Ba—1 = (d: 1> + (7~ d)Ba—s

d
and
Bi = m—d)*%(m—d+1)*
= m—d)m—d+1)°
= (m-d)fg= M —d)Ba
Therefore
Ba = Bar+Ba
_ {(dg 1) +(n_zz>m} (- DB
= 1+ (n—d)fss+ (n—d)Bs1,
while

@ +(n—d)fa1 =1+ (n— d){Baz + Bas}.

Thus G4 = (fil) + (n — d)B4—1. Hence we get assertion (1).
(2) We have nothing to prove for the case where i = 1. Suppose that i > 2. Then by
Lemma 2.4 we have an isomorphism

X = Syr (A)T) @ Sy#y(A/T)
of A-modules. Hence by the hypothesis of induction on d we get A/I ®4 9; = 0 for all

1> 2.
9



(3) We have only to consider the case where i > d. We get 3; = (n—d)"%(n—d+1)*
for all ¢ > d by assertion (1), while

(CZZ) +(n—d)fi1 = (n—d)-{(n—d)""%(n—-d+1)%}
= (n—d)%(n—-d+1)"%
Hence f; = (CZZ) + (n — d)B;—1 for all i > 1, which proves assertion (3). O

Let Ko = Ko(ai,as, -+ ,aq; A) denote the Koszul complex with differential maps
OX . K; — K;_1. Then because 3; = (‘j) + (n —14)B;_; for all i > 0 by Theorem 4.1 (3),
in the exact sequence

0—-Q—1—-1/Q—0

of A-modules a minimal A-free resolution of I is obtained by those of @ and I/Q), so
that we have the following.

Proposition 4.2. F, =~ K, ® F2" for all 1 < i < d and F; = FU for all
i>d+1.

Corollary 4.3. Suppose that d > 0.
(1) Syz 1 (A/I) = [Syz4(A/D]®"=D for all i > d.
(2) Fyyi = Fy and Ogyit1 = O for all i > 1, if A is a Gorenstein local ring.

Proof. Let X; = Syz4y(A/I) for i > 1.

(1) Thsi is clear.

(2) Since A is a Gorenstein ring, we have n — d = 1 by Proposition 2.7, so that
assertion (1) shows F; 1 = F; for all i > d. We now look at the following commutative
diagram

Od+2 Od+1
Fd+2 Fd+1 Fd

| 1 |

Fap ﬂ Fq L Fyq
of A-modules with isomorphisms « : Fy o — Fy.q and §: Fyy1 — Fy. It is standard to
check that the following sequence

B~ 0411 B 0q11 dap Oa—1
= Fo = Fap— o= Fa = Fayn = Faor — Fya— o

is also exact, which completes the proof of Corollary 4.3. [l

The following Theorem 4.4 plays a crucial role in the analysis of the problem of when
the set X4 of Ulrich ideals in A is finite.

Theorem 4.4. 1,(0;) = I for all i > 1, where 1,(0;) denotes the ideal of A generated
by the entries of the matriz 0;.

Proof. Let me begin with the following.
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Claim 1. [,(0;)) + Q = I for alli > 1.

Proof of Claim 1. We proceed by induction on d. We have nothing to prove when d = 0.
Assume that d > 0 and that our assertion holds true for d — 1. Let a = a1 € Q \ mQ
and put A = A/(a), I = I/(a), and Q = Q/(a). Then I is an Ulrich ideal of A. Let
X; = Syz4(A/I) and put X; = X;/aX; for all i > 1. Then by Lemma 2.4

X = Syss (A1) @D vy (A/T)

for all i > 2. Therefore the hypothesis of induction on d shows that I,(9;) + @ = I for
all i > 2, whence 1,(0;) + Q = I. Notice that I(0y) = I clearly. Thus I,(0;) + Q = I
for all ¢ > 1 as claimed. U

By Claim 1 we have only to show that I1(9;) 2 @ for all i > 1. Suppose 2 < i < d
and consider the following commutative diagram
0 — K, — Kord? 2, pthd
aZKl all o=
0 — K1 —5 K, 1@ Fiei(zn_d) RSN F?i(gn_d) — 0
(n—d)

of A-modules, where 1;(z) = (2,0) and p;(z,y) = y with z € K; and y € F\

Then, since 0; 01; = 1;_1 0 @K and p;_; 00; = 353({1_@

oK *
o — ( v )
0 a;e_(l d)

Therefore 1;(9;) 2 [;(0X) = Q. Thus 1;(9;) = I for 2 < i < d. Suppose that i = d + 1
and consider the following commutative diagram

o p;, we have

0 (0) ® F;B(n_d) Pd+1 Fs}a(n—d) 0
8d+1l 83‘%
0 — K; — KoF ¢ X -t —— 0
of A-modules. Then 0,1 = 8:_d) , because 8g_dopd+1 = pqa©04.1. Hence I1(0441) 2

d
[,(0q) = 1, so that 1;(94.1) = I. Thus by Corollary 4.3, I;(0;41) = 11(0;) for all : > d+1.
Hence 11(0;41) = 1;1(0q41) = I for i > d, which completes the proof of Theorem 4.4. [

We are now in a position is to study the finiteness problem of Ulrich ideals. Let
X4 ={I|Iis an Ulrich ideal of A}.
We are interested in the following question.

Question 4.5. When is X4 a finite set?

Let me begin with the following, which readily follows from Theorem 4.4.
11



Corollary 4.6. Let I and J be Ulrich ideals of A. Then I = J if and only if
Syz'y(A/I) = Syz'y(A/J) for some i > 0.

Let me settle Problem 4.5 affirmatively in the following case.

Theorem 4.7. Suppose that A is of finite CM-representation type. Then Xy is a finite
set.

Proof. We set Y4 = {[Syz%(A/I)] | I € X4} be the set of isomorphism classes of
Syz4(A/I). Let I € X, with n = pu(I). Remember that

pa(Syza(A/1) = (n —d +1)" < (x(A) +1)! < 00

by Theorem 4.1, since n —d < r(A) by Lemma 2.7. Therefore the set )4 is finite, since
A is of finite CM-representation type, so that by Corollary 4.6 X, is also a finite set,
because X4 = V4. O

Let me explore one example.
Example 4.8. Let A = k[[X,Y,Z]]/(Z?> — XY). Then X, = {m}.

Proof. The indecomposable maximal Cohen-Macaulay A-modules are A and p = (z, z).
We get m € Xy, since m? = (z,y)m. Let [ € X4. Then ps(I) = 3. Let X = Syz%(A/I)
and consider the exact sequence

0 — Syz3(A/I) — A* - A — A/ — 0
of A-modules. We then have
Syzi(A/T) = p D,
because pa(X) =4 and ranky X = 2. Hence I = m by Corollary 4.6. O

There are many one-dimensional Cohen-Macaulay local rings of finite CM-
representation type. Let me collect a few results.

Example 4.9. The following assertions hold true.

(1) s oy = {(t%,%)}.

2 Xk[[tS t5] — @
Xy([X. Y]/ (¥ (X2—y20+1)) = {(a: y? ) (22,y)}, where a > 1.

Xk ]/ (v (v2-x3) = {( )}
Xulix,v))/(x2-yey = {(z? ) (x — y*, y(z +y2), (z + v y(z — y*))}, where a >
1 and ch k # 2.

(2)
(3)
(4)
(5)
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5. ULRICH IDEALS IN NUMERICAL SEMI-GROUP RINGS

It seems interesting to ask how many Ulrich ideals are contained in a given Cohen-
Macaulay local ring. We look at the numerical semigroup ring

A= K[t 12, 1)) CK[[H] = A4,
where 0 < ay,as,...,a; € Z such that GCD(ay, as,...,a,) = 1. Let
X% = {Ulrich ideals I in A such that I = (powers of ¢)}.

We then have the following.

Theorem 5.1. The set XY is finite.

Proof. We have I/Q = (A/I)*" % and L = A[l] where @ = (a) and £ = a7'1. Hence
AT CT/Q = A[ /A C A/A.

Therefore A : A = t¢-k[[t]] C I for every Ulrich ideal I of A, where ¢ > 0 denotes the
conductor of the numerical semigroup

14
<CL1,CL2,...,6Lg> :{Zciai | OSCZ EZ}
i=1

Hence X is a finite set. O

Although the sets X' and X4 might be different, it is expected, first of all, to find
what the set XY is. Let me close this paper with a few (not complete) results.

Example 5.2. The following assertions hold true.

(1) X;f[[ts BT T {m}

(2) k[[t4 t5,46]] — {(t4, tG)}

(3) k[[ta ot ... $2a-2]] - @ if a > 5.

(4) Let 1 < a < b € Z such that GCD(a,b) = 1. Then &} o) 0 if and only if a

or b is even. (Compare with Example 5.3 (2).)
(5) Let A = k[[t*,t5,t*1]] (a > 2). Then $X9 = 2a — 2.

Example 5.3 (with N. Taniguchi). The following assertions hold true.
(1) Xyesusy = 0.

2) Xysry = {(t° — ", t1°) |0 # c € k}.

3) Xk[[t2a+l 1<i<2d] ™ @ for Va > 2.

4) Xyfpza+i | 0 < i < 2a—2) = 0 for Va > 3.

5)

P

(Xk[[X Y]]/(Yn)) oo for Vn > 2.
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