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1. Introduction

Let S := k[x1, . . . , xn] be a polynomial ring over a field k. For a monomial ideal
I ⊂ S, G(I) denotes the set of minimal (monomial) generators of I. We say a monomial
ideal I ⊂ S is Borel fixed (or strongly stable), if m ∈ G(I), xi|m and j < i imply
(xj/xi) ·m ∈ I. Borel fixed ideals are important, since they appear as the generic initial
ideals of homogeneous ideals (if char(k) = 0).

A squarefree monomial ideal I is said to be squarefree strongly stable, if m ∈ G(I),
xi|m, xj 6 |m and j < i imply (xj/xi) ·m ∈ I. Any monomial m ∈ S with deg(m) = e has
a unique expression

(1.1) m =
e∏

i=1

xαi
with 1 ≤ α1 ≤ α2 ≤ · · · ≤ αe ≤ n.

Now we can consider the squarefree monomial

msq =
e∏

i=1

xαi+i−1

in a larger polynomial ring T = k[x1, . . . , xN ] with N À 0. If I ⊂ S is Borel fixed, then

(1.2) Isq := ( msq | m ∈ G(I) ) ⊂ T

is squarefree strongly stable. This operation plays a role in the shifting theory for simplicial
complexes (see [1]).

A minimal free resolution of a Borel fixed ideal I has been constructed by Eliahou
and Kervaire [7]. While the minimal free resolution is unique up to isomorphism, its
“description” depends on the choice of a free basis, and further analysis of the minimal
free resolution is still an interesting problem. See, for example, [2, 6, 9, 10, 11]. In this
paper, we will give a new approach which is applicable to both I and Isq. Our main tool
is the “alternative polarization” b-pol(I) of I.

Let
S̃ := k[ xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ d ]

be the polynomial ring, and set

Θ := {xi,1 − xi,j | 1 ≤ i ≤ n, 2 ≤ j ≤ d } ⊂ S̃.
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Then there is an isomorphism S̃/(Θ) ∼= S induced by S̃ 3 xi,j 7−→ xi ∈ S. Throughout

this paper, S̃ and Θ are used in this meaning.
Assume that m ∈ G(I) has the expression (1.1). If deg(m) (= e) ≤ d, we set

(1.3) b-pol(m) =
e∏

i=1

xαi,i ∈ S̃.

Note that b-pol(m) is a squarefree monomial. If there is no danger of confusion, b-pol(m)
is denoted by m̃. If m =

∏n
i=1 xai

i , then we have

m̃ (= b-pol(m)) =
∏

1≤i≤n
bi−1+1≤j≤bi

xi,j ∈ S̃, where bi :=
i∑

l=1

al.

If deg(m) ≤ d for all m ∈ G(I), we set

b-pol(I) := (b-pol(m) | m ∈ G(I)) ⊂ S̃.

The second author ([14]) showed that if I is Borel fixed, then Ĩ := b-pol(I) is a “polar-

ization” of I, that is, Θ forms an S̃/Ĩ-regular sequence with the natural isomorphism

S̃/(Ĩ + (Θ)) ∼= S/I.

Note that b-pol(−) does not give a polarization for a general monomial ideal. We can
obtain Isq of a Borel fixed ideal I through b-pol(I), see Proposition 8 below.

In this paper, we will construct a minimal S̃-free resolution P̃• of S̃/Ĩ, which is analogous
to the Eliahou-Kervaire resolution of S/I. However, their description can not be lifted to

Ĩ, and we need modification. Clearly, P̃• ⊗eS S̃/(Θ) gives the minimal free resolution of
S/I. Similar construction also works for T/Isq (Corollary 9). In some sense, our results
are generalizations of those in [11], which concerns the case I is generated in one degree
(i.e., all elements of G(I) have the same degree).

In [2], Batzies and Welker tried to construct a minimal free resolutions of a monomial
ideals J using Forman’s discrete Morse theory ([8]). If J is shellable (also called linear
quotients in literature), their method works, and we have a Batzies-Welker type minimal
free resolution. However, it is very hard to compute their resolution explicitly.

A Borel fixed ideal I and its polarization Ĩ = b-pol(I) is shellable. We will show that

our resolution P̃• of S̃/Ĩ and the induced resolutions of S/I and T/Isq are Batzies-Welker
type. In particular, these resolutions are cellular. As far as the author knows, an explicit
description of a Batzies-Welker type resolution of a general Borel fixed ideal has never

been obtained before. Finally, we show that the CW complex supporting P̃• is regular.

2. The Eliahou-Kervaire type resolution of S̃/ b-pol(I)

Throughout the rest of the paper, I is a Borel fixed monomial ideal with deg m ≤ d
for all m ∈ G(I). For the definitions of the alternative polarization b-pol(I) of I and
related concepts, consult the previous section. For a monomial m =

∏n
i=1 xai

i ∈ S, set
µ(m) := min{ i | ai > 0 } and ν(m) := max{ i | ai > 0 }. In [7], it is shown that any



monomial m ∈ I has a unique expression m = m1 ·m2 with ν(m1) ≤ µ(m2) and m1 ∈ G(I).
Following [7], we set g(m) := m1. For i with i < ν(m), let

bi(m) = (xi/xk) ·m, where k := min{ j | aj > 0, j > i}.
Since I is Borel fixed, m ∈ I implies bi(m) ∈ I.

Definition 1 ([12, Definition 2.1]). For a finite subset F̃ = { (i1, j1), (i2, j2), . . . , (iq, jq) }
of N × N and a monomial m =

∏e
i=1 xαi

=
∏n

i=1 xai
i ∈ G(I) with 1 ≤ α1 ≤ α2 ≤ · · · ≤

αe ≤ n, we say the pair (F̃ , m̃) is admissible (for b-pol(I)), if the following are satisfied:

(a) 1 ≤ i1 < i2 < · · · < iq < ν(m),

(b) jr = max{ l | αl ≤ ir }+ 1 (equivalently, jr = 1 +
∑ir

l=1 al) for all r.

For m ∈ G(I), the pair (∅, m̃) is also admissible.

Lemma 2. Let (F̃ , m̃) be an admissible pair with F̃ = { (i1, j1), . . . , (iq, jq) } and m =∏
xai

i ∈ G(I). Then we have the following.

(i) j1 ≤ j2 ≤ · · · ≤ jq.
(ii) xk,jr · b-pol(bir(m)) = xir,jr · b-pol(m), where k = min{ l | l > ir, al > 0 }.

For m ∈ G(I) and an integer i with 1 ≤ i < ν(m), set m〈i〉 := g(bi(m)) and m̃〈i〉 :=
b-pol(m〈i〉). If i ≥ ν(m), we set m〈i〉 := m for the convenience. In the situation of Lemma 2,
m̃〈ir〉 divides xir,jr · m̃ for all 1 ≤ r ≤ q.

For F̃ = { (i1, j1), . . . , (iq, jq) } and r with 1 ≤ r ≤ q, set F̃r := F̃ \ { (ir, jr) }, and for

an admissible pair (F̃ , m̃) for b-pol(I),

B(F̃ , m̃) := { r | (F̃r, m̃〈ir〉) is admissible }.
Lemma 3. Let (F̃ , m̃) be as in Lemma 2.

(i) For all r with 1 ≤ r ≤ q, (F̃r, m̃) is admissible.

(ii) We always have q ∈ B(F̃ , m̃).

(iii) Assume that (F̃r, m̃〈ir〉) satisfies the condition (a) of Definition 1. Then r ∈
B(F̃ , m̃) if and only if either jr < jr+1 or r = q.

(iv) For r, s with 1 ≤ r < s ≤ q and jr < js, we have bir(bis(m)) = bis(bir(m)) and
hence (m̃〈ir〉)〈is〉 = (m̃〈is〉)〈ir〉.

(v) For r, s with 1 ≤ r < s ≤ q and jr = js, we have bir(m) = bir(bis(m)) and hence
m̃〈ir〉 = (m̃〈is〉)〈ir〉.

Example 4. Let I ⊂ S = k[x1, x2, x3, x4] be the smallest Borel fixed ideal containing
m = x2

1x3x4. In this case, m′
〈i〉 = bi(m

′) for all m′ ∈ G(I). Hence, we have m〈1〉 = x3
1x4,

m〈2〉 = x2
1x2x4 and m〈3〉 = x2

1x
2
3. The following 3 pairs are all admissible.

• (F̃ , m̃) = ({ (1, 3), (2, 3), (3, 4) }, x1,1 x1,2 x3,3 x4,4)

• (F̃2, m̃〈2〉) = ({ (1, 3), (3, 4) }, x1,1 x1,2 x2,3 x4,4)

• (F̃3, m̃〈3〉) = ({ (1, 3), (2, 3) }, x1,1 x1,2 x3,3 x3,4)

(For this F̃ , ir = r holds and the reader should be careful). However, (F̃1, m̃〈1〉) =
({ (2, 3), (3, 4) }, x1,1 x1,2 x1,3 x4,4) does not satisfy the condition (b) of Definition 1. Hence

B(F̃ , m̃) = {2, 3}.



The diagrams of (admissible) pairs are very useful for better understanding. To draw

a diagram of (F̃ , m̃), we put a white square in the (i, j)-th position if (i, j) ∈ F̃ and

the black square there if xi,j divides m̃. If F̃ is maximal among F̃ ′ such that (F̃ ′, m̃) is

admissible, then the diagram of (F̃ , m̃) forms a “right side down stairs” (see the leftmost

and rightmost diagrams of the table below). If (F̃ , m̃) is admissible but F̃ is not maximal,
then some white squares are removed from the diagram for the maximal case. If the pair
is admissible, there is a unique black square in each column and this is the “lowest” of
the squares in the column.

If (F̃ , m̃) is admissible and r ∈ B(F̃ , m̃), then we can get the diagram of (F̃r, m̃〈ir〉) from

that of (F̃ , m̃) by the following procedure.

(i) Remove the (sole) black square in the jr-th column.
(ii) Replace the white square in the (ir, jr)-th position by a black one.
(iii) If m〈ir〉 6= bir(m), erase some squares from the lower-right of the diagram.

i

j

4
3
2
1

1 2 3 4

i

j

4
3
2
1

1 2 3 4

i

j

4
3
2
1

1 2 3 4

i

j

4
3
2
1

1 2 3 4

(F̃ , m̃) (F̃1, m̃〈1〉) (F̃2, m̃〈2〉) (F̃3, m̃〈3〉)

admissible not admissible admissible admissible

Next let I ′ be the smallest Borel fixed ideal containing m = x2
1x3x4 and x2

1x2. For

F̃ = { (1, 3), (2, 3), (3, 4) }, (F̃ , m̃) is admissible again. However m̃〈2〉 = x2
1x2 in this time,

and (F̃2, m̃〈2〉) = ({ (1, 3), (3, 4) }, x1,1 x1,2 x2,3) is no longer admissible. In fact, it does not

satisfy (a) of Definition 1. Hence B(F̃ , m̃) = {3} for b-pol(I ′).

For F = {i1, . . . , iq} ⊂ N with i1 < · · · < iq and m ∈ G(I), Eliahou and Kervaire
([7]) called the pair (F, m) admissible for I, if iq < ν(m). In this case, there is a unique

sequence j1, . . . , jq such that (F̃ , m̃) is admissible for Ĩ, where F̃ = { (i1, j1), . . . , (iq, jq) }.
In this way, there is a one-to-one correspondence between the admissible pairs for I and

those of Ĩ. As the free summands of the Eliahou-Kervaire resolution of I are indexed by

the admissible pairs for I, our resolution of Ĩ are indexed by the admissible pairs for Ĩ.

We will define a Zn×d-graded chain complex P̃• of free S̃-modules as follows. First, set

P̃0 := S̃. For each q ≥ 1, we set

Aq := the set of admissible pairs (F̃ , m̃) for b-pol(I) with #F̃ = q,

and

P̃q :=
⊕

( eF ,em)∈Aq−1

S̃ e(F̃ , m̃),



where e(F̃ , m̃) is a basis element with

deg
(
e(F̃ , m̃)

)
= deg


m̃×

∏

(ir,jr)∈ eF
xir,jr


 ∈ Zn×d.

We define the S̃-homomorphism ∂ : P̃q → P̃q−1 for q ≥ 2 so that e(F̃ , m̃) with F̃ =
{(i1, j1), . . . , (iq, jq)} is sent to

∑
1≤r≤q

(−1)r · xir,jr · e(F̃r, m̃)−
∑

r∈B( eF ,em)

(−1)r · xir,jr · m̃
m̃〈ir〉

· e(F̃r, m̃〈ir〉),

and ∂ : P̃1 → P̃0 by e(∅, m̃) 7−→ m̃ ∈ S̃ = P̃0. Clearly, ∂ is a Zn×d-graded homomorphism.
Set

P̃• : · · · ∂−→ P̃i
∂−→ · · · ∂−→ P̃1

∂−→ P̃0 −→ 0.

Theorem 5 ([12, Theorem 2.6]). The complex P̃• is a Zn×d-graded minimal S̃-free reso-

lution for S̃/ b-pol(I).

Sketch of Proof. Calculation using Lemma 3 shows that ∂ ◦ ∂(e(F̃ , m̃)) = 0 for each ad-

missible pair (F̃ , m̃). That is, P̃• is a chain complex.
Let I = (m1, . . . , mt) with m1 Â · · · Â mt, and set Ir := (m1, . . . , mr). Here Â is the

lexicographic order with x1 Â x2 Â · · · Â xn. Then Ir are also Borel fixed. The acyclicity

of the complex P̃ can be shown inductively by means of mapping cones. ¤

3. Applications and Remarks

Let I ⊂ S be a Borel fixed ideal, and Θ ⊂ S̃ the sequence defined in Introduction. As

remarked before, there is a one-to-one correspondence between the admissible pairs for Ĩ

and those for I, and if (F̃ , m̃) corresponds to (F, m) then #F̃ = #F . Hence we have

(3.1) Tor
eS
i (k, Ĩ) ∼= TorS

i (k, I)

as Z-graded k-vector spaces for all i, where S and S̃ are considered to be Z-graded. Of

course, this is clear, if one knows the fact that Ĩ is a polarization of I ([14, Theorem 3.4]).

Conversely, we can show that Ĩ is a polarization by the equation (3.1) and [11, Lemma 6.9].
The next result also follows from [11, Lemma 6.9].

Corollary 6. P̃• ⊗eS S̃/(Θ) is a minimal S-free resolution of S/I.

Remark 7. The correspondence between the admissible pairs for I and those for Ĩ, does

not give a chain map between the Eliahou-Kervaire resolution and our P̃• ⊗eS S̃/(Θ). In
this sense, two resolutions are not the same. See Example 19 below.

Let T = k[x1, . . . , xn+d−1] be a polynomial ring, and

Θ′ := {xi,j − xi+1,j−1 | 1 ≤ i < n, 1 < j ≤ d}
a subset of S̃. Then the ring homomorphism S̃ → T with xi,j 7→ xi+j−1 induces the

isomorphism S̃/(Θ′) ∼= T .



Proposition 8 ([14, Proposition 4,1]). With the above notation, Θ′ forms an S̃/Ĩ-regular

sequence, and we have (S̃/(Θ′)⊗eS (S̃/Ĩ) ∼= T/Isq, where Isq is the one defined in (1.2).

Applying Proposition 8 and [5, Proposition 1.1.5], we have the following.

Corollary 9. The complex P̃• ⊗eS S̃/(Θ′) is a minimal T -free resolution of T/Isq.

For a Borel fixed ideal I generated in one degree, Nagel and Reiner [11] constructed a

CW complex, which supports a minimal free resolution of Ĩ (or I, Isq). Note that if I is

generated in one degree then m〈i〉 = bi(m) for all m ∈ G(I), and P̃• is simpler.

Proposition 10 ([12, Proposition 4.9]). Let I be a Borel fixed ideal generated in one

degree. Then Nagel-Reiner description of a free resolution of Ĩ coincides with our P̃•.

4. Relation to Batzies-Welker theory

In [2], Batzies and Welker connected the theory of cellular resolutions of monomial
ideals with Forman’s discrete Morse theory ([8]).

Definition 11. A monomial ideal J is called shellable if there is a total order < on G(J)
satisfying the following condition.

(∗) For any m, m′ ∈ G(J) with m = m′, there is an m′′ ∈ G(J) such that m w m′′,

deg
(

lcm(m,m′′)
m

)
= 1 and lcm(m, m′′) divides lcm(m, m′).

For a Borel fixed ideal I, let < be the total order on G(Ĩ) = { m̃ | m ∈ G(I) } such that
m̃′ < m̃ if and only if m′ Â m in the lexicographic order on S with x1 Â x2 Â · · · Â xn.
In the rest of this section, < means this order.

Lemma 12. The order < makes Ĩ shellable.

The following construction is taken from [2, Theorems 3.2 and 4.3]. For the background
of their theory, the reader is recommended to consult the original paper.

For a non-empty subset σ ⊂ G(Ĩ), let m̃σ denote the largest element of σ with respect
to the order <, and set lcm(σ) := lcm{ m̃ | m̃ ∈ σ }.
Definition 13. We define a total order ≺σ on G(Ĩ) as follows. Set

Nσ := { (m̃σ)〈i〉 | 1 ≤ i < ν(mσ), (m̃σ)〈i〉 divides lcm(σ) },
where (m̃σ)〈i〉 denotes b-pol((mσ)〈i〉). For all m̃ ∈ Nσ and m̃′ ∈ G(Ĩ) \Nσ, define m̃ ≺σ m̃′.
The restriction of ≺σ to Nσ is set to be <, and the same is true for the restriction to

G(Ĩ) \Nσ.

Let X be the (#G(Ĩ) − 1)-simplex associated with 2G(eI) (more precisely, 2G(eI) \ {∅}).
Hence we freely identify σ ⊂ G(Ĩ) with the corresponding cell of the simplex X. Let

GX be the directed graph defined as follows. The vertex set of GX is 2G(eI) \ {∅}. For

∅ 6= σ, σ′ ⊂ G(Ĩ), there is an arrow σ → σ′ if and only if σ ⊃ σ′ and #σ = #σ′ + 1. For
σ = { m̃1, m̃2, . . . , m̃k } with m̃1 ≺σ m̃2 ≺σ · · · ≺σ m̃k (= m̃σ) and l ∈ N with 1 ≤ l < k, set
σl := { m̃k−l, m̃k−l+1, . . . , m̃k } and

u(σ) := sup{ l | ∃m̃ ∈ G(Ĩ) s.t. m̃ ≺σ m̃k−l and m̃| lcm(σl) }.



If u := u(σ) 6= −∞, we can define ñσ := min≺σ{ m̃ | m̃ divides lcm(σu) }. Let EX be the
set of edges of GX . We define a subset A of EX by

A := {σ ∪ {ñσ} → σ | u(σ) 6= −∞, ñσ 6∈ σ }.
It is easy to see that A is a matching, that is, every σ occurs in at most one edges of A.

We say ∅ 6= σ ⊂ G(Ĩ) is critical, if it does not occur in any edge of A.

We have the directed graph GA
X with the vertex set 2G(eI) \ {∅} (i.e., same as GX) and

the set of edges (EX \A)∪ {σ → τ | (τ → σ) ∈ A }. By the proof of [2, Theorem 3.2], we
see that the matching A is acyclic, that is, GA

X has no directed cycle. A directed path in
GA

X is called a gradient path.
The discrete Morse theory ([8]) gives a CW complex XA with the following conditions.

• There is a one-to-one correspondence between the i-cells of XA and the critical

i-cells of X (equivalently, the critical subsets of G(Ĩ) consisting of i+1 elements).
• XA is contractible, that is, homotopy equivalent to X.

The cell of XA corresponding to a critical cell σ of X is denoted by σA. By [2, Proposi-
tion 7.3], the closure of σA contains τA if and only if there is a gradient path from σ to τ .
See also Proposition 16 below and the argument before it.

Assume that ∅ 6= σ ⊂ G(Ĩ) is critical. Recall that m̃σ denotes the largest element of σ
with respect to <. Take mσ =

∏n
l=1 xal

l ∈ G(I) with m̃σ = b-pol(mσ), and set q := #σ−1.
Then there are integers i1, . . . , iq with 1 ≤ i1 < . . . < iq < ν(mσ) and

(4.1) σ = { (m̃σ)〈ir〉 | 1 ≤ r ≤ q } ∪ {m̃σ}
(see the proof of [2, Proposition 4.3]). Equivalently, we have σ = Nσ ∪ {m̃σ}. Set

jr := 1 +
∑ir

l=1 al for each 1 ≤ r ≤ q, and F̃σ := { (i1, j1), . . . , (iq, jq) }. Then (F̃σ, m̃σ)

is an admissible pair for Ĩ. Conversely, any admissible pair comes from a critical cell

σ ⊂ G(Ĩ) in this way. Hence there is a one-to-one correspondence between critical cells
and admissible pairs.

Let X i
A denote the set of all the critical subset σ ⊂ G(Ĩ) with #σ = i + 1, and for (not

necessarily critical) subsets σ, τ of G(Ĩ), let Pσ,τ denote the set of all the gradient paths
from σ to τ . For σ ∈ Xq

A of the form (4.1), e(σ) denotes a basis element with degree
deg(lcm(σ)) ∈ Zn×d. Set

Q̃q =
⊕

σ∈Xq
A

S̃ e(σ) (q ≥ 0).

The differential map Q̃q → Q̃q−1 sends e(σ) to
q∑

r=1

(−1)rxir,jr · e(σ \ {(m̃σ)〈ir〉})− (−1)q
∑

τ∈Xq−1
AP∈Pσ\{emσ},τ

m(P) · lcm(σ)

lcm(τ)
· e(τ),

(4.2)

where m(P) = ±1 is the one defined in [2, p.166].
The following is a direct consequence of [2, Theorem 4.3] (and [2, Remark 4.4]).

Proposition 14 (Batzies-Welker, [2]). Q̃• is a minimal free resolution of Ĩ, and has a
cellular structure supported by XA.



Theorem 15 ([12, Theorem 5.11]). Our description of P̃• (more precisely, the truncation

P̃≥1) coincides with the Batzies-Welker resolution Q̃•. That is, P̃• is a cellular resolution
supported by a CW complex XA, which is obtained by the discrete Morse theory.

First, note that the following hold.

(1) If σ is critical, so is σ \ { (m̃σ)〈ir〉 } for 1 ≤ r ≤ q.
(2) Let σ and τ be (not necessarily critical) cells with Pσ,τ 6= ∅. Then lcm(τ) divides

lcm(σ).
(3) Let σ ∈ Xq

A , τ ∈ Xq−1
A and assume that there is a gradient path σ → σ \ {m̃} =

σ0 → σ1 → · · · → σl = τ . Then #σl−1 = #τ + 1 = q + 1, #σi = q or q + 1 for
each i, and σi is not critical for all 0 ≤ i < l. Hence, if l ≥ 1, then m̃ must be m̃σ.

Next, we will show the following.

Proposition 16. Let σ, τ be critical cells with #σ = #τ + 1, and (F̃σ, m̃σ) and (F̃τ , m̃τ )

the admissible pairs corresponding to σ and τ respectively. Set F̃σ = { (i1, j1), . . . , (iq, jq) }
with i1 < · · · < iq. Then Pσ\{emσ},τ 6= ∅ if and only if there is some r ∈ B(F̃σ, m̃σ) with

(F̃τ , m̃τ ) = ((F̃σ)r, (m̃σ)〈ir〉). If this is the case, we have #Pσ\{emσ},τ = 1.

Sketch of Proof. Only if part follows from the above remark. Note that the second index

j of each xi,j ∈ S̃ restricts the choice of paths and it makes the proof easier.

Next, assuming F̃τ = (F̃σ)r and m̃τ = (m̃σ)〈ir〉 for some r ∈ B(F̃σ, m̃σ), we will construct
a gradient path from σ \ {m̃σ} to τ . For short notation, set m̃[s] := (m̃σ)〈is〉 and m̃[s,t] :=
((m̃σ)〈is〉)〈it〉. By (4.1), we have σ0 := (σ \ {m̃σ}) = { m̃[s] | 1 ≤ s ≤ q } and τ =
{ m̃[r,s] | 1 ≤ s ≤ q, s 6= r } ∪ {m̃[r]}. We can inductively construct a gradient path
σ0 → σ1 → · · · → σt → · · · σ2(q−r+1)r−2 as follows. Write t = 2pr + λ with t 6= 0,
0 ≤ p ≤ q − r, and 0 ≤ λ < 2r. For 0 < t ≤ 2(q − r), we set

σt =





σt−1 ∪ { m̃[q−p,s] } if λ = 2s− 1 for some 1 ≤ s ≤ r;

σt−1 \ { m̃[q−p+1,s] } if λ = 2s for some 0 < s < r;

σt \ { m̃[q−p+1] } if λ = 0,

where we set m̃[q+1,s] = m̃[s] for all s. In the case m̃[s,t] = m̃[s+1,t], it seems to cause a
problem, but skipping the corresponding part of path, we can avoid the problem. Since

r ∈ B(F̃σ, m̃σ), we have m̃[s,r] = m̃[r,s] for all s > r by Lemma 3 (iv). Hence

σ2(q−r) = { m̃[r+1,s] | 1 ≤ s < r } ∪ { m̃[r] } ∪ { m̃[r,s] | r < s ≤ q }.
Now for s with 0 < s ≤ r − 1, set σt with 2(q − r)r < t ≤ 2(q − r + 1)r − 2 to be
σt−1 ∪{ m̃[r,s] } if s is odd and otherwise σt−1 \ { m̃[r+1,s] }. Then we have σ2(q−r+1)r−2 = τ ,
and the gradient path σ ; τ .

The uniqueness of the path follows from elementally (but lengthy) argument. ¤

Sketch of Proof of Theorem 15. Recall that there is the one-to-one correspondence be-

tween the critical cells σ ⊂ G(Ĩ) and the admissible pairs (F̃σ, m̃σ). Hence, for each q, we

have the isomorphism Q̃q → P̃q induced by e(σ) 7−→ e(F̃σ, m̃σ).



By Proposition 16, if we forget “coefficients” (more precisely, ±1), the differential map

of Q̃• and that of P̃• are compatible with the maps e(σ) 7−→ e(F̃σ, m̃σ). So it is enough
to check the equality of the coefficients. But it follows from direct computation. ¤

Corollary 17 ([12, Corollary 5.12]). The free resolution P̃•⊗eS S̃/(Θ) (resp. P̃•⊗eS S̃/(Θ′))
of S/I (resp. T/Isq) is also a cellular resolution supported by XA. In particular, these
resolutions are Batzies-Welker type.

We say a CW complex is regular, if for all i the closure σ of any i-cell σ is homeomorphic
to an i-dimensional closed ball, and σ \ σ is the closure of the union of some (i− 1)-cells.
This is a natural condition especially in combinatorics.

Mermin [10] (see also Clark [6]) showed that the Eliahou-Kervaire resolution is cellular
and supported by a regular CW complex. Hence it is a natural question whether the CW

complex XA supporting our P̃• is regular. (Since the discrete Morse theory is an “existence
theorem” and XA is not unique, the correct statement might be “can be regular”.)

Theorem 18 ([13]). The CW complex XA of Theorem 15 is regular. In particular, our

resolution P̃• is supported by a regular CW complex.

Sketch of Proof. We define a finite poset PA as follows:

(i) As the underlying set, PA = {the cells of XA} ∪ {0̂}. Here 0̂ is the least element.
(ii) For cells σ and τ of XA, σ º τ in PA if and only if the closure of σ contains τ .

It suffices to show that PA is a CW poset in the sense of [4], and we can use [4,
Proposition 5.5]. We can easily check that PA satisfies the following condition.

• For σ, τ ∈ PA with σ Â τ and rank(σ) = rank(τ) + 2, there are exactly two
elements between σ and τ .

Now it remains to show that the interval [ 0̂, σ ] is shellable for all σ, but we can imitate
the argument of Clark [6]. In fact, [ 0̂, σ ] is EL shellable in the sense of [3]. ¤
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Example 19. Consider the Borel fixed ideal I = (x2, xy2, xyz, xyw, xz2, xzw). Then
b-pol(I) = (x1x2, x1y2y3, x1y2z3, x1y2w3, x1z2z3, x1z3w3), and easy computation shows that

the CW complex XA, which supports our resolutions P̃• of S̃/Ĩ and P̃• ⊗eS S̃/(Θ) of S/I,



is the one illustrated in Figure 1. The complex consists of a square pyramid and a
tetrahedron glued along trigonal faces of each. For a Borel fixed ideal generated in one
degree, any face of the Nagel-Reiner CW complex is a product of several simplices. Hence
a square pyramid can not appear in the case of Nagel and Reiner.

We remark that the Eliahou-Kervaire resolution of I is supported by the CW complex
illustrated in Figure 2. This complex consists of two tetrahedrons glued along edges of
each. These figures show visually that the description of the Eliahou-Kervaire resolution
and that of ours are really different.

Anyway, the minimal free resolution of I is of the form 0 → S2 → S8 → S11 → S6 → 0.

Theorem 20. If S/I is Cohen-Macaulay, the underlying space of the regular CW complex
XA is homeomorphic to a closed ball of dimension codim(I)− 1.

The prove Theorem 20, we show and use the fact that the order complex of the poset
PA is constructible (if S/I is Cohen-Macaulay). We also remark that the converse of
Theorem 20 does not hold. In fact, S/I is not Cohen-Macaulay in Example 19, while the
underlying space of XA is homeomorphic to a ball.
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