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1. INTRODUCTION

Let S := k[zy,...,z,] be a polynomial ring over a field k. For a monomial ideal
I C S, G(I) denotes the set of minimal (monomial) generators of I. We say a monomial
ideal I C S is Borel fived (or strongly stable), if m € G(I), z;jm and j < i imply
(xj/x;) - m € I. Borel fixed ideals are important, since they appear as the generic initial
ideals of homogeneous ideals (if char(k) = 0).

A squarefree monomial ideal [ is said to be squarefree strongly stable, if m € G(I),
x;lm, z; fm and j < ¢ imply (z;/z;) - m € I. Any monomial m € S with deg(m) = e has
a unique expression

(1.1) m:H%li with 1< <as<---<a, <n.
=1

Now we can consider the squarefree monomial

€

sq | |
m=— = Iai—i—i—l

=1

in a larger polynomial ring 7" = k[zq,...,zy]| with N > 0. If I C S is Borel fixed, then
(1.2) FF=(mM|meG))CT

is squarefree strongly stable. This operation plays a role in the shifting theory for simplicial
complexes (see [1]).

A minimal free resolution of a Borel fixed ideal I has been constructed by Eliahou
and Kervaire [7]. While the minimal free resolution is unique up to isomorphism, its
“description” depends on the choice of a free basis, and further analysis of the minimal
free resolution is still an interesting problem. See, for example, [2, 6, 9, 10, 11]. In this
paper, we will give a new approach which is applicable to both [ and 7*9. Our main tool
is the “alternative polarization” b-pol(I) of I.

Let B
be the polynomial ring, and set

O:={m1—x;|1<i<n 2<j<d}cCS&.
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Then there is an isomorphism S/(©) 2 § induced by S 3 z;; — x; € S. Throughout

this paper, S and © are used in this meaning.
Assume that m € G(I) has the expression (1.1). If deg(m) (= e) < d, we set

(1.3) b-pol(m Hxa” €S

Note that b-pol(m) is a squarefree monomial. If there is no danger of confusion, b-pol(m)
is denoted by m. If m =[], =", then we have

=1 z’

m (= b-pol(m)) = H Ti; € S, where b; = Zal.
1<i<n I=1
bi—1+1<5<b;
If deg(m) < d for all m € G(I), we set
b-pol(I) := (b-pol(m) | m € G(I)) C S.

The second author ([14]) showed that if I is Borel fixed, then I := b-pol(I) is a “polar-
ization” of I, that is, © forms an S/I-regular sequence with the natural isomorphism

S/(I+(©)) =~ S/1.

Note that b-pol(—) does not give a polarization for a general monomial ideal. We can
obtain 9 of a Borel fixed ideal I through b-pol(/), see Proposition 8 below.

In this paper, we will construct a minimal S-free resolution P, of S / f which is analogous
to the Eliahou-Kervaire resolution of S / I. However, their description can not be lifted to
I, and we need modification. Clearly, P, ®z ) / (©) gives the minimal free resolution of
S / I. Similar construction also works for T'/I*% (Corollary 9). In some sense, our results
are generalizations of those in [11], which concerns the case [ is generated in one degree
(i.e., all elements of G(I) have the same degree).

In [2], Batzies and Welker tried to construct a minimal free resolutions of a monomial
ideals J using Forman’s discrete Morse theory ([8]). If J is shellable (also called linear
quotients in literature), their method works, and we have a Batzies- Welker type minimal
free resolution. However, it is very hard to compute their resolution explicitly.

A Borel fixed ideal I and its polarization I = b-pol([) is shellable. We will show that
our resolution P, of S/I and the induced resolutions of S/I and T'/I*% are Batzies-Welker
type. In particular, these resolutions are cellular. As far as the author knows, an explicit
description of a Batzies-Welker type resolution of a general Borel fixed ideal has never
been obtained before. Finally, we show that the CW complex supporting P, is regular.

2. THE ELIAHOU-KERVAIRE TYPE RESOLUTION OF S/ b-pol([)

Throughout the rest of the paper, I is a Borel fixed monomial ideal with degm < d
for all m € G(I). For the definitions of the alternative polarization b-pol(I) of I and
related concepts, consult the previous section. For a monomial m = [[I_, /" € S, set

u(m) ;= min{i | a; > 0} and v(m) := max{i | a; > 0}. In [7], it is shown that any



monomial m € [ has a unique expression m = m; -my with v(m;) < p(my) and my € G(I).
Following [7], we set g(m) := my. For ¢ with i < v(m), let

b;(m) = (x;/zk) - m, where k :=min{j | a; >0, j > i}.
Since [ is Borel fixed, m € [ implies b;(m) € I.

Definition 1 ([12, Definition 2.1]). For a finite subset F= {(t1,71), (12, 32), - - -, (igs Jq) }
of N x N and a monomial m = [[5_, ., = [[\_, 27" € G(I) with 1 < a; < ap < --- <
. < n, we say the pair (F,m) is admissible (for b-pol(I)), if the following are satisfied:
(a) 1 <idy <y < -+ < iy <v(m),
(b) j, = max{l| oy <i, } + 1 (equivalently, j, = 1+ 31", a;) for all r.

For m € G(I), the pair (), m) is also admissible.

Lemma 2. Let (F,m) be an admissible pair with F = { (i1, j1), ..., (iq,jq) } and m =
[[z{" € G(I). Then we have the following.

(i) j1 <joe <--- < g

(ii) xgj, - b-pol(b;.(m)) = z;, ;. - b-pol(m), where k = min{! | > i,,a; > 0}.

For m € G(I) and an integer i with 1 < i < v(m), set m¢; := g(b;(m)) and my; =
b-pol(m;y). If © > v(m), we set m;y := m for the convenience. In the situation of Lemma 2,
m;,y divides z; ; -mforall 1 <r <gq.

For F' = { (i1, 71),-.-, (ig, Jg) } and 7 with 1 < r < ¢, set F, := F \ { (4, J,) }, and for
an admissible pair (F',m) for b-pol(]),

B(F,m) := {r]| (F,,M,) is admissible }.

Lemma 3. Let (F,m) be as in Lemma 2.
(i) For all v with 1 <r < q, (F,,m) is admissible.
(ii) We always have q € B(f, m).
(i) Assume that (ﬁr,fﬁ@H) satisfies the condition (a) of Definition 1. Then r €
B(ﬁ7 m) if and only if either j,. < j.41 orr =q.
(iv) For r,s with 1 < r < s < q and j, < js, we have b; (b;,(m)) = b, (b;.(m)) and

hence (Mg,) )y = (Meiy)gir)-
(v) Forr,s with1 <r < s <q and j, = js, we have b; (m) = b; (b;,(m)) and hence
My = (Meio))tir)-
Example 4. Let I C S = k[xy, 29, 23, 4] be the smallest Borel fixed ideal containing
m = x2z374. In this case, mi;, = bi(m’) for all m" € G(I). Hence, we have m, = 31y,

M) = zizs24 and mg = zia3. The following 3 pairs are all admissible.

o (F,m)=({(1,3),(2,3),(3,4) }, 211012735 44)

° (ﬁ:z, mey) = ({(1,3),(3,4) }, 21,1 T1,2 T23 Ta4)

o (F3,m) = ({(1,3),(2,3) }, 211212733 734)
(For this F, i, = r holds and the reader should be careful). However, (ﬁl,rﬁu)) =
({(2,3),(3,4) }, 211 12213 x44) does not satisfy the condition (b) of Definition 1. Hence

B(F, /) = {2,3}.



The diagrams of (admissible) pairs are very useful for better understanding. To draw
a diagram of (F,m), we put a white square in the (i, j)-th position if (i,7) € F and
the black square there if z;; divides m. If F is maximal among F’ such that (F’, ) is
admissible, then the diagram of (F m) forms a “right side down stairs” (see the leftmost
and rightmost diagrams of the table below). If (ﬁ ,m) is admissible but F is not maximal,
then some white squares are removed from the diagram for the maximal case. If the pair
is admissible, there is a unique black square in each column and this is the “lowest” of
the squares in the column.

If (F,m) is admissible and r € B(F, m), then we can get the diagram of (F,, m m(;,y) from

that of (f ,m) by the following procedure.

(i) Remove the (sole) black square in the j,-th column.
(ii) Replace the white square in the (i,, j,)-th position by a black one.
(iii) If m;,y # by, (m), erase some squares from the lower-right of the diagram.

J J J J
123 4 1234 123 4 1 2 3 4
1 1 1 1
.2 .2 .2 .2
L3 L3 3 3
4 4 4 4
(F,m) (Fy, fpy) (Fy, M) (F3, M)
admissible not admissible admissible admissible

Next let I’ be the smallest Borel fixed ideal containing m = zizs3ry and 22z, For
F=1{(1,3),(2,3),(3,4) }, (F, ) is admissible again. However Mg = z7, in this time,
and (ﬁg, mey) = ({(1,3),(3,4) }, 21,1 21,2 T2 3) is no longer admissible. In fact, it does not
satisfy (a) of Definition 1. Hence B(F,m) = {3} for b-pol(I").

For FF = {iy,...,i,} C N with 4, < --- <4, and m € G(I), Eliahou and Kervaire
([7]) called the pair (¥, m) admissible for I, if i, < v(m). In this case, there is a unique
sequence ji,. .., j, such that (F,m) is admissible for I, where F' = { (i1, j1), -  (igs Jq) T
In this way, there is a one-to-one correspondence between the admissible pairs for I and
those of I. As the free summands of the Eliahou-Kervaire resolution of I are indexed by
the admissible pairs for I, our resolution of I are indexed by the admissible pairs for /.

We will define a Z™*_graded chain complex P, of free S-modules as follows. First, set
Po — 5. For each q > 1, we set

A, := the set of admissible pairs (f, m) for b-pol(/) with #ﬁ =q,

and
P= @ SeF.m),

(F,m)eAy—1



where e(F, ) is a basis element with

deg (e(ﬁ,rﬁ)) = deg [ m x H x| €z
(irojr)EF
We define the g—homomorphism 0 : ]Bq — f’q_l for ¢ > 2 so that e(ﬁfﬁ) with F =
{(t1,71),- -, (g, Jq)} is sent to
T o~ T xir:jr ) Fﬁ o~

S B - Y (1 B ),

1<r<q reB(F,m) {ir)
and §: P, — By by e(d,m) — m € S =R, Clearly, 0 is a Z"*?-graded homomorphism.

Set

B B0, 0B OB

Theorem 5 ([12, Theorem 2.6]). The complex P, is a Z™*-graded minimal g—free reso-
lution for S/ b-pol(I).

Sketch of Proof. Calculation using Lemma 3 shows that 0 o d(e(F,m)) = 0 for each ad-
missible pair (F,m). That is, P, is a chain complex.

Let I = (my,...,m;) with my > --- > m;, and set I, :== (my,...,m,). Here > is the
lexicographic order with z1 > @ > -+ = x,,. Then I, are also Borel fixed. The acyclicity
of the complex P can be shown inductively by means of mapping cones. 0

3. APPLICATIONS AND REMARKS

Let I C S be a Borel fixed ideal, and © C S the sequence defined in Introduction. As
remarked before, there is a one-to-one correspondence between the admissible pairs for 1
and those for I, and if (F, m) corresponds to (F,m) then #F = #F. Hence we have

(3.1) Tor? (k, I) = Tor? (k, I)

as Z-graded k-vector spaces for all ¢, where S and S are considered to be Z-graded. Of
course, this is clear, if one knows the fact that I is a polarization of I ([14, Theorem 3.4]).

Conversely, we can show that I is a polarization by the equation (3.1) and [11, Lemma 6.9].
The next result also follows from [11, Lemma 6.9].

Corollary 6. P, Rz S/(©) is a minimal S-free resolution of S/I.

Remark 7. The correspondence between the admissible pairs for I and those for IN, does
not give a chain map between the Eliahou-Kervaire resolution and our P, ®5 S/(©). In
this sense, two resolutions are not the same. See Example 19 below.
Let T'=klzy,...,Zptq—1] be a polynomial ring, and
O = {2y — Ty |1 <i<n, 1<j<d}
a subset of S. Then the ring homomorphism S — T with Z;j > Tiyj—1 induces the
isomorphism S/(©') = T.



Proposition 8 ([14, Proposition 4,1}). With the above notation, ©" forms an g/f—regular
sequence, and we have (S/(©') @z (S/1) = T/I*9, where I*9 is the one defined in (1.2).

Applying Proposition 8 and [5, Proposition 1.1.5], we have the following,.
Corollary 9. The complez P, ®3 g/(@’) is a minimal T-free resolution of T'/1%9.

For a Borel fixed ideal I generated in one degree, Nagel and Reiner [11] constructed a
CW complex, which supports a minimal free resolution of I (or I, I*%). Note that if I is
generated in one degree then m;, = b;(m) for all m € G(I), and P, is simpler.

Proposition 10 ([12, Prop081t10n 4.9]). Let I be a Borel fived ideal generated in one
degree. Then Nagel-Reiner description of a free resolution of I coincides with our P,.

4. RELATION TO BATZIES-WELKER THEORY

In [2], Batzies and Welker connected the theory of cellular resolutions of monomial
ideals with Forman’s discrete Morse theory ([8]).

Definition 11. A monomial ideal J is called shellable if there is a total order C on G(J)
satisfying the following condition.
() For any m,m’ € G(J) with m O m’, there is an m” € G(J) such that m J m”,

deg <lcm(fr::m").> = 1 and lem(m, m”) divides lem(m, m’).

For a Borel fixed ideal I, let C be the total order on G(I) = {m | m € G(I) } such that
m’ C m if and only if m” > m in the lexicographic order on S with x1 > 9 > -+ = x,,.
In the rest of this section, C means this order.

Lemma 12. The order — makes I shellable.

The following construction is taken from [2, Theorems 3.2 and 4.3]. For the background
of their theory, the reader is recommended to consult the original paper.

For a non-empty subset o C G(I), let m, denote the largest element of o with respect
to the order C, and set lem(o) :=lem{m | m e o }.

Definition 13. We define a total order <, on G(I) as follows. Set
Ny :={(Mm,) | 1 <i<v(m,), (Mg)y divides lem(o) },

where (m,)(; denotes b-pol((m,)y). For all m € N, and m’ € G(I )\ N, define m <, m
The restrlctlon of <, to N, is set to be , and the same is true for the restriction to

G(I)\ N,.

Let X be the (#G(I) — 1)-simplex associated with 26(I) (more precisely, 26(0) \ {0}).
Hence we freely identify ¢ C G(I) with the corresponding cell of the simplex X. Let
Gx be the directed graph defined as follows. The vertex set of Gy is 2¢() \ {#}. For

0 +# 0,0 CG()therelsanarrowaﬁa1fandonly1f0'30 and #o = #0’' + 1. For
U—{ml,mg,.. , Mg } with my <, my <, -+ <, Mg (=m,) and [ € Nwith 1 <1 <k, set
op = {Mp_y,Mg_141,...,M; } and

u(o) == sup{l| Im € G(I) s.t. m <, Mmy_; and M| lem(o;) }.



If u:=wu(o) # —o0, we can define n, := min_{m | m divides lem(o,) }. Let Ex be the
set of edges of Gx. We define a subset A of Ex by

A:={oU{n,} = o |u(o) #—oo,n, €0o}.
It is easy to see that A is a matching, that is, every o occurs in at most one edges of A.

We say ) # o C G(I) is critical, if it does not occur in any edge of A.

We have the directed graph G4 with the vertex set 2¢() \ {@} (i.e., same as Gx) and
the set of edges (Ex \ A)U{o — 7| (1 — o) € A}. By the proof of [2, Theorem 3.2], we
see that the matching A is acyclic, that is, G§ has no directed cycle. A directed path in
G4 is called a gradient path.

The discrete Morse theory ([8]) gives a CW complex X 4 with the following conditions.

e There is a one-to-one correspondence between the i-cells of X4 and the critical

i-cells of X (equivalently, the critical subsets of G(I) consisting of i + 1 elements).
e X, is contractible, that is, homotopy equivalent to X.

The cell of X4 corresponding to a critical cell o of X is denoted by 4. By [2, Proposi-
tion 7.3], the closure of o4 contains 74 if and only if there is a gradient path from o to 7.
See also Proposition 16 below and the argument before it.

Assume that § # o € G(I) is critical. Recall that , denotes the largest element of &
with respect to . Take m, = [],_, ;" € G(I) with m, = b-pol(m,), and set ¢ := #o0 — 1.
Then there are integers iy, ...,i, with 1 <4; < ... < i, <v(m,) and
(4.1) o={(Mg), |1 <r<q}ju{m}

(see the proof of [2, Proposition 4.3]). Equivalently, we have ¢ = N, U {m,}. Set
Jri=1+4 Z;’”:l @ for each 1 < r < ¢, and F, := {(i1,51),- -, (ig, Jg) }- Then (ﬁg, m,)
is an admissible pair for I Conversely, any admissible pair comes from a critical cell

o C G(I) in this way. Hence there is a one-to-one correspondence between critical cells
and admissible pairs.

Let X? denote the set of all the critical subset o € G(I) with #¢ = i+ 1, and for (not
necessarily critical) subsets o, 7 of G (f ), let P, denote the set of all the gradient paths
from o to 7. For 0 € X% of the form (4.1), e(o) denotes a basis element with degree

deg(lem(o)) € Z™*¢. Set
Q=P Selo)  (a20).
UEXZ
The differential map @q — éq_l sends e(o) to

q

(4.2) 2 (0wl \ {(Mo)n}) = (=1 Y m(P) - ) oy

r=1 TeXf;l lCHl(’T)

Pe?o\{rﬁg},r

where m(P) = %1 is the one defined in |2, p.166].
The following is a direct consequence of [2, Theorem 4.3] (and [2, Remark 4.4]).

Proposition 14 (Batzies-Welker, [2]). Q. is a minimal free resolution of I, and has a
cellular structure supported by X 4.



Theorem 15 ([12, Theorem 5.11]). Our descmptzon ofP (more precisely, the truncation

P>1) coincides with the Batzies-Welker resolution Q That 1s, ]5. 1s a cellular resolution
supported by a CW complexr X 4, which is obtained by the discrete Morse theory.

First, note that the following hold.
(1) If o is critical, so is o \ { (M), } for 1 <r < q.
(2) Let o and 7 be (not necessarily critical) cells with P, , # @&. Then lem(7) divides
lem(o).
(3) Let 0 € X% , 7 € X% " and assume that there is a gradient path 0 — ¢\ {m} =
og — 0y — -+ — 0, =7. Then #0, 1 =#17+1=q+ 1, #0, =qor ¢+ 1 for
each i, and o, is not critical for all 0 < ¢ < [. Hence, if [ > 1, then m must be m,.

Next, we will show the following.

Proposition 16. Let 0,7 be critical cells with #0 = #7 + 1, and (]*N}, m,) and (ﬁT, m,)
the admissible pairs corresponding to o and T respectively. Set E, = {(t1,71), -+, (ig: Jg) }
with iy < -+ <iq. Then Po\(m,1,r # D if and only if there is some r € B(ﬁg, m,) with
(F,,m,) = (F))r, (My) iy ). If this is the case, we have #Px m,1,- = 1.

Sketch of Proof. Only if part follows from the above remark. Note that the second index
jofeach z;; € S restricts the choice of paths and it makes the proof easier.
Next, assuming F, = (F,,), and m, = (M, )i,y for some r € B(Fo, m, ), we will construct
a gradient path from o \ {m,} to 7. For short notation, set Mg 1= (Mgy)(;,) and Mgy =
((ma)@ V). By (4.1), we have o9 := (0 \ {m,}) = {mg | 1 < s < ¢} and 7 =
mps | 1 <5 < g5 # 7“} U {mpy}. We can inductively construct a gradient path
agg — 01 — <+ — 0y — - Oyg—rt1)r—2 as follows. Write t = 2pr + X with ¢ # 0,
0<p<gq-—r, andO§A<2r. For 0 <t <2(q—r), we set

o1 U{mMpg_pq } if A\=2s—1 for some 1 <s<r;

0y = Q 0t—1 \ { Mig—ps1,6 } if A =2s for some 0 < s < 7;
Ut\{m[qﬂﬂrl}} if A =0,
where we set M4 = myg for all s. In the case my ) = M1y, it seems to cause a

problem, but skipping the corresponding part of path, we can avoid the problem. Since
r € B(F,,m,), we have my,,j = m. for all s > 7 by Lemma 3 (iv). Hence

O'Q(q_T):{ﬁ’i[»,‘+178} |1§S<T}U{r?l[r]}U{l’T1[r7s]‘7‘<S§q}.

Now for s with 0 < s < r — 1, set oy with 2(¢q —r)r <t < 2(¢ —r + 1)r — 2 to be
o1 U{mpq } if s is odd and otherwise ;1 \ { Mj11,4 }. Then we have oag—ri1)r—2 = 7,
and the gradient path o ~» 7.

The uniqueness of the path follows from elementally (but lengthy) argument. O

Sketch of Proof of Theorem 15. Recall that there is the one-to-one correspondence be-
tween the critical cells 0 C G(~I ) and the admissible pairs (F,,m,). Hence, for each ¢, we
have the isomorphism @), — P, induced by e(o) — e(F,, m,).



By Proposition 16, if we forget “coefficients” (more precisely, +1), the differential map

of Q. and that of P, are compatible with the maps e(c) — e(F,, M,). So it is enough
to check the equality of the coefficients. But it follows from direct computation. O

Corollary 17 ([12, Corollary 5.12]). The free resolution ﬁ.@gg/(Q) (resp. ﬁ.®§§/(®’))
of S/I (resp. T/I*%) is also a cellular resolution supported by X . In particular, these
resolutions are Batzies- Welker type.

We say a CW complex is regular, if for all ¢ the closure @ of any i-cell ¢ is homeomorphic
to an i-dimensional closed ball, and & \ o is the closure of the union of some (i — 1)-cells.
This is a natural condition especially in combinatorics.

Mermin [10] (see also Clark [6]) showed that the Eliahou-Kervaire resolution is cellular
and supported by a regular CW complex. Hence it is a natural question whether the CW
complex X 4 supporting our P, is regular. (Since the discrete Morse theory is an “existence
theorem” and X4 is not unique, the correct statement might be “can be regular”.)

Theorem 18 ([13]). The CW complex X 4 of Theorem 15 is reqular. In particular, our
resolution P, is supported by a reqular CW complex.

Sketch of Proof. We define a finite poset P4 as follows:

(i) As the underlying set, Py = {the cells of X4} U {0}. Here 0 is the least element.
(ii) For cells o and 7 of X4, 0 = 7 in P, if and only if the closure of o contains 7.

It suffices to show that P, is a CW poset in the sense of [4], and we can use [4,
Proposition 5.5]. We can easily check that P4 satisfies the following condition.
e For 0,7 € P4 with ¢ > 7 and rank(c) = rank(7) + 2, there are exactly two
elements between o and 7.

Now it remains to show that the interval [0, o] is shellable for all o, but we can imitate
the argument of Clark [6]. In fact, [0, o] is EL shellable in the sense of [3]. O

rTyw TZW
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TYz

FIGURE 1 FIGURE 2

Example 19. Consider the Borel fixed ideal I = (2%, xy?, xyz, xyw, 2%, xzw). Then
b-pol(1) = (z122, T1Y2y3, T1Y223, T1YoWs3, T12223, 1’12321)3) and ‘easy computation shows that
the CW complex X 4, which supports our resolutions P, of S / I and P, ®z 3 S /(©) of S/I,



is the one illustrated in Figure 1. The complex consists of a square pyramid and a
tetrahedron glued along trigonal faces of each. For a Borel fixed ideal generated in one
degree, any face of the Nagel-Reiner CW complex is a product of several simplices. Hence
a square pyramid can not appear in the case of Nagel and Reiner.

We remark that the Eliahou-Kervaire resolution of I is supported by the CW complex
illustrated in Figure 2. This complex consists of two tetrahedrons glued along edges of
each. These figures show visually that the description of the Eliahou-Kervaire resolution
and that of ours are really different.

Anyway, the minimal free resolution of I is of the form 0 — $% — 8% — St — §¢ 0.

Theorem 20. IfS/I is Cohen-Macaulay, the underlying space of the regular CW complex
X4 is homeomorphic to a closed ball of dimension codim([) — 1.

The prove Theorem 20, we show and use the fact that the order complex of the poset
Py is constructible (if S/I is Cohen-Macaulay). We also remark that the converse of
Theorem 20 does not hold. In fact, S/ is not Cohen-Macaulay in Example 19, while the
underlying space of X4 is homeomorphic to a ball.
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