FREE RESOLUTIONS OF (VARIANTS OF) BOREL FIXED IDEALS AND DISCRETE MORSE THEORY

KOHJI YANAGAWA

This report is a survey of a joint work with Dr. Ryota Okazaki of Osaka University and JST CREST. The detailed versions $([12,13])$ will be submitted for publication elsewhere.

1. Introduction

Let $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field \mathbb{k}. For a monomial ideal $I \subset S, G(I)$ denotes the set of minimal (monomial) generators of I. We say a monomial ideal $I \subset S$ is Borel fixed (or strongly stable), if $\mathrm{m} \in G(I), x_{i} \mid \mathrm{m}$ and $j<i$ imply $\left(x_{j} / x_{i}\right) \cdot \mathrm{m} \in I$. Borel fixed ideals are important, since they appear as the generic initial ideals of homogeneous ideals (if $\operatorname{char}(\mathbb{k})=0$).

A squarefree monomial ideal I is said to be squarefree strongly stable, if $\mathrm{m} \in G(I)$, $x_{i} \mid \mathrm{m}, x_{j} \nmid \mathrm{~m}$ and $j<i$ imply $\left(x_{j} / x_{i}\right) \cdot \mathrm{m} \in I$. Any monomial $\mathrm{m} \in S$ with $\operatorname{deg}(\mathrm{m})=e$ has a unique expression

$$
\begin{equation*}
\mathrm{m}=\prod_{i=1}^{e} x_{\alpha_{i}} \quad \text { with } \quad 1 \leq \alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{e} \leq n . \tag{1.1}
\end{equation*}
$$

Now we can consider the squarefree monomial

$$
\mathrm{m}^{\mathrm{sq}}=\prod_{i=1}^{e} x_{\alpha_{i}+i-1}
$$

in a larger polynomial ring $T=\mathbb{k}\left[x_{1}, \ldots, x_{N}\right]$ with $N \gg 0$. If $I \subset S$ is Borel fixed, then

$$
\begin{equation*}
I^{\mathrm{sq}}:=\left(\mathrm{m}^{\mathrm{sq}} \mid \mathrm{m} \in G(I)\right) \subset T \tag{1.2}
\end{equation*}
$$

is squarefree strongly stable. This operation plays a role in the shifting theory for simplicial complexes (see [1]).

A minimal free resolution of a Borel fixed ideal I has been constructed by Eliahou and Kervaire [7]. While the minimal free resolution is unique up to isomorphism, its "description" depends on the choice of a free basis, and further analysis of the minimal free resolution is still an interesting problem. See, for example, $[2,6,9,10,11]$. In this paper, we will give a new approach which is applicable to both I and $I^{\text {sq }}$. Our main tool is the "alternative polarization" b-pol (I) of I.

Let

$$
\widetilde{S}:=\mathbb{k}\left[x_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq d\right]
$$

be the polynomial ring, and set

$$
\Theta:=\left\{x_{i, 1}-x_{i, j} \mid 1 \leq i \leq n, 2 \leq j \leq d\right\} \subset \widetilde{S} .
$$

The author is partially supported by Grant-in-Aid for Scientific Research (c) (no.22540057).

Then there is an isomorphism $\widetilde{S} /(\Theta) \cong S$ induced by $\widetilde{S} \ni x_{i, j} \longmapsto x_{i} \in S$. Throughout this paper, \widetilde{S} and Θ are used in this meaning.

Assume that $\mathrm{m} \in G(I)$ has the expression (1.1). If $\operatorname{deg}(\mathrm{m})(=e) \leq d$, we set

$$
\begin{equation*}
\mathrm{b}-\mathrm{pol}(\mathrm{~m})=\prod_{i=1}^{e} x_{\alpha_{i}, i} \in \widetilde{S} . \tag{1.3}
\end{equation*}
$$

Note that $\mathrm{b}-\mathrm{pol}(\mathrm{m})$ is a squarefree monomial. If there is no danger of confusion, $\mathrm{b}-\mathrm{pol}(\mathrm{m})$ is denoted by $\widetilde{\mathrm{m}}$. If $\mathrm{m}=\prod_{i=1}^{n} x_{i}^{a_{i}}$, then we have

$$
\widetilde{\mathrm{m}}(=\mathrm{b}-\operatorname{pol}(\mathrm{m}))=\prod_{\substack{1 \leq i \leq n \\ b_{i-1}+1 \leq j \leq b_{i}}} x_{i, j} \in \widetilde{S}, \quad \text { where } \quad b_{i}:=\sum_{l=1}^{i} a_{l} .
$$

If $\operatorname{deg}(\mathrm{m}) \leq d$ for all $\mathrm{m} \in G(I)$, we set

$$
\mathrm{b}-\operatorname{pol}(I):=(\mathrm{b}-\operatorname{pol}(\mathrm{m}) \mid \mathrm{m} \in G(I)) \subset \widetilde{S} .
$$

The second author ([14]) showed that if I is Borel fixed, then $\widetilde{I}:=\mathrm{b}-\operatorname{pol}(I)$ is a "polarization" of I, that is, Θ forms an $\widetilde{S} / \widetilde{I}$-regular sequence with the natural isomorphism

$$
\widetilde{S} /(\widetilde{I}+(\Theta)) \cong S / I
$$

Note that b-pol(-) does not give a polarization for a general monomial ideal. We can obtain $I^{\text {sq }}$ of a Borel fixed ideal I through b-pol (I), see Proposition 8 below.

In this paper, we will construct a minimal \widetilde{S}-free resolution $\widetilde{P} \bullet$ of $\widetilde{S} / \widetilde{I}$, which is analogous to the Eliahou-Kervaire resolution of S / I. However, their description can not be lifted to \widetilde{I}, and we need modification. Clearly, $\widetilde{P} \bullet \otimes_{\widetilde{S}} \widetilde{S} /(\Theta)$ gives the minimal free resolution of S / I. Similar construction also works for $T / I^{\text {sq }}$ (Corollary 9). In some sense, our results are generalizations of those in [11], which concerns the case I is generated in one degree (i.e., all elements of $G(I)$ have the same degree).

In [2], Batzies and Welker tried to construct a minimal free resolutions of a monomial ideals J using Forman's discrete Morse theory ([8]). If J is shellable (also called linear quotients in literature), their method works, and we have a Batzies-Welker type minimal free resolution. However, it is very hard to compute their resolution explicitly.

A Borel fixed ideal I and its polarization $\widetilde{I}=\mathrm{b}-\operatorname{pol}(I)$ is shellable. We will show that our resolution \widetilde{P}. of $\widetilde{S} / \widetilde{I}$ and the induced resolutions of S / I and $T / I^{\text {sq }}$ are Batzies-Welker type. In particular, these resolutions are cellular. As far as the author knows, an explicit description of a Batzies-Welker type resolution of a general Borel fixed ideal has never been obtained before. Finally, we show that the CW complex supporting $\widetilde{P}_{\mathbf{0}}$ is regular.

2. The Eliahou-Kervaire type resolution of $\widetilde{S} / \mathrm{b}-\mathrm{pol}(I)$

Throughout the rest of the paper, I is a Borel fixed monomial ideal with $\operatorname{deg} \mathrm{m} \leq d$ for all $\mathrm{m} \in G(I)$. For the definitions of the alternative polarization $\mathrm{b}-\mathrm{pol}(I)$ of I and related concepts, consult the previous section. For a monomial $\mathrm{m}=\prod_{i=1}^{n} x_{i}^{a_{i}} \in S$, set $\mu(\mathrm{m}):=\min \left\{i \mid a_{i}>0\right\}$ and $\nu(\mathrm{m}):=\max \left\{i \mid a_{i}>0\right\}$. In [7], it is shown that any
monomial $\mathrm{m} \in I$ has a unique expression $\mathrm{m}=\mathrm{m}_{1} \cdot \mathrm{~m}_{2}$ with $\nu\left(\mathrm{m}_{1}\right) \leq \mu\left(\mathrm{m}_{2}\right)$ and $\mathrm{m}_{1} \in G(I)$. Following [7], we set $g(\mathrm{~m}):=\mathrm{m}_{1}$. For i with $i<\nu(\mathrm{m})$, let

$$
\mathfrak{b}_{i}(\mathrm{~m})=\left(x_{i} / x_{k}\right) \cdot \mathrm{m}, \text { where } k:=\min \left\{j \mid a_{j}>0, j>i\right\} .
$$

Since I is Borel fixed, $\mathrm{m} \in I$ implies $\mathfrak{b}_{i}(\mathrm{~m}) \in I$.
Definition 1 ([12, Definition 2.1]). For a finite subset $\widetilde{F}=\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{q}, j_{q}\right)\right\}$ of $\mathbb{N} \times \mathbb{N}$ and a monomial $\mathrm{m}=\prod_{i=1}^{e} x_{\alpha_{i}}=\prod_{i=1}^{n} x_{i}^{a_{i}} \in G(I)$ with $1 \leq \alpha_{1} \leq \alpha_{2} \leq \cdots \leq$ $\alpha_{e} \leq n$, we say the pair ($\left.\widetilde{F}, \widetilde{\mathrm{~m}}\right)$ is admissible (for b-pol (I)), if the following are satisfied:
(a) $1 \leq i_{1}<i_{2}<\cdots<i_{q}<\nu(\mathrm{m})$,
(b) $j_{r}=\max \left\{l \mid \alpha_{l} \leq i_{r}\right\}+1$ (equivalently, $j_{r}=1+\sum_{l=1}^{i_{r}} a_{l}$) for all r.

For $\mathrm{m} \in G(I)$, the pair $(\emptyset, \widetilde{\mathrm{m}})$ is also admissible.
Lemma 2. Let $(\widetilde{F}, \widetilde{\mathrm{~m}})$ be an admissible pair with $\widetilde{F}=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{q}, j_{q}\right)\right\}$ and $\mathrm{m}=$ $\prod x_{i}^{a_{i}} \in G(I)$. Then we have the following.
(i) $j_{1} \leq j_{2} \leq \cdots \leq j_{q}$.
(ii) $x_{k, j_{r}} \cdot \mathbf{b - p o l}\left(\mathfrak{b}_{i_{r}}(\mathrm{~m})\right)=x_{i_{r}, j_{r}} \cdot \mathbf{b}-\operatorname{pol}(\mathrm{m})$, where $k=\min \left\{l \mid l>i_{r}, a_{l}>0\right\}$.

For $\mathrm{m} \in G(I)$ and an integer i with $1 \leq i<\nu(\mathrm{m})$, set $\mathrm{m}_{\langle i\rangle}:=g\left(\mathfrak{b}_{i}(\mathrm{~m})\right)$ and $\widetilde{\mathrm{m}}_{\langle i\rangle}:=$ b-pol $\left(\mathrm{m}_{\langle i\rangle}\right)$. If $i \geq \nu(\mathrm{m})$, we set $\mathrm{m}_{\langle i\rangle}:=\mathrm{m}$ for the convenience. In the situation of Lemma 2 , $\widetilde{\mathrm{m}}_{\left\langle i_{r}\right\rangle}$ divides $x_{i_{r}, j_{r}} \cdot \widetilde{\mathrm{~m}}$ for all $1 \leq r \leq q$.

For $\widetilde{F}=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{q}, j_{q}\right)\right\}$ and r with $1 \leq r \leq q$, set $\widetilde{F}_{r}:=\widetilde{F} \backslash\left\{\left(i_{r}, j_{r}\right)\right\}$, and for an admissible pair $(\widetilde{F}, \widetilde{\mathrm{~m}})$ for $\mathrm{b}-\operatorname{pol}(I)$,

$$
B(\widetilde{F}, \widetilde{\mathbf{m}}):=\left\{r \mid\left(\widetilde{F}_{r}, \widetilde{\mathbf{m}}_{\left\langle i_{r}\right\rangle}\right) \text { is admissible }\right\} .
$$

Lemma 3. Let $(\widetilde{F}, \widetilde{\mathrm{~m}})$ be as in Lemma 2.
(i) For all r with $1 \leq r \leq q,\left(\widetilde{F}_{r}, \widetilde{\mathrm{~m}}\right)$ is admissible.
(ii) We always have $q \in B(\widetilde{F}, \widetilde{\mathrm{~m}})$.
(iii) Assume that $\left(\widetilde{F}_{r}, \widetilde{\mathbf{m}}_{\left\langle i_{r}\right\rangle}\right)$ satisfies the condition (a) of Definition 1. Then $r \in$ $B(\widetilde{F}, \widetilde{\mathfrak{m}})$ if and only if either $j_{r}<j_{r+1}$ or $r=q$.
(iv) For r, s with $1 \leq r<s \leq q$ and $j_{r}<j_{s}$, we have $\mathfrak{b}_{i_{r}}\left(\mathfrak{b}_{i_{s}}(\mathrm{~m})\right)=\mathfrak{b}_{i_{s}}\left(\mathfrak{b}_{i_{r}}(\mathrm{~m})\right)$ and hence $\left(\widetilde{m}_{\left\langle i_{r}\right\rangle}\right)_{\left\langle i_{s}\right\rangle}=\left(\widetilde{\mathrm{m}}_{\left\langle i_{s}\right\rangle}\right)_{\left\langle i_{r}\right\rangle}$.
(v) For r, s with $1 \leq r<s \leq q$ and $j_{r}=j_{s}$, we have $\mathfrak{b}_{i_{r}}(\mathbf{m})=\mathfrak{b}_{i_{r}}\left(\mathfrak{b}_{i_{s}}(\mathrm{~m})\right)$ and hence $\widetilde{\mathrm{m}}_{\left\langle i_{r}\right\rangle}=\left(\widetilde{\mathrm{m}}_{\left\langle i_{s}\right\rangle}\right\rangle_{\left\langle i_{r}\right\rangle}$.
Example 4. Let $I \subset S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ be the smallest Borel fixed ideal containing $\mathrm{m}=x_{1}^{2} x_{3} x_{4}$. In this case, $\mathrm{m}_{\langle i\rangle}^{\prime}=\mathfrak{b}_{i}\left(\mathrm{~m}^{\prime}\right)$ for all $\mathrm{m}^{\prime} \in G(I)$. Hence, we have $\mathrm{m}_{\langle 1\rangle}=x_{1}^{3} x_{4}$, $\mathrm{m}_{\langle 2\rangle}=x_{1}^{2} x_{2} x_{4}$ and $\mathrm{m}_{\langle 3\rangle}=x_{1}^{2} x_{3}^{2}$. The following 3 pairs are all admissible.

- $(\widetilde{F}, \widetilde{\mathrm{~m}})=\left(\{(1,3),(2,3),(3,4)\}, x_{1,1} x_{1,2} x_{3,3} x_{4,4}\right)$
- $\left(\widetilde{F}_{2}, \widetilde{\mathrm{~m}}_{\langle 2\rangle}\right)=\left(\{(1,3),(3,4)\}, x_{1,1} x_{1,2} x_{2,3} x_{4,4}\right)$
- $\left(\widetilde{F}_{3}, \widetilde{\mathrm{~m}}_{\langle 3\rangle}\right)=\left(\{(1,3),(2,3)\}, x_{1,1} x_{1,2} x_{3,3} x_{3,4}\right)$
(For this $\widetilde{F}, i_{r}=r$ holds and the reader should be careful). However, $\left(\widetilde{F}_{1}, \widetilde{\mathrm{~m}}_{\langle 1\rangle}\right)=$ ($\left.\{(2,3),(3,4)\}, x_{1,1} x_{1,2} x_{1,3} x_{4,4}\right)$ does not satisfy the condition (b) of Definition 1. Hence $B(\widetilde{F}, \widetilde{\mathrm{~m}})=\{2,3\}$.

The diagrams of (admissible) pairs are very useful for better understanding. To draw a diagram of $(\widetilde{F}, \widetilde{\mathrm{~m}})$, we put a white square in the (i, j)-th position if $(i, j) \in \widetilde{F}$ and the black square there if $x_{i, j}$ divides $\widetilde{\mathbf{m}}$. If \widetilde{F} is maximal among \widetilde{F}^{\prime} such that $\left(\widetilde{F}^{\prime}, \widetilde{\mathbf{m}}\right)$ is admissible, then the diagram of ($\widetilde{F}, \widetilde{\mathrm{~m}})$ forms a "right side down stairs" (see the leftmost and rightmost diagrams of the table below). If ($\widetilde{F}, \widetilde{\mathrm{~m}})$ is admissible but \widetilde{F} is not maximal, then some white squares are removed from the diagram for the maximal case. If the pair is admissible, there is a unique black square in each column and this is the "lowest" of the squares in the column.

If $(\widetilde{F}, \widetilde{\mathfrak{m}})$ is admissible and $r \in B(\widetilde{F}, \widetilde{\mathrm{~m}})$, then we can get the diagram of $\left(\widetilde{F}_{r}, \widetilde{\mathrm{~m}}_{\left\langle i_{r}\right\rangle}\right)$ from that of $(\widetilde{F}, \widetilde{\mathrm{~m}})$ by the following procedure.
(i) Remove the (sole) black square in the j_{r}-th column.
(ii) Replace the white square in the $\left(i_{r}, j_{r}\right)$-th position by a black one.
(iii) If $\mathrm{m}_{\left\langle i_{r}\right\rangle} \neq \mathfrak{b}_{i_{r}}(\mathrm{~m})$, erase some squares from the lower-right of the diagram.

Next let I^{\prime} be the smallest Borel fixed ideal containing $\mathrm{m}=x_{1}^{2} x_{3} x_{4}$ and $x_{1}^{2} x_{2}$. For $\widetilde{F}=\{(1,3),(2,3),(3,4)\},(\widetilde{F}, \widetilde{\mathbf{m}})$ is admissible again. However $\widetilde{\mathrm{m}}_{\langle 2\rangle}=x_{1}^{2} x_{2}$ in this time, and $\left(\widetilde{F}_{2}, \widetilde{\mathrm{~m}}_{\langle 2\rangle}\right)=\left(\{(1,3),(3,4)\}, x_{1,1} x_{1,2} x_{2,3}\right)$ is no longer admissible. In fact, it does not satisfy (a) of Definition 1. Hence $B(\widetilde{F}, \widetilde{\mathrm{~m}})=\{3\}$ for $\mathrm{b}-\operatorname{pol}\left(I^{\prime}\right)$.

For $F=\left\{i_{1}, \ldots, i_{q}\right\} \subset \mathbb{N}$ with $i_{1}<\cdots<i_{q}$ and $\mathrm{m} \in G(I)$, Eliahou and Kervaire ([7]) called the pair ($F, \mathrm{~m}$) admissible for I, if $i_{q}<\nu(\mathrm{m})$. In this case, there is a unique sequence j_{1}, \ldots, j_{q} such that $(\widetilde{F}, \widetilde{\mathfrak{m}})$ is admissible for \widetilde{I}, where $\widetilde{F}=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{q}, j_{q}\right)\right\}$. In this way, there is a one-to-one correspondence between the admissible pairs for I and those of \widetilde{I}. As the free summands of the Eliahou-Kervaire resolution of I are indexed by the admissible pairs for I, our resolution of \widetilde{I} are indexed by the admissible pairs for \widetilde{I}.

We will define a $\mathbb{Z}^{n \times d}$-graded chain complex \widetilde{P}_{\bullet} of free \widetilde{S}-modules as follows. First, set $\widetilde{P}_{0}:=\widetilde{S}$. For each $q \geq 1$, we set

$$
A_{q}:=\text { the set of admissible pairs }(\widetilde{F}, \widetilde{\mathrm{~m}}) \text { for } \mathrm{b}-\operatorname{pol}(I) \text { with } \# \widetilde{F}=q \text {, }
$$

and

$$
\widetilde{P}_{q}:=\bigoplus_{(\widetilde{F}, \widetilde{\mathrm{~m}}) \in A_{q-1}} \widetilde{S} e(\widetilde{F}, \widetilde{\mathrm{~m}}),
$$

where $e(\widetilde{F}, \widetilde{\mathbf{m}})$ is a basis element with

$$
\operatorname{deg}(e(\widetilde{F}, \widetilde{\mathrm{~m}}))=\operatorname{deg}\left(\widetilde{\mathrm{m}} \times \prod_{\left(i_{r}, j_{r}\right) \in \widetilde{F}} x_{i_{r}, j_{r}}\right) \in \mathbb{Z}^{n \times d}
$$

We define the \widetilde{S}-homomorphism $\partial: \widetilde{P}_{q} \rightarrow \widetilde{P}_{q-1}$ for $q \geq 2$ so that $e(\widetilde{F}, \widetilde{\mathrm{~m}})$ with $\widetilde{F}=$ $\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{q}, j_{q}\right)\right\}$ is sent to

$$
\sum_{1 \leq r \leq q}(-1)^{r} \cdot x_{i_{r}, j_{r}} \cdot e\left(\widetilde{F}_{r}, \widetilde{\mathrm{~m}}\right)-\sum_{r \in B(\widetilde{F}, \tilde{\mathbf{m}})}(-1)^{r} \cdot \frac{x_{i_{r}, j_{r}} \cdot \widetilde{\mathrm{~m}}}{\widetilde{\mathrm{~m}}_{\left\langle i_{r}\right\rangle}} \cdot e\left(\widetilde{F}_{r}, \widetilde{\mathrm{~m}}_{\left\langle i_{r}\right\rangle}\right),
$$

and $\partial: \widetilde{P}_{1} \rightarrow \widetilde{P}_{0}$ by $e(\emptyset, \widetilde{\mathrm{~m}}) \longmapsto \widetilde{\mathrm{m}} \in \widetilde{S}=\widetilde{P}_{0}$. Clearly, ∂ is a $\mathbb{Z}^{n \times d}$ _graded homomorphism.
Set

$$
\widetilde{P}_{\bullet}: \cdots \xrightarrow{\partial} \widetilde{P}_{i} \xrightarrow{\partial} \cdots \xrightarrow{\partial} \widetilde{P}_{1} \xrightarrow{\partial} \widetilde{P}_{0} \longrightarrow 0 .
$$

Theorem 5 ([12, Theorem 2.6]). The complex \widetilde{P}_{\bullet} is a $\mathbb{Z}^{n \times d}$-graded minimal \widetilde{S}-free resolution for $\widetilde{S} / \mathrm{b}-\operatorname{pol}(I)$.

Sketch of Proof. Calculation using Lemma 3 shows that $\partial \circ \partial(e(\widetilde{F}, \widetilde{\mathbf{m}}))=0$ for each admissible pair $(\widetilde{F}, \widetilde{\mathbf{m}})$. That is, \widetilde{P}. is a chain complex.

Let $I=\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{t}\right)$ with $\mathrm{m}_{1} \succ \cdots \succ \mathrm{~m}_{t}$, and set $I_{r}:=\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{r}\right)$. Here \succ is the lexicographic order with $x_{1} \succ x_{2} \succ \cdots \succ x_{n}$. Then I_{r} are also Borel fixed. The acyclicity of the complex \widetilde{P} can be shown inductively by means of mapping cones.

3. Applications and Remarks

Let $I \subset S$ be a Borel fixed ideal, and $\Theta \subset \widetilde{S}$ the sequence defined in Introduction. As remarked before, there is a one-to-one correspondence between the admissible pairs for \widetilde{I} and those for I, and if $(\widetilde{F}, \widetilde{\mathrm{~m}})$ corresponds to $(F, \mathrm{~m})$ then $\# \widetilde{F}=\# F$. Hence we have

$$
\begin{equation*}
\operatorname{Tor}_{i}^{\widetilde{S}}(\mathbb{k}, \widetilde{I}) \cong \operatorname{Tor}_{i}^{S}(\mathbb{k}, I) \tag{3.1}
\end{equation*}
$$

as \mathbb{Z}-graded \mathbb{k}-vector spaces for all i, where S and \widetilde{S} are considered to be \mathbb{Z}-graded. Of course, this is clear, if one knows the fact that \widetilde{I} is a polarization of I ([14, Theorem 3.4]). Conversely, we can show that \widetilde{I} is a polarization by the equation (3.1) and [11, Lemma 6.9].

The next result also follows from [11, Lemma 6.9].
Corollary 6. $\widetilde{P} \bullet \otimes_{\widetilde{S}} \widetilde{S} /(\Theta)$ is a minimal S-free resolution of S / I.
Remark 7. The correspondence between the admissible pairs for I and those for \widetilde{I}, does not give a chain map between the Eliahou-Kervaire resolution and our $\widetilde{P} \cdot \otimes_{\widetilde{S}} \widetilde{S} /(\Theta)$. In this sense, two resolutions are not the same. See Example 19 below.

Let $T=\mathbb{k}\left[x_{1}, \ldots, x_{n+d-1}\right]$ be a polynomial ring, and

$$
\Theta^{\prime}:=\left\{x_{i, j}-x_{i+1, j-1} \mid 1 \leq i<n, 1<j \leq d\right\}
$$

a subset of \widetilde{S}. Then the ring homomorphism $\widetilde{S} \rightarrow T$ with $x_{i, j} \mapsto x_{i+j-1}$ induces the isomorphism $\widetilde{S} /\left(\Theta^{\prime}\right) \cong T$.

Proposition 8 ([14, Proposition 4,1]). With the above notation, Θ^{\prime} forms an $\widetilde{S} / \widetilde{I}$-regular sequence, and we have $\left(\widetilde{S} /\left(\Theta^{\prime}\right) \otimes_{\widetilde{S}}(\widetilde{S} / \widetilde{I}) \cong T / I^{\text {sq }}\right.$, where $I^{\text {sq }}$ is the one defined in (1.2).

Applying Proposition 8 and [5, Proposition 1.1.5], we have the following.
Corollary 9. The complex $\widetilde{P} \bullet \otimes_{\widetilde{S}} \widetilde{S} /\left(\Theta^{\prime}\right)$ is a minimal T-free resolution of $T / I^{\text {sq }}$.
For a Borel fixed ideal I generated in one degree, Nagel and Reiner [11] constructed a CW complex, which supports a minimal free resolution of \widetilde{I} (or $\left.I, I^{\text {sq }}\right)$. Note that if I is generated in one degree then $\mathrm{m}_{\langle i\rangle}=\mathfrak{b}_{i}(\mathrm{~m})$ for all $\mathrm{m} \in G(I)$, and \widetilde{P}_{\bullet} is simpler.
Proposition 10 ([12, Proposition 4.9]). Let I be a Borel fixed ideal generated in one degree. Then Nagel-Reiner description of a free resolution of \widetilde{I} coincides with our \widetilde{P}_{\bullet}.

4. Relation to Batzies-Welker theory

In [2], Batzies and Welker connected the theory of cellular resolutions of monomial ideals with Forman's discrete Morse theory ([8]).

Definition 11. A monomial ideal J is called shellable if there is a total order \sqsubset on $G(J)$ satisfying the following condition.
$(*)$ For any $\mathrm{m}, \mathrm{m}^{\prime} \in G(J)$ with $\mathrm{m} \sqsupset \mathrm{m}^{\prime}$, there is an $\mathrm{m}^{\prime \prime} \in G(J)$ such that $\mathrm{m} \sqsupseteq \mathrm{m}^{\prime \prime}$, $\operatorname{deg}\left(\frac{\operatorname{lcm}\left(m, m^{\prime \prime}\right)}{m}\right)=1$ and $\operatorname{lcm}\left(m, m^{\prime \prime}\right)$ divides $\operatorname{lcm}\left(m, m^{\prime}\right)$.
For a Borel fixed ideal I, let \sqsubset be the total order on $G(\widetilde{I})=\{\widetilde{\mathrm{m}} \mid \mathrm{m} \in G(I)\}$ such that $\widetilde{\mathrm{m}}^{\prime} \sqsubset \widetilde{\mathrm{m}}$ if and only if $\mathrm{m}^{\prime} \succ \mathrm{m}$ in the lexicographic order on S with $x_{1} \succ x_{2} \succ \cdots \succ x_{n}$. In the rest of this section, \sqsubset means this order.
Lemma 12. The order \sqsubset makes \widetilde{I} shellable.
The following construction is taken from [2, Theorems 3.2 and 4.3]. For the background of their theory, the reader is recommended to consult the original paper.

For a non-empty subset $\sigma \subset G(\widetilde{I})$, let $\widetilde{\mathrm{m}}_{\sigma}$ denote the largest element of σ with respect to the order \sqsubset, and set $\operatorname{lcm}(\sigma):=\operatorname{lcm}\{\widetilde{\mathrm{m}} \mid \widetilde{\mathrm{m}} \in \sigma\}$.
Definition 13. We define a total order \prec_{σ} on $G(\widetilde{I})$ as follows. Set

$$
N_{\sigma}:=\left\{\left(\widetilde{\mathrm{m}}_{\sigma}\right)_{\langle i\rangle} \mid 1 \leq i<\nu\left(\mathrm{m}_{\sigma}\right),\left(\widetilde{\mathrm{m}}_{\sigma}\right)_{\langle i\rangle} \text { divides } \operatorname{lcm}(\sigma)\right\}
$$

where $\left(\widetilde{\mathrm{m}}_{\sigma}\right)_{\langle i\rangle}$ denotes b-pol $\left(\left(\mathrm{m}_{\sigma}\right)_{\langle i\rangle}\right)$. For all $\widetilde{\mathrm{m}} \in N_{\sigma}$ and $\widetilde{\mathrm{m}}^{\prime} \in G(\widetilde{I}) \backslash N_{\sigma}$, define $\widetilde{\mathrm{m}} \prec_{\sigma} \widetilde{\mathrm{m}}^{\prime}$. The restriction of \prec_{σ} to N_{σ} is set to be \sqsubset, and the same is true for the restriction to $G(\widetilde{I}) \backslash N_{\sigma}$.

Let X be the $(\# G(\widetilde{I})-1)$-simplex associated with $2^{G(\widetilde{I})}$ (more precisely, $\left.2^{G(\widetilde{I})} \backslash\{\emptyset\}\right)$. Hence we freely identify $\sigma \subset G(\widetilde{I})$ with the corresponding cell of the simplex X. Let G_{X} be the directed graph defined as follows. The vertex set of G_{X} is $2^{G(\widetilde{I})} \backslash\{\emptyset\}$. For $\emptyset \neq \sigma, \sigma^{\prime} \subset G(\widetilde{I})$, there is an arrow $\sigma \rightarrow \sigma^{\prime}$ if and only if $\sigma \supset \sigma^{\prime}$ and $\# \sigma=\# \sigma^{\prime}+1$. For $\sigma=\left\{\widetilde{\mathrm{m}}_{1}, \widetilde{\mathrm{~m}}_{2}, \ldots, \widetilde{\mathrm{~m}}_{k}\right\}$ with $\widetilde{\mathrm{m}}_{1} \prec_{\sigma} \widetilde{\mathrm{m}}_{2} \prec_{\sigma} \cdots \prec_{\sigma} \widetilde{\mathrm{m}}_{k}\left(=\widetilde{\mathrm{m}}_{\sigma}\right)$ and $l \in \mathbb{N}$ with $1 \leq l<k$, set $\sigma_{l}:=\left\{\widetilde{\mathrm{m}}_{k-l}, \widetilde{\mathrm{~m}}_{k-l+1}, \ldots, \widetilde{\mathrm{~m}}_{k}\right\}$ and

$$
u(\sigma):=\sup \left\{l \mid \exists \widetilde{\mathrm{m}} \in G(\widetilde{I}) \text { s.t. } \widetilde{\mathrm{m}} \prec_{\sigma} \widetilde{\mathrm{m}}_{k-l} \text { and } \widetilde{\mathrm{m}} \mid \operatorname{lcm}\left(\sigma_{l}\right)\right\}
$$

If $u:=u(\sigma) \neq-\infty$, we can define $\widetilde{\mathrm{n}}_{\sigma}:=\min _{\prec_{\sigma}}\left\{\widetilde{\mathrm{m}} \mid \widetilde{\mathrm{m}}\right.$ divides $\left.\operatorname{lcm}\left(\sigma_{u}\right)\right\}$. Let E_{X} be the set of edges of G_{X}. We define a subset A of E_{X} by

$$
A:=\left\{\sigma \cup\left\{\widetilde{\mathrm{n}}_{\sigma}\right\} \rightarrow \sigma \mid u(\sigma) \neq-\infty, \widetilde{\mathrm{n}}_{\sigma} \notin \sigma\right\} .
$$

It is easy to see that A is a matching, that is, every σ occurs in at most one edges of A. We say $\emptyset \neq \sigma \subset G(\widetilde{I})$ is critical, if it does not occur in any edge of A.

We have the directed graph G_{X}^{A} with the vertex set $2^{G(\widetilde{I})} \backslash\{\emptyset\}$ (i.e., same as G_{X}) and the set of edges $\left(E_{X} \backslash A\right) \cup\{\sigma \rightarrow \tau \mid(\tau \rightarrow \sigma) \in A\}$. By the proof of [2, Theorem 3.2], we see that the matching A is acyclic, that is, G_{X}^{A} has no directed cycle. A directed path in G_{X}^{A} is called a gradient path.

The discrete Morse theory ([8]) gives a CW complex X_{A} with the following conditions.

- There is a one-to-one correspondence between the i-cells of X_{A} and the critical i-cells of X (equivalently, the critical subsets of $G(\widetilde{I})$ consisting of $i+1$ elements).
- X_{A} is contractible, that is, homotopy equivalent to X.

The cell of X_{A} corresponding to a critical cell σ of X is denoted by σ_{A}. By [2, Proposition 7.3], the closure of σ_{A} contains τ_{A} if and only if there is a gradient path from σ to τ. See also Proposition 16 below and the argument before it.

Assume that $\emptyset \neq \sigma \subset G(\widetilde{I})$ is critical. Recall that $\widetilde{\mathrm{m}}_{\sigma}$ denotes the largest element of σ with respect to \sqsubset. Take $\mathrm{m}_{\sigma}=\prod_{l=1}^{n} x_{l}^{a_{l}} \in G(I)$ with $\widetilde{\mathrm{m}}_{\sigma}=\mathrm{b}$-pol $\left(\mathrm{m}_{\sigma}\right)$, and set $q:=\# \sigma-1$. Then there are integers i_{1}, \ldots, i_{q} with $1 \leq i_{1}<\ldots<i_{q}<\nu\left(\mathrm{m}_{\sigma}\right)$ and

$$
\begin{equation*}
\sigma=\left\{\left(\widetilde{\mathrm{m}}_{\sigma}\right)_{\left\langle i_{r}\right\rangle} \mid 1 \leq r \leq q\right\} \cup\left\{\widetilde{\mathrm{m}}_{\sigma}\right\} \tag{4.1}
\end{equation*}
$$

(see the proof of [2, Proposition 4.3]). Equivalently, we have $\sigma=N_{\sigma} \cup\left\{\widetilde{\mathrm{m}}_{\sigma}\right\}$. Set $j_{r}:=1+\sum_{l=1}^{i_{r}} a_{l}$ for each $1 \leq r \leq q$, and $\widetilde{F}_{\sigma}:=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{q}, j_{q}\right)\right\}$. Then $\left(\widetilde{F}_{\sigma}, \widetilde{\mathrm{m}}_{\sigma}\right)$ is an admissible pair for \widetilde{I}. Conversely, any admissible pair comes from a critical cell $\sigma \subset G(\widetilde{I})$ in this way. Hence there is a one-to-one correspondence between critical cells and admissible pairs.

Let X_{A}^{i} denote the set of all the critical subset $\sigma \subset G(\widetilde{I})$ with $\# \sigma=i+1$, and for (not necessarily critical) subsets σ, τ of $G(\widetilde{I})$, let $\mathcal{P}_{\sigma, \tau}$ denote the set of all the gradient paths from σ to τ. For $\sigma \in X_{A}^{q}$ of the form (4.1), $e(\sigma)$ denotes a basis element with degree $\operatorname{deg}(\operatorname{lcm}(\sigma)) \in \mathbb{Z}^{n \times d}$. Set

$$
\widetilde{Q}_{q}=\bigoplus_{\sigma \in X_{A}^{q}} \widetilde{S} e(\sigma) \quad(q \geq 0)
$$

The differential map $\widetilde{Q}_{q} \rightarrow \widetilde{Q}_{q-1}$ sends $e(\sigma)$ to

$$
\begin{equation*}
\sum_{r=1}^{q}(-1)^{r} x_{i_{r}, j_{r}} \cdot e\left(\sigma \backslash\left\{\left(\widetilde{\mathrm{~m}}_{\sigma}\right)_{\left\langle i_{r}\right\rangle}\right\}\right)-(-1)^{q} \sum_{\substack{\tau \in X^{q-1} \\ \mathcal{P} \in \mathcal{P}_{\sigma \backslash\left\{\tilde{m}_{\sigma}\right\}, \tau}}} m(\mathcal{P}) \cdot \frac{\operatorname{lcm}(\sigma)}{\operatorname{lcm}(\tau)} \cdot e(\tau) \tag{4.2}
\end{equation*}
$$

where $m(\mathcal{P})= \pm 1$ is the one defined in [2, p.166].
The following is a direct consequence of [2, Theorem 4.3] (and [2, Remark 4.4]).
Proposition 14 (Batzies-Welker, [2]). $\widetilde{Q} \bullet$ is a minimal free resolution of \widetilde{I}, and has a cellular structure supported by X_{A}.

Theorem 15 ([12, Theorem 5.11]). Our description of \widetilde{P}_{\bullet} (more precisely, the truncation $\widetilde{P}_{\geq 1}$) coincides with the Batzies-Welker resolution \widetilde{Q}_{\bullet}. That is, \widetilde{P}_{\bullet} is a cellular resolution supported by a $C W$ complex X_{A}, which is obtained by the discrete Morse theory.

First, note that the following hold.
(1) If σ is critical, so is $\sigma \backslash\left\{\left(\widetilde{m}_{\sigma}\right)_{\left\langle i_{r}\right\rangle}\right\}$ for $1 \leq r \leq q$.
(2) Let σ and τ be (not necessarily critical) cells with $\mathcal{P}_{\sigma, \tau} \neq \varnothing$. Then $\operatorname{lcm}(\tau)$ divides $\operatorname{lcm}(\sigma)$.
(3) Let $\sigma \in X_{A}^{q}, \tau \in X_{A}^{q-1}$ and assume that there is a gradient path $\sigma \rightarrow \sigma \backslash\{\widetilde{m}\}=$ $\sigma_{0} \rightarrow \sigma_{1} \rightarrow \cdots \rightarrow \sigma_{l}=\tau$. Then $\# \sigma_{l-1}=\# \tau+1=q+1, \# \sigma_{i}=q$ or $q+1$ for each i, and σ_{i} is not critical for all $0 \leq i<l$. Hence, if $l \geq 1$, then $\widetilde{\mathrm{m}}$ must be $\widetilde{\mathrm{m}}_{\sigma}$.
Next, we will show the following.
Proposition 16. Let σ, τ be critical cells with $\# \sigma=\# \tau+1$, and $\left(\widetilde{F}_{\sigma}, \widetilde{\mathrm{m}}_{\sigma}\right)$ and $\left(\widetilde{F}_{\tau}, \widetilde{\mathrm{m}}_{\tau}\right)$ the admissible pairs corresponding to σ and τ respectively. Set $\widetilde{F}_{\sigma}=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{q}, j_{q}\right)\right\}$ with $i_{1}<\cdots<i_{q}$. Then $\mathcal{P}_{\sigma \backslash\left\{\tilde{m}_{\sigma}\right\}, \tau} \neq \varnothing$ if and only if there is some $r \in B\left(\widetilde{F}_{\sigma}, \widetilde{\mathrm{m}}_{\sigma}\right)$ with $\left(\widetilde{F}_{\tau}, \widetilde{\mathrm{m}}_{\tau}\right)=\left(\left(\widetilde{F}_{\sigma}\right)_{r},\left(\widetilde{\mathrm{~m}}_{\sigma}\right)_{\left\langle i_{r}\right\rangle}\right)$. If this is the case, we have $\# \mathcal{P}_{\sigma \backslash\left\{\tilde{\mathrm{m}}_{\sigma}\right\}, \tau}=1$.

Sketch of Proof. Only if part follows from the above remark. Note that the second index j of each $x_{i, j} \in \widetilde{S}$ restricts the choice of paths and it makes the proof easier.

Next, assuming $\widetilde{F}_{\tau}=\left(\widetilde{F}_{\sigma}\right)_{r}$ and $\widetilde{\mathrm{m}}_{\tau}=\left(\widetilde{\mathrm{m}}_{\sigma}\right)_{\left\langle i_{r}\right\rangle}$ for some $r \in B\left(\widetilde{F}_{\sigma}, \widetilde{\mathrm{m}}_{\sigma}\right)$, we will construct a gradient path from $\sigma \backslash\left\{\widetilde{\mathrm{m}}_{\sigma}\right\}$ to τ. For short notation, set $\widetilde{\mathrm{m}}_{[s]}:=\left(\widetilde{\mathrm{m}}_{\sigma}\right)_{\left\langle i_{s}\right\rangle}$ and $\widetilde{\mathrm{m}}_{[s, t]}:=$ $\left(\left(\widetilde{m}_{\sigma}\right)_{\left\langle i_{s}\right\rangle}\right)_{\langle i t\rangle}$. By (4.1), we have $\sigma_{0}:=\left(\sigma \backslash\left\{\tilde{m}_{\sigma}\right\}\right)=\left\{\tilde{\mathrm{m}}_{[s]} \mid 1 \leq s \leq q\right\}$ and $\tau=$ $\left\{\widetilde{\mathrm{m}}_{[r, s]} \mid 1 \leq s \leq q, s \neq r\right\} \cup\left\{\tilde{\mathrm{m}}_{[r]}\right\}$. We can inductively construct a gradient path $\sigma_{0} \rightarrow \sigma_{1} \rightarrow \cdots \rightarrow \sigma_{t} \rightarrow \cdots \sigma_{2(q-r+1) r-2}$ as follows. Write $t=2 p r+\lambda$ with $t \neq 0$, $0 \leq p \leq q-r$, and $0 \leq \lambda<2 r$. For $0<t \leq 2(q-r)$, we set

$$
\sigma_{t}= \begin{cases}\sigma_{t-1} \cup\left\{\widetilde{\mathfrak{m}}_{[q-p, s]}\right\} & \text { if } \lambda=2 s-1 \text { for some } 1 \leq s \leq r ; \\ \sigma_{t-1} \backslash\left\{\widetilde{\mathrm{~m}}_{[q-p+1, s]}\right\} & \text { if } \lambda=2 s \text { for some } 0<s<r ; \\ \sigma_{t} \backslash\left\{\widetilde{\mathrm{~m}}_{[q-p+1]}\right\} & \text { if } \lambda=0,\end{cases}
$$

where we set $\widetilde{\mathrm{m}}_{[q+1, s]}=\widetilde{\mathrm{m}}_{[s]}$ for all s. In the case $\widetilde{\mathrm{m}}_{[s, t]}=\widetilde{\mathrm{m}}_{[s+1, t]}$, it seems to cause a problem, but skipping the corresponding part of path, we can avoid the problem. Since $r \in B\left(\widetilde{F}_{\sigma}, \widetilde{\mathrm{m}}_{\sigma}\right)$, we have $\widetilde{\mathrm{m}}_{[s, r]}=\widetilde{\mathrm{m}}_{[r, s]}$ for all $s>r$ by Lemma 3 (iv). Hence

$$
\sigma_{2(q-r)}=\left\{\widetilde{\mathbf{m}}_{[r+1, s]} \mid 1 \leq s<r\right\} \cup\left\{\widetilde{\mathrm{m}}_{[r]}\right\} \cup\left\{\widetilde{\mathrm{m}}_{[r, s]} \mid r<s \leq q\right\} .
$$

Now for s with $0<s \leq r-1$, set σ_{t} with $2(q-r) r<t \leq 2(q-r+1) r-2$ to be $\sigma_{t-1} \cup\left\{\widetilde{\mathrm{~m}}_{[r, s]}\right\}$ if s is odd and otherwise $\sigma_{t-1} \backslash\left\{\widetilde{\mathrm{~m}}_{[r+1, s]}\right\}$. Then we have $\sigma_{2(q-r+1) r-2}=\tau$, and the gradient path $\sigma \leadsto \tau$.

The uniqueness of the path follows from elementally (but lengthy) argument.
Sketch of Proof of Theorem 15. Recall that there is the one-to-one correspondence between the critical cells $\sigma \subset G(\widetilde{I})$ and the admissible pairs ($\widetilde{F}_{\sigma}, \widetilde{\mathrm{m}}_{\sigma}$). Hence, for each q, we have the isomorphism $\widetilde{Q}_{q} \rightarrow \widetilde{P}_{q}$ induced by $e(\sigma) \longmapsto e\left(\widetilde{F}_{\sigma}, \widetilde{\mathrm{m}}_{\sigma}\right)$.

By Proposition 16, if we forget "coefficients" (more precisely, ± 1), the differential map of \widetilde{Q} • and that of \widetilde{P}_{\bullet} are compatible with the maps $e(\sigma) \longmapsto e\left(\widetilde{F}_{\sigma}, \widetilde{\mathrm{m}}_{\sigma}\right)$. So it is enough to check the equality of the coefficients. But it follows from direct computation.
Corollary 17 ([12, Corollary 5.12]). The free resolution $\widetilde{P}_{\bullet} \otimes_{\tilde{S}} \widetilde{S} /(\Theta)\left(\right.$ resp. $\left.\widetilde{P} \bullet \otimes_{\tilde{S}} \widetilde{S} /\left(\Theta^{\prime}\right)\right)$ of S / I (resp. $T / I^{\text {sq }}$) is also a cellular resolution supported by X_{A}. In particular, these resolutions are Batzies-Welker type.

We say a CW complex is regular, if for all i the closure $\bar{\sigma}$ of any i-cell σ is homeomorphic to an i-dimensional closed ball, and $\bar{\sigma} \backslash \sigma$ is the closure of the union of some $(i-1)$-cells. This is a natural condition especially in combinatorics.

Mermin [10] (see also Clark [6]) showed that the Eliahou-Kervaire resolution is cellular and supported by a regular CW complex. Hence it is a natural question whether the CW complex X_{A} supporting our $\widetilde{P}_{\boldsymbol{\bullet}}$ is regular. (Since the discrete Morse theory is an "existence theorem" and X_{A} is not unique, the correct statement might be "can be regular".)

Theorem 18 ([13]). The $C W$ complex X_{A} of Theorem 15 is regular. In particular, our resolution \widetilde{P}_{\bullet} is supported by a regular $C W$ complex.

Sketch of Proof. We define a finite poset P_{A} as follows:
(i) As the underlying set, $P_{A}=\left\{\right.$ the cells of $\left.X_{A}\right\} \cup\{\hat{0}\}$. Here $\hat{0}$ is the least element.
(ii) For cells σ and τ of $X_{A}, \sigma \succeq \tau$ in P_{A} if and only if the closure of σ contains τ.

It suffices to show that P_{A} is a $C W$ poset in the sense of [4], and we can use [4, Proposition 5.5]. We can easily check that P_{A} satisfies the following condition.

- For $\sigma, \tau \in P_{A}$ with $\sigma \succ \tau$ and $\operatorname{rank}(\sigma)=\operatorname{rank}(\tau)+2$, there are exactly two elements between σ and τ.
Now it remains to show that the interval $[\hat{0}, \sigma]$ is shellable for all σ, but we can imitate the argument of Clark [6]. In fact, [$0, \sigma]$ is $E L$ shellable in the sense of [3].

Figure 1

Figure 2

Example 19. Consider the Borel fixed ideal $I=\left(x^{2}, x y^{2}, x y z, x y w, x z^{2}, x z w\right)$. Then b-pol $(I)=\left(x_{1} x_{2}, x_{1} y_{2} y_{3}, x_{1} y_{2} z_{3}, x_{1} y_{2} w_{3}, x_{1} z_{2} z_{3}, x_{1} z_{3} w_{3}\right)$, and easy computation shows that the CW complex X_{A}, which supports our resolutions \widetilde{P} •of $\widetilde{S} / \widetilde{I}$ and $\widetilde{P}_{\bullet} \otimes_{\widetilde{S}} \widetilde{S} /(\Theta)$ of S / I,
is the one illustrated in Figure 1. The complex consists of a square pyramid and a tetrahedron glued along trigonal faces of each. For a Borel fixed ideal generated in one degree, any face of the Nagel-Reiner CW complex is a product of several simplices. Hence a square pyramid can not appear in the case of Nagel and Reiner.

We remark that the Eliahou-Kervaire resolution of I is supported by the CW complex illustrated in Figure 2. This complex consists of two tetrahedrons glued along edges of each. These figures show visually that the description of the Eliahou-Kervaire resolution and that of ours are really different.

Anyway, the minimal free resolution of I is of the form $0 \rightarrow S^{2} \rightarrow S^{8} \rightarrow S^{11} \rightarrow S^{6} \rightarrow 0$.
Theorem 20. If S / I is Cohen-Macaulay, the underlying space of the regular $C W$ complex X_{A} is homeomorphic to a closed ball of dimension $\operatorname{codim}(I)-1$.

The prove Theorem 20, we show and use the fact that the order complex of the poset P_{A} is constructible (if S / I is Cohen-Macaulay). We also remark that the converse of Theorem 20 does not hold. In fact, S / I is not Cohen-Macaulay in Example 19, while the underlying space of X_{A} is homeomorphic to a ball.

References

[1] A. Aramova, J. Herzog and T. Hibi, Shifting operations and graded Betti numbers, J. Algebraic Combin. 12 (2000) 207-222.
[2] E. Batzies and V. Welker, Discrete Morse theory for cellular resolutions, J. Reine Angew. Math. 543 (2002), 147-168.
[3] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980) 159-183.
[4] A. Björner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5 (1984), 7-16.
[5] W. Bruns and J. Herzog, Cohen-Macaulay rings, revised edition, Cambridge, 1996.
[6] T.B.P. Clark, A minimal poset resolution of stable ideals, in Progress in Commutative Algebra 1: Combinatorics and Homology, 143-166, De Gruyter. 2012.
[7] S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129 (1990), 1-25.
[8] R. Forman, Morse theory for cell complexes, Adv. in Math., 134 (1998), 90-145.
[9] M. Jöllenbeck and V. Welker, Minimal resolutions via algebraic discrete Morse theory, Mem. Amer. Math. Soc. 197 (2009).
[10] J. Mermin, The Eliahou-Kervaire resolution is cellular, J. Commut. Algebra 2 (2010), 55-78.
[11] U. Nagel and V. Reiner, Betti numbers of monomial ideals and shifted skew shapes, Electron. J. Combin. 16 (2) (2009).
[12] R. Okazaki and K. Yanagawa, Alternative polarizations of Borel fixed ideals, Eliahou-kervaire type and discrete Morse theory, preprint (arXiv:1111.6258).
[13] R. Okazaki and K. Yanagawa, in preparation.
[14] K. Yanagawa, Alternative polarizations of Borel fixed ideals, Nagoya. Math. J. 207 (2012), 79-93.

Department of Mathematics,
Kansai University,
Suita 564-8680, Japan
E-mail address: yanagawa@ipcku.kansai-u.ac.jp

