
APPLICATIONS OF MATHER DISCREPANCY

SHIHOKO ISHII

Abstract. In the talk at the Algebra Symposium, I showed the
answers for the Mather verions of two of Shokurov’s conjectures.
In this article, I survey applications of jet schemes (including the
Mather versions of Shokurov’s conjectures) to birational geometry
with the exposition of Mather discrepancies in the background.

1. Introduction

This is a survey article on Mather discrepancies. The readers inter-
ested in this topic are invited to read [5], [13], [4]. Varieties mean
irreducible reduced schemes of finite type over an algebraically closed
field k of characteristic zero. Let (X,B) be a pair consisting of a normal
Q-Gorenstein variety X over an algebraically closed field k of charac-
teristic zero and an effective R-Cartier divisor B on X. The minimal
log discrepancy mld(W,X,B) with the center at a closed subset w ⊂ X
is defined for a pair and plays an important role in birational geometry.
This is defined by using the discrepancy divisor KY/X = KY − ϕ∗KX ,
where ϕ : Y → X is a log resolution of (X,B). On the other hand

we can also define Mather minimal log discrepancy m̂ld(W ; X, JXB)
with respect to the Jacobian ideal JX of X by using Mather discrep-

ancy K̂Y/X and the Jacobian ideal instead of usual discrepancy KY/X .
These notion was introduced in [13] and [4]. Here we note that we
need not to assume the Q-Gorenstein condition on X or even X can
be non-normal. The Mather minimal log discrepancy coincides with
the ordinary one if (X, x) is locally a complete intersection. We ex-
pect that this “minimal log discrepancy” also plays an important role
in algebraic geometry, since we observe that it has sometimes better
properties than the usual minimal log discrepancy ([13], [4]).

2. Preliminaries on Mather discrepancy and arc spaces

Let X be a Q-Gorenstein variety of index r and f : Y → X a resolution
of the singularities of X. Then the (usual) discrepancy divisor KY/X

is the unique Q-divisor supported on the exceptional locus of f such
that rKY/X is linearly equivalent with rKY − f ∗(rKX). Note that the
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usual discrepancy is defined only for a Q-Gorenstein variety X, and
the following Mather discrepancy is defined for every variety, even for
non-normal variety.

Definition 2.1 ([5]). Let X be a variety of dimension d and f : Y → X
a resolution of the singularities factoring through the Nash blow up.
Then, the image of the canonical homomorphism

f ∗ ∧d ΩX → ∧dΩY

is an invertible sheaf of the form J ∧n ΩY , where J is the invertible
ideal sheaf of OY that defines an effective divisor supported on the
exceptional locus of f . This divisor is called the Mather discrepancy

divisor and denoted by K̂Y/X . For every prime divisor E on Y, we
define

k̂E := ordE(K̂Y/X).

More generally, if v is a divisorial valuation over X, then we can assume
without loss of generality that v = q valE for a prime divisor E on some
Y and a positive integer q, and define

k̂v := q · k̂E.

For a Q-Gorenstein variety X, we define kE := ordE(KY/X) for a reso-
lution f : Y → X and define also kv in the similar way.

2.2. Let X be an d-dimensional Q-Gorenstein variety of index r. We
write the image of the homomorphism

(∧nΩX)⊗r → OX(rKX) = ω
[r]
X

by Ir ⊗ OX(rKX), where Ir is an ideal of OX . Let f : Y → X be a
resolution factoring through the Nash blow up. Then, the relation of
usual discrepancy and the Mather discrepancy is as follows:

f ∗(Ir) ⊗ OY (rK̂Y/X) = OY (rKY/X).

In particular K̂Y/X ≥ KY/X . Let JX be the Jacobian ideal of X and let

Jr = (Jr
X : Ir), then Jr · Ir and Jr

X have the same integral closure ([7,
Corollary 9.4]). If X is locally a complete intersection, then I1 = JX

Definition 2.3. Let X be a scheme of finite type over k and K ⊃ k
a field extension. For m ∈ N, a k-morphism SpecK[t]/(tm+1) → X is
called an m-jet of X and a k-morphism SpecK[[t]] → X is called an
arc of X.

2.4. We denote the space of m-jets of X by Xm and the space of arcs
by X∞. For terminologies and the basic properties of these spaces, we
refer the paper [11].
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Definition 2.5. Let X be a variety over k. We say an arc α :
SpecK[[t]] → X is thin if α factors through a proper closed subset
of X. An arc which is not thin is called a fat arc.

An irreducible closed subset C in X∞ is called a thin set if the generic
point of C is thin. An irreducible closed subset in X∞ which is not thin
is called a fat set.

One typical example of a fat set is a maximal divisorial set which is
introduced in [12].

Definition 2.6. For a divisorial valuation v over a variety X, define
the maximal divisorial set corresponding to v as follows:

CX(v) := {α ∈ X∞ | ordα = v},

where { } is the Zariski closure in X∞.

Proposition 2.7 ([12]). Let v = q valE be a divisorial valuation over
a variety X. Let f : Y → X be a good resolution of the singularities of
X such that the prime divisor E appears on Y . Here, a good resolution
means a resolution whose exceptional locus is a simple normal crossing
divisor. Then,

CX(v) = f∞(Contq(E)).

In particular, CX(v) is irreducible.

Definition 2.8 ([6]). For an ideal sheaf a on a variety X, we define

Conte(a) = {α ∈ X∞ | ordα(a) = e}

and

Cont≥e(a) = {α ∈ X∞ | ordα(a) ≥ e}.
These subset are called contact loci of an ideal a. The subset Cont≥m(a)
is closed and Contm(a) is locally closed. Both are cylinders. Here, a
cylinder means the pull back ψ−1

m (S) of a constructible set S ⊂ Xm,
where ψm : X∞ → Xm is the canonical projection. We can define in
the obvious way also subsets Conte(a)m (if e ≤ m) and Cont≥e(a)m (if
e ≤ m + 1) in Xm.

Proposition 2.9 ([5]). Let X be an affine variety, and let ai ⊂ OX

(i = 1, . . . , r) be non-zero ideals. Then, for e1, . . . , er ∈ N, every fat
irreducible component of the intersection Cont≥e1(a1)∩· · ·∩Cont≥er(ar)
is a maximal divisorial set.

Note that [5, Proposition 2.12] is formulated for the case r = 1. But
its proof works also for r > 1.
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2.10. As X is a variety over k, the arc space X∞ is irreducible by
Kolchin’s result. Therefore ψm(X∞) is an irreducible constructible sub-
set in Xm of dimension (m + 1)n, where n = dim X. Let C ⊂ X∞ be
a cylinder ψ−1

p (A) contained in Conte(JX). Then, codimension of C is
defined as follows:

codim(C,X∞) := (m + 1)n − dim ψm(C)

for m ≥ max{p, e}.
For an arbitrary cylinder C, the codimension is defined as follows:

codim(C,X∞) := min{codim(C ∩ Conte(JX)) | e ∈ N}.

We sometimes write codim(C) for codim(C,X∞), when there is no
possible confusion. Note that these are well defined by the following
lemma. (For details, see [7, Section 5].)

3. Invariants based on Mather discrepancy

First we start this section with the well known invariants.

Definition 3.1. Let (X, a) be a pair consisting of Q-Gorenstein variety
X and a non-zero ideal a of OX . The log-canonical threshold of (X, a)
is defined as follows:

lct(X, a) = sup{c | kE − c · ordE(a) + 1 ≥ 0, E divisor over X}.

Let W be a closed subset of X. The minimal log-discrepancy of
(X, a) along W is defined as follows:
If dim X ≥ 2,

mld(W ; X, a) = inf{kE−ordE(a)+1 | E divisor over X with center in W}.

When dim X = 1 we use the same definition of minimal log discrepancy,
unless the infimum is negative, in which case we make the convention
that mld(W,X, a) = −∞.

Remark 3.2. (i) The log-canonical threshold is also presented as

lct(X, a) = max{c | kEi
−c·ordEi

(a)+1 ≥ 0, Ei : exceptional prime divisor on Y }

for a fixed log-resolution f : Y → X of (X, a).
(ii) If mld(W ; X, a) < 0, then mld(W ; X, a) = −∞. This is known

when dim X ≥ 2, while it follows from the definition when
dim X = 1.

Now we will define the invariants modified from these invariants.
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Definition 3.3. Let (X, a) be a pair consisting of an arbitrary variety
X and a non-zero ideal a of OX . The Mather log-canonical threshold of
(X, a) is defined as follows:

l̂ct(X, a) = sup{c | k̂E − c · ordE(a) + 1 ≥ 0, E divisor over X}.
Let W be a closed subset of X. The Mather minimal log-discrepancy

of (X, a) along W is defined as follows:
If dim X ≥ 2,

m̂ld(W ; X, a) = inf{ k̂E−ordE(a)+1 | E divisor over X with center in W}.
When dim X = 1 we use the same definition of Mather minimal log
discrepancy, unless the infimum is negative, in which case we make the

convention that m̂ld(W,X, a) = −∞.

Remark 3.4. (i) The Mather log-canonical threshold is represented
as

l̂ct(X, a) = max{c | k̂Ei
−c·ordEi

(a)+1 ≥ 0, Ei : exceptional prime divisor on Y }
for a fixed log-resolution f : Y → X of (X, a) factoring through

the Nash blow up, because for a sequence Y ′ g−→ Y
f−→ X of

such log resolutions of (X, a), we have K̂Y ′/X = KY ′/Y +g∗K̂Y/X

with KY ′/Y ≥ 0.

(ii) If m̂ld(W ; X, a) < 0, then m̂ld(W ; X, a) = −∞. This is proved

by using the previous formula of K̂Y ′/X when dim X ≥ 2, while
it follows from the definition when dim X = 1.

Proposition 3.5. Let X be an arbitrary variety and a is a non-zero
ideal of OX . Then,

l̂ct(X, a) = min
m∈N

codim(Cont≥m(a))

m
.

As a corollary, we obtain the formula of lct for non-singular case.

Corollary 3.6 ([6]). Let (X, a) be a pair consisting of a non-singular
variety X and an ideal a ⊂ OX . Let Z be the subscheme defined by a.
Then the log-canonical threshold is obtained as follows:

lct(X, a) = min
m∈N

codim(Zm−1, Xm−1)

m
.

This follows immediately from the theorem, since the equality
codim(Cont≥m(a)) = codim(Zm−1, Xm−1) holds for non-singular X.

The next is the formula for the Mather minimal log-discrepancy in
terms of the arc space.
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Proposition 3.7. Let (X, a) be a pair consisting of an arbitrary variety
X and a non-zero ideal a ⊂ OX . Let W be a proper closed subset of X
and IW be the (reduced) ideal of W . Then,

(1) m̂ld(W ; X, a) = inf
m∈N

{codim(Contm(a) ∩ Cont≥1(IW )) − m}.

We also have

(2) m̂ld(W ; X, a) = inf
m∈N

{codim(Cont≥m(a) ∩ Cont≥1(IW )) − m}.

Remark 3.8. Our formula can be easily extended for the combi-
nation of ideals a1, a2, · · · , ar instead of one ideal a. I.e., we have

m̂ld(W ; X, ae1
1 ae2

2 · · · aer
r ) =

inf
mi∈N

{codim(Contm1(a1)∩ · · · ∩Contmr(ar)∩Cont≥1(IW ))−
∑

i

miei},

where ei’s are positive real numbers. Here, any of Contmi(ai)’s can be
replaced by Cont≥mi(ai).

Proposition 3.9 (Inversion of Adjunction [13]). Let X be an arbitrary
varity, A a non-singular variety containing X as a closed subvariety of
codimension c and W a proper closed subset of X. Let ã ⊂ OA be an
ideal such that its image a := ãOX ⊂ OX is non-zero. Denote the ideal
of X in A by IX . Then,

m̂ld(W ; X, aJX) = m̂ld(W ; A, ãIc
X).

Corollary 3.10 ([8], [7], [15]). Let X be a normal closed subvariety in
a non-singular variety A of codimension c and let W be a proper closed
subset of X. Assume that X is Q-Gorenstein variety of index r. Let
ã ⊂ OA be an ideal such that its image a := ãOX ⊂ OX is non-zero.
Then,

mld(W ; X, aJ1/r
r ) = mld(W ; A, ãIc

X),

where IX is the defining ideal of X in A and Jr is as in 2.2.

Corollary 3.11 (Adjunction formula). Let X be a closed subvariety
of a variety X ′ of codimension c and let W be a proper closed subset
of X. Let a′ ⊂ OX′ be an ideal such that its image a := a′OX ⊂ OX is
non-zero. Let IX/X′ be the defining ideal of X in X ′. Then,

m̂ld(W ; X, aJX) ≥ m̂ld(W ; X ′, a′JX′Ic
X/X′).

Corollary 3.12. Let (X, a) be a pair consisting of an arbitrary variety

X and a non-zero ideal a ⊂ OX , then the function x 7→ m̂ld(x; X, aJX),
(x ∈ X closed point) is lower semicontinuous.
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Corollary 3.13. Let X be a variety of dimension d. Then, for every
closed point x ∈ X, the following inequality holds:

m̂ld(x; X, JX) ≤ d,

where the equality holds if and only if (X, x) is non-singular.

In [19] Shokurov posed the following conjecture:

Conjecture 3.14. Let X be a Q-Gorenstein variety of dimension d.
Then, for every closed point x ∈ X, the following inequality holds:

mld(x; X, OX) ≤ d,

where the equality holds if and only if (X, x) is non-singular.

Our Corollary 3.13 is the answer to a modified version of this con-
jecture. In particular, if (X, x) is a complete intersection, then the
affirmative answer to this conjecture follows from our corollary, be-

cause mld(x; X, OX) = m̂ld(x; X, JX). This is already observed by
Florin Ambro (private communication to the author) who published
its special case in [2].

4. Mather version of Shokurov’s Conjectures

As a refinement of Conjecture 3.14, Shokurov posed a conjecture as
follows :

Conjecture 4.1 ([20], Conjecture 2). For a Q-Gorenstein variety X
and an R-Cartier divisor B we have the inequality

mld(x; X,B) ≤ dim X,

where the equality holds if and only if (X, x) is nonsingular and B = 0
around x.

As a refinement of Corollary 3.13, we obtain the following (Mather
version) answer to Conjecture 4.1.

Proposition 4.2 ([13],Corollary 3.15;[4],Corollary 4.15). For an arbi-
trary variety X and an effective R-Cartier divisor B on X, we have
the inequality

m̂ld(x; X, JXB) ≤ dim X,

where the equality holds if and only if (X, x) is nonsingular and B = 0
around x.

Shokurov also posed a conjecture (which is not published) as follows:
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Conjecture 4.3. The inequality

dim X − 1 < mld(x; X,B)

holds if and only if (X, x) is nonsingular and multxB < 1. In this case
the minimal log discrepancy is computed by the exceptional divisor of
the first blowup at x.

The implication of “if” part of Conjecture 4.3 for 2-dimensional case
was proved by Vyacheslav Shokurov in his unpublished paper and for
3-dimensional case was proved by Florin Ambro [1], however this con-
jecture is not yet proved in general. The main result of this paper is the
following, which contains the affirmative answer to the Mather version
of Conjecture 4.3.

Theorem 4.4 (—-, A. Reguera). A pair (X,B) consisting of an arbi-
trary variety X and an effective R-Cartier divisor B on X satisfies

dim X − 1 ≤ m̂ld(x; X, JXB)

if and only if either

(i) B = 0, X ≅ C × Ar
k (r ≥ 0), where C is a plane curve with an

ordinary node at p and x = (p, 0) or
(ii) dim X ≥ 2, B = 0 and (X, x) is a compound Du Val singularity

or
(iii) (X, x) is non-sigular and 0 ≤ multxB ≤ 1.

In the cases (i) and (ii), we have m̂ld(x; X, JX) = dim X −1 and in the

case (iii) we have m̂ld(x; X, JXB) = mld(x; X,B) = dim X − multxB
and the minimal log discrepancy is computed by the exceptional divisor
of the first blowup at x.

As a corollary, we obtain the “if” part of Conjecture 4.3 for usual
mld:

Corollary 4.5. The inequality

dim X − 1 < mld(x; X,B)

holds if (X, x) is nonsingular and multxB < 1. In this case the minimal
log discrepancy is computed by the exceptional divisor of the first blowup
at x.

Let us show the outline of the proof of the theorem.

Definition 4.6. For d ≥ 1, we say that a d-dimensional variety X
has a top singularity at x0, or that (X, x0) is a top singularity, if

m̂ld(x0; X, JX) = d − 1.
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Definition 4.7. Let (X, x0) be a germ of a hypersurface in Ad+1
k with

d ≥ 2. A singularity (X, x0) is called a compound Du Val singularity or
cDV singularity if it is Du Val in case d = 2, if its general hyperplane
section is Du Val singularity in case d = 3 and if its general hyperplane
section is cDV singularity in case d > 3.

In the definition of cDV singularities, we assume the generality of
hyperplane sections, but it is not necessary if one assume that the
point is originally singular. The following is well known:

Lemma 4.8. Assume that (X, x0) is a germ of a d-dimensional hy-
persurface singularity of multiplicity 2 with d ≥ 3, then (X, x0) is a
compound Du Val singularity if and only if there exist (d − 2) hyper-
planes H1, . . . , Hd−2 such that (X ∩ H1 ∩ · · · ∩ Hd−2, x0) is a Du Val
singularity.

Remark 4.9. We also have an analytic description of the previous
lemma as follows: Let (X, x0) be a germ of d-dimensional variety and

R̂ be the M -adic completion of R = OX,x0 . Then (X, x0) is a compound

Du Val singularity if and only if there exists g1, . . . , gd−2 ∈ R̂ such that

SpecR̂/(g1, . . . , gd−2) is a Du Val singularity.

Lemma 4.10. Let (X, x0) be a germ of a d-dimensional variety at a
closed point x0 and let X ′ ⊂ X be a (d − c)-dimensional subvariety
which is defined locally as the zero locus of c elements of OX . Let x0

be a closed point in X ′. If (X ′, x0) is a top singularity, then (X, x0) is
a top singularity.

Lemma 4.11. If X has a top singularity at x0, then X is locally at x0

a hypersurface of multiplicity 2.

Corollary 4.12. A singularity (X, x0) is a top singularity if and only
if

(3) dim X0
m = md + 1 for every m ≥ 1.

Example 4.13. Next we give an example of a top singularity of di-
mension d = 1: Let X be a plane curve with an ordinary node, i.e.,
locally it is defined by x1x2 = 0 in A2

k, and let us consider its germ
(X, 0) at 0. For m ≥ 0, we have

X0
m = Spec k[X1, . . . , Xm] / ({

∑
1≤i≤n−1

X1,iX2,n−i}1≤n≤m).

It follows that X0
m has m irreducible components, given by

X1,1 = X1,2 = . . . = X1,r1 = X2,1 = . . . = X2,r2 = 0
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for r1, r2 ≥ 0, r1 + r2 = m − 1.

Thus, each irreducible component has dimension 2m−(m−1) = m+1,
and hence dim X0

m = m + 1 for m ≥ 0. Therefore (X, 0) is a top
singularity.

Definition 4.14. Let X = C×Ad−1
k (d ≥ 1), where C is a plane curve

with an ordinary node at p and x0 = (p, 0). Then, the singularity
(X, x0) is called a compound ordinary node singularity (sometimes we
call it a cON singularity).

Proposition 4.15. A compound ordinary node singularity is a top
singularity.

Proof: For d = 1, the singularity (X, x0) = (C, p) is a top singularity
by the previous example. Let d ≥ 2 and y1, . . . , yd−1 be a coordinate
system of Ad−1

k . The hyperplane cuts of (X, x0) by y1 = · · · = yd−1 = 0
is (C, p). Then, by Lemma 4.10, (X, x0) is a top singularity. ¤

Remark 4.16. For d ≥ 2, recall that, if X ⊂ Ad+1
k is a normal hyper-

surface and x0 a closed point of X, then

m̂ld(x0; X, JX) = mld(x0; X, OX) =

= inf{kE + 1 | νE divisorial valuation centered at x0}.

Note that, if π : Y → X and π′ : Y ′ → X are two desingularizations of
X, and Y ′ dominates Y , let ρ : Y ′ → Y be such that π′ = ρ ◦ π, then
we have KY ′/X = KY ′/Y + ρ∗(KY/X) and KY ′/Y is effective. Therefore,

given a normal hypersurface X ⊂ Ad+1
k of dimension d ≥ 2, in order

to prove that (X, x0) is a top singularity, it suffices to show that there
exists a desingularization π : Y → X such that

(4) inf{kE +1 | E prime divisor on Y such that π(E) = x0} = d−1.

Example 4.17. The equality (4) is satisfied for the minimal desingu-
larizations of all rational double points of dimension 2 (also called Du
Val singularities), since they are canonical singularities of dimension
d = 2. The following is a list of rational double points, for each of

them, the completion ÔX,0 of the local ring OX,0 of its germ at 0 is de-
scribed as a quotient of the ring of series k[[x1, x2, x3]]. More precisely,
for each of the types of the rational double points in the left hand

side, there exist x1,x2,x3 generating the maximal ideal of ÔX,0 and
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satisfying the equation in the right hand side (recall that char k = 0):

An(n ≥ 1) : x2
1 + x2

2 + xn+1
3 = 0

Dn(n ≥ 4) : x2
1 + x2

2x3 + xn−1
3 = 0

E6 : x2
1 + x3

2 + x4
3 = 0

E7 : x2
1 + x3

2 + x2x
3
3 = 0

E8 : x2
1 + x3

2 + x5
3 = 0

Proposition 4.18. A compound Du Val singularity is a top singular-
ity.

Proof: Let (X, x0) be a compound Du Val singularity of dimension
d ≥ 3. Then, a successive (d − 2) hyperplane cuts produces a Du
Val singularity. As in the previous example, Du Val singularities are
top singularities. By Lemma 4.10, we obtain that (X, x0) is a top
singularity. ¤

4.19. We will see that the cDV and cON singularities are all of the
top singularities. Recall that, given f(x1, . . . , xd+1) ∈ k[x1, . . . , xd+1]
(resp. f ∈ k[[x1, . . . , xd+1]]), if inf denotes the initial form of f in
the graded ring k[x1, . . . , xd+1] (resp. k[[x1, . . . , xd+1]]), with the usual
graduation, then the smallest possible dimension τ of a linear sub-
space V0 of V = kx1 + . . . + kxd+1 such that inf lies in the subalge-
bra k[V0] of k[x1, . . . , xd+1] is an invariant of the germ (X, 0) at 0 of
the hypersurface X ⊂ Ad+1

k defined by f(x1, . . . , xd+1) = 0 (resp. of
Spec k[[x1, . . . , xd+1]]/(f) ) ([9], chap. III). We denote it by τ(X, 0)
(resp. by τ(f)). Given a germ (X, x0) of hypersurface in Ad+1

k at a
closed point x0, the τ -invariant τ(X, x0) is defined as the τ -invariant
of the germ of hypersurface obtained after a translation of x0 to 0.

Lemma 4.20. Let (X, 0) be the germ at 0 of an hypersurface X ⊂ Ad+1
k

of multiplicity 2. Then, there exist x1, . . . ,xd+1 ∈ ÔX,0 generating its
maximal ideal and such that

x2
1 + . . . + x2

τ + g(xτ+1, . . . ,xd+1) = 0

with τ = τ(X, 0), g(xτ+1, . . . , xd+1) ∈ k[[xτ+1, . . . , xd+1]] and either
g = 0 or mult g ≥ 3.

Proposition 4.21. Let (X, x0) be a germ of a hypersurface of multi-
plicity 2 and τ(X, x0) > 1. Then (X, x0) is either a cON singularity or
a cDV singularity, therefore it is a top singularity.
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Proof: As in Lemma 4.20, let x1, . . . ,xd+1 ∈ ÔX,0 generate its maxi-
mal ideal and satisfy

x2
1 + . . . + x2

τ + g(xτ+1, . . . ,xd+1) = 0.

with τ = τ(X, 0), g(xτ+1, . . . , xd+1) ∈ k[[xτ+1, . . . , xd+1]] and either g =
0 or mult g ≥ 3. If τ = 2 and g = 0, then (X, x0) is a cON singularity.
If τ ≥ 3, , let X0 be the intersection of X with the hyperplanes xi = 0
for 4 ≤ i ≤ d + 1. Then X0 is defined in A3

k by

x2
1 + x2

2 + x2
3 = 0

hence it has an A1-singularity at 0, therefore (X, x0) is a cDV singu-
larity. If τ = 2 and g ̸= 0. Therefore, there exists λ = (λ4, . . . , λd+1) ∈
Ad−1

k such that g(x3, λ4x3, . . . , λd+1x3) is nonzero and moreover, its
multiplicity is m = mult0 g(x3, . . . , xd+1). Hence, the intersection X0

of X with the hyperplanes xi = λix3, 4 ≤ i ≤ d+1, is defined in A3
k by

x2
1 + x2

2 + u xm
3 = 0

where u is a unit in k[x3], hence (X0, 0) is an Am−1-singularity (see
Example 4.17), thus it is a cDV singularity. ¤

4.22. Let (X, 0) be a germ of a hypersurface X ⊆ Ad+1
k of multiplicity

2 and τ(X, 0) = 1. Let x1, . . . ,xd+1 be generating the maximal ideal

of ÔX,0 and such that

(5) x2
1 + g(x2, . . . ,xd+1) = 0,

where g(x2, . . . , xd+1) ∈ k[[x2, . . . , xd+1]] and, since X is reduced, g ̸= 0
and mult g ≥ 3 (Lemma 4.20). Let us consider the germ at 0 of the hy-
persurface
g(x2, . . . , xd+1) = 0 in Spec k[[x1, . . . , xd+1]]. Although this germ de-
pends on the choice of x1, . . . , xd+1, its multiplicity m2 := mult g, and
its τ -invariant at 0, let it be τ2, only depend on (X, 0) (this follows from
[10]. ). Given a germ (X, x0) of hypersurface in Ad+1

k at a closed point
x0, we define m2(X, x0) and τ2(X, x0) to be the invariants defined as
before, after a translation of x0 to 0.

Lemma 4.23. Let (X, 0) be a germ of a hypersurface in Ad+1
k of mul-

tiplicity 2 and τ(X, 0) = 1. If (X, 0) is a top singularity then d ≥ 2
and m2(X, 0) = 3.

Proposition 4.24. Let (X, x0) be a germ of a hypersurface in Ad+1
k of

multiplicity 2 and τ(X, x0) = 1. If m2(X, x0) = 3 and τ2(X, x0) > 1,
then (X, x0) is a cDV singularity, therefore it is a top singularity.
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4.25. Let (X, 0) be a germ of a hypersurface X ⊆ Ad+1
k of multiplicity

2, τ(X, 0) = 1, m2(X, 0) = 3 and τ2(X, 0) = 1. Then there exist

x1, . . . ,xd+1 generating the maximal ideal of ÔX,0 and such that

(6) x2
1 + x3

2 + g3(x3, . . . ,xd+1) x2 + g4(x3, . . . ,xd+1) = 0,

where gi ∈ k[[x3, . . . , xd+1]] and mult0 gi ≥ i, for i = 3, 4. In fact,

there exist x1, . . . , xd+1 whose classes in ÔX,0 generate the maximal
ideal, and g ∈ k[[x2, . . . , xd+1]] such that (5) holds, and moreover, since
mult g = m2(X, x0) = 3 and τ2(X, x0) = 1, by Weierstrass’ preparation
theorem and after a Tschirnhausen transformation, we may suppose
that

g(x2, . . . , xd+1) = u
(
x3

2 + g3(x3, . . . , xd+1) x2 + g4(x3, . . . , xd+1)
)

where u is a unit in k[[x2, . . . , xd+1]] and gi ∈ k[[x3, . . . , xd+1]] is such
that mult gi ≥ i, for i = 3, 4. Replacing x1 by vx1 where v is a unit in
k[[x2, . . . , xd+1]] such that v2 = u, and considering the equality induced

on the classes xi of xi in ÔX,0, we obtain (6).

Proposition 4.26. Let (X, x0) be a germ of a hypersurface in Ad+1
k

of multiplicity 2 and τ(X, x0) = 1, m2(X, x0) = 3 and τ2(X, x0) = 1.
Then the following are equivalent:

(i) (X, x0) is a top singularity,

(ii) there exist x1, . . . ,xd+1 generating the maximal ideal of ÔX,x0

such that

x2
1 + x3

2 + g3(x3, . . . ,xd+1) x2 + g4(x3, . . . ,xd+1) = 0

where gi ∈ k[[x3, . . . , xd+1]], mult gi ≥ i, for i = 3, 4 and either
mult g3 = 3 or 4 ≤ mult g4 ≤ 5,

(iii) (X, x0) is a cDV singularity.

The following summarizes the discussions of characterization of a top
singularity (Proposition 4.21, Lemma 4.23, Proposition 4.24, Proposi-
tion 4.26).

Theorem 4.27. A germ of a variety (X, x0) of dimension d is a top
singularity if and only if either

(i) there exist minimal system of generators x1,x2, . . . ,xd+1 of the

maximal ideal of ÔX,x0 such that x1x2 = 0, or
(ii) d ≥ 2 and there exist minimal system of generators x1, . . . ,xd+1

of the maximal ideal of ÔX,x0 such that one of the following
holds:
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(a) x2
1 + . . . + x2

τ + g(xτ+1, . . . ,xd+1) = 0 where τ ≥ 2,
g(xτ+1, . . . , xd+1) ∈ k[[xτ+1, . . . , xd+1]] and mult g ≥ 3.

(b) x2
1 + x3

2 + p(x3, . . . ,xd+1) x2 + q(x3, . . . ,xd+1) = 0
where p(x3, . . . , xd+1), q(x3, . . . , xd+1) ∈ k[[x3, . . . , xd+1]],
mult p ≥ 2, mult q ≥ 3, and either 2 ≤ mult p ≤ 3 or
3 ≤ mult q ≤ 5.

Theorem 4.28. A germ of a variety (X, x0) is a top singularity if and
only if either

(i) X ≅ C×Ar
k (r ≥ 0), where C is a plane curve with an ordinary

node at p and x0 = (p, 0) or
(ii) dim X ≥ 2 and (X, x0) is a compound Du Val singularity

Proof: The conditions (i) and (ii) imply that (X, x0) is a top singu-
larity by Proposition 4.15 and Proposition 4.18. The converse follows
from the fact that a top singularity is a hypersurface double point
and, under the classification of the defining equation according the in-
variants τ,m, a class which is of top singularities always satisfy the
condition either (i) or (ii) (Proposition 4.21, Lemma 4.23, Proposition
4.24, Proposition 4.26).

5. A proof of the main theorem

Proof of Theorem 4.4: Let d = dim X and let (X,B) satisfy the

condition d − 1 ≤ m̂ld(x; X, JXB) at a closed point x ∈ X. If (X, x)

is singular, then by Proposition 4.2 we have m̂ld(x; X, JX) ≤ d − 1

since m̂ld(x; X, JX) is an integer by the definition. If B ̸= 0 in a
neighborhood of x, then

m̂ld(x; X, JXB) < m̂ld(x; X, JX) ≤ d − 1,

in which case (X,B) does not satisfy the condition of the theorem.

Therefore if (X, x) is singular, then B = 0 and m̂ld(x; X, JX) = d − 1,
i.e., (X, x) is a top singularity. A top singularity is characterized in
the Theorem 4.28 as in (i) and (ii).

Hence it is sufficient to characterize a pair (X,B) such that X is

nonsingular and m̂ld(x; X, JXB) = mld(x; X,B) ≥ d − 1 in terms of
(iii).

If d = dim X = 1, then it is obvious since mld(x; X,B) = 1−multxB.
Assume d = dim X ≥ 2 and (X,B) satisfies the inequality mld(x; X,B) ≥

d − 1, then for the exceptional divisor E1 of the blowup ϕ1 : X1 → X
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of X at x should have the log discrepancy

kE1 − ordE1ϕ
∗
1B + 1 ≥ d − 1.

As kE = d − 1 and ordE1ϕ
∗
1B = multxB, this implies multxB ≤ 1.

Conversely we assume (iii) that multxB ≤ 1. Under this condition
we check the log discrepancy of every prime divisor over X with the
center at x.

Let E be a prime divisor over X with the center at x, let y ∈ E be
the generic point and let E appear in a resolution f0 : Y → X. Then,
by Zariski’s result (see, for example [16], VI, 1.3), we have a sequence
of varieties X0, X1, . . . , Xn and rational maps as follows:

X0 = X, f0 = f .
If fi : Y 99K Xi is already defined, then let Zi ⊂ Xi be the
closure of pi = fi(y). Let Xi+1 = BZi

Xi and fi+1 : Y 99K Xi+1

be the induced map.
Then the final birational map fn : Y 99K Xn is isomorphic at
y, i.e., E appears on Xn.

Here, BZi
Xi is the blowup of Xi with the center Zi. Let ϕi : Xi →

Xi−1 be the blowup morphism and Ei ⊂ Xi the exceptional divisor
dominating Zi. Note that the first blowup ϕ1 : X1 → X0 = X is the
blowup at the closed point x since the center of E on X is x and on
the other hand fn is isomorphic at the generic points of En and E. We
also note that Xi and Ei are nonsingular at pi for every i = 1, . . . n.
Indeed, this is proved inductively. As X1 is the blowup at a closed point
x = p0, X1 and E1 are nonsingular at every point. Suppose i ≥ 2 and
Xi−1 and Ei−1 are nonsingular at pi−1, then Xi is the blowup with the
nonsingular center, when one restricts the morphism on a neighborhood
of pi−1. As pi is on the pull back of this neighborhood, Xi and Ei are
nonsingular at pi.

Let B(i) be the strict transform of B on Xi, then by [9] II sec. 5,
Theorem 3 (p.233) we have:

(7) multpi
B(i) ≤ multpi−1

B(i−1) for every i = 1, . . . , n

Let a(Ei, X,B) be the discrepancy of (X,B) at the divisor Ei, i.e.,

a(Ei; X,B) = ordEi
(KXi/X − Φ∗

i (B)),

where Φi : Xi → X is the composite ϕ1 ◦ · · · ◦ ϕi. Note that the log
discrepancy of (X,B) at the divisor Ei is a(Ei; X,B) + 1.
Claim. For every i = 1, . . . , n

a(Ei, X,B) ≥ 0 and a(Ei, X,B) ≥ a(Ei−1, X,B).
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By abuse of notation, we denote the strict transform of Ei−1 ⊂ Xi−1

on Xj (j ≥ i) by the same symbol Ei−1. Then, we have

(8) ϕ∗
i (Ei−1) = Ei−1 + Ei

by the nonsingularity of Xi−1 and Ei−1 at pi−1 guaranteed in the dis-
cussion above.

Now we prove the claim by induction on i. First for i = 1, by
substituting KX1/X = (d − 1)E1 and ϕ∗

1(B) = (multxB)E1 + B(1) into

a(E1; X,B) = ordE1(KX1/X − ϕ∗
1(B)),

we obtain

a(E1; X,B) = (d − 1) − multxB ≥ d − 2,

which is of course nonnegative by our assumption d ≥ 2.
Let i ≥ 2 and assume that a(Ej; X,B) ≥ 0 for all j ≤ i − 1 by

induction hypothesis. Then,

a(Ei; X,B) = ordEi
(KXi/X − Φ∗

i (B))

= ordEi

(
KXi/Xi−1

+ ϕ∗
i

(
KXi−1/X − Φ∗

i−1(B)
))

= ordEi

(
KXi/Xi−1

+ ϕ∗
i (

∑
j≤i−1

a(Ej, X,B)Ej − B(i−1))

)
≥ ordEi

(KXi/Xi−1
) + a(Ei−1; X,B) − multpi−1

B(i−1).

Here, we used (8) and the hypothesis of the induction. We may assume

that codim{pi−1} ≥ 2, because if codim{pi−1} = 1, then fi−1 is already
isomorphic at the generic point y ∈ E. (We may assume that n is

taken to be minimal.) As ordEi
(KXi/Xi−1

) = codim{pi−1} − 1 ≥ 1 and

multpi−1
B(i−1) ≤ multxB ≤ 1 by (7), we obtain

a(Ei, X,B) ≥ a(Ei−1, X,B) ≥ 0

as claimed.
By this, we have the log discrepancy at E is a(E; X,B) + 1 =

a(En; X,B) + 1 ≥ a(E1; X,B) + 1 = d − multxB ≥ d − 1. There-

fore, the inequality dim X − 1 ≤ m̂ld(x; X, JXB) = mld(x; X,B) holds
and the minimal log discrepancy d − multxB and is computed by the
exceptional divisor of the first blowup at x. ¤

As a corollary of the theorem we have the “if” part of Conjecture
4.3:

Corollary 5.1. The inequality

dim X − 1 < mld(x; X,B)
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holds if (X, x) is nonsingular and multxB < 1. In this case the minimal
log discrepancy is computed by the exceptional divisor of the first blowup
at x.
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