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A symplectic variety X is a normal algebraic variety (defined over C)
which admits an everywhere non-degenerate d-closed 2-form ω on the regu-
lar locus Xreg of X such that, for any resolution f : X̃ → X with f−1(Xreg) ∼=
Xreg, the 2-form ω extends to a regular closed 2-form on X̃. There is a nat-
ural Poisson structure { , } on X determined by ω. Then we can introduce
the notion of a Poisson deformation of (X, { , }). A Poisson deformation is
a deformation of the pair of X itself and the Poisson structure on it. When
X is not a compact variety, the usual deformation theory does not work in
general because the tangent object T1

X may possibly have infinite dimension,
and moreover, infinitesimal or formal deformations do not capture actual
deformations of non-compact varieties. On the other hand, Poisson defor-
mations work very well in many important cases where X is not a complete
variety. Denote by PDX the Poisson deformation functor of a symplectic
variety. In this lecture, we shall study the Poisson deformation of an affine
symplectic variety. The main result is:

Theorem 1. Let X be an affine symplectic variety. Then the Poisson
deformation functor PDX is unobstructed.

A Poisson deformation of X is controlled by the Poisson cohomology
HP2(X). When X has only terminal singularities, we have HP2(X) ∼=
H2((Xreg)

an,C), where (Xreg)
an is the associated complex space with Xreg.

This description enables us to prove that PDX is unobstructed. But, in gen-
eral, there is not such a direct, topological description of HP2(X). Let us
explain our strategy to describe HP2(X). As remarked, HP2(X) is identified
with PDX(C[ϵ]) where C[ϵ] is the ring of dual numbers over C. First, note
that there is an open locus U of X where X is smooth, or is locally a trivial
deformation of a (surface) rational double point at each p ∈ U . Let Σ be the
singular locus of U . Note that X \ U has codimension ≥ 4 in X. Moreover,
we have PDX(C[ϵ]) ∼= PDU(C[ϵ]). Put T 1

Uan := Ext1(Ω1
Uan ,OUan). As is well-
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known, a (local) section of T 1
Uan corresponds to a 1-st order deformation of

Uan. Let H be a locally constant C-modules on Σ defined as the subsheaf
of T 1

Uan which consists of the sections coming from Poisson deformations of
Uan. Now we have an exact sequence:

0 → H2(Uan,C) → PDU(C[ϵ]) → H0(Σ,H).

Here the first term H2(Uan,C) is the space of locally trivial1 Poisson de-
formations of U . By the definition of U , there exists a minimal resolution
π : Ũ → U . Let m be the number of irreducible components of the excep-
tional divisor of π. A key result is:

Proposition 2. The following equality holds:

dim H0(Σ,H) = m.

In order to prove Proposition 2, we need to know the monodromy action
of π1(Σ) on H. The idea is to compare two sheaves R2πan

∗ C and H. Note
that, for each point p ∈ Σ, the germ (U, p) is isomorphic to the product of an
ADE surface singularity S and (C2n−2, 0). Let S̃ be the minimal resolution
of S. Then, (R2πan

∗ C)p is isomorphic to H2(S̃,C). A monodromy of R2πan
∗ C

comes from a graph automorphism of the Dynkin diagram determined by the
exceptional (-2)-curves on S̃. As is well known, S is described in terms of a
simple Lie algebra g, and H2(S̃,C) is identified with the Cartan subalgebra
h of g; therefore, one may regard R2πan

∗ C as a local system of the C-module
h (on Σ), whose monodromy action coincides with the natural action of a
graph automorphism on h. On the other hand, H is a local system of h/W ,
where h/W is the linear space obtained as the quotient of h by the Weyl
group W of g. The action of a graph automorphism on h descends to an
action on h/W , which gives a monodromy action for H. This description of
the monodromy enables us to compute dim H0(Σ,H).

Proposition 2 together with the exact sequence above gives an upper-
bound of dim PDU(C[ϵ]) in terms of some topological data of X (or U). We
shall prove Theorem 1 by using this upper-bound. The rough idea is the
following. There is a natural map of functors PDŨ → PDU induced by the
resolution map Ũ → U . The tangent space PDŨ(C[ϵ]) to PDŨ is identified
with H2(Ũan,C). We have an exact sequence

0 → H2(Uan,C) → H2(Ũan,C) → H0(Uan, R2πan
∗ C) → 0,

1More exactly, this means that the Poisson deformations are locally trivial as usual flat
deformations of Uan
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and dim H0(Uan, R2πan
∗ C) = m. In particular, we have dim H2(Ũan,C) =

dim H2(Uan,C)+m. But, this implies that dim PDŨ(C[ϵ]) ≥ dim PDU(C[ϵ]).
On the other hand, the map PDŨ → PDU has a finite closed fiber; or more ex-
actly, the corresponding map SpecRŨ → SpecRU of pro-representable hulls,
has a finite closed fiber. Since PDŨ is unobstructed, this implies that PDU is
unobstructed and dim PDŨ(C[ϵ]) = dim PDU(C[ϵ]). Finally, we obtain the
unobstructedness of PDX from that of PDU .

Theorem 1 is only concerned with the formal deformations of X; but,
if we impose the following condition (*), then the formal universal Poisson
deformation of X has an algebraization.

(*): X has a C∗-action with positive weights with a unique fixed point
0 ∈ X. Moreover, ω is positively weighted for the action.

We shall briefly explain how this condition (*) is used in the algebraiza-
tion. Let RX := lim RX/(mX)n+1 be the pro-representable hull of PDX .
Then the formal universal deformation {Xn} of X defines an mX-adic ring
A := lim Γ(Xn,OXn) and let Â be the completion of A along the maximal
ideal of A. The rings RX and Â both have the natural C∗-actions induced
from the C∗-action on X, and there is a C∗-equivariant map RX → Â. By
taking the C∗-subalgebras of RX and Â generated by eigen-vectors, we get a
map

C[x1, ..., xd] → S

from a polynomial ring to a C-algebra of finite type. We also have a Poisson
structure on S over C[x1, ..., xd] by the second condition of (*). As a conse-
quence, there is an affine space Ad whose completion at the origin coincides
with Spec(RX) in such a way that the formal universal Poisson deformation
over Spec(RX) is algebraized to a C∗-equivariant map

X → Ad.

According to a result of Birkar-Cascini-Hacon-McKernan, we can take a
crepant partial resolution π : Y → X in such a way that Y has only Q-
factorial terminal singularities. This Y is called a Q-factorial terminaliza-
tion of X. In our case, Y is a symplectic variety and the C∗-action on X
uniquely extends to that on Y . Since Y has only terminal singularities, it
is relatively easy to show that the Poisson deformation functor PDY is un-
obstructed. Moreover, the formal universal Poisson deformation of Y has an
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algebraization over an affine space Ad:

Y → Ad.

There is a C∗-equivariant commutative diagram

Y −−−→ Xy y
Ad ψ−−−→ Ad

(1)

We have the following.
Theorem 3 (a) ψ is a finite Galois covering.
(b) Y → Ad is a locally trivial deformation of Y .
(c) The induced map Yt → Xψ(t) is an isomorphism for a general point

t ∈ Ad.

The Galois group of ψ is described as follows. Let Σ be the singular locus
of X. There is a closed subset Σ0 ⊂ Σ such that X is locally isomorphic
to (S, 0) × (C2n−2, 0) at every point p ∈ Σ − Σ0 where S is an ADE surface
singularity. We have CodimXΣ0 ≥ 4. Let B be the set of connected com-
ponents of Σ − Σ0. Let B ∈ B. Pick a point b ∈ B and take a transversal
slice SB ⊂ Y of B passing through b. In other words, X is locally isomor-
phic to SB × (B, b) around b. SB is a surface with an ADE singularity. Put
S̃B := π−1(SB). Then S̃B is a minimal resolution of SB. Put TB := SB×(B, b)
and T̃B := π−1(TB). Note that T̃B = S̃B × (B, b). Let Ci (1 ≤ i ≤ r) be the
(−2)-curves contained in S̃B and let [Ci] ∈ H2(S̃B,R) be their classes in the
2-nd cohomology group. Then

Φ := {Σai[Ci]; ai ∈ Z, (Σai[Ci])
2 = −2}

is a root system of the same type as that of the ADE-singularity SB. Let W be
the Weyl group of Φ. Let {Ei(B)}1≤i≤r̄ be the set of irreducible exceptional
divisors of π lying over B, and let ei(B) ∈ H2(X,Z) be their classes. Clearly,
r̄ ≤ r. If r̄ = r, then we define WB := W . If r̄ < r, the Dynkin diagram of
Φ has a non-trivial graph automorphism. When Φ is of type Ar with r > 1,
r̄ = [r + 1/2] and the Dynkin diagram has a graph automorphism τ of order
2. When Φ is of type Dr with r ≥ 5, r̄ = r − 1 and the Dynkin diagram
has a graph automorphism τ of order 2. When Φ is of type D4, the Dynkin
diagram has two different graph automorphisms of order 2 and 3. There are
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two possibilities of r̄; r̄ = 2 or r̄ = 3. In the first case, let τ be the graph
automorphism of order 3. In the latter case, let τ be the graph automorphism
of order 2. Finally, when Φ is of type E6, r̄ = 4 and the Dynkin diagram has
a graph automorphism τ of order 2. In all these cases, we define

WB := {w ∈ W ; τwτ−1 = w}.

The Galois group of ψ coincides with WB.

As an application of Theorem 3, we have

Corollary 4: Let (X,ω) be an affine symplectic variety with the property
(*). Then the following are equivalent.

(1) X has a crepant projective resolution.

(2) X has a smoothing by a Poisson deformation.

Example 5 (i) Let O ⊂ g be a nilpotent orbit of a complex simple
Lie algebra. Let Õ be the normalization of the closure Ō of O in g. Then
Õ is an affine symplectic variety with the Kostant-Kirillov 2-form ω on O.
Let G be a complex algebraic group with Lie(G) = g. By [Fu], Õ has a
crepant projective resolution if and only if O is a Richardson orbit (cf. [C-
M]) and there is a parabolic subgroup P of G such that its Springer map
T ∗(G/P ) → Õ is birational. In this case, every crepant resolution of Õ
is actually obtained as a Springer map for some P . If Õ has a crepant
resolution, Õ has a smoothing by a Poisson deformation. The smoothing
of Õ is isomorphic to the affine variety G/L, where L is the Levi subgroup
of P . Conversely, if Õ has a smoothing by a Poisson deformation, then the
smoothing always has this form.

(ii) In general, Õ has no crepant resolutions. But, by [Na 4], at least when
g is a classical simple Lie algebra, every Q-factorial terminalization of Õ is
given by a generalized Springer map. More explicitly, there is a parabolic
subalgebra p with Levi decomposition p = n⊕l and a nilpotent orbit O′ in l so
that the generalized Springer map G×P (n+Ō′) → Õ is a crepant, birational
map, and the normalization of G×P (n+ Ō′) is a Q-factorial terminalization
of Õ. By a Poisson deformation, Õ deforms to the normalization of G×L Ō′.
Here G ×L Ō′ is a fiber bundle over G/L with a typical fiber Ō′, and its
normalization can be written as G ×L Õ′ with the normalization Õ′ of Ō′.

We can apply Theorem 3 to the Poisson deformations of an affine sym-
plectic variety related to a nilpotent orbit in a complex simple Lie algebra.
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Let g be a complex simple Lie algebra and let G be the adjoint group. For
a parabolic subgroup P of G, denote by T ∗(G/P ) the cotangent bundle of
G/P . The image of the Springer map s : T ∗(G/P ) → g is the closure Ō
of a nilpotent (adjoint) orbit O in g. Then the normalization Õ of Ō is an
affine symplectic variety with the Kostant-Kirillov 2-form. If s is birational
onto its image, then the Stein factorization T ∗(G/P ) → Õ → Ō of s gives a
crepant resolution of Õ. In this situation, we have the following commutative
diagram

G ×P r(p) −−−→ G̃ · r(p)y y
k(p) −−−→ k(p)/W ′

(2)

where r(p) is the solvable radical of p, G̃ · r(p) is the normalization of the
adjoint G-orbit of r(p) and k(p) is the centralizer of the Levi part l of p.
Moreover, W ′ := NW (L)/W (L), where L is the Levi subgroup of P and
W (L) is the Weyl group of L.

Theorem 6. The diagram above coincides with the C∗-equivariant com-
mutative diagram of the universal Poisson deformations of T ∗(G/P ) and Õ.

Note that W ′ has been extensively studied by Howlett and others. An-
other important example is a transversal slice of g. In the commutative
diagram above, put p = b the Borel subalgebra. Then we have:

G ×B b
πB−−−→ gy ϕ

y
h −−−→ h/W.

(3)

Let x ∈ g be a nilpotent element of g and let O be the adjoint orbit containing
x. Let V ⊂ g be a transversal slice for O passing through x. Put VB :=
π−1

B (V). Denote by V (resp. ṼB) the central fiber of V → h/W (resp.
G ×B b → h). Note that ṼB is somorphic to the cotangent bundle T ∗(G/B)
of G/B, and ṼB → V is a crepant resolution.
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Theorem 7 The commutative diagram

ṼB −−−→ Vy ϕV

y
h −−−→ h/W

(4)

is the C∗-equivariant commutative diagram of the universal Poisson defor-
mations of ṼB and V if g is simply laced.

When g is not simply-laced, Theorem 7 is no more true. In fact, Slodowy
pointed out that the transversal slice V for a subregular nilpotent orbit of
non-simply-laced g does not give the universal deformation. However, we
have a criterion of the universality. Let

ρ : A(O) → GL(H2(π−1
B,0(x),Q))

be the monodromy representation of the component group A(O) of O.

Theorem 8. Let g be a comple simple Lie algebra which is not necessar-
illy simply-laced. Then the above commutative diagram is universal if and
only if ρ is trivial.
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