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A symplectic variety X is a normal algebraic variety (defined over C)
which admits an everywhere non-degenerate d-closed 2-form w on the regu-
lar locus X4 of X such that, for any resolution f : X — X with F N Xeg) =
Xyeg, the 2-form w extends to a regular closed 2-form on X. There is a nat-
ural Poisson structure { , } on X determined by w. Then we can introduce
the notion of a Poisson deformation of (X, {, }). A Poisson deformation is
a deformation of the pair of X itself and the Poisson structure on it. When
X is not a compact variety, the usual deformation theory does not work in
general because the tangent object T% may possibly have infinite dimension,
and moreover, infinitesimal or formal deformations do not capture actual
deformations of non-compact varieties. On the other hand, Poisson defor-
mations work very well in many important cases where X is not a complete
variety. Denote by PDy the Poisson deformation functor of a symplectic
variety. In this lecture, we shall study the Poisson deformation of an affine
symplectic variety. The main result is:

Theorem 1. Let X be an affine symplectic variety. Then the Poisson
deformation functor PDx is unobstructed.

A Poisson deformation of X is controlled by the Poisson cohomology
HP?(X). When X has only terminal singularities, we have HP?*(X) =
H?((Xyeg)™, C), where (X,.,)*" is the associated complex space with X,.,.
This description enables us to prove that PDx is unobstructed. But, in gen-
eral, there is not such a direct, topological description of HP?(X). Let us
explain our strategy to describe HP?(X). As remarked, HP?(X) is identified
with PDx(Cle]) where C[e] is the ring of dual numbers over C. First, note
that there is an open locus U of X where X is smooth, or is locally a trivial
deformation of a (surface) rational double point at each p € U. Let ¥ be the
singular locus of U. Note that X \ U has codimension > 4 in X. Moreover,
we have PDx (Cle]) = PDy/(Cle]). Put Tfen := Ext'(Qan, Opan). As is well-



known, a (local) section of T, corresponds to a 1-st order deformation of
U . Let 'H be a locally constant C-modules on ¥ defined as the subsheaf
of Tlen which consists of the sections coming from Poisson deformations of
U*". Now we have an exact sequence:

0 — H*(U"™,C) — PDy(Cle]) — H°(Z,H).

Here the first term H?(U", C) is the space of locally trivial! Poisson de-
formations of U. By the definition of U, there exists a minimal resolution
7 : U — U. Let m be the number of irreducible components of the excep-
tional divisor of . A key result is:

Proposition 2. The following equality holds:
dim H°(Z, H) = m.

In order to prove Proposition 2, we need to know the monodromy action
of m(X) on H. The idea is to compare two sheaves R*7r?"C and H. Note
that, for each point p € 3, the germ (U, p) is isomorphic to the product of an
ADE surface singularity S and (C?*~2,0). Let S be the minimal resolution
of S. Then, (R?7**C),, is isomorphic to H2(S,C). A monodromy of R*7"C
comes from a graph automorphism of the Dynkin diagram determined by the
exceptional (-2)-curves on S. As is well known, S is described in terms of a
simple Lie algebra g, and H2(S, C) is identified with the Cartan subalgebra
b of g; therefore, one may regard R?79"C as a local system of the C-module
H (on %), whose monodromy action coincides with the natural action of a
graph automorphism on h. On the other hand, H is a local system of /W,
where h/W is the linear space obtained as the quotient of h by the Weyl
group W of g. The action of a graph automorphism on b descends to an
action on h/W which gives a monodromy action for H. This description of
the monodromy enables us to compute dim H°(3, H).

Proposition 2 together with the exact sequence above gives an upper-
bound of dim PDy (Cle]) in terms of some topological data of X (or U). We
shall prove Theorem 1 by using this upper-bound. The rough idea is the
following. There is a natural map of functors PD; — PDy induced by the
resolution map U — U. The tangent space PD;(Cle]) to PDj is identified
with H 2((7 @ C). We have an exact sequence

0— H*U™,C) — H*(U™,C) — H' (U™, R*1%"C) — 0,

'More exactly, this means that the Poisson deformations are locally trivial as usual flat
deformations of U*"




and dim H°(U*, R*7*C) = m. In particular, we have dim H?(U**,C) =
dim H?(U*", C)+m. But, this implies that dim PDy(Cle]) > dim PDy(Cle]).
On the other hand, the map PDy; — PDy has a finite closed fiber; or more ex-
actly, the corresponding map SpecR; — SpecRy of pro-representable hulls,
has a finite closed fiber. Since PD is unobstructed, this implies that PDy; is
unobstructed and dim PDy(Cle]) = dim PDy(Cle]). Finally, we obtain the
unobstructedness of PDx from that of PDy;.

Theorem 1 is only concerned with the formal deformations of X; but,
if we impose the following condition (*), then the formal universal Poisson
deformation of X has an algebraization.

(*): X has a C*-action with positive weights with a unique fixed point
0 € X. Moreover, w is positively weighted for the action.

We shall briefly explain how this condition (*) is used in the algebraiza-
tion. Let Rx := lim Rx/(mx)™™ be the pro-representable hull of PDy.
Then the formal universal deformation {X,,} of X defines an my-adic ring
A :=1imI[(X,,Ox,) and let A be the completion of A along the maximal
ideal of A. The rings Ry and A both have the natural C*-actions induced
from the C*-action on X, and there is a C*-equivariant map Ry — A. By
taking the C*-subalgebras of Ry and A generated by eigen-vectors, we get a
map

Clzy,...,xqg) = S

from a polynomial ring to a C-algebra of finite type. We also have a Poisson
structure on S over Clzy, ..., 4] by the second condition of (*). As a conse-
quence, there is an affine space A% whose completion at the origin coincides
with Spec(Rx) in such a way that the formal universal Poisson deformation
over Spec(Rx) is algebraized to a C*-equivariant map

X — A?,

According to a result of Birkar-Cascini-Hacon-McKernan, we can take a
crepant partial resolution 7 : Y — X in such a way that Y has only Q-
factorial terminal singularities. This Y is called a Q-factorial terminaliza-
tion of X. In our case, Y is a symplectic variety and the C*-action on X
uniquely extends to that on Y. Since Y has only terminal singularities, it
is relatively easy to show that the Poisson deformation functor PDy is un-
obstructed. Moreover, the formal universal Poisson deformation of Y has an



algebraization over an affine space A%:
Yy — A%
There is a C*-equivariant commutative diagram

y — X
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We have the following.
Theorem 3 (a) ¥ is a finite Galois covering.
(b) Y — A4 is a locally trivial deformation of Y.

(¢) The induced map Yy — Xy is an isomorphism for a general point
te Al

The Galois group of 1 is described as follows. Let Y be the singular locus
of X. There is a closed subset ¥, C > such that X is locally isomorphic
to (S,0) x (C*~20) at every point p € ¥ — ¥y where S is an ADE surface
singularity. We have Codimx3, > 4. Let B be the set of connected com-
ponents of ¥ — Y. Let B € B. Pick a point b € B and take a transversal
slice Sp C Y of B passing through b. In other words, X is locally isomor-
phic to Sg x (B, b) around b. Sp is a surface with an ADE singularity. Put
Sp = 77 1(Sg). Then Sp is a minimal resolution of Sg. Put T := Spx (B,b)
and T := 7~ (Tp). Note that Tg = Sp x (B,b). Let C; (1 <i < 7) be the
(—2)-curves contained in Sg and let [C;] € H?(Sp, R) be their classes in the
2-nd cohomology group. Then

P = {ECLZ[CZ],(% c Z, (Eaz[C’z]f = —2}

is a root system of the same type as that of the ADE-singularity Sg. Let W be
the Weyl group of ®. Let {F;(B)}1<i<7 be the set of irreducible exceptional
divisors of 7 lying over B, and let ¢;(B) € H?*(X,Z) be their classes. Clearly,
7 <r. If r=r, then we define Wg := W. If ¥ < r, the Dynkin diagram of
® has a non-trivial graph automorphism. When @ is of type A, with r > 1,
7 = [r+1/2] and the Dynkin diagram has a graph automorphism 7 of order
2. When & is of type D, with » > 5, 7 = r — 1 and the Dynkin diagram
has a graph automorphism 7 of order 2. When & is of type Dy, the Dynkin
diagram has two different graph automorphisms of order 2 and 3. There are



two possibilities of 7; 7 = 2 or ¥ = 3. In the first case, let 7 be the graph
automorphism of order 3. In the latter case, let 7 be the graph automorphism
of order 2. Finally, when ® is of type Eg, 7 = 4 and the Dynkin diagram has
a graph automorphism 7 of order 2. In all these cases, we define

Wg = {w e W;rwr ' = w}.

The Galois group of ¢ coincides with Wi.
As an application of Theorem 3, we have

Corollary 4: Let (X,w) be an affine symplectic variety with the property
(*). Then the following are equivalent.

(1) X has a crepant projective resolution.

(2) X has a smoothing by a Poisson deformation.

Example 5 (i) Let O C g be a nilpotent orbit of a complex simple
Lie algebra. Let O be the normalization of the closure O of O in g. Then
O is an affine symplectic variety with the Kostant-Kirillov 2-form w on O.
Let G be a complex algebraic group with Lie(G) = g. By [Ful, O has a
crepant projective resolution if and only if O is a Richardson orbit (cf. [C-
M]) and there is a parabolic subgroup P of G such that its Springer map
T*(G/P) — O is birational. In this case, every crepant resolution of O
is actually obtained as a Springer map for some P. If O has a crepant
resolution, O has a smoothing by a Poisson deformation. The smoothing
of O is isomorphic to the affine variety G /L, where L is the Levi subgroup
of P. Conversely, if O has a smoothing by a Poisson deformation, then the
smoothing always has this form.

(ii) In general, O has no crepant resolutions. But, by [Na 4], at least when
g is a classical simple Lie algebra, every Q-factorial terminalization of O is
given by a generalized Springer map. More explicitly, there is a parabolic
subalgebra p with Levi decomposition p = né®[l and a nilpotent orbit O’ in [ so
that the generalized Springer map G x? (n+0’) — O is a crepant, birational
map, and the normalization of G x* (n+ ') is a Q-factorial terminalization
of O. By a Poisson deformation, O deforms to the normalization of G x% O'.
Here G xX O’ is a fiber bundle over G/L with a typical fiber O/, and its
normalization can be written as G x* O’ with the normalization O’ of O'.

We can apply Theorem 3 to the Poisson deformations of an affine sym-
plectic variety related to a nilpotent orbit in a complex simple Lie algebra.



Let g be a complex simple Lie algebra and let G be the adjoint group. For
a parabolic subgroup P of G, denote by T*(G/P) the cotangent bundle of
G/P. The image of the Springer map s : T*(G/P) — g is the closure O
of a nilpotent (adjoint) orbit O in g. Then the normalization O of O is an
affine symplectic variety with the Kostant-Kirillov 2-form. If s is birational
onto its image, then the Stein factorization T*(G/P) — O — O of s gives a
crepant resolution of O. In this situation, we have the following commutative
diagram

—~—

G xPr(p) —— G-r(p)

| | @
tp) —— tp)/W

—_——

where r(p) is the solvable radical of p, G - r(p) is the normalization of the
adjoint G-orbit of r(p) and €(p) is the centralizer of the Levi part [ of p.
Moreover, W’ := Ny (L)/W (L), where L is the Levi subgroup of P and
W (L) is the Weyl group of L.

Theorem 6. The diagram above coincides with the C*-equivariant com-
mutative diagram of the universal Poisson deformations of T*(G/P) and O.

Note that W’ has been extensively studied by Howlett and others. An-
other important example is a transversal slice of g. In the commutative
diagram above, put p = b the Borel subalgebra. Then we have:

GXB[)W—B> g

I »

b —— h/W

Let x € g be a nilpotent element of g and let O be the adjoint orbit containing
x. Let V C g be a transversal slice for O passing through x. Put Vg :=
755(V). Denote by V (resp. Vp) the central fiber of V — h/W (resp.
G xP b — b). Note that Vp is somorphic to the cotangent bundle 7*(G/B)
of G/B, and Vg — V is a crepant resolution.



Theorem 7 The commutative diagram

]}B—> )%

l wl (4)
b —— h/W

is the C*-equivariant commutative diagram of the universal Poisson defor-
mations of Vg and V if g is simply laced.

When g is not simply-laced, Theorem 7 is no more true. In fact, Slodowy
pointed out that the transversal slice V for a subregular nilpotent orbit of
non-simply-laced g does not give the universal deformation. However, we
have a criterion of the universality. Let

p: A(O) = GL(H(n5(7), Q))

be the monodromy representation of the component group A(O) of O.

Theorem 8. Let g be a comple simple Lie algebra which is not necessar-
illy simply-laced. Then the above commutative diagram is universal if and
only if p is trivial.
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