THE MOTIVIC GALOIS GROUP,
THE GROTHENDIECK-TEICHMULLER GROUP
AND
THE DOUBLE SHUFFLE GROUP

HIDEKAZU FURUSHO

1. THE MOTIVIC GALOIS GROUP

We recall the motivic Galois group of the category of mixed Tate motives over Z
[DG] in this section. This is related with the Drinfel’d’s Grothendieck-Teichmiiller
group ([Dr91]) in §2 and the Racinet’s double shuffle group ([R]) in §3.

Let & be a field with characteristic 0. Levine [L2] and Voevodsky [V] constructed
a triangulated category of mixed motives over k. Levine [L2] showed an equivalence
of these two categories. This category denoted by DM (k)q has Tate objects Q(n)
(n € Z). Let DMT(k)q be the triangulated sub-category of DM (k)q generated
by Q(n) (n € Z). Levine [L1] extracted a neutral tannakian Q-category MT(k)q
of mixed Tate motives over k from DMT'(k)q by taking a heart with respect to a t-
structure under the Beilinson-Soulé vanishing conjecture which says gr; K, (k) = 0
for n > 2i. Here LHS is the graded quotient of the algebraic K-theory for k with
respect to y-filtration.

Assume that k is a number field. In this case the Beilinson-Soulé vanishing con-
jecture holds and we have MT(k)q. This category satisfies the following expected
properties: Each object M has an increasing filtration of subobjects called weight
filtration, W : --- C W,,_1M C W,,M C W,_,.u1M C ---, whose intersection is
0 and union is M. The quotient Griv, .\ M = Wamy1 M/Wo,, M is trivial and
Gri¥.M = W,n M/Wyp 1M is a direct sum of finite copies of Q(m) for each
m € Z. Morphisms of MT(k)q are strictly compatible with weight filtration. The
extension group is related to K-theory as follows

. Kom_i(k fori=1,
Bathir)a(QU0) Q(m) = {0 i for i > 1.
There are realization fiber functors ([L2] and [H]) corresponding to usual cohomol-
ogy theories.

Let S be a finite set of finite places of k. Let Og be the ring of S-integers in k.
Deligne and Goncharov [DG] defined the full subcategory MT(Og) of mixed Tate
motives over Og, whose objects are mixed Tate motives M in MT'(k)q such that for
each subquotient E of M which is an extension of Q(n) by Q(n +1) for n € Z, the
extension class of E in Emt}wT(k)Q (Q(n), Q(n+1)) = Ezt}wT(k)Q (Q(0),Q(1)) = kg
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lies in O ® Q. In this category the following hold:

0 form <1,
Extyr0,)(Q0),Q(m)) = { 05 ® Q form =1,
sz_l(k)q form > 1,

Extir(0)(Q(0), Q(m)) = 0.

Let Wean : MT(Os) = Vectq (Vectq: the category of Q-vector spaces) be the
fiber functor which sends each motive M to @, Hom(Q(n), Gr%,,M). Define the
motivic Galois group to be the pro-algebraic group GalM(03) := Aut®(MT(Os) :
Wean)- The action of GaM (Os) on wean(Q(1)) = Q defines a surjection Gal™ (Os) =
G and its kernel YGal™(Os) is the unipotent radical of Gal™(Os). There is a
canonical splitting 7 : G, = Gal™(Os) which gives a negative grading on the Lie
algebra LieldlGal™ (Os) (consult [D] §8 for the full story). The above computations
of Ezt-groups follows

Proposition 1 ([D] §8, [DG] §2). The graded Lie algebra Lield GaM(Os) is free
ab

and its degree n-part of (Lidl GatM (C’)s)) =UGa™M (05)? is isomorphic to the

dual of ExtilT(os)(Q(O),Q(—n)).

Let us restrict in the case of k = Q, S = 0, Og = Z. By Proposition 1 the Lie
algebra LieldGal™(Z) of the unipotent part ¥Gal™(Z) of Gal™(Z) should be a
"graded free Lie algebra generated by one element in each degree —m (m 2 3: odd).
In [DG] §4 they constructed the motivic fundamental group aM(X : 01) with
X = P1\{0,1,00}, which is an ind-object of MT(Z). This is an affine group
MT(Z)-scheme (cf. [DG]). Since all the structure morphism of m"(X : (ﬁ) belong
to the set of morphisms of MT(Z) and wean (7{1(X : 01)) = F, where F; is the free
pro-unipotent algebraic group of rank 2, we have

@ : UGaM(Z) - AutFy.
On this map ¢ the following is one of the basic problems.
Problem 2. Is yp injective?

This might be said a problem which asks a validity of a unipotent variant of
the so-called ‘BelyY’s theorem’ in [Be] in the pro-finite setting. Equivalently this
asks if the motivic fundamental group 7! (X : 01) is a ‘generator’ of the tannakian
category MT(Z). Tt is related with various conjectures in several realizations (cf.
[F07a) note 3.10); Zagier conjecture (partially proved by Terasoma [T] and Deligne-
Gonchaov [DG]), Deligne-Thara conjecture (partially proved by Hain-Matsumoto
[HM]) and Furusho-Yamashita conjecture (partially proved by Yamashita [Y]).

2. THE GROTHENDIECK-TEICHMULLER GROUP

In his celebrated papers on quantum groups [Dr86, Dr90, Dr91] Drinfel’d came
to the notion of quasitriangular quasi-Hopf quantized universal enveloping algebras.
It is a topological algebra which differs from a topological Hopf algebra in the sense
that the coassociativity axiom and the cocommutativity axiom is twisted by an
associator and an R-matrix satisfying a pentagon axiom and two hexagon axioms.
One of the main theorems in [Dr91] is that any quasitriangular quasi-Hopf quantized
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universal enveloping algebra modulo twists (in other words gauge transformations
[Ka}) is obtained as a quantization of a pair (called its classical limit) of a Lie algebra
and its symmetric invariant 2-tensor. Quantizations are constructed by ‘universal’
associators. The set of group-like universal associators forms a pro-algebraic variety,
denoted M. The associator set M ([Dr91]) is the pro-algebraic variety whose set
of k-valued points consists of pairs below (u,y) satisfying the GT-relations, the
Drinfel’d’s one pentagon equation (1) and his two hezagon equations (2) and (3),
and M is its open subvariety defined by p # 0. The non-emptiness of M (k) is
another of his main theorem (reproved in [Bal). :

The category of representations of a quasitriangular quasi-Hopf quantized uni-
versal enveloping algebra forms a quasitensored category [Dr91], in other words, a
braided tensor category [JS]; its associativity constraint and its commutativity con-
straint are subject to one pentagon axiom and two hexagon axioms. The (unipotent
part of the graded) Grothendieck- Teichmiiller (pro-algebraic) group GRT is intro-
duced in [Dr91] as a group of deformations of the category which change its associa-
tivity constraint keeping all three axioms. It is also closely related to Grothendieck’s
philosophy of Teichmiiller-Lego posed in [Gr]. Its set of k-valued points is defined
to be the subset of M with p = 0.

Let us fix notation and conventions: Let k be a field of characteristic 0, k its
algebraic closure and Ug2 = k((Xp,X1)) a non-commutative formal power series
ring with two variables X and X;. Its element ¢ = ¢(Xj, X1) is called group-like if
it satisfies A(p) = p®¢p with A(Xg) = Xo®1+1® Xy and A(X;) = X1 ®1+1®X;
and its constant term is equal to 1. For a monic monomial W, cw (¢) means the
coefficient of W in ¢. For any k-algebra homomorphism ¢ : Uz — S the image
t(p) € S is denoted by ¢((Xp),¢(X1)). Let as be the completion (with respect to
the natural grading) of the Lie algebra over k with generators ¢;; (1 < 1,5 < 4)
and defining relations t;; = 0, t;; = t;i, [tij, ti + tjx] = 0 (¢,4,k: all distinct) and
[tijstea] = O (4,5,k,l: all distinct).

Our theorem is on the defining equations of the associator set M (and hence of
the Grothendieck-Teichmiiller group GRT}.)

Theorem 3 ([F07b]). Let p = o(Xo, X1) be a group-like element of U, Suppose
that @ satisfies Drinfel’d’s pentagon equation:

(1) @(ti2,taz + taa)p(t1a + ta3, t34) = @(t3, t34)@(t12 + 13, toa + t34) (12, t23)-
Then there exists an element (unique up to signature) u € k such that the pair
(i, @) satisfies his two hezagon equations:

(2) exp{&tl%@} ‘Ptls,tlz)exp{—}¢(t13,t23) 1‘3XP{ =23 p(tr2,t2s),

(3)
tio+t _ t t _
exp{M(Lz—l-"’—)—} = p(tos, t13) ™! exp{u—zl‘g}‘,o(tlz,tls) eXP{E%}‘P(tm, tas)

Actually this p is equal to +(24cx, x, (¢))?.

It should be noted that we need to use an (actually quadratic) extension of a field
k in order to reduce the GT-relations into one pentagon equation. Particularly the
theorem claims that the pentagon equation is essentially a single defining equation
of the Grothendieck-Teichmiiller group.
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The proof of theorem 3 is reduced to the following by standard arguments of Lie
algebra.

Proposition 4 ([FO7b]). Let o be the set of Lie-like elements ¢ in U (i.e.
A(p) =p®1+1®y). Let ¢ be an element of §2 which is commutator Lie-like !
with cx,x, (p) = 0. Suppose that ¢ satisfies 5-cycle relation:

©(X12, X23) + 0( X34, Xa5) + 0(Xs1, X12) + 9(X23, X34) + 0(X45, X51) = 0
in ‘3’35. Then it also satisfies 3- and 2-cycle relation:
(X, V) + oY, Z)+¢(Z,X) =0 with X +Y + Z =0,
P(X,Y) + (¥, X) =0.

Here PBs stands for the completion (with respect to the natural grading) of the
pure sphere braid Lie algebra with 5 strings; the Lie algebra generated by X;;

(1 < i,j < 5) with clear relations X;; = 0, X;; = Xji, Z?zl X;;=0(1<14,j<5)
and [Xij,Xk[] =0if {Z,J} n {k,l} ={.
Proof . There is a projection from s to the completed free Lie algebra &2 gen-
erated by X and Y by putting X;5 = 0, X352 = X and Xo3 = Y. The image of
5-cycle relation gives 2-cycle relation.

For our convenience we denote ¢(X;;, X;k) (1 < 4,7,k < 5) by wijx. Then the
5-cycle relation can be read as

123 + 345 + Ps12 + P234 + Pas1 = 0.

We denote LHS by P. Put 0; (1 < i < 12) be elements of &5 defined as follows:

01 (12345) = (12345), 0(12345) = (54231), 03(12345) = (13425), 04(12345) =
(43125), 05(12345) = (53421), 06(12345) = (23514), 07(12345) = (23415), 5 (12345) =
(35214), 09(12345) = (53124), 010(12345) = (24135), 011(12345) = (52314) and
012(12345) = (23541). Then

ZZI 0:(P) = 123 + P345 + Y512 + P234 + Pa51
+ Ps42 + P31 + P154 + P23 + P315
+ 134 + P25 + P513 + P342 + P251
+ 431 + P125 + Y543 + Y312 T P254
+ V534 + Pa21 + P153 + Y342 T P215
+ 235 + Y514 + Pa23 + Y351 + Pr42
+ 234 + Pa15 + Y523 + P341 + P152
+ p352 + P214 + P435 + Y521 + P143
+ 531 + Y124 + Pas3 + Y312 + P2gs
+ 241 + 135 + Ps524 + Pa13 + P352
+ P523 + Y314 + Pas2 + 231 + P145
+ 235 + Ps41 + P123 + Y354 + Pa12-

By the 2-cycle relation, @;jx = —@kji (1 < 14,5,k < 5). This gives

Le call a series ¢ = ¢(Xo, X1) commutator Lie-like if it is Lie-like and cx, = ¢cx; = 0, in
other words ¢ € §% := [F2, F2]-




ZZI 0;(P) =¢123 + P234
+ 231 + Pa23
+ 342 + P312 + P342
+ 235 + Y423
+ 234 + P523
+ w352 + Y312 + P352
+ w523 + Y231
+ 235 + V123
=2(p103 + Y231 + P312) + 2(234 + Y342 + Pa23) + 2(p235 + Y352 + ©523)

=2{(p(X2, X2s) + @(Xas, Xo1) + (X, X10) |
C+ 2{<P(X23,X34) + (X34, Xa2) + p(Xa2, Xzs)}

+ 2{<P(X23», X35) + (X35, X52) + 0(Xs2, Xza)}-

By [X12, X12+X31+X32] = [X23, X12+X31+X32] = 0and o € &, 0(X12, Xo3) =
o(—X31 — X3z, X23) = 0(X34+ X35, X23)- By [X31, X12+ X1 + X32] = [X12, X12+
Xa1 + X32) = 0 and ¢ € Fb, ©(X31,X12) = 9(X31,—X51 — Xa2) = @(—Xa3 —
X34 — X35, X34 + X35). By [X34, Xa2 + X3 + X34] = [Xa2, Xg2 + X3 + X34) =0
and ¢ € ), p(Xs4, Xaz) = @(X34, —X23 — X34). By [Xos, Xg2 + Xo3 + X34] =
[Xa2, X4z + Xo3 + X34 = 0 and ¢ € F, ¢(Xa2, X23) = ©(—X23 — X34, X23). By
(X35, Xs2 + Xoz + X3s] = [Xs2,Xs2 + Xos + X35] =0 and p € 55, ©(Xss, Xs52) =
(X35, —Xa3 — X35). By [X23, Xs2 + X23 + X35] = [Xs2, X52 + X2z + X35] = 0 and
© € Ty p(Xs2, X23) = o(—Xaz — X35, X23).

So it follows

12
Zi=l oi(P) =2{S0(X34 + X35, X23) + ©(Xa3, —X23 — X34 — X35)
+ p(—Xao3 — X34 — X35, X34 + Xss)}
+ 2{<P(X23, X34) + (X34, —Xo3 — X34) + 0(—Xo3 — X34,X23)}

+ 2{<p(X23,X35) + (X35, —Xo3 — X35) + p(—Xa3 — X35,X23)}-

The elements X3, X34 and X35 generates completed Lie subalgebra 53 of Ps
which is free of rank 3 and it contains 221 oi(P). Let g : F3 — §2 be the projection
sending Xo3 ++ X, X34+~ Y and X35 — Y. Then

12
(32 i) =2{p(2V, X) + p(X,~X = 2) + p(-X ~2¥,2V)}
& 4{(,0(X,Y) +o(Y,—-X — V) +p(—X — Y,X)}.
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By the 2-cycle relation,
12
o3, 0:(P) =4{p(X,Y) + o(Y,~X = ¥) + o(-X ~ ¥, X) }
‘ - 2{<p(X, 2Y) + p(2Y, X — 2¥) + (- X — 2V, X)}.

Put R(X,Y) = o(X,Y)+p(Y, =X —Y)+¢(~X -, X). Then ¢(3_;2, 0:(P)) =
4R(X,Y) — 2R(X,2Y). Since P = 0, it follows 2R(X,Y) = R(X,2Y). Expand-
ing this equation in terms of the Hall basis, we see that R(X,Y) must be of the
form 3 oo, am(adX)™ 1(Y) with a, € k. By the 2-cycle relation, R(X,Y) =

—R(Y,X). Soa; = a3 = a4 = a5 = --- = 0. By our assumption cx,x, (¢) =0, az
must be 0 either. Therefore R(X,Y’) = 0, which is the 3-cycle relation. This yields
the validity of theorem 3. A O

We note that the multiplication 2 of GRT} is given by

4) g2 001 = 1(p2Xop; ', X1) - 92 = 92 - @1(Xo, 97 X1¢02)

for 1, v € GRT)(k). By the map sending Xy — Xy and X; — X191, the
group GRT; is regarded as a subgroup of AutF3. It is known that it contains the
motivic Galois image (see for example [A, F07a]), i.e.

Proposition 5. p(U Gal™(Z)) C GRT:.

In [Ko] Kontsevich raised a mysterious speculation which connects motivic Ga-
lois groups and deformation quantizations. His speculation was based on several
conjectures and one of which was the following.

Conjecture 6. The map ¢ might induce the isomorphism U Gal™(Z) ~ GRT;.

This conjecture is clearly explained in [A] from the viewpoint of motives.

3. THE DOUBLE SHUFFLE GROUP

This section shows that the pentagon equation (1) implies the generalized double
shuffle relation (6). As a corollary, we obtain an embedding from the Grothendieck-
Teichmiiller group GRT; to Racinet’s double shuffle group DM Ry ([R]). This real-
izes the project of Deligne-Terasoma [DT] where a different approach was indicated.
Their arguments concerned multiplicative convolutions whereas our methods are
based on a bar construction calculus. We also prove that the gamma. factorization
formula follows from the generalized double shuffle relation. It extends the result
in [DT, I] where they show that the GT-relations imply the gamma factorization.

Multiple zeta values ((ky, - - ,km) are the real numbers defined by the following

series )
ki,- 0 km) = T
C( ) 0<nl;<nm ’n"lcl O nﬁzm
for m, ki1,..., km € N(= Zso). This converges if and only if k, > 1. They
were studied (allegedly) firstly by Euler [E] for m = 1,2. Several types of relations
among multiple zeta values have been discussed. We focus on two types of relations,
GT-relations and generalized double shuffle relations. Both of them are described
in terms of the Drinfel’d associator [Dr91]

QKz(Xo,Xl) = 1+Z(—1)m<(k1, v ,km)Xg"'—le .3 Xé“_lX1+(regularized terms)

2For our convenience, we change the order of multiplication in the original definition of [Dr91].
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which is a non-commutative formal power series in two variables Xy and X;. Its
coefficients including regularized terms are explicitly calculated to be linear combi-
nations of multiple zeta values in [F03] proposition 3.2.3 by Le-Murakami’s method
[LM]. The Drinfel’d associator was introduced as the connection matrix of the
Knizhnik-Zamolodchikov equation and it was shown in [Dr91] that it is group-like
. and satisfies the GT-relations with p = +27/—1, i.e. ($xz,+27v/—1) € M(C),
by using symmetry of the KZ-system on configuration spaces.

The generalized double shuffle relation is a kind of combinatorial relation. It
arises from two ways of expressing multiple zeta values as iterated integrals and
as power series. There are several formulations of the relations (see [IKZ, R]). In
particular, they were formulated as (6) (see below) for ¢ = &k z in [R].

Let us fix notation and conventions: Let my : k({Xo, X1)) — k{({¥1,Y2,...}) be
the k-linear map between non-commutative formal power series rings that sends all
the words ending in X to zero and the word X(’,”""le .- -X(;“_le (n1,...,nm €
N) to (-=1)™Y,,, ---Y,,. Define the coproduct A, on k{{(Y1,Y2,...)) by A.Y, =
Yoo Yi®Y, i with Y5 :=1. For o = . 0.q cw (@)W € k((Xo, X1)), define the
series shuffle regularization ¢, = @corr - Ty (@) With the correction term

(5) Peorr = €XpP (Z (——1)116)(61—-1}(1 ((p)}’{') .

n=1 n

For a group-like series ¢ € U, the generalised double shuffle relation means the
equality

(6) Aulips) = ‘P*é‘P*-

Theorem 7 ([F08]). Let ¢ = ¢(Xo,X1) be a group-like element of UF2. Sup-
pose that ¢ satisfies Drinfel’d’s pentagon equation (1). Then it also satisfies the
generalized double shuffle relation (6).

By [F07b] lemma 5, theorem 7 is reduced to the following.

Proposition 8 ([F08]). Let ¢ be a group-like element of UFy with cx,(p) =
cx, (p) = 0. Suppose that ¢ satisfies the 5-cycle relation ‘

©( X34, Xa5)p(Xs51, X12)9(Xa3, X34)0(Xas, X51)p(X12, X23) = 1

in the completed universal enveloping algebra USBs of Ps. Then it also satisfies the
generalized double shuffle relation, i.e. A,(px) = CxB®Ps.

Proof . Let My 4 be the moduli space {(z1, -+ ,z4) € (P})*|z; # z;(i # j)}/PGL2(k)
of 4 different points in P!. It is identified with {2 € P|z # 0,1,00} by sending
[(0,2,1,00)] to z. Let Mg s be the moduli space {(z1,- - ,zs5) € (P})%|z; # z,;(i #
7)}/PGLy(k) of 5 different points in P!. It is identified with {(z,y) € G2 |z #
1,y # 1,zy # 1} by sending [(0,zy,y,1,00)] to (z,y).

For M = My 4/k or Mgs/k, we consider the Brown’s variant V(M) [Br] of
the Chen’s reduced bar construction [C]. This is a graded Hopf algebra V(M) =
B2 _oVim (CTV: = ®%_oV®™) over k. Here Vy = k, Vi = Hhp(M) and V,, is the
totality of linear combinations (finite sums) >°;_; . .jcrlwi, |- |wi] € V™
(c1 € k, wi; € Vi, [wi,| - |wiy] = wi,, ®--- ® wy;) satisfying the integrability
condition

Do crlWinlwins | Wiy Awy | |wi] =0

I=(imy"' 1i1)
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in V"Il @ HE (M) @ V! for all j (1 < j <m).

For the moment assume that k is a subfield of C. We have an embedding
(called a realisation in [Br]§1.2, §3.6) p : V(M) < I,(M) as algebra over k
which sends E!:(im,m,i;) crlwi,, |- - |wi,] (cr € k) to > crlt fo wi,, ©---ow;, . Here
Yrerlt [ w;, o---ow;, means the iterated integral defined by

e Lo ) s () ()

for all analytic paths v : (0,1) = M(C) starting from the tangential basepoint
o (defined by 4 for M = Mo, and defined by 4 and & for M = Mos) at
the origin in M (for its treatment see also [D]§15) and I,(M) denotes the O%y-
module generated by all such homotopy invariant iterated integrals with m > 1 and
holomorphic 1-forms w;,, ...,w;, € Q}(M).

For a = (a1, ,ax) € Z%, its weight and its depth are defined to be wt(a) =
a; + -+ + ax and dp(a) = k respectively. Put z € C with |z| < 1. Consider the
following complex function which is called the one variable multiple polylogarithm

Lig(2) := ——L

. ) 0<rmz<v'~:~<mkm;l“'m:‘c
It satisfies the recursive differential equations (cf. [BF, F08]) It gives an iterated
integral starting from o, which lies on I,(Mo4). Actually it corresponds to an
element of V(Mg 4) denoted by la.

Similarly for a = (a;,--- ,ax) € Z%g, b = (b1, -+ ,b) € Z,; and z,y € C with
|z| < 1 and |Jy| < 1, consider the following complex function which is called the two
variables multiple polylogarithm

. ™k ynl
Lza,b(xa y) = Z o1 b1 b
0<my <m0 7T T T Ty
<ny < <Ny
It also satisfies the recursive differential equations (cf. [BF]§5). They show that the

functions Lia b(2,y), Liap(y, z), Lia(z), Lia(y) and Lia(zy) give iterated integrals

starting from o, which lie on I,(Mg35). They correspond to elements of V(Mpg,s)
by the map p denoted by I7¥, Iiy, I3, I§ and I3V respectively.
The idea of the proof of proposition 8 goes as follows: Recall that multiple

polylogarithms satisfy the analytic identity, the series shuffle formula in I,(Mos)

Lia(z) - Lin(y) = Y, Ligap)(o(z,y)).
oE€ShE (k1)
Here ShS(k,l) := UR_,{o : {1,--- ,k+1} = {1,--- ,N}|o is onto,o(1) < --- <
ok),o(k+1) < --- < a(k+ 1)}, o(a,b) := ((e1,-,¢),(¢j+1, - ,cn)) with
{i,N} = {o(k),o(k+ 0D},
as + by if o71(i) = {s,t} with s < ¢,
Ci =4 as if o71(3) = {s} with s <k,
bs—k if 671(i) = {s} with s >k,
Ty if o"Y(N) =k, k+1,
and o(z,y) =4 (z,y) ifo ' (N)=k+|,
(y,z) if o} (N)=k.
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Since p is an embedding of algebras, the above analytic identity implies the
algebraic identity, the series shuffle formula in V(Mg )

@) YD DI 4 8
g €ShS (kL)

Suppose that ¢ is an element as in proposition 8. Evaluation of the equation (7)
at the group-like element (4510123 ° gives the series shuffle formula

@) @)= Y @)

cESRE (k 1)

for admissible 4 indices a and b because of [F08] lemma 4.1. and 4.2.

For non-admissible indices we need a special treatment. The idea is essentially
same to the above admissible indices case except that we consider e7X5! 45123
(T: a parameter which stands for logz) instead of 4519123 (see [FO8] in more
detail), which completes the proof of theorem 7.

The double shuffle group DM Ry is a pro-unipotent group introduced by Racinet
[R]. Its set of k-valued points consists of group-like series ¢ which satisfy (6) ° and
cx,(¥) = cx,(p) = ex,x, () = 0. Its multiplication is given by the equation (4).
By the same way to the GRT}-case, the group DM Ry is regarded as a subgroup of
AutF,. This also contains the motivic Galois image.

Proposition 9. (U Gat™(Z)) C DMRy.

This follows from the result in [Go] and another proof is given in [F07a]. The

following is a direct corollary of our theorem 7 since the equations (2) and (3) for
2

(1, ) imply cxox, (¥) = 55
Theorem 10 ([F08]). GRT; C DMR,.

As an analogue of conjecture 6, thé following conjecture is posed (cf. [R] and see
also [A].) :

Conjecture 11. The map ¢ might induce the isomorphism UGal™(Z) ~ DMR,.

The validities of conjecture 6 and conjecture 11 would imply that GRT; might
be isomorphic to DM Ry.

Remark 12. Alekseev and Torossian [AT] gave the second proof of the Kashiwara-
Vergne (KV) conjecture. It is a conjecture on a property of the Campbell-Baker-
Hausdorff formula which was posed in [KV]. Their proof was based on Drinfel'd’s
theory [Dr91] of the Grothendieck-Teichmiiller group. They showed that the set of
solutions of the generalized KV-problem admitted a free and transitive action of the
(graded) Kashiwara-Vergne group KRV (see also [AET] for the definition). It is a
subgroup of AutF; and contains GRT}, ie, we have an embedding GRT; — KRV.
They conjectured in [AT]§4 that its degree>1-part KRV, might be equal to GRT}.

3For simplicity we mean pijk for o(Xi;, X;1) € UPs.
4An index a = (a1,--- ,ar) is called admissible if ap > 1.
5For our convenience, we change some signatures in the original definition ([R] definition 3.2.1.))
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? , DMR,

Senthandiack - Teicha o .
by Dralded (i)

by (AT

sshiwoyn -~ \[ew‘awz group
by Alekseey Topssian (* 8 )

One of the main defining equations of X RV is the coboundary Jacobian condition
(cf. loc.cit.), which is a lift of the gamma factorization formula (8) (see below) to

the trace space 5. The following theorem might be a step to relate KRV with
DMRy.

Theorem 13 ([F08]). Let ¢ be a non-commutative formal power series in two
variables which is group-like with cx,(p) = cx, (p) = 0. Suppose that it satisfies the
generalized double shuffle relation (6). Then its meta-abelian quotient ® B, (zo, 1)
is gamma-factorisable, i.e. there erists a unique series ',(s) in 1 + s?k[[s]] such
that

Ly (o)l (1)
8 By (g, my) = ~270 -9l
( ) <P( 0 xl) F¢(170+.’L'1) v
The gamma element T, gives the correction term @cor- of the series shuffle regu-
larization (5) by @eorr = [p(=Y1) 7. \

This theorem was proved in [F08] §5. It extends the result in [DT, I] which shows
that for any group-like series satisfying (1), (2) and (3) its meta-abelian quotient
is gamma factorisable. We note that it was calculated in [Dr91] that especially

T,(s) = exp{> o -ﬁzs"} = e 7*T'(1 — s) for ¢ = Pxz where « is the Euler

n=2 n
constant, I'(s) is the classical gamma function and @z is the Drinfel’d associator.
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