THE MOTIVIC GALOIS GROUP, THE GROTHENDIECK-TEICHMÜLLER GROUP AND

THE DOUBLE SHUFFLE GROUP

HIDEKAZU FURUSHO

1. The motivic Galois group

We recall the motivic Galois group of the category of mixed Tate motives over **Z** [DG] in this section. This is related with the Drinfel'd's Grothendieck-Teichmüller group ([Dr91]) in §2 and the Racinet's double shuffle group ([R]) in §3.

Let k be a field with characteristic 0. Levine [L2] and Voevodsky [V] constructed a triangulated category of mixed motives over k. Levine [L2] showed an equivalence of these two categories. This category denoted by $DM(k)_{\mathbf{Q}}$ has Tate objects $\mathbf{Q}(n)$ $(n \in \mathbf{Z})$. Let $DMT(k)_{\mathbf{Q}}$ be the triangulated sub-category of $DM(k)_{\mathbf{Q}}$ generated by $\mathbf{Q}(n)$ $(n \in \mathbf{Z})$. Levine [L1] extracted a neutral tannakian \mathbf{Q} -category $MT(k)_{\mathbf{Q}}$ of mixed Tate motives over k from $DMT(k)_{\mathbf{Q}}$ by taking a heart with respect to a t-structure under the Beilinson-Soulé vanishing conjecture which says $gr_i^{\gamma}K_n(k) = 0$ for n > 2i. Here LHS is the graded quotient of the algebraic K-theory for k with respect to γ -filtration.

Assume that k is a number field. In this case the Beilinson-Soulé vanishing conjecture holds and we have $MT(k)_{\mathbf{Q}}$. This category satisfies the following expected properties: Each object M has an increasing filtration of subobjects called weight filtration, $W:\cdots\subseteq W_{m-1}M\subseteq W_mM\subseteq W_{m+1}M\subseteq\cdots$, whose intersection is 0 and union is M. The quotient $Gr_{2m+1}^WM:=W_{2m+1}M/W_{2m}M$ is trivial and $Gr_{2m}^WM:=W_{2m}M/W_{2m+1}M$ is a direct sum of finite copies of $\mathbf{Q}(m)$ for each $m\in\mathbf{Z}$. Morphisms of $MT(k)_{\mathbf{Q}}$ are strictly compatible with weight filtration. The extension group is related to K-theory as follows

$$Ext_{MT(k)_{\mathbf{Q}}}^{i}(\mathbf{Q}(0), \mathbf{Q}(m)) = \begin{cases} K_{2m-i}(k)_{\mathbf{Q}} & \text{for } i = 1, \\ 0 & \text{for } i > 1. \end{cases}$$

There are realization fiber functors ([L2] and [H]) corresponding to usual cohomology theories.

Let S be a finite set of finite places of k. Let \mathcal{O}_S be the ring of S-integers in k. Deligne and Goncharov [DG] defined the full subcategory $MT(\mathcal{O}_S)$ of mixed Tate motives over \mathcal{O}_S , whose objects are mixed Tate motives M in $MT(k)_{\mathbf{Q}}$ such that for each subquotient E of M which is an extension of $\mathbf{Q}(n)$ by $\mathbf{Q}(n+1)$ for $n \in \mathbf{Z}$, the extension class of E in $Ext^1_{MT(k)_{\mathbf{Q}}}(\mathbf{Q}(n),\mathbf{Q}(n+1)) = Ext^1_{MT(k)_{\mathbf{Q}}}(\mathbf{Q}(0),\mathbf{Q}(1)) = k_{\mathbf{Q}}^{\mathbf{Z}}$

This article is for the proceeding of the 54-th algebra symposium.

lies in $\mathcal{O}_S^{\times} \otimes \mathbf{Q}$. In this category the following hold:

$$Ext^{1}_{MT(\mathcal{O}_{S})}(\mathbf{Q}(0), \mathbf{Q}(m)) = \begin{cases} 0 & \text{for } m < 1, \\ \mathcal{O}_{S}^{\times} \otimes \mathbf{Q} & \text{for } m = 1, \\ K_{2m-1}(k)_{\mathbf{Q}} & \text{for } m > 1, \end{cases}$$
$$Ext^{2}_{MT(\mathcal{O}_{S})}(\mathbf{Q}(0), \mathbf{Q}(m)) = 0.$$

Let $\omega_{\operatorname{can}}: MT(\mathcal{O}_S) \to Vect_{\mathbf{Q}}$ ($Vect_{\mathbf{Q}}$: the category of \mathbf{Q} -vector spaces) be the fiber functor which sends each motive M to $\bigoplus_n Hom(\mathbf{Q}(n), Gr_{-2n}^W M)$. Define the motivic Galois group to be the pro-algebraic group $\operatorname{Gal}^{\mathcal{M}}(\mathcal{O}_S) := \underline{Aut}^{\otimes}(MT(\mathcal{O}_S) : \omega_{\operatorname{can}})$. The action of $\operatorname{Gal}^{\mathcal{M}}(\mathcal{O}_S)$ on $\omega_{\operatorname{can}}(\mathbf{Q}(1)) = \mathbf{Q}$ defines a surjection $\operatorname{Gal}^{\mathcal{M}}(\mathcal{O}_S) \to \mathbf{G}_m$ and its kernel $U\operatorname{Gal}^{\mathcal{M}}(\mathcal{O}_S)$ is the unipotent radical of $\operatorname{Gal}^{\mathcal{M}}(\mathcal{O}_S)$. There is a canonical splitting $\tau: \mathbf{G}_m \to \operatorname{Gal}^{\mathcal{M}}(\mathcal{O}_S)$ which gives a negative grading on the Lie algebra $Lie\mathcal{U}\operatorname{Gal}^{\mathcal{M}}(\mathcal{O}_S)$ (consult [D] §8 for the full story). The above computations of Ext-groups follows

Proposition 1 ([D] §8, [DG] §2). The graded Lie algebra $Lie \mathcal{U} Gat^{\mathcal{M}}(\mathcal{O}_S)$ is free and its degree n-part of $\left(Lie \mathcal{U} Gat^{\mathcal{M}}(\mathcal{O}_S)\right)^{ab} = \mathcal{U} Gat^{\mathcal{M}}(\mathcal{O}_S)^{ab}$ is isomorphic to the dual of $Ext^1_{MT(\mathcal{O}_S)}(\mathbf{Q}(0), \mathbf{Q}(-n))$.

Let us restrict in the case of $k = \mathbf{Q}$, $S = \emptyset$, $\mathcal{O}_S = \mathbf{Z}$. By Proposition 1 the Lie algebra $Lie\mathcal{U}\mathrm{Gal}^{\mathcal{M}}(\mathbf{Z})$ of the unipotent part $\mathcal{U}\mathrm{Gal}^{\mathcal{M}}(\mathbf{Z})$ of $\mathrm{Gal}^{\mathcal{M}}(\mathbf{Z})$ should be a graded free Lie algebra generated by one element in each degree -m ($m \ge 3$; odd).

In [DG] §4 they constructed the motivic fundamental group $\pi_1^{\mathcal{M}}(X:\overline{01})$ with $X = \mathbf{P}^1 \setminus \{0,1,\infty\}$, which is an ind-object of $MT(\mathbf{Z})$. This is an affine group $MT(\mathbf{Z})$ -scheme (cf. [DG]). Since all the structure morphism of $\pi_1^{\mathcal{M}}(X:\overline{01})$ belong to the set of morphisms of $MT(\mathbf{Z})$ and $\omega_{\operatorname{can}}(\pi_1^{\mathcal{M}}(X:\overline{01})) = \underline{F_2}$ where $\underline{F_2}$ is the free pro-unipotent algebraic group of rank 2, we have

$$\varphi: \mathcal{U}\mathrm{Gal}^{\mathcal{M}}(\mathbf{Z}) \to \underline{Aut}F_2.$$

On this map φ the following is one of the basic problems.

Problem 2. Is φ injective?

This might be said a problem which asks a validity of a unipotent variant of the so-called 'Belyi's theorem' in [Be] in the pro-finite setting. Equivalently this asks if the motivic fundamental group $\pi_1^{\mathcal{M}}(X:\overline{01})$ is a 'generator' of the tannakian category $MT(\mathbf{Z})$. It is related with various conjectures in several realizations (cf. [F07a] note 3.10); Zagier conjecture (partially proved by Terasoma [T] and Deligne-Gonchaov [DG]), Deligne-Ihara conjecture (partially proved by Hain-Matsumoto [HM]) and Furusho-Yamashita conjecture (partially proved by Yamashita [Y]).

2. THE GROTHENDIECK-TEICHMÜLLER GROUP

In his celebrated papers on quantum groups [Dr86, Dr90, Dr91] Drinfel'd came to the notion of quasitriangular quasi-Hopf quantized universal enveloping algebras. It is a topological algebra which differs from a topological Hopf algebra in the sense that the coassociativity axiom and the cocommutativity axiom is twisted by an associator and an R-matrix satisfying a pentagon axiom and two hexagon axioms. One of the main theorems in [Dr91] is that any quasitriangular quasi-Hopf quantized

universal enveloping algebra modulo twists (in other words gauge transformations [Ka]) is obtained as a quantization of a pair (called its classical limit) of a Lie algebra and its symmetric invariant 2-tensor. Quantizations are constructed by 'universal' associators. The set of group-like universal associators forms a pro-algebraic variety, denoted M. The associator set \underline{M} ([Dr91]) is the pro-algebraic variety whose set of k-valued points consists of pairs below (μ, φ) satisfying the GT-relations, the Drinfel'd's one pentagon equation (1) and his two hexagon equations (2) and (3), and M is its open subvariety defined by $\mu \neq 0$. The non-emptiness of M(k) is another of his main theorem (reproved in [Ba]).

The category of representations of a quasitriangular quasi-Hopf quantized universal enveloping algebra forms a quasitensored category [Dr91], in other words, a braided tensor category [JS]; its associativity constraint and its commutativity constraint are subject to one pentagon axiom and two hexagon axioms. The (unipotent part of the graded) Grothendieck-Teichmüller (pro-algebraic) group GRT_1 is introduced in [Dr91] as a group of deformations of the category which change its associativity constraint keeping all three axioms. It is also closely related to Grothendieck's philosophy of Teichmüller-Lego posed in [Gr]. Its set of k-valued points is defined to be the subset of M with $\mu=0$.

Let us fix notation and conventions: Let k be a field of characteristic 0, \bar{k} its algebraic closure and $U\mathfrak{F}_2 = k\langle\langle X_0, X_1 \rangle\rangle$ a non-commutative formal power series ring with two variables X_0 and X_1 . Its element $\varphi = \varphi(X_0, X_1)$ is called group-like if it satisfies $\Delta(\varphi) = \varphi \otimes \varphi$ with $\Delta(X_0) = X_0 \otimes 1 + 1 \otimes X_0$ and $\Delta(X_1) = X_1 \otimes 1 + 1 \otimes X_1$ and its constant term is equal to 1. For a monic monomial W, $c_W(\varphi)$ means the coefficient of W in φ . For any k-algebra homomorphism $\iota: U\mathfrak{F}_2 \to S$ the image $\iota(\varphi) \in S$ is denoted by $\varphi(\iota(X_0), \iota(X_1))$. Let \mathfrak{a}_4 be the completion (with respect to the natural grading) of the Lie algebra over k with generators t_{ij} ($1 \leq i, j \leq 4$) and defining relations $t_{ii} = 0$, $t_{ij} = t_{ji}$, $[t_{ij}, t_{ik} + t_{jk}] = 0$ (i,j,k: all distinct) and $[t_{ij}, t_{kl}] = 0$ (i,j,k,l: all distinct).

Our theorem is on the defining equations of the associator set M (and hence of the Grothendieck-Teichmüller group GRT_1 .)

Theorem 3 ([F07b]). Let $\varphi = \varphi(X_0, X_1)$ be a group-like element of $U\mathfrak{F}_2$. Suppose that φ satisfies Drinfel'd's pentagon equation:

(1)
$$\varphi(t_{12}, t_{23} + t_{24})\varphi(t_{13} + t_{23}, t_{34}) = \varphi(t_{23}, t_{34})\varphi(t_{12} + t_{13}, t_{24} + t_{34})\varphi(t_{12}, t_{23}).$$

Then there exists an element (unique up to signature) $\mu \in \bar{k}$ such that the pair (μ, φ) satisfies his two hexagon equations:

(2)
$$\exp\{\frac{\mu(t_{13}+t_{23})}{2}\} = \varphi(t_{13},t_{12})\exp\{\frac{\mu t_{13}}{2}\}\varphi(t_{13},t_{23})^{-1}\exp\{\frac{\mu t_{23}}{2}\}\varphi(t_{12},t_{23}),$$

(3)
$$\exp\{\frac{\mu(t_{12}+t_{13})}{2}\} = \varphi(t_{23},t_{13})^{-1}\exp\{\frac{\mu t_{13}}{2}\}\varphi(t_{12},t_{13})\exp\{\frac{\mu t_{12}}{2}\}\varphi(t_{12},t_{23})^{-1}.$$

Actually this μ is equal to $\pm (24c_{X_0X_1}(\varphi))^{\frac{1}{2}}$.

It should be noted that we need to use an (actually quadratic) extension of a field k in order to reduce the GT-relations into one pentagon equation. Particularly the theorem claims that the pentagon equation is essentially a single defining equation of the Grothendieck-Teichmüller group.

The proof of theorem 3 is reduced to the following by standard arguments of Lie algebra.

Proposition 4 ([F07b]). Let \mathfrak{F}_2 be the set of Lie-like elements φ in $U\mathfrak{F}_2$ (i.e. $\Delta(\varphi) = \varphi \otimes 1 + 1 \otimes \varphi$). Let φ be an element of \mathfrak{F}_2 which is commutator Lie-like 1 with $c_{X_0X_1}(\varphi) = 0$. Suppose that φ satisfies 5-cycle relation:

$$\varphi(X_{12}, X_{23}) + \varphi(X_{34}, X_{45}) + \varphi(X_{51}, X_{12}) + \varphi(X_{23}, X_{34}) + \varphi(X_{45}, X_{51}) = 0$$
 in $\hat{\mathfrak{P}}_5$. Then it also satisfies 3- and 2-cycle relation:

$$\varphi(X,Y) + \varphi(Y,Z) + \varphi(Z,X) = 0 \text{ with } X + Y + Z = 0,$$

$$\varphi(X,Y) + \varphi(Y,X) = 0.$$

Here \mathfrak{P}_5 stands for the completion (with respect to the natural grading) of the pure sphere braid Lie algebra with 5 strings; the Lie algebra generated by X_{ij} $(1 \leq i, j \leq 5)$ with clear relations $X_{ii} = 0$, $X_{ij} = X_{ji}$, $\sum_{j=1}^{5} X_{ij} = 0$ $(1 \leq i, j \leq 5)$ and $[X_{ij}, X_{kl}] = 0$ if $\{i, j\} \cap \{k, l\} = \emptyset$.

Proof. There is a projection from \mathfrak{P}_5 to the completed free Lie algebra \mathfrak{F}_2 generated by X and Y by putting $X_{i5}=0$, $X_{12}=X$ and $X_{23}=Y$. The image of 5-cycle relation gives 2-cycle relation.

For our convenience we denote $\varphi(X_{ij}, X_{jk})$ $(1 \leq i, j, k \leq 5)$ by φ_{ijk} . Then the 5-cycle relation can be read as

$$\varphi_{123} + \varphi_{345} + \varphi_{512} + \varphi_{234} + \varphi_{451} = 0.$$

We denote LHS by P. Put σ_i (1 \leq $i \leq$ 12) be elements of \mathfrak{S}_5 defined as follows: $\sigma_1(12345)=(12345),\ \sigma_2(12345)=(54231),\ \sigma_3(12345)=(13425),\ \sigma_4(12345)=(43125),\ \sigma_5(12345)=(53421),\ \sigma_6(12345)=(23514),\ \sigma_7(12345)=(23415),\ \sigma_8(12345)=(35214),\ \sigma_9(12345)=(53124),\ \sigma_{10}(12345)=(24135),\ \sigma_{11}(12345)=(52314)$ and $\sigma_{12}(12345)=(23541)$. Then

$$\begin{split} \sum_{i=1}^{12} \sigma_i(P) &= \varphi_{123} + \varphi_{345} + \varphi_{512} + \varphi_{234} + \varphi_{451} \\ &+ \varphi_{542} + \varphi_{231} + \varphi_{154} + \varphi_{423} + \varphi_{315} \\ &+ \varphi_{134} + \varphi_{425} + \varphi_{513} + \varphi_{342} + \varphi_{251} \\ &+ \varphi_{431} + \varphi_{125} + \varphi_{543} + \varphi_{312} + \varphi_{254} \\ &+ \varphi_{534} + \varphi_{421} + \varphi_{153} + \varphi_{342} + \varphi_{215} \\ &+ \varphi_{235} + \varphi_{514} + \varphi_{423} + \varphi_{351} + \varphi_{142} \\ &+ \varphi_{234} + \varphi_{415} + \varphi_{523} + \varphi_{341} + \varphi_{152} \\ &+ \varphi_{352} + \varphi_{214} + \varphi_{435} + \varphi_{521} + \varphi_{143} \\ &+ \varphi_{531} + \varphi_{124} + \varphi_{453} + \varphi_{312} + \varphi_{245} \\ &+ \varphi_{241} + \varphi_{135} + \varphi_{524} + \varphi_{413} + \varphi_{352} \\ &+ \varphi_{523} + \varphi_{314} + \varphi_{452} + \varphi_{231} + \varphi_{145} \\ &+ \varphi_{235} + \varphi_{541} + \varphi_{123} + \varphi_{354} + \varphi_{412}. \end{split}$$

By the 2-cycle relation, $\varphi_{ijk} = -\varphi_{kji}$ $(1 \leq i, j, k \leq 5)$. This gives

¹We call a series $\varphi = \varphi(X_0, X_1)$ commutator Lie-like if it is Lie-like and $c_{X_0} = c_{X_1} = 0$, in other words $\varphi \in \mathcal{F}'_2 := [\mathfrak{F}_2, \mathfrak{F}_2]$.

$$\begin{split} \sum_{i=1}^{12} \sigma_i(P) = & \varphi_{123} + \varphi_{234} \\ & + \varphi_{231} + \varphi_{423} \\ & + \varphi_{342} + \varphi_{312} + \varphi_{342} \\ & + \varphi_{235} + \varphi_{423} \\ & + \varphi_{234} + \varphi_{523} \\ & + \varphi_{352} + \varphi_{312} + \varphi_{352} \\ & + \varphi_{523} + \varphi_{231} \\ & + \varphi_{235} + \varphi_{123} \\ = & 2(\varphi_{123} + \varphi_{231} + \varphi_{312}) + 2(\varphi_{234} + \varphi_{342} + \varphi_{423}) + 2(\varphi_{235} + \varphi_{523}) \\ = & 2\Big\{\varphi(X_{12}, X_{23}) + \varphi(X_{23}, X_{31}) + \varphi(X_{31}, X_{12})\Big\} \\ & + 2\Big\{\varphi(X_{23}, X_{34}) + \varphi(X_{34}, X_{42}) + \varphi(X_{42}, X_{23})\Big\} \\ & + 2\Big\{\varphi(X_{23}, X_{35}) + \varphi(X_{35}, X_{52}) + \varphi(X_{52}, X_{23})\Big\}. \end{split}$$

By $[X_{12},X_{12}+X_{31}+X_{32}]=[X_{23},X_{12}+X_{31}+X_{32}]=0$ and $\varphi\in\mathfrak{F}_2', \varphi(X_{12},X_{23})=\varphi(-X_{31}-X_{32},X_{23})=\varphi(X_{34}+X_{35},X_{23})$. By $[X_{31},X_{12}+X_{31}+X_{32}]=[X_{12},X_{12}+X_{31}+X_{32}]=0$ and $\varphi\in\mathfrak{F}_2', \varphi(X_{31},X_{12})=\varphi(X_{31},-X_{31}-X_{32})=\varphi(-X_{23}-X_{34}-X_{35},X_{34}+X_{35})$. By $[X_{34},X_{42}+X_{23}+X_{34}]=[X_{42},X_{42}+X_{23}+X_{34}]=0$ and $\varphi\in\mathfrak{F}_2', \varphi(X_{34},X_{42})=\varphi(X_{34},-X_{23}-X_{34})$. By $[X_{23},X_{42}+X_{23}+X_{34}]=[X_{42},X_{42}+X_{23}+X_{34}]=0$ and $\varphi\in\mathfrak{F}_2', \varphi(X_{42},X_{23})=\varphi(-X_{23}-X_{34},X_{23})$. By $[X_{35},X_{52}+X_{23}+X_{35}]=[X_{52},X_{52}+X_{23}+X_{35}]=0$ and $\varphi\in\mathfrak{F}_2', \varphi(X_{35},X_{52})=\varphi(X_{35},-X_{23}-X_{35})$. By $[X_{23},X_{52}+X_{23}+X_{35}]=[X_{52},X_{52}+X_{23}+X_{35}]=0$ and $\varphi\in\mathfrak{F}_2', \varphi(X_{52},X_{23})=\varphi(-X_{23}-X_{35},X_{23})$. So it follows

$$\begin{split} \sum_{i=1}^{12} \sigma_i(P) = & 2 \Big\{ \varphi(X_{34} + X_{35}, X_{23}) + \varphi(X_{23}, -X_{23} - X_{34} - X_{35}) \\ & + \varphi(-X_{23} - X_{34} - X_{35}, X_{34} + X_{35}) \Big\} \\ & + 2 \Big\{ \varphi(X_{23}, X_{34}) + \varphi(X_{34}, -X_{23} - X_{34}) + \varphi(-X_{23} - X_{34}, X_{23}) \Big\} \\ & + 2 \Big\{ \varphi(X_{23}, X_{35}) + \varphi(X_{35}, -X_{23} - X_{35}) + \varphi(-X_{23} - X_{35}, X_{23}) \Big\}. \end{split}$$

The elements X_{23} , X_{34} and X_{35} generates completed Lie subalgebra \mathfrak{F}_3 of \mathfrak{P}_5 which is free of rank 3 and it contains $\sum_{i=1}^{12} \sigma_i(P)$. Let $q:\mathfrak{F}_3 \to \mathfrak{F}_2$ be the projection sending $X_{23} \mapsto X$, $X_{34} \mapsto Y$ and $X_{35} \mapsto Y$. Then

$$\begin{split} q(\sum\nolimits_{i=1}^{12} \sigma_i(P)) = & 2\Big\{\varphi(2Y,X) + \varphi(X,-X-2Y) + \varphi(-X-2Y,2Y)\Big\} \\ & + 4\Big\{\varphi(X,Y) + \varphi(Y,-X-Y) + \varphi(-X-Y,X)\Big\}. \end{split}$$

By the 2-cycle relation,

$$\begin{split} q(\sum\nolimits_{i=1}^{12} \sigma_i(P)) = & 4 \Big\{ \varphi(X,Y) + \varphi(Y,-X-Y) + \varphi(-X-Y,X) \Big\} \\ & - 2 \Big\{ \varphi(X,2Y) + \varphi(2Y,-X-2Y) + \varphi(-X-2Y,X) \Big\}. \end{split}$$

Put $R(X,Y)=\varphi(X,Y)+\varphi(Y,-X-Y)+\varphi(-X-Y,X)$. Then $q(\sum_{i=1}^{12}\sigma_i(P))=4R(X,Y)-2R(X,2Y)$. Since P=0, it follows 2R(X,Y)=R(X,2Y). Expanding this equation in terms of the Hall basis, we see that R(X,Y) must be of the form $\sum_{m=1}^{\infty}a_m(adX)^{m-1}(Y)$ with $a_m\in k$. By the 2-cycle relation, R(X,Y)=-R(Y,X). So $a_1=a_3=a_4=a_5=\cdots=0$. By our assumption $c_{X_0X_1}(\varphi)=0$, a_2 must be 0 either. Therefore R(X,Y)=0, which is the 3-cycle relation. This yields the validity of theorem 3.

We note that the multiplication 2 of GRT_1 is given by

(4)
$$\varphi_2 \circ \varphi_1 := \varphi_1(\varphi_2 X_0 \varphi_2^{-1}, X_1) \cdot \varphi_2 = \varphi_2 \cdot \varphi_1(X_0, \varphi_2^{-1} X_1 \varphi_2)$$

for φ_1 , $\varphi_2 \in GRT_1(k)$. By the map sending $X_0 \mapsto X_0$ and $X_1 \mapsto \varphi X_1 \varphi^{-1}$, the group GRT_1 is regarded as a subgroup of $\underline{Aut}F_2$. It is known that it contains the motivic Galois image (see for example [A, F07a]), i.e.

Proposition 5. $\varphi(\mathcal{U}Gal^{\mathcal{M}}(\mathbf{Z})) \subset GRT_1$.

In [Ko] Kontsevich raised a mysterious speculation which connects motivic Galois groups and deformation quantizations. His speculation was based on several conjectures and one of which was the following.

Conjecture 6. The map φ might induce the isomorphism $UGal^{\mathcal{M}}(\mathbf{Z}) \simeq GRT_1$.

This conjecture is clearly explained in [A] from the viewpoint of motives.

3. The double shuffle group

This section shows that the pentagon equation (1) implies the generalized double shuffle relation (6). As a corollary, we obtain an embedding from the Grothendieck-Teichmüller group GRT_1 to Racinet's double shuffle group DMR_0 ([R]). This realizes the project of Deligne-Terasoma [DT] where a different approach was indicated. Their arguments concerned multiplicative convolutions whereas our methods are based on a bar construction calculus. We also prove that the gamma factorization formula follows from the generalized double shuffle relation. It extends the result in [DT, I] where they show that the GT-relations imply the gamma factorization.

Multiple zeta values $\zeta(k_1, \dots, k_m)$ are the real numbers defined by the following series

$$\zeta(k_1, \dots, k_m) := \sum_{0 < n_1 < \dots < n_m} \frac{1}{n_1^{k_1} \cdots n_m^{k_m}}$$

for $m, k_1, \ldots, k_m \in \mathbb{N}(=\mathbb{Z}_{>0})$. This converges if and only if $k_m > 1$. They were studied (allegedly) firstly by Euler [E] for m = 1, 2. Several types of relations among multiple zeta values have been discussed. We focus on two types of relations, GT-relations and generalized double shuffle relations. Both of them are described in terms of the Drinfel'd associator [Dr91]

$$\Phi_{KZ}(X_0, X_1) = 1 + \sum_{m=1}^{\infty} (-1)^m \zeta(k_1, \dots, k_m) X_0^{k_m - 1} X_1 \dots X_0^{k_1 - 1} X_1 + (\text{regularized terms})$$

²For our convenience, we change the order of multiplication in the original definition of [Dr91].

which is a non-commutative formal power series in two variables X_0 and X_1 . Its coefficients including regularized terms are explicitly calculated to be linear combinations of multiple zeta values in [F03] proposition 3.2.3 by Le-Murakami's method [LM]. The Drinfel'd associator was introduced as the connection matrix of the Knizhnik-Zamolodchikov equation and it was shown in [Dr91] that it is group-like and satisfies the GT-relations with $\mu = \pm 2\pi \sqrt{-1}$, i.e. $(\Phi_{KZ}, \pm 2\pi \sqrt{-1}) \in M(\mathbb{C})$, by using symmetry of the KZ-system on configuration spaces.

The generalized double shuffle relation is a kind of combinatorial relation. It arises from two ways of expressing multiple zeta values as iterated integrals and as power series. There are several formulations of the relations (see [IKZ, R]). In particular, they were formulated as (6) (see below) for $\varphi = \Phi_{KZ}$ in [R].

Let us fix notation and conventions: Let $\pi_Y: k\langle\langle X_0, X_1 \rangle\rangle \to k\langle\langle Y_1, Y_2, \ldots \rangle\rangle$ be the k-linear map between non-commutative formal power series rings that sends all the words ending in X_0 to zero and the word $X_0^{n_m-1}X_1 \cdots X_0^{n_1-1}X_1$ $(n_1, \ldots, n_m \in \mathbb{N})$ to $(-1)^m Y_{n_m} \cdots Y_{n_1}$. Define the coproduct Δ_* on $k\langle\langle Y_1, Y_2, \ldots \rangle\rangle$ by $\Delta_* Y_n = \sum_{i=0}^n Y_i \otimes Y_{n-i}$ with $Y_0 := 1$. For $\varphi = \sum_{W: \text{word}} c_W(\varphi)W \in k\langle\langle X_0, X_1 \rangle\rangle$, define the series shuffle regularization $\varphi_* = \varphi_{\text{corr}} \cdot \pi_Y(\varphi)$ with the correction term

(5)
$$\varphi_{\text{corr}} = \exp\left(\sum_{n=1}^{\infty} \frac{(-1)^n}{n} c_{X_0^{n-1} X_1}(\varphi) Y_1^n\right).$$

For a group-like series $\varphi \in U\mathfrak{F}_2$ the generalised double shuffle relation means the equality

$$\Delta_*(\varphi_*) = \varphi_* \widehat{\otimes} \varphi_*.$$

Theorem 7 ([F08]). Let $\varphi = \varphi(X_0, X_1)$ be a group-like element of $U\mathfrak{F}_2$. Suppose that φ satisfies Drinfel'd's pentagon equation (1). Then it also satisfies the generalized double shuffle relation (6).

By [F07b] lemma 5, theorem 7 is reduced to the following.

Proposition 8 ([F08]). Let φ be a group-like element of $U\mathfrak{F}_2$ with $c_{X_0}(\varphi) = c_{X_1}(\varphi) = 0$. Suppose that φ satisfies the 5-cycle relation

$$\varphi(X_{34}, X_{45})\varphi(X_{51}, X_{12})\varphi(X_{23}, X_{34})\varphi(X_{45}, X_{51})\varphi(X_{12}, X_{23}) = 1$$

in the completed universal enveloping algebra $U\mathfrak{P}_5$ of \mathfrak{P}_5 . Then it also satisfies the generalized double shuffle relation, i.e. $\Delta_*(\varphi_*) = \varphi_* \widehat{\otimes} \varphi_*$.

Proof. Let $\mathcal{M}_{0,4}$ be the moduli space $\{(x_1,\cdots,x_4)\in (\mathbf{P}_k^1)^4|x_i\neq x_j(i\neq j)\}/PGL_2(k)$ of 4 different points in \mathbf{P}^1 . It is identified with $\{z\in \mathbf{P}^1|z\neq 0,1,\infty\}$ by sending $[(0,z,1,\infty)]$ to z. Let $\mathcal{M}_{0,5}$ be the moduli space $\{(x_1,\cdots,x_5)\in (\mathbf{P}_k^1)^5|x_i\neq x_j(i\neq j)\}/PGL_2(k)$ of 5 different points in \mathbf{P}^1 . It is identified with $\{(x,y)\in \mathbf{G}_m^2|x\neq 1,y\neq 1,xy\neq 1\}$ by sending $[(0,xy,y,1,\infty)]$ to (x,y).

For $\mathcal{M}=\mathcal{M}_{0,4}/k$ or $\mathcal{M}_{0,5}/k$, we consider the Brown's variant $V(\mathcal{M})$ [Br] of the Chen's reduced bar construction [C]. This is a graded Hopf algebra $V(\mathcal{M})=\bigoplus_{m=0}^{\infty}V_m$ ($\subset TV_1=\bigoplus_{m=0}^{\infty}V_1^{\otimes m}$) over k. Here $V_0=k$, $V_1=H_{DR}^1(\mathcal{M})$ and V_m is the totality of linear combinations (finite sums) $\sum_{I=(i_m,\cdots,i_1)}c_I[\omega_{i_m}|\cdots|\omega_{i_1}]\in V_1^{\otimes m}$ ($c_I\in k,\ \omega_{i_j}\in V_1,\ [\omega_{i_m}|\cdots|\omega_{i_1}]:=\omega_{i_m}\otimes\cdots\otimes\omega_{i_1}$) satisfying the integrability condition

$$\sum_{I=(i_m,\cdots,i_1)} c_I[\omega_{i_m}|\omega_{i_{m-1}}|\cdots|\omega_{i_{j+1}}\wedge\omega_{i_j}|\cdots|\omega_{i_1}] = 0$$

in $V_1^{\otimes m-j-1} \otimes H^2_{DR}(\mathcal{M}) \otimes V_1^{\otimes j-1}$ for all j $(1 \leqslant j < m)$.

For the moment assume that k is a subfield of \mathbf{C} . We have an embedding (called a realisation in [Br]§1.2, §3.6) $\rho:V(\mathcal{M})\hookrightarrow I_o(\mathcal{M})$ as algebra over k which sends $\sum_{I=(i_m,\cdots,i_1)}c_I[\omega_{i_m}|\cdots|\omega_{i_1}]$ ($c_I\in k$) to $\sum_I c_I \mathrm{It} \int_o \omega_{i_m}\circ\cdots\circ\omega_{i_1}$. Here $\sum_I c_I \mathrm{It} \int_o \omega_{i_m}\circ\cdots\circ\omega_{i_1}$ means the iterated integral defined by

$$\sum_{I} c_{I} \int_{0 < t_{1} < \cdots < t_{m-1} < t_{m} < 1} \omega_{i_{m}}(\gamma(t_{m})) \cdot \omega_{i_{m-1}}(\gamma(t_{m-1})) \cdot \cdots \cdot \omega_{i_{1}}(\gamma(t_{1}))$$

for all analytic paths $\gamma:(0,1)\to\mathcal{M}(\mathbf{C})$ starting from the tangential basepoint o (defined by $\frac{d}{dz}$ for $\mathcal{M}=\mathcal{M}_{0,4}$ and defined by $\frac{d}{dx}$ and $\frac{d}{dy}$ for $\mathcal{M}=\mathcal{M}_{0,5}$) at the origin in \mathcal{M} (for its treatment see also [D]§15) and $I_o(\mathcal{M})$ denotes the $\mathcal{O}_{\mathcal{M}}^{\mathrm{an}}$ -module generated by all such homotopy invariant iterated integrals with $m\geqslant 1$ and holomorphic 1-forms $\omega_{i_1},\ldots,\omega_{i_m}\in\Omega^1(\mathcal{M})$.

For $\mathbf{a} = (a_1, \dots, a_k) \in \mathbf{Z}_{>0}^k$, its weight and its depth are defined to be $wt(\mathbf{a}) = a_1 + \dots + a_k$ and $dp(\mathbf{a}) = k$ respectively. Put $z \in \mathbf{C}$ with |z| < 1. Consider the following complex function which is called the *one variable multiple polylogarithm*

$$Li_{\mathbf{a}}(z) := \sum_{0 < m_1 < \dots < m_k} \frac{z^{m_k}}{m_1^{a_1} \cdots m_k^{a_k}}.$$

It satisfies the recursive differential equations (cf. [BF, F08]) It gives an iterated integral starting from o, which lies on $I_o(\mathcal{M}_{0,4})$. Actually it corresponds to an element of $V(\mathcal{M}_{0,4})$ denoted by l_a .

Similarly for $\mathbf{a} = (a_1, \dots, a_k) \in \mathbf{Z}_{>0}^k$, $\mathbf{b} = (b_1, \dots, b_l) \in \mathbf{Z}_{>0}^l$ and $x, y \in \mathbf{C}$ with |x| < 1 and |y| < 1, consider the following complex function which is called the *two* variables multiple polylogarithm

$$Li_{\mathbf{a},\mathbf{b}}(x,y) := \sum_{\substack{0 < m_1 < \dots < m_k \\ < n_1 < \dots < n_l}} \frac{x^{m_k}}{m_1^{a_1} \cdots m_k^{a_k} n_1^{b_1} \cdots n_l^{b_l}}.$$

It also satisfies the recursive differential equations (cf. [BF]§5). They show that the functions $Li_{\mathbf{a},\mathbf{b}}(x,y)$, $Li_{\mathbf{a},\mathbf{b}}(y,x)$, $Li_{\mathbf{a}}(x)$, $Li_{\mathbf{a}}(y)$ and $Li_{\mathbf{a}}(xy)$ give iterated integrals starting from o, which lie on $I_o(\mathcal{M}_{0,5})$. They correspond to elements of $V(\mathcal{M}_{0,5})$ by the map ρ denoted by $l_{\mathbf{a},\mathbf{b}}^{x,y}$, $l_{\mathbf{a},\mathbf{b}}^{y}$, $l_{\mathbf{a}}^{y}$, $l_{\mathbf{a}}^{y}$ and $l_{\mathbf{a}}^{xy}$ respectively.

The idea of the proof of proposition 8 goes as follows: Recall that multiple polylogarithms satisfy the analytic identity, the series shuffle formula in $I_o(\mathcal{M}_{0,5})$

$$Li_{\mathbf{a}}(x) \cdot Li_{\mathbf{b}}(y) = \sum_{\sigma \in Sh^{\leqslant}(k,l)} Li_{\sigma(\mathbf{a},\mathbf{b})}(\sigma(x,y)).$$

Here $Sh^{\leq}(k,l) := \bigcup_{N=1}^{\infty} \{ \sigma : \{1, \dots, k+l\} \to \{1, \dots, N\} | \sigma \text{ is onto}, \sigma(1) < \dots < \sigma(k), \sigma(k+1) < \dots < \sigma(k+l) \}, \ \sigma(\mathbf{a}, \mathbf{b}) := ((c_1, \dots, c_j), (c_{j+1}, \dots, c_N)) \text{ with } \{j, N\} = \{\sigma(k), \sigma(k+l)\},$

$$c_{i} = \begin{cases} a_{s} + b_{t-k} & \text{if } \sigma^{-1}(i) = \{s, t\} \text{ with } s < t, \\ a_{s} & \text{if } \sigma^{-1}(i) = \{s\} \text{ with } s \leqslant k, \\ b_{s-k} & \text{if } \sigma^{-1}(i) = \{s\} \text{ with } s > k, \end{cases}$$
and
$$\sigma(x, y) = \begin{cases} xy & \text{if } \sigma^{-1}(N) = k, k + l, \\ (x, y) & \text{if } \sigma^{-1}(N) = k + l, \\ (y, x) & \text{if } \sigma^{-1}(N) = k. \end{cases}$$

Since ρ is an embedding of algebras, the above analytic identity implies the algebraic identity, the series shuffle formula in $V(\mathcal{M}_{0,5})$

(7)
$$l_{\mathbf{a}}^{x} \cdot l_{\mathbf{b}}^{y} = \sum_{\sigma \in Sh^{\leqslant}(k,l)} l_{\sigma(\mathbf{a},\mathbf{b})}^{\sigma(x,y)}.$$

Suppose that φ is an element as in proposition 8. Evaluation of the equation (7) at the group-like element $\varphi_{451}\varphi_{123}$ ³ gives the series shuffle formula

$$l_{\mathbf{a}}(\varphi) \cdot l_{\mathbf{b}}(\varphi) = \sum_{\sigma \in Sh^{\leqslant}(k,l)} l_{\sigma(\mathbf{a},\mathbf{b})}(\varphi)$$

for admissible 4 indices a and b because of [F08] lemma 4.1. and 4.2.

For non-admissible indices we need a special treatment. The idea is essentially same to the above admissible indices case except that we consider $e^{TX_{51}}\varphi_{451}\varphi_{123}$ (T: a parameter which stands for $\log x$) instead of $\varphi_{451}\varphi_{123}$ (see [F08] in more detail), which completes the proof of theorem 7.

The double shuffle group DMR_0 is a pro-unipotent group introduced by Racinet [R]. Its set of k-valued points consists of group-like series φ which satisfy (6) ⁵ and $c_{X_0}(\varphi) = c_{X_1}(\varphi) = c_{X_0X_1}(\varphi) = 0$. Its multiplication is given by the equation (4). By the same way to the GRT_1 -case, the group DMR_0 is regarded as a subgroup of $\underline{Aut}F_2$. This also contains the motivic Galois image.

Proposition 9. $\varphi(\mathcal{U}Gal^{\mathcal{M}}(\mathbf{Z})) \subset DMR_0$.

This follows from the result in [Go] and another proof is given in [F07a]. The following is a direct corollary of our theorem 7 since the equations (2) and (3) for (μ, φ) imply $c_{X_0X_1}(\varphi) = \frac{\mu^2}{24}$.

Theorem 10 ([F08]). $GRT_1 \subset DMR_0$.

As an analogue of conjecture 6, the following conjecture is posed (cf. [R] and see also [A].)

Conjecture 11. The map φ might induce the isomorphism $\mathcal{U}\mathrm{Gal}^{\mathcal{M}}(\mathbf{Z}) \simeq DMR_0$.

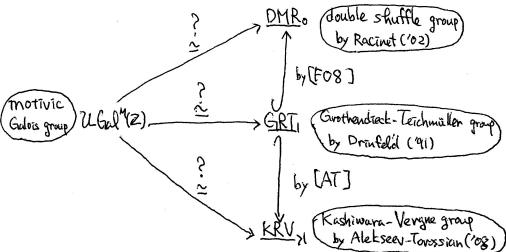
The validities of conjecture 6 and conjecture 11 would imply that GRT_1 might be isomorphic to DMR_0 .

Remark 12. Alekseev and Torossian [AT] gave the second proof of the Kashiwara-Vergne (KV) conjecture. It is a conjecture on a property of the Campbell-Baker-Hausdorff formula which was posed in [KV]. Their proof was based on Drinfel'd's theory [Dr91] of the Grothendieck-Teichmüller group. They showed that the set of solutions of the generalized KV-problem admitted a free and transitive action of the (graded) Kashiwara-Vergne group KRV (see also [AET] for the definition). It is a subgroup of $\underline{AutF_2}$ and contains GRT_1 , i,e, we have an embedding $GRT_1 \hookrightarrow KRV$. They conjectured in [AT]§4 that its degree>1-part $KRV_{>1}$ might be equal to GRT_1 .

³For simplicity we mean φ_{ijk} for $\varphi(X_{ij}, X_{jk}) \in U\mathfrak{P}_5$.

⁴An index $\mathbf{a} = (a_1, \dots, a_k)$ is called admissible if $a_k > 1$.

⁵For our convenience, we change some signatures in the original definition ([R] definition 3.2.1.))



One of the main defining equations of KRV is the coboundary Jacobian condition (cf. loc.cit.), which is a lift of the gamma factorization formula (8) (see below) to the trace space $\hat{\mathfrak{T}}_2$. The following theorem might be a step to relate KRV with DMR_0 .

Theorem 13 ([F08]). Let φ be a non-commutative formal power series in two variables which is group-like with $c_{X_0}(\varphi) = c_{X_1}(\varphi) = 0$. Suppose that it satisfies the generalized double shuffle relation (6). Then its meta-abelian quotient 6 $B_{\varphi}(x_0, x_1)$ is gamma-factorisable, i.e. there exists a unique series $\Gamma_{\varphi}(s)$ in $1 + s^2k[[s]]$ such that

(8)
$$B_{\varphi}(x_0, x_1) = \frac{\Gamma_{\varphi}(x_0) \Gamma_{\varphi}(x_1)}{\Gamma_{\varphi}(x_0 + x_1)}.$$

The gamma element Γ_{φ} gives the correction term φ_{corr} of the series shuffle regularization (5) by $\varphi_{corr} = \Gamma_{\varphi}(-Y_1)^{-1}$.

This theorem was proved in [F08] §5. It extends the result in [DT, I] which shows that for any group-like series satisfying (1), (2) and (3) its meta-abelian quotient is gamma factorisable. We note that it was calculated in [Dr91] that especially $\Gamma_{\varphi}(s) = \exp\{\sum_{n=2}^{\infty} \frac{\zeta(n)}{n} s^n\} = e^{-\gamma s} \Gamma(1-s)$ for $\varphi = \Phi_{KZ}$ where γ is the Euler constant, $\Gamma(s)$ is the classical gamma function and Φ_{KZ} is the Drinfel'd associator.

Acknowledgments . The author is supported by JSPS Postdoctoral Fellowships for Research Abroad.

REFERENCES

- [A] André, Y., Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses, 17, Société Mathématique de France, Paris, 2004.
- [AT] Alekseev, A. and Torossian, C., The Kashiwara-Vergne Conjecture and Drinfeld's associators, preprint arXiv:0802.4300.
- [AET] ______, Enriquez, B. and ______, Drinfeld associators, braid groups and explicit solutions of the Kashiwara-Vergne equations, preprint arXiv:0903.4067.
- [Ba] Bar-Natan, D., On associators and the Grothendieck-Teichmuller group. I, Selecta Math. (N.S.) 4 (1998), no. 2, 183-212.

⁶It means $(1 + \varphi_{X_1} X_1)^{ab}$ for the unique expression $\varphi = 1 + \varphi_{X_0} X_0 + \varphi_{X_1} X_1$ $(\varphi_{X_0}, \varphi_{X_1} \in k(\langle X_0, X_1 \rangle))$ and $(\cdot)^{ab}$ means the image of the abelianization map $k(\langle X_0, X_1 \rangle) \to k[[x_0, x_1]]$.

- [Be] Belyĭ, G. V., Galois extensions of a maximal cyclotomic field, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 2, 267-276, 479.
- [BF] Besser, A. and Furusho, H.; The double shuffle relations for p-adic multiple zeta values, AMS Contemporary Math, Vol 416, (2006), 9-29.
- [Br] Brown, F., Multiple zeta values and periods of moduli spaces $\mathfrak{M}_{0,n}$, arXiv:math/0606419.
- [C] Chen, K. T., Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), no. 5, 831-879.
- [D] Deligne, P., Le groupe fondamental de la droite projective moins trois points, Galois groups over Q (Berkeley, CA, 1987), 79-297, Math. S. Res. Inst. Publ., 16, Springer, New York-Berlin. 1989.
- [DG] ____and Goncharov, A.; Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. Ecole Norm. Sup. (4) 38 (2005), no. 1, 1-56.
- [DT] _____and Terasoma, T., Harmonic shuffle relation for associators, preprint available from www2.lifl.fr/mzv2005/DOC/Terasoma/lille_terasoma.pdf
- [Dr86] Drinfel'd, V. G., Quantum groups, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), 798–820, Amer. Math. Soc., Providence, RI, 1987.
- [Dr90] _____, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), no. 6, 1419-1457.
- [Dr91] _____, On quasitriangular quasi-Hopf algebras and a group closely connected with $Gal(\overline{Q}/Q)$, Leningrad Math. J. 2 (1991), no. 4, 829–860.
- [E] Euler, L., Meditationes circa singulare serierum genus, Novi Commentarii academiae scientiarum Petropolitanae 20, 1776, pp. 140-186 and Opera Omnia: Series 1, Volume 15, pp. 217 267 (also available from www.math.dartmouth.edu/ euler/).
- [F03] Furusho, H., The multiple zeta value algebra and the stable derivation algebra, Publ. Res. Inst. Math. Sci. Vol 39. no 4. (2003). 695-720.
- [F07a] ______, p-adic multiple zeta values II tannakian interpretations, Amer. J. Math, Vol 129, No 4, (2007),1105-1144.
- [F07b] ______, Pentagon and hexagon equations, arXiv:math/0702128, to appear in Annals of Mathematics.
- [F08] _____, Double shuffle relation for associators, preprint arXiv:0808.0319v2.
- [Go] Goncharov, A. B., Periods and mixed motives, arXiv:math/0202154, preprint in 2002.
- [Gr] Grothendieck, A., Esquisse d'un programme, 1983, available on pp. 243–283. London Math. Soc. LNS 242, Geometric Galois actions, 1, 5–48, Cambridge Univ.
- [HM] Hain, R. and Matsumoto, M., Weighted Completion of Galois Groups and Some Conjectures of Deligne, Compositio Math. 139 (2003), no.2, 119-167.
- [H] Huber, A.; Realization of Voevodsky's motives, J.Alg.Geom. 9. 2000, 755-799.
- [IKZ] Ihara, K., Kaneko, M. and Zagier, D., Derivation and double shuffle relations for multiple zeta values, Compos. Math. 142 (2006), no. 2, 307–338.
- Ihara, Y., On beta and gamma functions associated with the Grothendieck-Teichmuller groups, Aspects of Galois theory, 144-179, London Math. Soc. LNS 256, Cambridge Univ. Press, Cambridge, 1999.
- [JS] Joyal, A. and Street, R., Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20-78.
- [KV] Kashiwara, M. and Vergne, M., The Campbell-Hausdorff formula and invariant hyperfunctions, Invent. Math. 47 (1978), no. 3, 249-272.
- [Ka] Kassel, C., Quantum groups, Graduate Texts in Mathematics, 155. Springer-Verlag, New York, 1995.
- [Ko] Kontsevich, M., Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), no. 1, 35-72.
- [LM] Le, T.T.Q. and Murakami, J., Kontsevich's integral for the Kauffman polynomial, Nagoya Math. J. 142 (1996), 39-65.
- [L1] Levine, M.; Tate motives and the vanishing conjectures for algebraic K-theory, in: Algebraic K-theory and algebraic topology (Lake Louis, 1991), 167-188, NATO Adv. Sci, but. Ser.C Math. Phys. 407, Kluwer, 1993.
- [L2] _____; Mixed Motives, Math surveys and Monographs 57, AMS, 1998.
- [R] Racinet, G.; Doubles melanges des polylogarithmes multiples aux racines de l'unite, Publ. Math. Inst. Hautes Etudes Sci. No. 95 (2002), 185–231.
- [T] Terasoma, T., Mixed Tate motives and multiple zeta values, Invent. Math. 149 (2002), no. 2, 339-369.

- [V] Voevodsky, V.; Triangulated categories of motives over a field, in: Cycles, transfer and motivic homology theories, 188-238, Ann of Math Studies 143, Princeton University Press, 1993.
- [Y] Yamashita, G.; Bounds for the dimensions of the p-adic multiple L-value spaces, preprint.

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Furo-cho, Nagoya, 464-8602, Japan

E-mail address: furusho@math.nagoya-u.ac.jp

Département de mathématiques et applications, École Normale Supérieure,45, rue d'Ulm, F 75230 Paris cedex 05, France

 $E ext{-}mail\ address: Hidekazu.Furusho@ens.fr}$