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Abstract

The notion of limit stability is introduced in [31] to give a limiting degeneration of
Bridgeland stability. In this article, we give the survey of the results in [31], [30]. We
introduce the limit stability, counting invariants of limit stable objects, and see that
the wall-crossing phenomena yields the rationality conjecture of Pandharipande-
Thomas generating functions.

1 Motivations

1.1 triangulated categories, stability conditions

Let D be a triangulated category, e.g. bounded derived category of coherent sheaves
Db(X) on an algebraic variety X. Its objects consist of bounded complexes of coherent
sheaves,

· · · → F i → F i+1 → · · · → F j → 0 → · · · ,

where F i ∈ Coh(X). Historically such a class of categories was introduced to formu-
late the generalization of several duality theories, such as Poincaré duality, Serre duality.
(cf. [3], [10].) On the other hand, the notion of triangulated categories draw much atten-
tion recently from the viewpoint of string theory. In terms of string theory, an object in the
derived category of coherent sheaves is considered to represent a D-brane of type B, and a
conjectural symmetry (Homological mirror symmetry) between the category of A-branes
(Fukaya category) and B-branes (derived category) is proposed by Kontsevich [19].

In 2002, an important notion of stability conditions on triangulated categories was in-
troduced by Bridgeland [8]. For a triangulated category D, he associates a space Stab(D),
which has a structure of complex manifold. So we have the following correspondence,

triangulated category −→ complex manifold

There are several motivations to introduce the complex manifold Stab(D).

• Classically there is a notion of stability condition on vector bundles on curves.
(cf. [24].) We want to generalize this notion to objects in derived categories. For
each σ ∈ Stab(D), there is the associated notion of σ-semistable objects in D. So
each point σ ∈ Stab(D) gives a generalization of the classical notion of stability
condition. In terms of string theory, σ-semistable objects are considered to be the
D-branes of BPS-state.
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• The space Stab(D) is considered to describe the (extended) stringy Kähler moduli
space, which should be isomorphic to the moduli space of complex structures on the
mirror side. Thus it is an interesting problem to compare the space Stab(D) with
the moduli space of the complex structures under mirror symmetry.

Since the theory of stability conditions on triangulated categories has been proposed
recently, the theory is not so developed yet. One of the big issues is the existence problem
of stability conditions, especially on the derived category of coherent sheaves on projective
Calabi-Yau 3-folds. We will address this problem later.

1.2 Counting invariants of semistable objects

Let X be a smooth projective Calabi-Yau 3-fold. Let In(X,β) be the moduli space of
ideal sheaves IC ⊂ OX such that C ⊂ X is one dimensional with

ch2(OC) = β, ch3(OC) = n,

where β ∈ H4(X, Z) and n ∈ H6(X, Z) ∼= Z. In other words, In(X,β) is a component
of the moduli space of rank one Gieseker stable sheaves on X with trivial determinants.
By the work of [28], there is the virtual fundamental cycle on In(X,β), whose virtual
dimension is zero. The Donaldson-Thomas invariant is defined by the integration of the
virtual cycle,

In,β =

∫
[In(X,β)]vir

1 ∈ Z.

The invariant In(X,β) is interesting in connection with Gromov-Witten theory. (cf. [23].)
Note that the structure sheaf OC may contain zero dimensional subsheaves, so In,β does
not directly count curves. In order to avoid that issue, a variant of Donaldson-Thomas
type invariants is introduced by Pandharipande-Thomas [26], via counting stable pairs. By
definition a stable pair consist of data (F, s), where F ∈ Coh(X) is pure one dimensional
sheaf, and s is a morphism

s : OX −→ F,

such that Coker(s) is zero dimensional. The moduli space of stable pairs (F, s) with
(ch2(F ), ch3(F )) = (β, n) is constructed in [26] as a projective variety, and shown to have
a perfect symmetric obstruction theory. In particular there is the virtual fundamental
cycle on Pn(X,β), and one can define the invariant,

Pn,β =

∫
[Pn(X,β)]vir

1 ∈ Z.

The invariant Pn,β is considered to count objects in the derived category, by viewing stable
pairs (F, s) as two term complexes,

· · · −→ 0 −→ OX
s−→ F −→ 0 −→ · · · ∈ Db(X). (1)

Here the degree of OX is −1 and the degree of F is zero. Conjecturally the objects (1)
are stable with respect to a certain stability condition on Db(X). Note that an object E
given in (1) satisfies the following condition,

ch(E) = (−1, 0, β, n) ∈ H0 ⊕ H2 ⊕ H4 ⊕ H6, det E = OX, (2)
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Under the above background, we suggest the following story.

• For a projective Calabi-Yau 3-fold X, let D = Db(X). We expect that there are
stability conditions σ, τ ∈ Stab(D) such that ideal sheaves IC[1] and objects (1)
become stable with respect to σ, τ respectively.

• We expect that for any σ ∈ Stab(D), there is the algebraic moduli stack of σ-
semistable objects E ∈ D with fixed phase and satisfy 2. We denote that moduli
stack M(−1,0,β,n)(σ). For a particular choice of σ, the stack M(−1,0,β,n)(σ) should be
the gerb over In(X,β) or Pn(X,β).

• We expect that there is the generalized Donaldson-Thomas invariant,

DTn,β(σ) ∈ Q,

counting σ-semistable objects E ∈ D satisfying (2). DTn,β(σ) should be defined as
the integration of the “logarithm” of the moduli stack M(−1,0,β,n)(σ) in the Hall al-
gebra of D, after multiplying Behrend’s weight function [2]. This procedure (expect
multiplication of weight function) follows from Joyce’s sequent works [14], [15], [16],
[16], [17]. It should be possible to use the motivic milnor fiber idea of Kontsevich-
Soibelman [20] to involve weight function into Joyce’s invariants. A particular choice
of σ yields DTn,β(σ) = In,β or Pn,β. However DTn,β(σ) give new invariants by de-
forming σ.

• We want to know how DTn,β(σ) varies under change of σ. In principle, there is
a wall and chamber structure on Stab(D) so that DTn,β(σ) does not change if σ
deforms in a chamber. However if σ crosses a wall, then the invariant DTn,β(σ)
jumps and its difference should be expressed in terms of the structure of the Ringel-
Hall Lie algebra associated to D. Thus we should have the wall-crossing formula of
the invariants DTn,β(σ).

• Applying the wall-crossing formula of DTn,β(σ), we expect that several properties or
equalities of the generating functions of sheaf countings are realized. For instance,
DT-PT correspondence [26], DT-NCDT correspondence [27], flop formula of DT-
invariants [11], and the rationality conjecture of the generating functions of DT or
PT-invariants should be explained by wall-crossing formula. (cf. [30].)

At this moment, there are several technical difficulties to realize the above story. One of
them is to find stability conditions, which will be discussed in the next section.

2 Stability conditions

2.1 Bridgeland’s stability conditions

First let us give the definition of stability conditions introduced in [8].
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Definition 2.1. A stability condition on a triangulated category D consists of data
σ = (Z,A), where A ⊂ D is the heart of a bounded t-structure on D, and Z is a group
homomorphism,

Z : K(D) −→ C,

which satisfies the following axiom.

• For a non-zero object 0 �= E ∈ A, we have

Z(E) ∈ H := {r exp(iπφ) | 0 < φ ≤ 1, r > 0}.

Especially one can choose the argument arg Z(E) ∈ (0, π] uniquely. An object
E ∈ A is said to be Z-(semi)stable if for any non-zero object F ⊂ E, one has

arg Z(F ) ≤ (<) arg Z(E).

• There is a Harder-Narasimhan property, i.e. any E ∈ A admits a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E,

such that each Fi = Ei/Ei−1 is Z-semistable with arg Z(Fi) > arg Z(Fi+1).

Here we give some examples.

Example 2.2. (i) Let D = Db(C) for a smooth projective curve C , and Z : K(C) → C

be
Z(E) = − deg(E) + rk(E) · i.

Then the pair (Z,Coh(C)) determines a stability condition on D. In this case, an object
E ∈ Coh(C) is Z-semistable if and only if it is a semistable sheaf in the sense of [24].

(ii) Let A be a finite dimensional k-algebra with k a field, and D = Db(A) where
A = mod A is the abelian category of finitely generated right A-modules. Then there is
a finite number of simple objects S1, · · · , SN ∈ A which generates A. One can choose
Z : K(A) → C such that Z(Si) ∈ H for all 1 ≤ i ≤ N . Then the pair (Z,A) determines
a stability condition on D.

So far, the spaces Stab(D) for several D have been studied in detail. For instance, see
[9], [6], [7], [29], [25], [22], [13], [4], [33], [34]. On the other hand, the following problem
has been a big issue in studying stability conditions.

Problem 2.3. Given a triangulated category D, do we have an example of a stability
condition on D, i.e. Stab(D) �= ∅?

The above problem is non-trivial especially for the case D = Db(X), where X is a
smooth projective variety with dim X ≥ 2. In this case, one can show that there is no
stability condition (Z,A) with A = Coh(X). As an analogue of Example 2.2 (i), one
might try to construct Z to be the group homomorphism

Z(E) = −c1(E) · ω + rk(E) · i,
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for a fixed ample divisor ω. However the pair (Z,Coh(X)) does not give a stability
condition since Z([Ox]) = 0 for a closed point x ∈ X. When dim X = 2, the examples
of stability conditions are constructed by tilting the abelian category Coh(X), (cf. [9].)
However we do not know any example of stability conditions when dimX ≥ 3, except the
case that there is a derived equivalence Db(X) ∼= Db(A) for a finite dimensional algebra
A. (e.g. X = P3.)

From the viewpoint of mirror symmetry, the most important case is when X is a
projective Calabi-Yau 3-fold. In this case, there are some ideas coming from string theory.
Let A(X)� be the complexified ample cone,

A(X)� := {B + iω ∈ H2(X, C) | ω is ample }.

Let Z(B,ω) : K(X) → C be

Z(B,ω)(E) = −
∫

e−(B+iω) ch(E)
√

tdX.

We can state the following conjecture.

Conjecture 2.4. For ω � 0, there should exist the heart of a bounded t-structure A(B,ω) ⊂
Db(X) such that the pair σ(B,ω) = (Z(B,ω),A(B,ω)) is a stability condition on Db(X).

The above conjecture holds true if dim X ≤ 2.

2.2 Limit stability

The idea of limit stability is to construct the stability conditions corresponding to ω → ∞
in the notation of Conjecture 2.4. In order to see this, let us take non-zero E ∈ Coh(X)
and observe the value Z(B,ω)(E) for ω → ∞. The result is as follows, (d = dim Supp(E), )

arg Z(B,ω)(E) −→

⎧⎪⎪⎨
⎪⎪⎩

π, d = 0,
π/2, d = 1,
0, d = 2,

−π/2, d = 3.

By the above observation, it is reasonable to guess that A(B,ω) should be an approximation
of the category spanned by E ∈ Coh(X) with d ≤ 1 and E[1] ∈ Coh(X)[1] with d ≥ 2.
The heart of the perverse t-structure, introduced by Bezrukavnikov [5] and Kashiwara [18]
provide the appropriate heart of t-structure. Let T , F be the pair of subcategories of
Coh(X) defined as

T = {E ∈ Coh(X) | dim Supp(E) ≤ 1},
F = {E ∈ Coh(X) | Hom(T , E) = 0}.

It is easy to see that (T ,F) determines a torsion theory on Coh(X).

Definition 2.5. We define the category Ap to be

Ap := {E ∈ Db(X) | H0(E) ∈ T ,H−1(E) ∈ F ,Hi(E) = 0 for i �= 0,−1}.
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Ap is the tilting with respect to the torsion pair (T ,F), and hence Ap is the heart of a
bounded t-structure on Db(X). By the above asymptotic behavior of Z(B,ω) for ω → ∞,
it is easy to see the following lemma. (See [31, Lemma 2.20].)

Lemma 2.6. For a non-zero E ∈ Ap, we have

Z(B,mω)(E) ∈ e
πi
4 H,

for m � 0, depending on the numerical classes of E.

By the above lemma, one can uniquely determine the argument,

arg Z(B,mω)(E) ∈ (π/4, 5π/4),

for m � 0.

Definition 2.7. An object E ∈ Ap is called B + iω ∈ A(X)� -limit (semi)stable if for
any non-zero subobject F ⊂ E in Ap, we have

arg Z(B,mω)(F ) < (≤) arg Z(B,mω)(E),

for m � 0.

Remark 2.8. (i) Since the choice of m � 0 depends on E ∈ Ap, the above definition
of stability does not give a stability condition on Db(X) in the sense of Bridgeland. The
limit stability is interpreted as a kind of limiting degeneration of Bridgeland stability.

(ii) A similar kind of stability is introduced by Bayer [1] independently. He introduces
the notion of polynomial stability on the category of more general perverse coherent
sheaves.

In the following, we give some examples of limit (semi)stable objects.

Example 2.9. (i) Let F be a μ-stable vector bundle on X. Then F [1] ∈ Ap and it is
B + iω-limit stable for any B + iω ∈ A(X)� .

(ii) For T ∈ T ⊂ Coh(X), we can easily see that F is B + iω-limit semistable if and
only if F is a (B, ω)-twisted semistable sheaf, i.e. for any non-zero subsheaf F ′ ⊂ F , one
has ν(B,ω)(F

′) ≤ ν(B,ω)(F ), where

ν(B,ω)(F ) =
ch3(F ) − B ch2(F )

ω ch2(F )
∈ R.

(iii) Let x ∈ X be a closed point and Ix ⊂ OX be the ideal sheaf. Then Ix is a Gieseker
stable sheaf, but Ix[1] ∈ Ap is not B + iω-limit semistable. In fact we have the exact
sequence in Ap,

0 −→ Ox −→ Ix[1] −→ OX[1] −→ 0,

with arg Z(B,mω)(Ox) > arg Z(B,mω)(Ix[1]) for m � 0, which destabilizes Ix[1].

We have the following property, whose proof is seen in [31, Theorem 2.29].
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Proposition 2.10. For B + iω ∈ A(X)� , we have the following.
(i) For a non-zero E ∈ Ap, there exists a filtration in Ap,

E0 ⊂ E1 ⊂ · · · ⊂ En = E, (3)

such that each Fi = Ei/Ei+1 is B + iω-limit semistable with

arg Z(B,mω)(Fi) > arg Z(B,mω)(Fi+1)

for m � 0, i.e. (3) is a Harder-Narasimhan filtration.
(ii) For a B + iω-limit semistable object E ∈ Ap, there exists a filtration in Ap,

E0 ⊂ E1 ⊂ · · · ⊂ En = E, (4)

such that each Fi = Ei/Ei+1 is B + iω-limit stable with

arg Z(B,mω)(Fi) = arg Z(B,mω)(Fi+1)

for m � 0, i.e. (4) is a Jordan-Hölder filtration.

3 Moduli theory of stable objects and counting in-

variants

Let us take elements,
β ∈ H4(X, Z), n ∈ H6(X, Z) ∼= Z.

We consider the moduli problem of limit stable objects E ∈ Ap, satisfying the following
condition,

(ch0(E), ch1(E), ch2(E), ch3(E)) = (−1, 0, β, n), det E = OX. (5)

The moduli problem of objects in the derived category has been studied in some articles,
see [12], [21], [32]. Here we use the algebraic space constructed by Inaba [12], which
provides a “mother space” of our moduli problem. Let M be the functor,

M : (Sch /C) −→ (Set),

which sends a C-scheme S to a family of simple complexes E ∈ Db(X × S), (up to
isomorphism,) where an object E ∈ Db(X) is called a simple complex if

Hom(E, E) = C, Ext−1(E, E) = 0. (6)

Then Inaba [12] shows that the étale sheafication of M, denoted by Met, is an algebraic
space of locally finite type. Let Met

0 be the closed fiber at [OX] ∈ Pic(X) with respect to
the following morphism,

det : Met  E �−→ det E ∈ Pic(X).

Since any limit stable object E ∈ Ap satisfies (6), there is a subspace (in the sense of
functor)

M(B,ω)
n (X,β) ⊂ Met

0 , (7)

paramerizing B + iω-limit stable objects E ∈ A satisfying (5). In [31, Theorem 3.20,
Theorem 4.7], we proved the following.
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Theorem 3.1. (i) The space M(B,ω)
n (X,β) is a separated algebraic space of finite type

over C.
(ii) If B = kω for k ∈ R, we have

M(B,ω)
n (X,β) ∼= Pn(X,β), (k � 0, )

M(B,ω)
n (X,β) ∼= P−n(X,β), (k � 0.)

4 Counting invariants of limit stable objects

For B + iω ∈ A(X)� , β ∈ H4(X, Z) and n ∈ Z, let

M(B,ω)
n (X,β) ⊂ Met

0 ,

be the algebraic space constructed in Theorem 3.1. In [2], Behrend constructs a canonical
constructible function on any scheme M , (more generally on any Deligne Mumford stack
M ,)

νM : M −→ Z,

such that if M is proper and carries a symmetric obstruction theory, one has

	vir(M) =
∑
a∈�

ae(ν−1
M (a)),

where 	vir(M) is the integration over the virtual cycle, and e(∗) is the topological euler
number. In our situation, let

νM : M(B,ω)
n (X,β) −→ Z,

be Behrend’s constructible function.

Definition 4.1. We define the invariant Ln,β(B, ω) ∈ Z by

Ln,β(B, ω) =
∑
a∈�

ae(ν−1
M (a)).

Remark 4.2. Suppose that M(B,ω)
n (X,β) is a proper algebraic space. Then by the same

argument as in [26, Lemma 2.10], there is a virtual fundamental class,

[M(B,ω)
n (X,β)]vir ∈ A0(M(B,ω)

n (X,β)),

and our invariant Ln,β(B, ω)) coincides with the integration over the virtual class,

Ln,β(B, ω) =

∫
[M(B,ω)

n (X,β)]vir

1.

By Theorem 3.1 (ii), the invariants Ln,β(B, ω) relate to Pn,β as follows.

Theorem 4.3. Suppose B = kω for k ∈ R. Then

Ln,β(B, ω) = Pn,β, (k � 0), Ln,β(B, ω) = P−n,β , (k � 0).
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5 Relationship to the rationality conjecture

In [26], Pandharipande and Thomas proposed the following conjecture, called the ratio-
nality conjecture.

Conjecture 5.1. The generating series

Pβ(q) =
∑
n∈�

Pn,βqn

is the Laurent expansion of a rational function of q, invariant under q ↔ 1/q.

In the paper [31], the author stated that the wall-crossing phenomena of the invariant
Ln,β(B, ω) should be relevant to the above conjecture. In [30], the rationality of the closely
related series,

P eu
β (q) =

∑
n∈�

e(Pn(X,β))

was proved, by using the wall-crossing formula of the motivic invariants, something like the
topological euler number e(Mn,β(X,β)). More precisely, we considered a coarse version
of limit stability, called μ-limit stability, and showed the existence of the algebraic moduli
stack of μ-limit semistable E ∈ Ap satisfying (2),

M(B,ω)
n (X,β),

as an algebraic stack of finite type. Then we constructed the “euler number” of the moduli
stack

Jn,β(B, ω) = “e(M(B,ω)
n (X,β))′′ ∈ Q.

One might guess that the euler number of the algebraic stack is obtained as taking the
quotient of the euler number of the stabilizer groups. However this does not make sense,
since the euler number of the stabilizer groups might be zero. Instead, Joyce [17] proposes
another construction, using Hall algebras associated to abelian categories. The invariant
Jn,β(B, ω) is constructed along with the same argument of Joyce’s work [17]. As in
Theorem 4.3, the invariant Jn,β(B, ω) satisfies,

Jn,β(kω, ω) = e(Pn(X,β)), (k � 0),

Jn,β(kω, ω) = e(P−n(X,β)), (k � 0).

We set
Ln,β = Jn,β(0, ω) ∈ Q.

Let M̃n(X,β) be the moduli stack of one dimensional ω-Gieseker semistable sheaves
E ∈ Coh(X), which satisfies (ch2(E), ch3(E)) = (β, n). We denote by Nn,β the Joyce-
type invariant,

Nn,β = “e(M̃n(X,β))′′ ∈ Q.

Let us introduce the following generating series,

Lβ(q) =
∑
n∈�

Ln,βqn, Nβ(q) =
∑
n∈�

nNn,βqn.

Using the arguments of wall-crossing formula developed by Joyce [17], we showed the
following in [30, Theorem 4.7].
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Theorem 5.2. We have the following equality of the generating series,

∑
β

Pβ(q)vβ =

(∑
β

Lβ(q)vβ

)(∑
β

Nβ(q)vβ

)
.

It can be shown that Lβ(q) is a polynomial of q±1, and Nβ(q) is a rational function
of q. Furthermore they are both invariant under q ↔ 1/q. As a corollary we have the
following. (See [30, Corollary 5.3].)

Corollary 5.3. The generating series Pβ(q) is the Laurent expansion of a rational func-
tion of q, invariant under q ↔ 1/q.

It should be possible to show Conjecture 2.4 as soon as we can involve Behrend’s
constructible function into the proof of Theorem 5.2. Such technical issue is now under
progress by the work of Kontsevich-Soibelman [20].
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