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The purpose is to review the recent development of the extension results of twisted

pluricanonical forms and its applications. This text is for non-experts in this topic and

hence proofs will not be provided.

§1. Invariance of plurigenera

§2. Material for proof

§3. Extension of twisted pluricanonical forms

§4. Applications

1. Invariance of Plurigenera

Let us start with recalling basic notions. We let X be a smooth complex projective

variety or a compact complex manifold, and denote by KX a canonical divisor, or the

canonical line bundle.

Pm(X) := dimH0(X,OX(mKX))

is the m-genus, or m th-plurigenus (m > 0), which is a birational discrete invariant. The

growth order of Pm(X) is called the “Kodaira dimension” κ(X) of X, i.e.,

Pm(X) ∼ mκ(X)

for every large and enough divisible m. In case Pm(X) = 0 for all m > 0, we understand

as κ(X) = −∞. It is known κ(X) ∈ {−∞, 0, 1, . . . , n = dim X}.
The X is called “of general type”

⇐⇒ κ(X) = n = dimX. Then, “the volume of KX” is defined to be

vol (KX) := lim sup
m→∞

Pm(X)

mn/n!
> 0, Pm(X) =

vol (KX)

n!
mn + o(mn).

⇐⇒ There exists m > 0 such that the rational map associated to the pluricanonical

system |mKX | gives a birational map Φ|mKX | : X ��� P = PPm(X)−1 onto its image.

In this section, we will discuss in the following situation.

Basic set up in §1.

X : a normal variety, (C, 0) : a germ of a smooth curve,

π : X −→ C : a projective, surjective morphism with connected fibers,

Xt = π−1(t) the fiber of t ∈ C (as a divisor). �
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If π : X −→ C is smooth, for every fixed m, Pm(Xt) = h0(Xt, mKX |Xt) is upper semi-

continuous as a fucntion of t ∈ C (in Zariski topology), i.e., Pm(Xt) may only jump up

at some special points. The Hodge theory in fact shows that P1(Xt) = dimHn,0(Xt, C)

is independent of t ∈ C. The problem of the invariance of plurigenera is to ask the

parameter independence of Pm(Xt) for all m > 0. This was observed by Nakayama [N1]

assuming the minimal model program (MMP).

The breakthrough was brought by Siu in case fibers are of general type.

Theorem 1.1. Siu [S1]. Assume π : X −→ C is smooth, and every Xt is of general type.

Then Pm(Xt) is independent of t ∈ C for any m.

More precisely, every σ ∈ H0(Xt, mKXt) extends σ̃ ∈ H0(X, mKX). This is the so-

called an “analytic proof”. After Siu, an “algebraic proof” is given, and applied to the

deformation theory of certain type of singularities which appear in MMP. Refer [KMM]

for the definitions of terminal and canonical singularities.

Theorem 1.2. Kawamata [K1].

(1) If X0 has canonical singularities at most, then so does Xt general.

(2) All Xt are of general type and have canonical singularities at most, then Pm(Xt) is

independent of t ∈ C.

Theorem 1.3. Nakayama [N2].

(1) If X0 has terminal singularities at most, then so does Xt general.

(2) If π : X −→ C is smooth and the “abundance conjecture” holds true for general Xt,

then Pm(Xt) is independent of t ∈ C.

Here the plurigenera for possibly singular varieties is defined as Pm(Xt) := Pm(X̃t) for

a smooth model X̃t of Xt.

The general case is also solved by Siu. That means, without assuming Xt is of general

type nor the “abundance conjecture”, we have

Theorem 1.4. Siu [S2]. Assume π : X −→ C is smooth. Then Pm(Xt) is independent

of t ∈ C.

In case π : X −→ C may not be smooth, we also have

Theorem 1.5. T- [T1].

(1) All Xt = π−1(t) have canonical singularities at most, then Pm(Xt) is independent

of t ∈ C.

(2) Let X0 be a special fiber with Supp (X0) =
∑

i∈I Xi, and let Xt be a general fiber.

Then
∑

i∈I Pm(Xi) ≤ Pm(Xt).
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The second statement (2) is the “lower semi-continuity” of plurigenera, which is conjec-

tured by Nakayama [N1]. If the singularities of Xt are mild, this “lower semi-continuity”

plus the usual “upper semi-continuity” imply (1).

In Siu’s proof, there is a pair of inductions, which he calls “twin tower proof”. Păun

simplified and generalized Siu’s proof with only one induction; “one tower proof”. The

following form is the most general extension statement for the moment.

Theorem 1.6. Păun [P]. Assume π : X −→ C is smooth. Let L be a holomorphic

line bundle on X with a singular Hermitian metric h such that the curvature is semi-

positive, and h|X0 is well-defined. Then σ ∈ H0(X0, K
⊗m
X0

⊗ L ⊗ I(h|X0)) extends σ̃ ∈
H0(X, K⊗m

X ⊗ L ⊗ I(h)). Here I(h) ⊂ OX is the “multiplier ideal sheaf” of h.

Here are some well-known open problems.

Problem 1.7. (1) Give an “algebraic proof” of Theorem 1.4, i.e., the invariance of Pm(Xt)

in case Xt is not necessarily of general type.

(2) Give the “Kähler version” of the invariance of Pm(Xt). In the proof of theorems

quoted above, the projectivity or algebraicity of the map π : X −→ C is crucial, especially

in the first step of the induction. It is well-known that there is a counter-example without

Kählerian assumption, by Iku Nakamura.

(3) “Log-version”. Assume π : X −→ C is smooth, and let Δ be an effective (Q-)divisor

with simple normal crossing support on X. Find a meaningful statement on the behavior

of, like, h0(Xt, mKXt +Δt), h0(Xt, m(KXt +Δt)), h0(Xt, mKXt +(m−1)Δt). These kind

of extensions are technically important, but it is sometime difficult to see what the right

statement will be. For example the invariance of h0(Xt, m(KXt +Δt)) is quite unlikely in

case KX = 0.

2. Material for Proof

We recall basic notions and theorems, which are used in the proof of the results in §1.

Definition 2.1. Let X be a smooth variety, and let D be an effective Q-divisor on X.

(1) Let μ : X ′ −→ X be a log-resolution of D so that Supp (μ∗D + Exc(μ)) becomes

simple normal crossing. Then the “multiplier ideal sheaf” of D is

J (D) = J (X, D) := μ∗OX′(KX′/X − �μ∗D�) ⊂ OX .

(2) The pair (X, D) is called klt, “Kawamata log-terminal” ⇐⇒ J (X, D) = OX .

(3) The pair (X, D) is called lc, “log-canonical” ⇐⇒ J (X, (1 − ε)D) = OX for any

0 < ε < 1.
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For example, for D =
∑

djDj an effective Q-divisor with simple normal crossing, (X, D)

is klt ⇐⇒ 0 ≤ dj < 1 for any j, (X, D) is lc ⇐⇒ 0 ≤ dj � 1 for any j.

(4) The “non-klt locus” of the pair (X, D) is Nklt (X, D) = SuppOX/J (D).

Theorem 2.2. Nadel, Kawamata-Viehweg vanishing ([L, 9.4.8]). Let X be a smooth

projective variety, D an effective Q-divisor, and L a divisor on X. Assume L − D is

ample. Then Hq(X,OX(KX + L) ⊗ I(D)) = 0 for q > 0.

In case D = 0, this is Kodaira’s vanishing, which was used to construct global sections

of some power of positive line bundles.

Theorem 2.3. Effective global generation of multiplier ideal sheaves ([L, 9.4.26]). Let

X, D, L be as above with L − D ample. Let H be a very ample divisor. Then OX(KX +

L + mH) ⊗J (D) is generated by global sections, for any m ≥ dim X.

The point is that m is independent from L and D.

In the analytic proof, the following extension with L2-estimate is very important, and

which is the difference between the analytic proof and the algebraic one.

Theorem 2.4. Ohsawa-Takegoshi L2-extension [OT]. Let X ⊂ Cn be a bounded pseudo-

convex domain, ϕ ∈ PSH(X) a plurisubharmonic function on X, and S = X ∩{zn = 0}.
Then for any f ∈ H0(S,O) with

∫
S
|f |2e−ϕdVn−1 < ∞, there exists F ∈ H0(X,O) such

that F |S = f and ∫
X

|F |2e−ϕdVn ≤ CdiamX

∫
S

|f |2e−ϕdVn−1.

Here CdiamX is a positive constant depending only on the diameter of X, independent from

ϕ and f .

There is also a manifold version of this theorem, for example, for π : X −→ (C, 0) as in

§1 and π is smooth, and L is a holomorphic line bundle on X with a singular Hermitian

metric h such that the curvature is semi-positive and that h|X0 is well-defined. Then

σ ∈ H0(X0, KX0 ⊗ L ⊗ I(h|X0)) extends σ̃ ∈ H0(X, KX ⊗ L ⊗ I(h)) with L2-estimate.

Here the smoothness assumption of π : X −→ (C, 0) is important.

Naive explanation of the invariance of Pm(Xt). Let π : X −→ (C, 0) be as in §1. We take

m ∈ N and H a sufficiently π-ample divisor on X. By induction on p of pKX + H , we

find a good decomposition

L := (�m − 1)KX + H = A + D

so that H0(X, �mKX + H) � H0(X, KX ⊗ L ⊗ I(D)), H0(X0, KX0 ⊗ L ⊗ I(D|X0)) �
H0(X0, �mKX0 + H), and that H0(X, KX ⊗ L ⊗ I(D)) −→ H0(X0, KX0 ⊗ L ⊗ I(D|X0))

is surjective, for all � > 0.
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Because H is fixed and � is arbitrary, the extension statement for �mKX +H may leads

to the similar extension statement for mKX + 1
�
H . If KX is π-big (in case Theorem 1.1),

mKX absorbs 1
�
H part. If KX is only π-pseudo-effective (in case Theorem 1.4), we prove

the surjection or extension with uniform L2-estimates, then pass to the limit � → ∞ :

mKX+1
�
H 	 mKX . Then we obtain a surjectioin H0(X, mKX) −→ H0(X0, mKX0). �

3. Extension of Twisted Pluricanonical Forms

So far, we discussed on a family of varieties. Here we discuss extension properties on a

compact variety. We will mention their applications in the next section.

Theorem 3.1. T- [T2]. Let X be a smooth projective variety, and S ⊂ X a smooth

hypersurface. Let L be an integral divisor on X such that L∼� A + D with A an ample

Q-divisor, and D an effective Q-divisor such that S ⊂ Supp D and (S, D|S) is klt. Then

the natural map

H0(X, m(KX + S + L)) −→ H0(S, m(KS + L|S))

is surjective for any m > 0.

Recall that a divisor L is called “big”

⇐⇒ Φ|mL| : X ��� P is birational onto its image for a large m.

⇐⇒ L∼� A + D into A an ample Q-divisor and D an effective Q-divisor.

Theorem 3.2. Hacon-McKernan [HM1]. Let X be a smooth projective variety, S ⊂ X

be a smooth hypersurface. Let L be an effective Q-divisor (not necessarily integral) such

that L∼� A + D with A an ample Q-divisor, and D an effective Q-divisor such that

S ⊂ Supp D and (S, D|S) is klt. Assume there exists m ∈ N and an integral divisor M

such that M ∼� m(KX + S + L), and that for some p ∈ N, the base locus of |pM | does

not contain any stratum of S +
L� plus a mild condition (that is (X, S +L) is log-smooth

and �L� = 0 so that (X, S + L) is plt). Then the natural map

H0(X, m(KX + S + L)) −→ H0(S, m(KS + L|S))

is surjective for such m.

These two extension theorems can be proved by a similar mannar as in §1 and §2.

Extensions from higher codimensional subvarieties are also possible.

Theorem 3.3. T- [T2]. Let L be an integral divisor, and V ⊂ X a subvareity. Assume

there is a decomposition L∼� A + D into A an ample Q-divisor and D an effective Q-

divisor such that V is a maximal lc center for (X, D). Then

volX|V (KX + L) ≥ vol (K
�V ).
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Here Ṽ is any smooth model of V .

Definition 3.4. Let V ⊂ X be a subvariety of dim V = d.

(1) V ⊂ X is a “maximal lc center” for (X, D), if V is an irreducible component of

Nklt (X, D), and V ⊂ Nklt (X, (1 − ε)D).

(2) We denote by H0(X|V, mL) := Image[H0(X, mL) −→ H0(V, mL)]. The “restricted

volume” of L along V is

volX|V (L) := lim sup
m→∞

h0(X|V, mL)

md/d!
.

In case L is ample, we have volX|V (L) = Ld · V . �

The (usual) “volume” of L is defined by

volX(L) := lim sup
m→∞

h0(X, mL)

mn/n!
,

where n = dimX. Then L is big if and only if volX(L) > 0.

4. Applications

§4.1. Boundedness of pluricanonical maps.

Recall that X is of general type,

⇐⇒ Φ|mKX | : X ��� P is birational onto its image for large m,

⇐⇒ vol (KX) := lim sup
m→∞

Pm(X)

mn/n!
> 0, where n = dim X.

The following theorems guarantee that there exist lower bounds, depending only on the

dimension.

Theorem 4.1. Hacon-McKernan [HM1], Tsuji [Ts], T- [T2]. Fix n ∈ N. Then there

exists mn ∈ N depending only on n such that Φ|mKX | : X ��� P is birational onto its

image, for any n-dimensional smooth projective variety X of general type, and for any

m ≥ mn.

Theorem 4.2. Hacon-McKernan [HM1], Tsuji [Ts], T- [T2]. Fix n ∈ N. Then there

exists vn > 0 depending only on n such that

vol (KX) ≥ vn

for any n-dimensional smooth projective variety X of general type.

The basic strategy for the proof is induction on n = dimX for both Theorem 4.1 and

4.2, to apply the extension statements in §3. For a big divisor L := (m− 1)KX , we try to



7

find a decomposition L∼� A+D into A an ample Q-divisor and D an effective Q-divisor,

such that V ⊂ X is a maximal lc center for (X, D). Then by Theorem 3.3,

volX|V (KX + L) ≥ vol (K
�V ).

Induction hypothesis implies that mdvolX|V (KX) ≥ vd with d = dimV < n. We need to

mind the following:

(i) How to find m (smaller is better),

(ii) What is V , and how to construct L∼� A + D,

(iii) Estimate on volX|V (KX) =⇒ Estimate on vol (KX).

§4.2. Shokurov’s rationally chain connectedness conjecture.

In §4.2–§4.4, we will discuss uniruledness of subvarieties in special position. A variety

V is called “uniruled”, if there exists a dominant map : P1 ×W d−1 ��� V d. The following

is a useful uniruledness criterion.

Theorem 4.3. Miyaoka-Mori [MM], Boucksom-Demailly-Păun-Peternell [BDPP]. A

smooth projective variety X is uniruled if and only if KX is not pseudo-effective.

The pseudo-effectivity of the canonical bundle of a subvariety plus the extension state-

ments in §3 imply that the existence of certain twisted pluricanonical forms on the total

space. Then we see, the subvariety may not be in the base locus of the twisted pluri-

canonical system. Thus the subvariety may be in general position if the canonical bundle

is pseudo-effective.

Theorem 4.4. Hacon-McKernan [HM2]. Let (X, Δ) be a dlt pair, and f : Y −→ X be a

birational morphism from a normal variety Y . Then any fiber f−1(x) is rationally chain

connected.

We do not define “dlt”, but we only mention the relations: klt =⇒ dlt =⇒ lc.

§4.3. Uniruledness of stable base locus.

Conjecture 4.5. (Ueno, ..., around ‘75) Let X be a smooth projective variety of general

type. Then every irreducible component V of the stable base locus of KX has negative

Kodaira dimension; κ(V ) = −∞. In terms of MMP, V should be uniruled.

For a divisor L, the “stable base locus” is SBs (L) =
⋂

m>0 Bs |mL|.

Theorem 4.6. T- [T3]. Let X be a smooth projective variety.

(1) Assume KX is big. Then every irreducible compoment of SBs (KX) is uniruled.

(2) Assume KX = 0. Let L be a big divisor on X. Then every irreducible component

of SBs (L) is uniruled.
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Outline of proof. Let L be a big divisor. Assume (i) V ⊂ SBs (L) is an irreducible com-

ponent, and (ii) V ⊂ SBs (KX + aL) for some or any large a ∈ N. We see (i) =⇒ (ii), if

KX = 0, or if L = KX is big.

By (i), we can find an effective Q-divisor D such that D∼� bL for some b ∈ Q>0 and V

is a maximal lc center for (X, D). By Kawamata’s subadjunction, we have (KX +D)|V �
KV . Then we apply the extension statements in §3 to obtain “almost surjection”:

H0(X, m(KX + D)) · · ·� H0(V, mKV )

Then, this “surjection” plus (ii) imply H0(V, mKV ) = 0 for all sufficiently large m, i.e.,

κ(V ) = −∞. A refinement of this argument plus Theorem 4.3 imply that V is uniruled.

�

Question 4.7. (Tomari) Configuration of NAmp (KX) in case KX is (nef-) big??

For a divisor L, the “non-ample locus” is NAmp (L) =
⋂

m>0 SBs (mL − A) for any

given ample divisor A.

§4.4. Degeneration of algebraic varieties with trivial canonical divisor.

Let X be a normal variety with only canonical singularities, (C, 0) a germ of a smooth

curve, and π : X −→ C a projective surjective morphism with connected fibers. Let

X0 =
∑

i∈I miFi be the irreducible decomposition. Assume KXt ∼� 0 for general Xt.

Then we can see that KX ∼�

∑
j∈J rjFj uniquely, for a subset J ⊂ I with 0 ≤ |J | < |I|

and rj ∈ Q>0 for j ∈ J . Note that we do not require in general that X is smooth, nor

π : X → C is relatively minimal, nor a semi-stable degeneration.

Theorem 4.8. T- [T4]. (0) Every Fi is either uniruled, or κ(Fi) = 0. In addition, there

exists at most one Fi with κ(Fi) = 0.

(1) Case |I| = 1; X0 = m1F1.

(1.1) F1 is non-normal, or F1 contains a codim 2 singular locus of X, then F1 is

uniruled.

(1.2) Assume F1 is normal, and F1 does not contain any codim 2 singular loci of X

(then KF1 ∼� 0). Then, F1 is uniruled if and only if F1 has a singularity worse than

canonical.

(2) Case |I| ≥ 2. If J ∪ {i} = I, then Fi is uniruled. In particular

(2.1) KX is supported by uniruled divisors.

(2.2) If a component of X0, say F1 is not uniruled, then J = I \ {1}.
(2.3) If π : X −→ C is relatively minimal, i.e., KX is π-nef (then KX ∼� 0), then all

Fi are uniruled.



9

References
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