Generic Newton polygons of Ekedahl-Oort strata: Oort's conjecture

原下秀士 (Shushi Harashita)

第 53 回 代数学シンポジウム 2008 年 8 月 7 日

Abstract

We study the moduli space of principally polarized abelian varieties in positive characteristic. We determine the Newton polygon of any generic point of each Ekedahl-Oort stratum, by proving Oort's conjecture on intersections of Newton polygon strata and Ekedahl-Oort strata. This result tells us a combinatorial algorithm determining the optimal upper bound of the Newton polygons of principally polarized abelian varieties with given isomorphism type of *p*-kernel. We expect that "the generic parts" of Ekedahl-Oort strata can be beautifully described. In the last section we confirm the expectation for the supersingular Ekedahl-Oort strata.

1 Introduction

Let k be an algebraically closed field of characteristic p > 0. For an abelian variety A over k, we have two objects:

the *p*-divisible group: $A[p^{\infty}] = \underset{i}{\lim} \operatorname{Ker}(p^{i} : A \to A)$ and

the *p*-kernel: $A[p] = \text{Ker}(p : A \to A).$

By the Dieudonné-Manin classification, the isogeny classes of p-divisible groups are classified by Newton polygons (cf. §2.2). On the other hand, the set of the isomorphism classes of A[p] are naturally identified with a subset ${}^{I}W_{g}$ of the Weyl group W_{g} of Sp_{2g} (cf. §2.3). An element of ${}^{I}W_{g}$ is called a final element of W_{g} .

The following question is still open in general:

For each $w \in {}^{I}W_{g}$, which Newton polygons can occur as the Newton polygons $\mathcal{N}(A)$ of principally polarized abelian varieties (A, η) with $A[p]_{/\sim} = w$?

A purpose of this note is to give a combinatorial algorithm determining the optimal upper bound b(w) of such Newton polygons. The precise definition of b(w) is as follows: any (A, η) with $A[p]_{/\simeq} = w$ satisfies $\mathcal{N}(A) \prec b(w)$ and there exists (A', η') satisfying $A'[p]_{/\simeq} = w$ and $\mathcal{N}(A') = b(w)$. We shall explain below the non-trivial fact that b(w) exists.

For the purpose above, we investigate some stratifications and foliations on the moduli space \mathcal{A}_g of principally polarized abelian varieties of dimension g in characteristic p. Let ξ be a symmetric Newton polygon. We write \mathcal{W}_{ξ}^0 for the open Newton polygon stratum (cf. §2.2)

$$\mathcal{W}^0_{\xi} = \{ (A, \eta) \in \mathcal{A}_g \mid \mathcal{N}(A) = \xi \}.$$

For $w \in {}^{I}W_{g}$, let \mathcal{S}_{w} be the Ekedahl-Oort stratum:

$$\mathcal{S}_w = \{ (A, \eta) \in \mathcal{A}_g \mid A[p]_{/\simeq} = w \}$$

(see §2.3 for details). Oort proved $S_w \neq \emptyset$ for every $w \in {}^{I}W$, and Ekedahl and van der Geer proved that S_w is irreducible if S_w is not contained in the supersingular locus \mathcal{W}^0_{σ} (see §2.3). Let $\xi(w)$ denote the Newton polygon of the generic point of S_w if S_w is not contained in the supersingular locus and otherwise the supersingular Newton polygon. We call $\xi(w)$ the generic Newton polygon of S_w . Since the Newton polygon goes down (or stays) w.r.t. \prec under any specialization (Grothendieck-Katz [16], Th. 2.3.1 on p. 143), we see that $\xi(w)$ fulfills the conditions defining b(w); thus b(w) exists and $\xi(w) = b(w)$.

Let $H(\xi)$ denote the minimal *p*-divisible group of Newton polygon ξ , and let \mathcal{Z}_{ξ} be the the central stream (cf. §2.4):

 $\mathcal{Z}_{\xi} = \{ (A, \eta) \in \mathcal{A}_g \mid A[p^{\infty}]_{\Omega} \simeq H(\xi)_{\Omega} \text{ for some alg. closed field } \Omega \}.$

Let $\overline{\mathcal{S}_w}$ denote the Zariski closure of \mathcal{S}_w in \mathcal{A}_q . Our main result is

Main theorem. For any final element w of W_g , we have $\mathcal{Z}_{\xi(w)} \subset \overline{\mathcal{S}_w}$.

The main theorem is closely related to [23], (6.9):

Oort's conjecture. If $\mathcal{W}^0_{\mathcal{E}} \cap \mathcal{S}_w \neq \emptyset$, then $\mathcal{Z}_{\mathcal{E}} \subset \overline{\mathcal{S}_w}$.

Indeed in [10, Cor. 3.7] it was proved that the main theorem and the conjecture are equivalent (see Cor. 2.4.5 below). Thus we obtain

Corollary I. Oort's conjecture is true.

Here is another corollary (see $\S3$ for the proof).

Corollary II. $\xi(w)$ is the biggest element of the set { $\xi \mid \mathcal{Z}_{\xi} \subset \overline{\mathcal{S}_w}$ } with respect to \prec .

This is a generalization of [8]. From this we have a purely combinatorial algorithm determining the generic Newton polygon $\xi(w)$, see Rem. 3.0.7 for the detail. Please see a beautiful similarity between Cor. II and the result [6], Th. 5.4.11 of Goren and Oort in the case of Hilbert modular varieties over inert primes.

Now we expect that the generic part $\mathcal{S}^0_w := \mathcal{S}_w \cap \mathcal{W}^0_{\xi(w)}$ of \mathcal{S}_w for every $w \in {}^I W$ can be beautifully described. In the last section we confirm this expectation in the case that \mathcal{S}_w is contained in the supersingular locus \mathcal{W}_{σ} . More precisely, we describe some union of \mathcal{S}_w 's contained in the supersingular locus in terms of Deligne-Lusztig varieties.

2 Stratifications

In this section we collect some fundamental facts on the Newton polygon stratification, the Ekedahl-Oort stratification and the central streams.

2.1 The Dieudonné theory

Let K be a perfect field of characteristic p and W(K) the ring of Witt vectors with coordinates in K. Let A_K be the p-adic completion of the associative ring

$$W(K)[\mathcal{F},\mathcal{V}]/(\mathcal{F}x-x^{\rho}\mathcal{F},\mathcal{V}x^{\rho}-x\mathcal{V},\mathcal{F}\mathcal{V}-p,\mathcal{V}\mathcal{F}-p,\forall x\in W(K))$$

with the Frobenius automorphism ρ of W(K). A Dieudonné module over W(K) is a left A_K -module which is finitely generated as a W(K)-module. There is a canonical categorical equivalence \mathbb{D} (the covariant Dieudonné functor) from the category of p-torsion finite commutative group schemes (resp. p-divisible groups) over K to the category of Dieudonné modules over W(K) which are of finite length (resp. free as W(K)-modules). We have $\mathbb{D}(F) = \mathcal{V}$ and $\mathbb{D}(V) = \mathcal{F}$ for the Frobenius F and the Verschiebung V on finite commutative group schemes (resp. p-divisible groups).

2.2 The Newton polygon stratification

A pair (m, n) of non-negative integers with gcd(m, n) = 1 is called a *segment*. For a series of segments (m_i, n_i) (i = 1, ..., t) satisfying $\lambda_1 \leq \cdots \leq \lambda_t$ with $\lambda_i = m_i/(m_i + n_i)$, putting $P_j := (\sum_{i=1}^j (m_i + n_i), \sum_{i=1}^j m_i) \in \mathbb{R}^2$ for $0 \leq j \leq t$, we denote by $\sum_{i=1}^t (m_i, n_i)$ the line graph in \mathbb{R}^2 passing through P_0, \ldots, P_t in this order. We call such a line graph a *Newton polygon*. We say, for two Newton polygons ξ , ξ' with the same end point, that $\xi' \prec \xi$ if no point of ξ is below ξ' . A Newton polygon $\sum_{i=1}^t (m_i, n_i)$ is said to be *symmetric* if $\lambda_i + \lambda_{t+1-i} = 1$ for all $i = 1, \ldots, t$. The symmetric Newton polygon $\sum_{i=1}^t (1, 1)$ is called *supersingular*.

For a segment (m, n), we define a *p*-divisible group $G_{m,n}$ over \mathbb{F}_p by

$$\mathbb{D}(G_{m,n}) = E_{\mathbb{F}_p} / E_{\mathbb{F}_p} (\mathcal{F}^m - \mathcal{V}^n).$$
(1)

By the Dieudonné-Manin classification [19], for any *p*-divisible group X over a field K of characteristic *p*, there is an isogeny over an algebraically closed field Ω containing K from X to $\bigoplus_{i=1}^{t} G_{m_i,n_i}$ for some finite set $\{(m_i, n_i)\}$ of segments. Thus we get a Newton polygon $\sum_{i=1}^{t} (m_i, n_i)$, which is denoted by $\mathcal{N}(X)$. For an abelian variety A, we have its Newton polygon $\mathcal{N}(A) :=$ $\mathcal{N}(A[p^{\infty}])$. Note $\mathcal{N}(A)$ is symmetric.

For a symmetric Newton polygon ξ of height 2g, we define its *NP-stratum* by

$$\mathcal{W}_{\xi} = \{ (A, \eta) \in \mathcal{A}_g \, | \, \mathcal{N}(A) \prec \xi \}.$$

Grothendieck and Katz ([16], Th. 2.3.1 on p. 143) proved that \mathcal{W}_{ξ} is closed in \mathcal{A}_g ; we consider this is a closed subscheme by giving it the induced reduced scheme structure. We also define the *open NP-stratum* by

$$\mathcal{W}^0_{\xi} = \{ (A, \eta) \in \mathcal{A}_g \, | \, \mathcal{N}(A) = \xi \};$$

similarly we regard \mathcal{W}^0_{ξ} as a locally closed subscheme of \mathcal{A}_g .

2.3 The Ekedahl-Oort stratification

The main reference for the EO-stratification is [22]. For a formulation in terms of Weyl groups, see [5], [20] and [21].

Definition 2.3.1. (1) A finite locally free commutative group scheme G over \mathbb{F}_p -scheme S is said to be a BT₁ over S if it is annihilated by p and Im $(V: G^{(p)} \to G) = \text{Ker}(F: G \to G^{(p)}).$

(2) Assume k is perfect. Let G be a BT₁ over k. A polarization on G a non-degenerate alternating pairing \langle , \rangle on $\mathbb{D}(G)$ satisfying $\langle \mathcal{F}x, y \rangle = \langle x, \mathcal{V}y \rangle^{\rho}$ for all $x, y \in \mathbb{D}(G)$. Such a pair (G, \langle , \rangle) is called a *polarized* BT₁.

The following classification of polarized BT₁'s is due to Oort [22], (9.4) and Moonen-Wedhorn [21], (5.4), also see Moonen [20] for p > 2.

Theorem 2.3.2. Let k be an algebraically closed field. There is a canonical bijection

 $\mathcal{E}: \quad \{ \text{polarized BT}_1 \text{ over } k \} / \simeq \xrightarrow{\sim} {}^I W_q.$

Remark 2.3.3. Instead of ${}^{I}W_{g}$, Oort used the set of elementary sequences. See below for the definition of elementary sequences. The above formulation in terms of Weyl groups is due to Moonen-Wedhorn.

One usually identifies W_q with

$$\{w \in \operatorname{Aut}\{1, \dots, 2g\} \mid w(i) + w(2g + 1 - i) = 2g + 1\}.$$
 (2)

Let $\{s_1, \ldots, s_g\}$ be the set of simple reflections, where $s_i = (i, i+1) \cdot (2g - i, 2g + 1 - i)$ for i < g and $s_g = (g, g + 1)$. Let $I = \{s_1, \ldots, s_{g-1}\}$ and let $W_{g,I}$ be the subgroup of W_g generated by elements of I. We denote by ${}^{I}W_g$ the set of (I, \emptyset) -reduced elements of W_g (cf. [2], Chap. IV, Ex. §1, 3); this is a set of representatives of $W_{g,I} \setminus W_g$. Recall ${}^{I}W_g$ can be written as

$${}^{I}W_{g} = \left\{ w \in W_{g} \mid w^{-1}(1) < \dots < w^{-1}(g) \right\}.$$
(3)

For non-negative integer $c \leq g$, we put

$${}^{I}W_{g}^{[c]} = \left\{ w \in {}^{I}W_{g} \mid w(i) = i, \forall i \leq g - c \right\},$$
(4)

and set ${}^{I}W_{g}^{(c)} = {}^{I}W_{g}^{[c]} - {}^{I}W_{g}^{[c-1]}$ with ${}^{I}W_{g}^{[-1]} = \emptyset$.

Definition 2.3.4. A symmetric final sequence of length 2g is a map

 $\psi: \quad \{0,\ldots,2g\} \longrightarrow \{0,\ldots,g\}$

such that $\psi(i-1) \leq \psi(i) \leq \psi(i-1) + 1$ for $1 \leq i \leq 2g$ with $\psi(0) = 0$ and $\psi(2g-i) = g - i + \psi(i)$.

For each element w of ${}^{I}W_{q}$, we define

$$\psi_w(i) = \sharp\{a \in \{1, \dots, i\} \mid w(a) > g\}; \tag{5}$$

then ψ_w becomes a symmetric final sequence. The map $w \mapsto \psi_w$ gives a bijection from ${}^{I}W_g$ to the set of symmetric final sequences of length 2g. An *elementary sequence* of length g is the restriction of a symmetric final sequence of length 2g to $\{1, \ldots, g\}$. Obviously we can recover the symmetric final sequence from its elementary sequence.

Lemma 2.3.5. For $w \in {}^{I}W_{g}$, we have $w \in {}^{I}W_{g}^{[c]}$ if and only if $\psi_{w}(g-c) = 0$.

Proof. If $w \in {}^{I}W_{g}^{[c]}$, then w(i) = i for $i \leq g - c$ by definition; hence we obtain $\psi_{w}(g-c) = 0$ by (5). Conversely assume $\psi_{w}(g-c) = 0$. Then we have $w(i) \leq g$ for all $i \leq g - c$. Since $w \in {}^{I}W_{g}$, i.e., $w^{-1}(1) < w^{-1}(2) < \cdots < w^{-1}(g)$, we have w(i) = i for all $i \leq g - c$. \Box

The map \mathcal{E} in Theorem 2.3.2 is defined as follows. Let G be a polarized BT₁ and let N be its Dieudonné module. We define an operation \mathcal{V}^{-1} on the set of Dieudonné submodules N' of N by $\mathcal{V}^{-1}N' := \mathcal{V}^{-1}(N' \cap \mathcal{V}(N))$, and inductively we define a Dieudonné submodule sN' of N for any word s of \mathcal{F} and \mathcal{V}^{-1} . As shown in [22], (2.4) we have that there exists a unique $w \in {}^{I}W_{g}$ satisfying $\operatorname{rk}(\mathcal{F}sN) = \psi_{w}(\operatorname{rk}sN)$ and $\operatorname{rk}(\mathcal{V}^{-1}sN) = g + \operatorname{rk} sN - \psi_{w}(\operatorname{rk}sN)$ for any word s. Now $\mathcal{E}(G)$ is defined to be this w.

Let G be a polarized BT₁. Let $w = \mathcal{E}(G)$ and put $\psi := \psi_w$. Recall [22], (9.4) that the Dieudonné module $N = \mathbb{D}(G)$ of G can be described as follows:

$$N = \bigoplus_{i=1}^{2g} kb_i \tag{6}$$

with the \mathcal{F} and \mathcal{V} -operations defined by

$$\mathcal{F}(b_i) := \begin{cases} b_{\psi(i)} & \text{if } w(i) > g, \\ 0 & \text{otherwise,} \end{cases}$$
(7)

$$\mathcal{V}(b_j) := \begin{cases} b_i & \text{if } j = g + i - \psi(i) \text{ with } w(i) \leq g \text{ and } w(j) \leq g, \\ -b_i & \text{if } j = g + i - \psi(i) \text{ with } w(i) \leq g \text{ and } w(j) > g, \\ 0 & \text{otherwise} \end{cases}$$
(8)

and the polarization \langle , \rangle defined by

$$\langle b_i, b_{2g+1-j} \rangle = \begin{cases} 1 & \text{if } i=j \text{ and } w(i) > g, \\ -1 & \text{if } i=j \text{ and } w(i) \le g, \\ 0 & \text{if } i \ne j. \end{cases}$$
(9)

For each $w \in {}^{I}W_{g}$ the Ekedahl-Oort stratum \mathcal{S}_{w} is the subset of \mathcal{A}_{g} defined by

$$\mathcal{S}_w = \{ (A, \eta) \in \mathcal{A}_q \mid \mathcal{E}(A[p]) = w \}.$$

Oort [22], (3.2) proved that S_w is locally closed in A_g ; we consider S_w as a locally closed subscheme by giving it the reduced induced scheme structure.

Recall the result of Ekedahl and van der Geer:

Theorem 2.3.6 ([5], Theorem 11.5). Assume $w \in {}^{I}W^{(c)}$ with $c > \lfloor g/2 \rfloor$. Then S_w is irreducible.

Remark 2.3.7. Let $w \in {}^{I}W^{(c)}$. From Lemma 2.3.5 we have $c \leq \lfloor g/2 \rfloor \iff \psi_w(\lfloor (g+1)/2 \rfloor) = 0$. Recall [3], (3.7), Step 2 that this is also equivalent to that S_w is contained in the supersingular locus, also see [8] for a generalization.

Recently Wedhorn proved

Theorem 2.3.8 ([26]). For any two $w, w' \in {}^{I}W$, we have $S_{w'} \subset \overline{S_{w}}$ if and only if there exists an element u of W_{I} such that $u^{-1} \cdot w' \cdot (w_{0,I} \cdot u \cdot w_{0,I}) \leq w$ with respect to the Bruhat-Chevalley order \leq . Here $w_{0,I}$ is the element of W_{I} sending i to g + 1 - i for any $i = 1, \ldots, g$.

Remark 2.3.9. For $w \in W$ and $1 \leq i, j \leq 2g$, we define $r_w(i, j) := \sharp \{a \leq i \mid w(a) \leq j\}$. It is known (cf. [5], §2.1) that for two $w, w' \in W$ the Bruhat-Chevalley order is described as $w' \leq w \Leftrightarrow r_{w'}(i, j) \geq r_w(i, j)$ for all $1 \leq i, j \leq 2g$.

2.4 Central streams

We first recall Oort's theory [24] on minimal *p*-divisible groups.

Definition 2.4.1. For non-negative integers m, n with gcd(m, n) = 1, we define a *p*-divisible group $H_{m,n}$ over \mathbb{F}_p by

$$P_{m,n} := \mathbb{D}(H_{m,n}) = \bigoplus_{i=0}^{m+n-1} \mathbb{Z}_p e_i$$
(10)

with \mathcal{F}, \mathcal{V} operations: $\mathcal{F}e_i = e_{i+n}$ and $\mathcal{V}e_i = e_{i+m}$ for all $i \in \mathbb{Z}_{\geq 0}$, where e_i $(i \in \mathbb{Z}_{\geq m+n})$ are defined as satisfying $e_{i+m+n} = pe_i$ for $i \in \mathbb{Z}_{\geq 0}$. For a Newton polygon $\xi = \sum_{l=1}^{t} (m_l, n_l)$, we write

$$H(\xi) = \bigoplus_{l=1}^{\mathfrak{t}} H_{m_l,n_l} \quad \text{and} \quad P(\xi) = \bigoplus_{l=1}^{\mathfrak{t}} P_{m_l,n_l}.$$
(11)

Note the Newton polygon of $H(\xi)$ is equal to ξ .

Definition 2.4.2. A *p*-divisible group X is called *minimal* if there exists an isomorphism over an algebraically closed field from X to $H(\xi)$ for a certain Newton polygon ξ . If a BT₁ G is isomorphic to $H(\xi)[p]$ over an algebraically closed field, we call G (and its final element) *minimal*.

Let ξ be a symmetric Newton polygon. The *central stream* of ξ is defined to be

 $\mathcal{Z}_{\xi} = \{ (A, \eta) \in \mathcal{A}_g \mid A[p^{\infty}]_{\Omega} \simeq H(\xi)_{\Omega} \text{ for some alg. closed field } \Omega \}.$

Theorem 2.4.3 (Oort, [24]). Let X be a p-divisible group over an algebraically closed field Ω . If $X[p] \simeq H(\xi)[p] \otimes \Omega$, then $X \simeq H(\xi) \otimes \Omega$.

Let w_{ξ} be the element of ${}^{I}W$ corresponding to $H(\xi)[p]$. Then Th. 2.4.3 implies

$$\mathcal{Z}_{\xi} = \mathcal{S}_{w_{\xi}}.\tag{12}$$

By Th. 2.3.6, \mathcal{Z}_{ξ} is irreducible if ξ is not supersingular.

We recall the results on the configuration of the central streams, see [10], §3. Let $\overline{Z_{\xi}}$ denote the Zariski closure of Z_{ξ} in A_g .

Theorem 2.4.4. $\mathcal{Z}_{\zeta} \subset \overline{\mathcal{Z}_{\xi}}$ if and only if $\zeta \prec \xi$.

Corollary 2.4.5. If $\mathcal{Z}_{\xi(w)} \subset \overline{\mathcal{S}_w}$ holds, then Oort's conjecture is true.

Proof. If $\mathcal{W}^0_{\xi} \cap \mathcal{S}_w \neq \emptyset$, we have $\xi \prec \xi(w)$ by Grothendieck-Katz; then Th. 2.4.4 implies $\mathcal{Z}_{\xi} \subset \overline{\mathcal{Z}_{\xi(w)}}$. By the assumption $\mathcal{Z}_{\xi(w)} \subset \overline{\mathcal{S}_w}$, we have $\mathcal{Z}_{\xi} \subset \overline{\mathcal{S}_w}$.

3 Main results

Let k be an algebraically closed field of characteristic p. Let $x \in \mathcal{W}^0_{\xi}(k)$. Oort defined the isogeny leaf \mathcal{I}_x in \mathcal{W}^0_{ξ} , see [23], (4.2), and showed that \mathcal{I}_x is closed in \mathcal{W}^0_{ξ} and proper over k, see [23], (4.11).

The following theorem is the essential part of the paper [11].

Theorem 3.0.6. Assume $w \in {}^{I}W$ is not minimal. Then for a geometric point x of $\mathcal{W}^{0}_{\xi(w)} \cap \mathcal{S}_{w}$, a component of $\mathcal{I}_{x} \cap \mathcal{S}_{w}$ has dimension > 0.

Proof. See [11].

Let us show every results in §1 from this theorem:

Proof of (Th. 3.0.6 \Rightarrow Main theorem). If w is minimal, then $\mathcal{Z}_{\xi(w)} = \mathcal{S}_w$; hence the main theorem is obviously true. Assume w is not minimal. Assume the main theorem is true for all w' with $\mathcal{S}_{w'} \subsetneq \overline{\mathcal{S}_w}$. (The smallest case w.r.t. \subset is the superspecial case w = id and in this case w is minimal.) According to Th. 3.0.6 there exists a geometric point x of $\mathcal{W}^0_{\xi(w)} \cap \mathcal{S}_w$ such that a component of $\mathcal{I}_x \cap \mathcal{S}_w$ has dimension > 0. Since \mathcal{I}_x is proper and \mathcal{S}_w is quasi-affine, there exists w' with $\mathcal{S}_{w'} \subsetneq \overline{\mathcal{S}_w}$ such that we have $\mathcal{S}_{w'} \cap \mathcal{I}_x \neq \emptyset$. Note $\mathcal{S}_{w'} \subset \overline{\mathcal{S}_w}$ implies $\xi(w') \prec \xi(w)$, and $\mathcal{I}_x \subset \mathcal{W}^0_{\xi(w)}$ and $\mathcal{S}_{w'} \cap \mathcal{I}_x \neq \emptyset$ imply $\xi(w) \prec \xi(w')$; hence we obtain $\xi(w) = \xi(w')$. By the hypothesis of induction, we have $\mathcal{Z}_{\xi(w')} \subset \overline{\mathcal{S}_{w'}}$. Then $\mathcal{Z}_{\xi(w)} = \mathcal{Z}_{\xi(w')} \subset \overline{\mathcal{S}_{w'}} \subset \overline{\mathcal{S}_w}$.

Proof of (Main theorem \Rightarrow Cor. II). The main theorem says that $\xi(w) \in \{\xi \mid \mathcal{Z}_{\xi} \subset \overline{\mathcal{S}_{w}}\}$. Let ξ be a symmetric Newton polygon with $\mathcal{Z}_{\xi} \subset \overline{\mathcal{S}_{w}}$. Then by Grothendieck-Katz, we have $\xi \prec \xi(w)$.

Remark 3.0.7. Cor. II gives a purely combinatorial algorithm determining $\xi(w)$. Indeed first note $\mathcal{Z}_{\xi} = \mathcal{S}_{w_{\xi}}$ and there is an algorithm determining w_{ξ} for concretely given ξ ([10]); then by using Wedhorn's result Th. 2.3.8 and Rem. 2.3.9 we can check whether $\mathcal{Z}_{\xi} \subset \overline{\mathcal{S}_w}$ for concretely given ξ and w; thus we can explicitly describe the set $\{\xi \mid \mathcal{Z}_{\xi} \subset \overline{\mathcal{S}_w}\}$; finally find the biggest element in the set, which exists and is equal to $\xi(w)$.

4 Ekedahl-Oort strata contained in the supersingular locus

In this section, we describe some union of Ekedahl-Oort strata contained in the supersingular locus in terms of Deligne-Lusztig varieties, and show the reducibility of such Ekedahl-Oort strata.

4.1 Notations

Let c be a non-negative integer $\leq g$. Let W_c be the Weyl group of the smaller symplectic group Sp_{2c} . Let $W_{c,J}$ be the subgroup of W_c generated

by the elements of $J = \{s_1, \ldots, s_{c-1}\}$. Put $W_c := W_{c,J} \setminus W_c / W_{c,J}$. We define a map

$$\mathfrak{r}: \quad {}^{I}W_{g}^{(c)} \longrightarrow \overline{W}_{c} \tag{13}$$

by sending w to the class of $v \in W_c$ determined by v(i) = w(g-c+i) - (g-c) for all $1 \le i \le c$. We denote by $\overline{W'_c}$ the image of \mathfrak{r} .

Assume $c \leq \lfloor g/2 \rfloor$. For $w' \in \overline{W}'_c$, we consider the union

$$\mathcal{J}_{w'} = \bigcup_{\mathfrak{r}(w)=w'} \mathcal{S}_w.$$
 (14)

For each c, we fix once and for all a symplectic vector space (L_0, \langle , \rangle) over \mathbb{F}_{p^2} of dimension 2c and a maximal totally isotropic subspace C_0 over \mathbb{F}_{p^2} of L_0 . Let $\operatorname{Sp}(L_0)$ denote the symplectic group over \mathbb{F}_{p^2} associated to (L_0, \langle , \rangle) . Let X be the flag variety $\operatorname{Sp}(L_0)/\operatorname{P}_0$ over \mathbb{F}_{p^2} , where P_0 denotes the Siegel parabolic subgroup, i.e., the parabolic subgroup of $\operatorname{Sp}(L_0)$ stabilizing C_0 . For $w' \in \overline{W}_c$, let X(w') denote the (generalized) Deligne-Lusztig variety in X related to w':

$$\{\mathbf{P} \in \operatorname{Sp}_{2c} / \mathbf{P}_0 \mid {}^{h} \mathbf{P} = \mathbf{P}_0, {}^{h} \operatorname{Fr}(\mathbf{P}) = {}^{w'} \mathbf{P}_0 \text{ for } \exists h \in \operatorname{Sp}_{2c} \}.$$

4.2 A description of $\mathcal{J}_{w'}$

Theorem 4.2.1. Assume $c \leq \lfloor g/2 \rfloor$. For each $w' \in \overline{W}'_c$, there exists a finite surjective morphism

$$\mathrm{G}(\mathbb{Q})\backslash \mathrm{X}(w') \times \mathrm{G}(\mathbb{A}^{\infty})/\mathrm{K} \longrightarrow \mathcal{J}_{w'}$$

over \mathbb{F}_{p^2} , which is bijective on geometric points, see (15) below for the definition of the quaternion unitary group G over \mathbb{Z} with $K = \prod_l G(\mathbb{Z}_l)$.

Let *E* be a supersingular elliptic curve over \mathbb{F}_p (see [18], 1.2). Put $\mathcal{O} = \text{End}(E)$ (the endomorphism ring over $\overline{\mathbb{F}_p}$). We denote $\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Q}$ by *B*. Note *B* is the quaternion algebra over \mathbb{Q} ramified only at *p* and ∞ over \mathbb{Q} . The quaternion unitary group G over \mathbb{Z} in Th. 4.2.1 is defined by

$$G(R) = \{ h \in \operatorname{GL}_g(\mathcal{O} \otimes_{\mathbb{Z}} R) \mid {}^t \overline{h} \varphi h = \varphi \}$$
(15)

for any commutative ring R.

We remark that in [9] we proved Th. 4.2.1 for $g \ge 2$. If g = 1, then we have ${}^{I}W_{1}^{(0)} = {\text{id}}$ and the Ekedahl-Oort stratum S_{id} is the (finite) set consisting of the supersingular elliptic curves; hence see Deuring [4] and Igusa [14] for this case. Also Ibukiyama-Katsura-Oort [13] and Katsura-Oort [15] have investigated the case of g = 2 with more detailed results.

Hoeve [12] seems to have refined Th. 4.2.1, where he found a description of individual Ekedahl-Oort strata contained in the supersingular locus in terms of "fine" Deligne-Lusztig varieties. Recently Vollaard and Wedhorn [25] obtained an analogous result for unitary Shimura varieties. Also Görtz and Yu [7] studied supersingular Kottwitz-Rapoport strata, where Deligne-Lusztig varieties also appear.

4.3 Reducibility of Ekedahl-Oort strata contained in the supersingular locus

Oort conjectured that (i) S_w is irreducible if S_w is not contained in the supersingular locus and (ii) S_w is reducible for sufficiently large p otherwise. Ekedahl and van der Geer proved (i), see Th. 2.3.6 and Rem. 2.3.7. In this subsection we shall confirm (ii) by showing $\lim_{p\to\infty} H_{g,c} = \infty$.

Assume $c \leq \lfloor g/2 \rfloor$. Let w' be an element of \overline{W}'_c . Note a (any) representative of w' is not in $W_{c,J}$. Note $W_{c,J}$ is a maximal parabolic subgroup of W_c . Hence Bonnafé and Rouquier [1], Theorem 2 implies that the Deligne-Lusztig variety X(w') is irreducible. Then by Theorem 4.2.1 we have

Corollary 4.3.1. The set of irreducible (connected) components of $\mathcal{J}_{w'}$ is identified with $G(\mathbb{Q}) \setminus G(\mathbb{A}^{\infty}) / K$.

We can estimate $H_{g,c} = \sharp \operatorname{G}(\mathbb{Q}) \setminus \operatorname{G}(\mathbb{A}^{\infty}) / \operatorname{K}$ by the mass formula, i.e., we have

$$H_{g,c} \ge 2\mathfrak{m}_{g,c}$$

where the mass $\mathfrak{m}_{q,c}$ is defined to be

$$\mathfrak{m}_{g,c} = \sum_{\gamma \in \mathrm{G}(\mathbb{Q}) \setminus \mathrm{G}(\mathbb{A}^{\infty}) / \mathrm{K}} \frac{1}{\sharp \, \mathrm{G}(\mathbb{Q}) \cap \gamma \, \mathrm{K} \, \gamma^{-1}}.$$

By using Prasad's mass formula, we can show

Proposition 4.3.2. We have

$$\mathfrak{m}_{g,c} = \prod_{i=1}^{g} \frac{(2i-1)!\zeta(2i)}{(2\pi)^{2i}} \cdot \binom{g}{2c}_{p^2} \cdot \prod_{i=1}^{g-2c} (p^i + (-1)^i) \prod_{i=1}^{c} (p^{4i-2} - 1),$$

where $\zeta(s)$ is the Riemann zeta function and

$$\binom{g}{r}_{q} := \frac{\prod_{i=1}^{g} (q^{i} - 1)}{\prod_{i=1}^{r} (q^{i} - 1) \prod_{i=1}^{g-r} (q^{i} - 1)} \in \mathbb{Z}[q].$$

Corollary 4.3.3. If $w \in {}^{I}W_{g}^{(c)}$ with $c \leq \lfloor g/2 \rfloor$ (i.e., S_{w} is contained in the supersingular locus), then S_{w} is reducible for sufficiently large p.

Proof. By Corollary 4.3.1 the Hecke action on the set of connected components of $\mathcal{J}_{w'}$ is transitive, where $w' = \mathfrak{r}(w)$. By the definition of \mathcal{S}_w , the Hecke action stabilizes \mathcal{S}_w . Hence the number of connected components of \mathcal{S}_w is greater than or equal to that of $\mathcal{J}_{w'}$. By Prop. 4.3.2, we have $\lim_{p\to\infty} H_{g,c} \geq \lim_{p\to\infty} \mathfrak{m}_{g,c} = \infty$. This means that \mathcal{S}_w is reducible for sufficiently large p.

References

- C. Bonnafé and R. Rouquier: On the irreducibility of Deligne-Lusztig varieties.
 C. R. Math. Acad. Sci. Paris 343 (2006), no. 1, 37–39.
- [2] N. Bourbaki: Lie groups and Lie algebras. Chapters 4-6. Translated from the 1968 French original by Andrew Pressley. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2002.
- [3] C.-L. Chai and F. Oort: Monodromy and irreducibility of leaves. 30 pages, preprint. See http://www.math.uu.nl/people/oort/.
- [4] M. Deuring: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14, (1941), 197–272.
- [5] T. Ekedahl and G. van der Geer: Cycle classes of the E-O stratification on the moduli of abelian varieties. To appear in: Algebra, Arithmetic and Geometry Volume I: In Honor of Y. I. Manin Series: Progress in Mathematics, Vol. 269 Tschinkel, Yuri; Zarhin, Yuri G. (Eds.) 2008.
- [6] E. Z. Goren and F. Oort: Stratifications of Hilbert Modular Varieties. J. Algebraic Geom. 9 (2000), no. 1, 111–154.
- [7] U. Görtz and C.-F. Yu: Supersingular Kottwitz-Rapoport strata and Deligne-Lusztig varieties. Preprint. arXiv: 0802.3260v1
- [8] S. Harashita: Ekedahl-Oort strata and the first Newton slope strata. J. Algebraic Geom. 16 (2007) 171–199.
- [9] S. Harashita: Ekedahl-Oort strata contained in the supersingular locus and Deligne-Lusztig varieties. To appear in J. Algebraic Geom.
- [10] S. Harashita: Configuration of the central streams in the moduli of abelian varieties. Preprint. See http://www.ms.u-tokyo.ac.jp/~harasita.
- [11] S. Harashita: Generic Newton polygons of Ekedahl-Oort strata: Oort's conjecture. Preprint. See http://www.ms.u-tokyo.ac.jp/~harasita.

- [12] M. Hoeve: Ekedahl-Oort strata in the supersingular locus. Preprint. arXiv: 0802.4012
- [13] T. Ibukiyama, T. Katsura and F. Oort: Supersingular curves of genus two and class numbers. Compositio Math. 57 (1986), pp. 127-152.
- [14] J. Igusa: Class number of a definite quaternion with prime discriminant. Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 312–314.
- [15] T. Katsura and F. Oort: Families of supersingular abelian surfaces. Compositio Math. 62 (1987), no. 2, 107–167.
- [16] N. M. Katz: Slope filtration of F-crystals. Journ. Géom. Alg. Rennes, Vol. I, Astérisque 63 (1979), Soc. Math. France, 113-164.
- [17] H. Kraft: Kommutative algebraische p-Gruppen (mit Anwendungen auf pdivisible Gruppen und abelsche Varietäten). Sonderforsche. Bereich Bonn, September 1975. Ms. 86 pp.
- [18] K.-Z. Li and F. Oort: Moduli of Supersingular Abelian Varieties. Lecture Notes in Math. 1680 (1998).
- [19] Yu. I. Manin: Theory of commutative formal groups over fields of finite characteristic. Uspehi Mat. Nauk 18 (1963) no. 6 (114), 3–90; Russ. Math. Surveys 18 (1963), 1-80.
- [20] B. Moonen: Group schemes with additional structures and Weyl group cosets. In: Moduli of abelian varieties (Ed. C. Faber, G. van der Geer, F. Oort), Progr. Math., 195, Birkhäuser, Basel, 2001; pp. 255–298.
- [21] B. Moonen and T. Wedhorn: Discrete invariants of varieties in positive characteristic. Int. Math. Res. Not. 2004, no. 72, 3855–3903.
- [22] F. Oort: A stratification of a moduli space of abelian varieties. In: Moduli of abelian varieties (Ed. C. Faber, G. van der Geer, F. Oort), Progr. Math., 195, Birkhäuser, Basel, 2001; pp. 345–416.
- [23] F. Oort: Foliations in moduli spaces of abelian varieties. J. Amer. Math. Soc. 17 (2004), no. 2, 267–296.
- [24] F. Oort: Minimal p-divisible groups. Ann. of Math. (2) 161 (2005), no. 2, 1021–1036.
- [25] I. Vollaard and T. Wedhorn: The supersingular locus of the Shimura variety of GU(1, n-1) II. Preprint. arXiv: 0804.1522v1
- [26] T. Wedhorn: Specialization of F-zips. Preprint. arXiv: 0507175v1

Institute for the Physics and Mathematics of the Universe, The University of Tokyo, 5-1-5 Kashiwanoha Kashiwa-shi Chiba 277-8582 Japan.