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Abstract

We study the moduli space of principally polarized abelian varieties
in positive characteristic. We determine the Newton polygon of any
generic point of each Ekedahl-Oort stratum, by proving Oort’s con-
jecture on intersections of Newton polygon strata and Ekedahl-Oort
strata. This result tells us a combinatorial algorithm determining the
optimal upper bound of the Newton polygons of principally polar-
ized abelian varieties with given isomorphism type of p-kernel. We
expect that “the generic parts” of Ekedahl-Oort strata can be beauti-
fully described. In the last section we confirm the expectation for the
supersingular Ekedahl-Oort strata.

1 Introduction

Let k be an algebraically closed field of characteristic p > 0. For an abelian
variety A over k, we have two objects:

the p-divisible group: A[p∞] = lim−→i
Ker(pi : A → A) and

the p-kernel: A[p] = Ker(p : A → A).

By the Dieudonné-Manin classification, the isogeny classes of p-divisible
groups are classified by Newton polygons (cf. §2.2). On the other hand, the
set of the isomorphism classes of A[p] are naturally identified with a subset
IWg of the Weyl group Wg of Sp2g (cf. §2.3). An element of IWg is called
a final element of Wg.

The following question is still open in general:
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For each w ∈ IWg, which Newton polygons can occur as the
Newton polygons N (A) of principally polarized abelian varieties
(A, η) with A[p]/' = w?

A purpose of this note is to give a combinatorial algorithm determining the
optimal upper bound b(w) of such Newton polygons. The precise definition
of b(w) is as follows: any (A, η) with A[p]/' = w satisfies N (A) ≺ b(w)
and there exists (A′, η′) satisfying A′[p]/' = w and N (A′) = b(w). We shall
explain below the non-trivial fact that b(w) exists.

For the purpose above, we investigate some stratifications and foliations
on the moduli space Ag of principally polarized abelian varieties of dimension
g in characteristic p. Let ξ be a symmetric Newton polygon. We write W0

ξ

for the open Newton polygon stratum (cf. §2.2)

W0
ξ = {(A, η) ∈ Ag | N (A) = ξ}.

For w ∈ IWg, let Sw be the Ekedahl-Oort stratum:

Sw = {(A, η) ∈ Ag | A[p]/' = w}

(see §2.3 for details). Oort proved Sw 6= ∅ for every w ∈ IW , and Ekedahl
and van der Geer proved that Sw is irreducible if Sw is not contained in
the supersingular locus W0

σ (see §2.3). Let ξ(w) denote the Newton polygon
of the generic point of Sw if Sw is not contained in the supersingular locus
and otherwise the supersingular Newton polygon. We call ξ(w) the generic
Newton polygon of Sw. Since the Newton polygon goes down (or stays) w.r.t.
≺ under any specialization (Grothendieck-Katz [16], Th. 2.3.1 on p. 143),
we see that ξ(w) fulfills the conditions defining b(w); thus b(w) exists and
ξ(w) = b(w).

Let H(ξ) denote the minimal p-divisible group of Newton polygon ξ, and
let Zξ be the the central stream (cf. §2.4):

Zξ = {(A, η) ∈ Ag | A[p∞]Ω ' H(ξ)Ω for some alg. closed field Ω}.

Let Sw denote the Zariski closure of Sw in Ag. Our main result is

Main theorem. For any final element w of Wg, we have Zξ(w) ⊂ Sw.

The main theorem is closely related to [23], (6.9):

Oort’s conjecture. If W0
ξ ∩ Sw 6= ∅, then Zξ ⊂ Sw.

Indeed in [10, Cor. 3.7] it was proved that the main theorem and the
conjecture are equivalent (see Cor. 2.4.5 below). Thus we obtain
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Corollary I. Oort’s conjecture is true.

Here is another corollary (see §3 for the proof).

Corollary II. ξ(w) is the biggest element of the set { ξ | Zξ ⊂ Sw } with
respect to ≺.

This is a generalization of [8]. From this we have a purely combinatorial
algorithm determining the generic Newton polygon ξ(w), see Rem. 3.0.7 for
the detail. Please see a beautiful similarity between Cor. II and the result
[6], Th. 5.4.11 of Goren and Oort in the case of Hilbert modular varieties
over inert primes.

Now we expect that the generic part S0
w := Sw ∩ W0

ξ(w) of Sw for ev-
ery w ∈ IW can be beautifully described. In the last section we confirm
this expectation in the case that Sw is contained in the supersingular lo-
cus Wσ. More precisely, we describe some union of Sw’s contained in the
supersingular locus in terms of Deligne-Lusztig varieties.

2 Stratifications

In this section we collect some fundamental facts on the Newton polygon
stratification, the Ekedahl-Oort stratification and the central streams.

2.1 The Dieudonné theory

Let K be a perfect field of characteristic p and W (K) the ring of Witt vectors
with coordinates in K. Let AK be the p-adic completion of the associative
ring

W (K)[F ,V]/(Fx − xρF ,Vxρ − xV,FV − p,VF − p,∀x ∈ W (K))

with the Frobenius automorphism ρ of W (K). A Dieudonné module over
W (K) is a left AK-module which is finitely generated as a W (K)-module.
There is a canonical categorical equivalence D (the covariant Dieudonné
functor) from the category of p-torsion finite commutative group schemes
(resp. p-divisible groups) over K to the category of Dieudonné modules over
W (K) which are of finite length (resp. free as W (K)-modules). We have
D(F ) = V and D(V ) = F for the Frobenius F and the Verschiebung V on
finite commutative group schemes (resp. p-divisible groups).
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2.2 The Newton polygon stratification

A pair (m,n) of non-negative integers with gcd(m, n) = 1 is called a segment.
For a series of segments (mi, ni) (i = 1, . . . , t) satisfying λ1 ≤ · · · ≤ λt

with λi = mi/(mi + ni), putting Pj := (
∑j

i=1(mi + ni),
∑j

i=1 mi) ∈ R2 for
0 ≤ j ≤ t, we denote by

∑t
i=1(mi, ni) the line graph in R2 passing through

P0, . . . , Pt in this order. We call such a line graph a Newton polygon. We
say, for two Newton polygons ξ, ξ′ with the same end point, that ξ′ ≺ ξ
if no point of ξ is below ξ′. A Newton polygon

∑t
i=1(mi, ni) is said to be

symmetric if λi + λt+1−i = 1 for all i = 1, . . . , t. The symmetric Newton
polygon

∑t
i=1(1, 1) is called supersingular.

For a segment (m,n), we define a p-divisible group Gm,n over Fp by

D(Gm,n) = EFp/EFp(Fm − Vn). (1)

By the Dieudonné-Manin classification [19], for any p-divisible group X over
a field K of characteristic p, there is an isogeny over an algebraically closed
field Ω containing K from X to

⊕t
i=1 Gmi,ni for some finite set {(mi, ni)} of

segments. Thus we get a Newton polygon
∑t

i=1(mi, ni), which is denoted
by N (X). For an abelian variety A, we have its Newton polygon N (A) :=
N (A[p∞]). Note N (A) is symmetric.

For a symmetric Newton polygon ξ of height 2g, we define its NP-stratum
by

Wξ = {(A, η) ∈ Ag | N (A) ≺ ξ}.

Grothendieck and Katz ([16], Th. 2.3.1 on p. 143) proved that Wξ is closed in
Ag; we consider this is a closed subscheme by giving it the induced reduced
scheme structure. We also define the open NP-stratum by

W0
ξ = {(A, η) ∈ Ag | N (A) = ξ};

similarly we regard W0
ξ as a locally closed subscheme of Ag.

2.3 The Ekedahl-Oort stratification

The main reference for the EO-stratification is [22]. For a formulation in
terms of Weyl groups, see [5], [20] and [21].

Definition 2.3.1. (1) A finite locally free commutative group scheme G
over Fp-scheme S is said to be a BT1 over S if it is annihilated by p
and Im(V : G(p) → G) = Ker(F : G → G(p)).
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(2) Assume k is perfect. Let G be a BT1 over k. A polarization on G a
non-degenerate alternating pairing 〈 , 〉 on D(G) satisfying 〈Fx, y〉 =
〈x,Vy〉ρ for all x, y ∈ D(G). Such a pair (G, 〈 , 〉) is called a polarized
BT1.

The following classification of polarized BT1’s is due to Oort [22], (9.4)
and Moonen-Wedhorn [21], (5.4), also see Moonen [20] for p > 2.

Theorem 2.3.2. Let k be an algebraically closed field. There is a canonical
bijection

E : {polarized BT1 over k} / ' ∼−−−−→ IWg.

Remark 2.3.3. Instead of IWg, Oort used the set of elementary sequences.
See below for the definition of elementary sequences. The above formulation
in terms of Weyl groups is due to Moonen-Wedhorn.

One usually identifies Wg with

{w ∈ Aut{1, . . . , 2g} | w(i) + w(2g + 1 − i) = 2g + 1} . (2)

Let {s1, . . . , sg} be the set of simple reflections, where si = (i, i + 1) · (2g −
i, 2g + 1 − i) for i < g and sg = (g, g + 1). Let I = {s1, . . . , sg−1} and let
Wg,I be the subgroup of Wg generated by elements of I. We denote by IWg

the set of (I, ∅)-reduced elements of Wg (cf. [2], Chap. IV, Ex. §1, 3); this
is a set of representatives of Wg,I\Wg. Recall IWg can be written as

IWg =
{

w ∈ Wg

∣∣ w−1(1) < · · · < w−1(g)
}

. (3)

For non-negative integer c ≤ g, we put

IW [c]
g =

{
w ∈ IWg

∣∣ w(i) = i, ∀ i ≤ g − c
}

, (4)

and set IW
(c)
g = IW

[c]
g − IW

[c−1]
g with IW

[−1]
g = ∅.

Definition 2.3.4. A symmetric final sequence of length 2g is a map

ψ : {0, . . . , 2g} −−−−→ {0, . . . , g}

such that ψ(i − 1) ≤ ψ(i) ≤ ψ(i − 1) + 1 for 1 ≤ i ≤ 2g with ψ(0) = 0 and
ψ(2g − i) = g − i + ψ(i).

For each element w of IWg, we define

ψw(i) = ]{a ∈ {1, . . . , i} | w(a) > g}; (5)
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then ψw becomes a symmetric final sequence. The map w 7→ ψw gives a
bijection from IWg to the set of symmetric final sequences of length 2g.
An elementary sequence of length g is the restriction of a symmetric final
sequence of length 2g to {1, . . . , g}. Obviously we can recover the symmetric
final sequence from its elementary sequence.

Lemma 2.3.5. For w ∈ IWg, we have w ∈ IW
[c]
g if and only if ψw(g−c) = 0.

Proof. If w ∈ IW
[c]
g , then w(i) = i for i ≤ g − c by definition; hence we

obtain ψw(g − c) = 0 by (5). Conversely assume ψw(g − c) = 0. Then we
have w(i) ≤ g for all i ≤ g − c. Since w ∈ IWg, i.e., w−1(1) < w−1(2) <
· · · < w−1(g), we have w(i) = i for all i ≤ g − c.

The map E in Theorem 2.3.2 is defined as follows. Let G be a polarized
BT1 and let N be its Dieudonné module. We define an operation V−1 on the
set of Dieudonné submodules N ′ of N by V−1N ′ := V−1(N ′ ∩ V(N)), and
inductively we define a Dieudonné submodule sN ′ of N for any word s of F
and V−1. As shown in [22], (2.4) we have that there exists a unique w ∈ IWg

satisfying rk(FsN) = ψw(rk sN) and rk(V−1sN) = g + rk sN − ψw(rk sN)
for any word s. Now E(G) is defined to be this w.

Let G be a polarized BT1. Let w = E(G) and put ψ := ψw. Recall
[22], (9.4) that the Dieudonné module N = D(G) of G can be described as
follows:

N =
2g⊕
i=1

kbi (6)

with the F and V-operations defined by

F(bi) :=

{
bψ(i) if w(i) > g,

0 otherwise,
(7)

V(bj) :=


bi if j = g + i − ψ(i) with w(i) ≤ g and w(j) ≤ g,

−bi if j = g + i − ψ(i) with w(i) ≤ g and w(j) > g,

0 otherwise

(8)

and the polarization 〈 , 〉 defined by

〈bi, b2g+1−j〉 =


1 if i = j and w(i) > g,

−1 if i = j and w(i) ≤ g,

0 if i 6= j.

(9)
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For each w ∈ IWg the Ekedahl-Oort stratum Sw is the subset of Ag

defined by
Sw = {(A, η) ∈ Ag | E(A[p]) = w}.

Oort [22], (3.2) proved that Sw is locally closed in Ag; we consider Sw as a
locally closed subscheme by giving it the reduced induced scheme structure.

Recall the result of Ekedahl and van der Geer:

Theorem 2.3.6 ([5], Theorem 11.5). Assume w ∈ IW (c) with c > bg/2c.
Then Sw is irreducible.

Remark 2.3.7. Let w ∈ IW (c). From Lemma 2.3.5 we have c ≤ bg/2c
⇐⇒ ψw(b(g + 1)/2c) = 0. Recall [3], (3.7), Step 2 that this is also equiv-
alent to that Sw is contained in the supersingular locus, also see [8] for a
generalization.

Recently Wedhorn proved

Theorem 2.3.8 ([26]). For any two w,w′ ∈ IW , we have Sw′ ⊂ Sw if and
only if there exists an element u of WI such that u−1 ·w′ · (w0,I ·u ·w0,I) ≤ w
with respect to the Bruhat-Chevalley order ≤. Here w0,I is the element of
WI sending i to g + 1 − i for any i = 1, . . . , g.

Remark 2.3.9. For w ∈ W and 1 ≤ i, j ≤ 2g, we define rw(i, j) := ]{a ≤
i | w(a) ≤ j}. It is known (cf. [5], §2.1) that for two w,w′ ∈ W the Bruhat-
Chevalley order is described as w′ ≤ w ⇔ rw′(i, j) ≥ rw(i, j) for all 1 ≤
i, j ≤ 2g.

2.4 Central streams

We first recall Oort’s theory [24] on minimal p-divisible groups.

Definition 2.4.1. For non-negative integers m,n with gcd(m,n) = 1, we
define a p-divisible group Hm,n over Fp by

Pm,n := D(Hm,n) =
m+n−1⊕

i=0

Zpei (10)

with F ,V operations: Fei = ei+n and Vei = ei+m for all i ∈ Z≥0, where ei

(i ∈ Z≥m+n) are defined as satisfying ei+m+n = pei for i ∈ Z≥0.

7



For a Newton polygon ξ =
∑t

l=1(ml, nl), we write

H(ξ) =
t⊕

l=1

Hml,nl
and P (ξ) =

t⊕
l=1

Pml,nl
. (11)

Note the Newton polygon of H(ξ) is equal to ξ.

Definition 2.4.2. A p-divisible group X is called minimal if there exists an
isomorphism over an algebraically closed field from X to H(ξ) for a certain
Newton polygon ξ. If a BT1 G is isomorphic to H(ξ)[p] over an algebraically
closed field, we call G (and its final element) minimal.

Let ξ be a symmetric Newton polygon. The central stream of ξ is defined
to be

Zξ = {(A, η) ∈ Ag | A[p∞]Ω ' H(ξ)Ω for some alg. closed field Ω}.

Theorem 2.4.3 (Oort, [24]). Let X be a p-divisible group over an alge-
braically closed field Ω. If X[p] ' H(ξ)[p] ⊗ Ω, then X ' H(ξ) ⊗ Ω.

Let wξ be the element of IW corresponding to H(ξ)[p]. Then Th. 2.4.3
implies

Zξ = Swξ
. (12)

By Th. 2.3.6, Zξ is irreducible if ξ is not supersingular.
We recall the results on the configuration of the central streams, see [10],

§3. Let Zξ denote the Zariski closure of Zξ in Ag.

Theorem 2.4.4. Zζ ⊂ Zξ if and only if ζ ≺ ξ.

Corollary 2.4.5. If Zξ(w) ⊂ Sw holds, then Oort’s conjecture is true.

Proof. If W0
ξ ∩ Sw 6= ∅, we have ξ ≺ ξ(w) by Grothendieck-Katz; then

Th. 2.4.4 implies Zξ ⊂ Zξ(w). By the assumption Zξ(w) ⊂ Sw, we have
Zξ ⊂ Sw.

3 Main results

Let k be an algebraically closed field of characteristic p. Let x ∈ W0
ξ (k).

Oort defined the isogeny leaf Ix in W0
ξ , see [23], (4.2), and showed that Ix

is closed in W0
ξ and proper over k, see [23], (4.11).

The following theorem is the essential part of the paper [11].
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Theorem 3.0.6. Assume w ∈ IW is not minimal. Then for a geometric
point x of W0

ξ(w) ∩ Sw, a component of Ix ∩ Sw has dimension > 0.

Proof. See [11].

Let us show every results in §1 from this theorem:

Proof of (Th. 3.0.6 ⇒ Main theorem). If w is minimal, then Zξ(w) = Sw;
hence the main theorem is obviously true. Assume w is not minimal. Assume
the main theorem is true for all w′ with Sw′ ( Sw. (The smallest case w.r.t.
⊂ is the superspecial case w = id and in this case w is minimal.) According
to Th. 3.0.6 there exists a geometric point x of W0

ξ(w) ∩ Sw such that a
component of Ix ∩ Sw has dimension > 0. Since Ix is proper and Sw is
quasi-affine, there exists w′ with Sw′ ( Sw such that we have Sw′ ∩ Ix 6= ∅.
Note Sw′ ⊂ Sw implies ξ(w′) ≺ ξ(w), and Ix ⊂ W0

ξ(w) and Sw′ ∩ Ix 6= ∅
imply ξ(w) ≺ ξ(w′); hence we obtain ξ(w) = ξ(w′). By the hypothesis of
induction, we have Zξ(w′) ⊂ Sw′ . Then Zξ(w) = Zξ(w′) ⊂ Sw′ ⊂ Sw.

Proof of (Main theorem ⇒ Cor. II). The main theorem says that ξ(w) ∈
{ξ | Zξ ⊂ Sw}. Let ξ be a symmetric Newton polygon with Zξ ⊂ Sw.
Then by Grothendieck-Katz, we have ξ ≺ ξ(w).

Remark 3.0.7. Cor. II gives a purely combinatorial algorithm determining
ξ(w). Indeed first note Zξ = Swξ

and there is an algorithm determining wξ

for concretely given ξ ([10]); then by using Wedhorn’s result Th. 2.3.8 and
Rem. 2.3.9 we can check whether Zξ ⊂ Sw for concretely given ξ and w;
thus we can explicitly describe the set {ξ | Zξ ⊂ Sw}; finally find the biggest
element in the set, which exists and is equal to ξ(w).

4 Ekedahl-Oort strata contained in the supersin-
gular locus

In this section, we describe some union of Ekedahl-Oort strata contained in
the supersingular locus in terms of Deligne-Lusztig varieties, and show the
reducibility of such Ekedahl-Oort strata.

4.1 Notations

Let c be a non-negative integer ≤ g. Let Wc be the Weyl group of the
smaller symplectic group Sp2c. Let Wc,J be the subgroup of Wc generated

9



by the elements of J = {s1, . . . , sc−1}. Put Wc := Wc,J\Wc/Wc,J . We define
a map

r : IW
(c)
g −−−−→ W c (13)

by sending w to the class of v ∈ Wc determined by v(i) = w(g−c+i)−(g−c)
for all 1 ≤ i ≤ c. We denote by W

′
c the image of r.

Assume c ≤ bg/2c. For w′ ∈ W
′
c, we consider the union

Jw′ =
∪

r(w)=w′

Sw. (14)

For each c, we fix once and for all a symplectic vector space (L0, 〈 , 〉) over
Fp2 of dimension 2c and a maximal totally isotropic subspace C0 over Fp2 of
L0. Let Sp(L0) denote the symplectic group over Fp2 associated to (L0, 〈 , 〉).
Let X be the flag variety Sp(L0)/P0 over Fp2 , where P0 denotes the Siegel
parabolic subgroup, i.e., the parabolic subgroup of Sp(L0) stabilizing C0.
For w′ ∈ W c, let X(w′) denote the (generalized) Deligne-Lusztig variety in
X related to w′:

{P ∈ Sp2c /P0 | h P = P0,
hFr(P) = w′

P0 for ∃h ∈ Sp2c}.

4.2 A description of Jw′

Theorem 4.2.1. Assume c ≤ bg/2c. For each w′ ∈ W
′
c, there exists a finite

surjective morphism

G(Q)\X(w′) × G(A∞)/K −−−−→ Jw′

over Fp2, which is bijective on geometric points, see (15) below for the defi-
nition of the quaternion unitary group G over Z with K =

∏
l G(Zl).

Let E be a supersingular elliptic curve over Fp (see [18], 1.2). Put O =
End(E) (the endomorphism ring over Fp). We denote O ⊗Z Q by B. Note
B is the quaternion algebra over Q ramified only at p and ∞ over Q. The
quaternion unitary group G over Z in Th. 4.2.1 is defined by

G(R) = {h ∈ GLg(O ⊗Z R) | thϕh = ϕ} (15)

for any commutative ring R.
We remark that in [9] we proved Th. 4.2.1 for g ≥ 2. If g = 1, then

we have IW
(0)
1 = {id} and the Ekedahl-Oort stratum Sid is the (finite)

set consisting of the supersingular elliptic curves; hence see Deuring [4] and
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Igusa [14] for this case. Also Ibukiyama-Katsura-Oort [13] and Katsura-Oort
[15] have investigated the case of g = 2 with more detailed results.

Hoeve [12] seems to have refined Th. 4.2.1, where he found a description
of individual Ekedahl-Oort strata contained in the supersingular locus in
terms of “fine” Deligne-Lusztig varieties. Recently Vollaard and Wedhorn
[25] obtained an analogous result for unitary Shimura varieties. Also Görtz
and Yu [7] studied supersingular Kottwitz-Rapoport strata, where Deligne-
Lusztig varieties also appear.

4.3 Reducibility of Ekedahl-Oort strata contained in the su-
persingular locus

Oort conjectured that (i) Sw is irreducible if Sw is not contained in the
supersingular locus and (ii) Sw is reducible for sufficiently large p otherwise.
Ekedahl and van der Geer proved (i), see Th. 2.3.6 and Rem. 2.3.7. In this
subsection we shall confirm (ii) by showing limp→∞ Hg,c = ∞.

Assume c ≤ bg/2c. Let w′ be an element of W
′
c. Note a (any) represen-

tative of w′ is not in Wc,J . Note Wc,J is a maximal parabolic subgroup of
Wc. Hence Bonnafé and Rouquier [1], Theorem 2 implies that the Deligne-
Lusztig variety X(w′) is irreducible. Then by Theorem 4.2.1 we have

Corollary 4.3.1. The set of irreducible (connected) components of Jw′ is
identified with G(Q)\G(A∞)/ K.

We can estimate Hg,c = ] G(Q)\G(A∞)/ K by the mass formula, i.e., we
have

Hg,c ≥ 2mg,c,

where the mass mg,c is defined to be

mg,c =
∑

γ∈G(Q)\G(A∞)/ K

1
] G(Q) ∩ γ K γ−1

.

By using Prasad’s mass formula, we can show

Proposition 4.3.2. We have

mg,c =
g∏

i=1

(2i − 1)!ζ(2i)
(2π)2i

·
(

g

2c

)
p2

·
g−2c∏
i=1

(pi + (−1)i)
c∏

i=1

(p4i−2 − 1),

where ζ(s) is the Riemann zeta function and(
g

r

)
q

:=
∏g

i=1(q
i − 1)∏r

i=1(qi − 1)
∏g−r

i=1 (qi − 1)
∈ Z[q].

11



Corollary 4.3.3. If w ∈ IW
(c)
g with c ≤ bg/2c (i.e., Sw is contained in the

supersingular locus), then Sw is reducible for sufficiently large p.

Proof. By Corollary 4.3.1 the Hecke action on the set of connected compo-
nents of Jw′ is transitive, where w′ = r(w). By the definition of Sw, the
Hecke action stabilizes Sw. Hence the number of connected components
of Sw is greater than or equal to that of Jw′ . By Prop. 4.3.2, we have
limp→∞ Hg,c ≥ limp→∞ mg,c = ∞. This means that Sw is reducible for
sufficiently large p.
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