IDEAL THEORY OF ORE EXTENSIONS
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Abstract

The aim of this note is to introduce the ideal theory of Ore
extensions from the order theoretic point of view.

0. Introduction

Let R be any ring with identity 1, endomorphism ¢ and ¢ be a left
o-derivation, that is,
(i) ¢ is an endomorphism of R as an additive group and

(ii) 0(ab) = o(a) 6(b) + 6(a)b for all a,b € R.
Note that § is a usual derivation if o= 1.

The Ore extension (or the skew polynomial ring) over R in an indeter-
minate x is:

Rlz;0,0) = {f(z) = apa" + ... + ap | a; € R} with za = o(a)z + I(a)
for all a € R.

This definition of non-commutative polynomial rings was first introduced
by Ore [O], who combined earlier ideas of Hilbert (in the case § = 0) and
Schlessinger (in the case ¢ = [I). In the case R is a division ring, Ore
made a firm foundation for the sudy of R[x;o,d] by establishing the unique
factorization property of R[z;o,d], and using this, he studied, among other
things, the problem of finding the greatest common divisors and the least
common multiples of pairs of skew polynomials.

Ever since the appereance of Ore’s fundamental paper [O], Ore extensions
have played an important role in non-commutative ring theory and many
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non-commutative ring theorists have been investigated Ore extensions from
different points of view such as; ideal theory, order theory, Galois theory,
Homological algebras and so on.

In this note, we only discuss on ideal theory and order theory in Ore
extensions.

1. A brief history

In the case when R is a division ring, Ore investigated the following
basic properties [O]; principal ideal theory, Euclid algorithm, the greatest
common divisors, the least common multiple and the decomposition into
prime factors. He also defines the concept of transformations in order to get
several decomposition theorems.

After Ore, in [J], Jacobson studied Ore extensions in the case when R
is division ring and o is an automorphism as follows:

Definition 1.1 (general case).
(1) A polynomial p(z) € R[z; 0, 4] is called semi-invariant if R|x; o, §]p(x)
is a right R-module. This is equivalent to; for any a € R, there is a b € R
such that p(z)a = bp(x).
(2) A polynomial p(z) € R[z;0,6] is called invariant if R[x;0,d]p(x) is
an ideal (a two-sided ideal). This is equivalent to;
(i) it is semi-invariant and
(i) p(z)x = (cx + d)p(x) for some ¢, d € R.

Definition 1.2 (general case). If ¢ = I,, inner automorphism induced
by u, a unit in R, then we say that the inner order is n if n is the smallest
natural number for this property and we denote it by o(c) = n. If there are
no such natural number, then we say that the inner order of ¢ is infinite and
denote it by o = oo.

Under these notations, Jacobson obtained the following

Theorem 1.3 ([J]). Suppose that R is a division ring and o is an automor-
phism of R.
(1) Let I(R][x;0,0]) be the set of all invariant polynomials of R[z;0,d] and
let f(x) € I(R]x;0,0]). Then
£(@) = ) - pl),



where p;(x) are irreducible elements in I(R|x; 0, d]).

(2) Suppose that § = 0.
(a) If o(0) = oo, then I(R[x;0,0]) = {z™ | n =1,2,...}, that is, the set
of all ideals is 2" R[z; 0,0] (n = 1,2,...).
(b) If o(0) = n < oo, then any monic f(z) € I(R[z;0,d]) is of the
form; f(x) = 2! + ;2" + @10, 27?" + ... with o(a;_;,) = a;_jn and
a—jno' I (b) = o'(b)a;_j, for all b € R.

Definition 1.4 (general case). ¢ is called o-inner if there is a b € R such
that
d(a) = ba — o(a)b for all a € R.
Otherwise, 0 is called o-outer.

If 0 is o- inner, then R[x;0,d] = R|y;0,0], where y = x — b. This shows
that Ore extensions become an automorphism type (or an endomorphism
type) if d is o- inner.

If 0 = 1, then we have

ria = ari+ { d(a)r?™t + ...+ 6 (a)
for any a € R and any natural number j.
With this property, Jacobson obtained the following

Theorem 1.5 ([J]). Suppose that R is a division ring, 0 = 1 and ¢ is 1-
outer. If char R = 0, then R[z;1,¢] is a simple ring.

However, he could not get any result in the case when char R =p > 0
and ¢ is 1-outer. He said; the conditions that f(x) € I(R[z;1,0]) are some-
what complicated but may be satisfied non-trivially. We hope to discuss this
case in a later paper.

In 1957, Amitsur investigated the ideal theory in Ore extensions in the
case when R is a division ring and ¢ = 1 (he does not assume that R has an
identity element). However, in the case when R has an identity element, he
obtained the following

Theorem 1.6 ([As]). Suppose that R is a division ring and ¢ # 0.
(1) Z(R[x;1,6]), the center of R[x;1,0], is the set of all invariant polynomi-
als.



(2) If Z(R[x;1,6]) C R, then Z(R[z;1,0]) = R15s ={a € Z(R) | 6(a) =0 }.
(3) If Z(R[x;1,6]) € R, then Z(R[x;1,d]) = Ris[p(z)], where p(z) is the

central polynomial of minimal non-zero degree.

Those works by Jacobson and Amitsur had been extended to the general
case by Cauchon [C], Carcanaque [Ca], Lemonnier [Le], Lam, Leroy and
Matczuk ([LL], [LLM]).

In their works, the following concept plays an important role in order to
study the ideal theory in Ore extensions:

Definition 1.7. § is a quasi-algebraic o-derivation if there is a 6, an endo-
morphism of R, 0 # a,,a,_1, ..., a9, b € R such that

0" (Y) + an-10""H(y) + ... + a10(y) + bdag0(y) =0
for all y € R, where 64, 0(y) = aoy — 0(y)ao.

This concept was more or less created by Amitsur to study differrential
equations ([A4]).

In 1991, Leroy and Matczuk generalized the results in the case R is a
division ring (or simple Artinian ring) to the case R is a prime ring as follows:

Definition 1.8. An ideal I of R[z;0, 0] is called R-disjointif I N R = {0}.

Theorem 1.9 ([LM]). Suppose that R is a prime ring and Q(R) is its
symmetric Martindale ring of quotients (see [P]). The following conditions
are equivalent:

(1) There exists a non-zero R-disjoint ideal of R[x;a, d].

(2) There exists a non-zero Q,(R)-disjoint ideal of Q[z; 0, d].

(3) There exists a monic non-constant invariant polynomial in Q4(R)[x; o, d].

(4) There exists a monic non-constant semi-invariant polynomial in Qs(R)[x; o, J].
(5) ¢ is a quasi-algebraic o-derivation of Q4(R).

Here, (4)<(5) and (1)«<(3) are not difficult. The equivalence of (4), (5)
with (2) is much harder. Furthermore, they could obtain the complete struc-
ture of the center Z(Qs(R)[x; 0, d]).

Theorem 1.10 [LM]. Suppose that R is a prime ring and QR is its sym-
metric Martindale ring of quotients.

(1) Z(Qs(R)[x:0.6]) € Qu(R) if and only if
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(i) o(o) < 0o and

(ii) d is a quasi-algebraic o-derivation.
(2) It Z(Qu(R)[z: 0,8]) € Qu(R), then

Z(Q. ). = EQHR)rs = o € ZQR) | o) = 0 80
= 0}.

(3) It Z(Qu(R)[x: 0,8]) € Qu(R). then

(i) Z(Qs(R)[x;0,0]) = Z(Qs(R))ssh(x)], where h(z) is the central poly-
nomial of minimal non-zero degree.

(ii) Let m(x) be the monic invariant polynomial of minimal non-zero
degree. Then h(z) = am(z)' + ¢, where a € Q4(R) with aR = Ra and
¢ € Z(Qu(R))os.

(iii) Let p(z) be the monic semi-invariant polynomial of minimal non-zero
degree, say, deg p(x) = n. Then any f(z) € Z(Qs(R)[x;0,0]) is of the form;

f(x) =cp(x)" + ... + co,
where ¢; is invertible if ¢; # 0 and o~
duced by c;.

™ = I.,, the inner automorphism in-

In the case when R is a Noetherian ring (not necessarily prime), the ideal
theory of Ore extensions have been investigated by Irving, Goodearl and

Goodearl-Letzter ([I1], [I2], [G] and [GL]).
2. Ore extensions which are unique factorization rings (UFRs)

Let D be a commutative principal ideal domain. Then D][z] is not nec-
essarily a principal ideal domain. In fact D[z]| is a UFD. Moreover if D is
a UFD, then D[z] is a UFD. This fact suggests that it is natural to define
non-commutative UFRs and to investigate UFRs in Ore extensions.

P.M. Cohn defined non-commutative UFRs by using elements as in com-
mutative case. However, he could not get fruitful results ([Co;],[Cos]). In
[CJ], Chatters and Jordan defined UFRs by using ideals and they studied
the structure of UFRs and also Ore extensions which are UFRs.

In this section, for simplicity, let R be a Noetherian prime ring with its
quotient ring () which is a simple Artinian ring. Furthermore, let o be an
automorphism of R and 9 is a left o-derivation.

Definition 2.1. An ideal I of R is called (o,d)-stable if o(I) C I and
5(I) C 1.



Note that [ is (o, d)-stable if and only if I[z; 0, d] is an ideal of R[z; o, d].
Chatters-Jordan defined UFRs by adopting the definition in [K] as follows:

Definition 2.2 [CJ]. R is called a (o,9)-UFR if for any non-zero (o,0d)-
prime ideal P, there is a non-zero (o, §)-prime ideal Py such that P O Py and
Py = pR = Rp for some p € Py. In particular, Risa UFRif Risa (1,0)-UFR.

In the case when either ¢ = 1 or § = 0, they obtained the following

Theorem 2.3 [CJ].

(1) Ris a (0, 0)-UFR if and only if R[z;0,0] is a UFR.

(2) If Ris a (1, 0)-UFR, then R[z;0,0] is a UFR. Furthermore if R is a
domain, then the converse is also true.

However, they gave the following examples:
(i) R is a UFR but R[z;0,0] is not a UFR.
(ii) R is a UFR but R[z;1,¢] is not a UFR.
It is natural that the following property is held:

If Ris a UFR, then R[z;0,0] is a UFR.
This is one of the reasons that I defined another UFRs by using ”v-ideals”.

Notation. For any R-ideal I, we write

(R:1)={qe@Q|q CR}

(R: 1), ={q€Q|IgC R}

I,=(R:(R: 1)), av-ideal containing I.
If I, = I, then it is called a right v-ideal. Similarly, ,] = (R: (R : I),); and
if ,1 = I, then it is called a left v-ideal. 1If I, = I = ,I, then we simply say
that I is a v-ideal.

Definition 2.4 ([AKM]). R is called a (o, 9)-UFR if any (o, §)-prime ideal
P with P = P, (or P = ,P) is principal, namely, P = pR = Rp for some
p € P. In particular, R is a UFR if R is a (1, 0)-UFR.

Theorem 2.5 ([AKM]).
(1) If R is a UFR in the sense of Chatters-Jordan, then R is a UFR in the



sense of ours.
(2) If R is a UFR, then R is a (o,9)-UFR.
(3) R is a (0,0)-UFR if and only if R[z;0,0] is a UFR.
(4) Ris a (1,6)-UFR if and only if R[z;1,0] is a UFR.

In the case when either ¢ = 1 or 6 = 0, we could obtain a necessary
and sufficient conditions for R|x;0,d] to be a UFR. So, in what follows, we
assume that o # 1 and 9 # 0.

In the case when ¢ and § are both non-trivial, we have some obstructions
from the ideal theoretical’s point of view:

(i) Let I be a non-zero ideal of R[x;o,d] with A = RN I # (0). Then

(a) If 0 =1, then 2 is a (1, 0)-stable ideal.

(b) If 6 = 0 and [ is a prime ideal with I Z x, then 2 is a (o, 0)-stable

ideal.

If I 5, then I O P = xR[x;0,0], a prime v-ideal so that we do not need
to consider a prime ideal [ properly containing P.

In general, 2 is not necessarily a (o, d)-stable ideal.

(ii) Let I be a non-zero ideal of R[x;0,0]. Set L(I) = {a, € R | f(x) =
an,x" + ... + ag € 1}, the leading coefficient ideal.

(a) If § =0, then L(I) is a (o, 0)-stable ideal.

(b) If o0 =1, then L(I) is a (1, 0)-stable ideal.

However, in general, L(]) is not necessarily a (o, §)-stable ideal.

The following lemma is easily proved by the classical method.

Lemma 2.6. R is a (0,0)-UFR if and only if any non-zero (o, d)-stable
ideal 2( of R with A =2, (or A = ,2) is principal.

Now we will explore some properties of R[z;0o,d] under the assumption
that it is a UFR:

Lemma 2.7. Suppose that R[z;0,0] is a UFR.

(1) Ris a (0,0)-UFR.

(2) Let I be a non-zero ideal of R[z;0,0] such that I = I, (or I = ,I)
and A = INR # (0). Then A is a (o, §)-stable ideal with A = 2, (or A = ,2A).

Because of the property (2) in Lemma 2.7, we have the following defini-
tion.



Definition 2.8. A non-zero ideal 2 of R with 2 = 2L, (or A = ,2) is called
a v-contracted ideal if A = I N R for some ideal I of R[x;c,0] with I = I, (or
I=,I).

The following lemma is crucial, in which we got some ideas from [G].

Lemma 2.9. Suppose that R is a (0,0)-UFR and that any v-contracted
ideal is (o, d)-stable. If I is a non-zero ideal with I = [, (or [ = ,I) and
A=TINR#(0), then I = Az;0,d] and is principal.

The properties (1) and (2) in Lemma 2.7 are enough information from
the coefficient ring R. Now we need some information from @ (or Q[z; 0, d]).
As it has been shown in §1, Q[x;0,d] is a simple ring if and only if ¢ is not
a quasi-algebraic o-derivation. Hence we have the following

Theorem 2.10. Suppose that 0 is not a quasi-algebraic o-derivation of Q).
Rz, 0,6] is a UFR if and only if the following two conditions are satisfied:

(1) Ris a (0,0)-UFR.

(2) Any v-contracted ideal is (o, §)-stable.

In what follows, suppose that ¢ is a quasi-algebraic o-derivation of @),
that is, Q[z, 0, d] is not a simple ring. So there exists

plx)=a"+p, 12" P+ . tpo=a"+ 2" g+ .+ Qo
, the invariant polynomial of minimal non-zero degree.
Set M' = Q[z; 0,0|p(z), a maximal ideal and M = M’ N R|x;0,0]. It is easy
to see that M is a prime v-ideal. So if R[z;0, 0] is a UFR, then M must be
principal.

The following is a characterization for M to be principal.

Lemma 2.11. M is principal if and only if the following two conditions
are satisfied:

(1) Nizo R-p;l = L(M) =N, q;l-R-

(2) L(M) is principal.
Hereq ' R={re R|gqre R} and R.qg'={re R|qr € R} forany q € Q.

Now we are ready to state the main theorem:



Theorem 2.12. Suppose that § is a quasi-algebraic o-derivation of Q.
Then
Rx;0,0] is a UFR if and only if the following three conditions are satisfied:
(1) Ris a (0,0)-UFR.
(2) Any v-contracted ideal is a (o, d)-stable ideal.
(3) Ny R-p; ' = L(M) =(_, ¢; '-R and is principal.

We will give some examples of R[x; o, d] which are UFRs in the case when

o#1and é #0.

Example 1. Suppose that § is o-inner, that is, there is a non-zero b € R
with 6(a) = ba — o(a)b for all @ € R. Then R[z;0,d] = Rly;0,0], where
y =z —b. Hence R[z;0,0] is a UFR if and only if R is a (0,0)-UFR.

Next we will give two examples in the case when ¢ is o-outer.

Example 2 (essentially [L]). Let D be a principal ideal ring of a division
ring F' with char F' # 2 and let K = F(z; | i € N) be a rational function
division ring over F' in indeterminates z; (N is the set of natural numbers)
with

ax; = z;a for all @ € F and z;2; = —x;x; if © > 5.
Set R = D[z; | i@ € N] and define the automorphism o of R as follows;
o(a) =aforalla € F and o(x;) = —x; so that 0 = 1. We inductively define
a left o-derivation; Ky = F(xy), ..., K; = K;_1(x;,0;), where 0, = 0 | K;_4
and for any o € K;, §;(a) = (z1+ ... + x;)a —o(a)(z1 + ... +x;). Set § = U0;.
Then we have the following properties:
(i) 0 is a left o-derivation, 62 = 0, d is a g-outer and 0§ # do.
(ii) R is a UFR so that R is a (o, d)-UFR.
(iii) Any ideal A of R with A =2, (or 2 = ,2) is a (o, d)-stable ideal.
(iv) p(z) = 2? is the invariant polynomial of minimal non-zero degree.

Hence R[z;0,0] is a UFR.

Example 3 ([XM]). Let F" be a division ring with an automorphism o, o(o) =
oo and o(a) # a — 1 for all a € F and let R = F[[t,0]] be the skew formal
power series ring with its quotient ring K = F((t,0)). We extend o to an
automorphism of K and define a left o-derivation as follows;

(3" ant™) = o(a,)t" and §(>° ant™) = > no(a,)t" .
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Then we have the following properties:

(i) d is a left o-derivation with o0 = do.

(ii) Any ideal of R is a (o, d)-stable ideal.

(iii) R is a discrete rank one valuation ring.

(iv) If char K = 0, then J is not a quasi-algebraic o-derivation.

(v) If char K = p > 0, then §? = 0 and p(z) = 2P is the invariant polynomial
of minimal non-zero degree.

Hence in any cases, R[x;0,d] is a UFR by Theorems 2.10 or 2.12.
The following are other examples of UFRs.

(1) Let g be a solvable Lie algebra. Then the enveloping algebra U(g) is
a UFR ([Cy)).

(2) Let G be a polycyclic-by-finite group and let R be a UFR. Then the
group ring R[G] is a UFR if and only if the following two conditions are
satisfied
() AN(G)={geG||G:Calg) |[< oo} =<1>.

(ii) G is dihedral free ([AKM]).
(3) Quantum algebras with certain conditions([LLR]).

We only consider Ore extensions which are UFRs. There are important
classes in Ore extensions which are Krull rings or Krull type generalization
of hereditary Noetherian rings (they are called v-HC orders). We refer the
readers to [Cy], [Cy] and [MR] for Ore extensions which are Krull rings and
to [M] and [KMU] for Ore extensions which are v-HC orders. Concerning
UFRs in the sense of Chatters and Jordan, we refer the readers to [Ch], [CC],
[CJ], [CGW] and [GS].
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