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Abstract. This is a report on work in progress with Torsten Ekedahl
on the cohomology classes of the cycles of the analogue of the Ekedahl-
Oort stratification on the moduli of K3 surfaces in positive characteristic.

1. Introduction

Elliptic curves over an algebraically closed field k of characteristic p > 0
come in two sorts: ordinary and supersingular. One way to express the
distinction for an elliptic curve E comes from looking at the formal group
of E, i.e., the group law on a formal neighborhood of the origin 0 ∈ E(k):
multiplication by p is given in terms of a local parameter t by

[p] · t = a tp
h

+ higher order terms,

where a 6= 0 and h assumes the value 1 or 2. If h = 1 (resp. h = 2) we say
that E is ordinary (resp. E is supersingular). There are only finitely many
values of j for which the elliptic curve with j-invariant j is supersingular.
Deuring’s Mass Formula gives their number as

∑

E

1

#Autk(E)
=
p− 1

24
,

where the summation is over all supersingular elliptic curves defined over k
up to isomorphism and every elliptic curve is counted with a weight.

There is a generalization of this for principally polarized abelian varieties
of given dimension g. The stratification defined by the distinction ordinary
vs. supersingular is generalized into the Ekedahl-Oort stratification (cf. [7])
and the cycle classes of this E-O stratification were calculated in [5, 3].
The formulas for these classes can be seen as a generalization of Deuring’s
formula.

One would like to extend this to the moduli of K3 surfaces. By a K3
surface we mean a smooth projective surface X/k such that its canonical
bundle KX is trivial (KX

∼= OX) and such that H1(X,OX) = (0). For
example, smooth quartic surfaces in P3 are examples of K3 surfaces. Both
abelian varieties and K3 surfaces form a generalization of the notion of an
elliptic curve.

One way to generalize the distinction ordinary vs. supersingular to K3
surfaces one might look at the formal Brauer group, i.e., one looks at the
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functor Φ

S 7→ kerH2
et(X × S,Gm)→ H2

et(X,Gm)

on Artin rings of residue field k. As Artin and Mazur showed in [2] it defines
a formal group, the formal Brauer group Φ = Φ2

X . Its tangent space can
be identified with H2(X,OX) and for a K3 surface this has dimension 1.
We thus get a 1-dimensional formal group. One knows that 1-dimensional
formal groups are classified by their height: multiplication by p takes the
form

[p] · t = a tp
h

+ higher order terms,

where h ∈ Z≥1 or h =∞ in which case Φ ∼= Ĝa, the additive formal group.
For h < ∞ we get a p-divisible formal group. A basic theorem of Artin-
Mazur gives restrictions for this invariant.

Theorem 1.1. (Artin-Mazur) If X is a K3 surface whose formal Brauer
group has finite height h <∞ then the rank ρ of the Néron-Severi group of
X satisfies the inequality

ρ ≤ b2 − 2h,

with b2 = 22 the second Betti number.

In particular, if ρ = 22 then h = ∞; otherwise, ρ ≤ 20 and 1 ≤ h ≤ 10.
The case h = 1 is the ‘generic case’ and h = ∞ is called the supersin-
gular case. One should remark here that there are two notions of super-
singularity for K3 surfaces: Artin’s notion, meaning that h = ∞, and Sh-
ioda/Shafarevich’s one, meaning that ρ = 22. It follows that supersingular-
ity in the sense of Shioda and Shafarevich implies supersingularity in the
sense of Artin and it is in fact conjectured that both notions coincide.

Let now M be a moduli space of polarized K3 surfaces over k of degree
2d with 2d prime to p = char(k). Then one has a stratification on M with
closed strata Vh loosely defined by

Vh = {[X] ∈M : h(X) ≥ h}.

In joint work with T. Katsura (see [6]) we determined the cycle classes of
these loci. The formula is as follows:

Theorem 1.2. The cycle class of the locus Vh of K3 surfaces of height ≥ h
is given by

[Vh] = (p− 1)(p2 − 1) · · · (ph−1 − 1)λh, (1)

where λ = c1(π∗(Ω
2
X/M ) is the first Chern class of the Hodge bundle for the

universal family π : X →M .

This can be seen as a generalization of Deuring’s formula because we may
write the latter as

[Vss] = (p− 1)λ,

with Vss the supersingular locus on the j-line (the moduli space of elliptic
curves) and λ the first Chern class of the Hodge bundle which is also the
(stacky) line bundle whose sections are modular forms of weight 1. By
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calculating the degree and interpreting everything correctly (stacks) we get
Deurings’s formula.

The dimensions of the strata occuring here range from 19 to 9. But the
supersingular locus, which has dimension 9, allows a further stratification
by the Artin invariant σ0 with 1 ≤ σ0 ≤ 10. One way to define it is by
looking at the discriminant of the intersection form on the Néron-Severi
group. Alternatively, we can define it using crystalline cohomology or as

σ0 = dimker{c1 ⊗ k : NS(X)⊗ k → H1(X,Z1)},

where Z1 = Ω1
X,closed is the sheaf of d-closed 1-forms.

But there is a unified way of defining a stratification on the moduli space
that includes both the height strata and the Artin invariant strata. Our
approach to the stratification in [4] follows the idea of [5, 3] to consider
filtrations on the de Rham cohomology of a K3 surface.

2. Orthogonal Forms

In order to define the stratification on our moduli space M we need to
discuss some notions related to an orthogonal vector space.

Let V be a finite-dimensional vector space, say of dimension n. We have
to distinguish between n odd and n even.

For n = 2m+ 1 odd we consider the Weyl group WBm of SO(2m+ 1)

{σ ∈ S2m+1 : σ(i) + σ(2m+ 2− i) = 2m+ 2}

viewed as permutations of the set {1, 2, . . . , 2m+1}. It contains 2m so-called
final elements: these are elements that are reduced w.r.t. the root system
obtained by deleting the first root. Explicitly, these are the elements

wa = [2m+ 2− a, 1, 2, . . . , 2m+ 1, a],

where a permutation is given by its images of the elements 1, 2, . . . , 2m+1.
In particular there is a longest final element, also denoted by w∅,

w∅ = [2m+ 1, 2, 3, . . . , 2m− 1, 2m, 1]

There is an ordering on the elements of WBm , the Bruhat ordering, We call
the elements w with w ≤ w∅ the admissible elements.

In case n = 2m is even we consider the Weyl group WDm of SO(2m). We
let

W ′
Dm

= WCm = {σ ∈ S2m : σ(i) + σ(2m+ 1− i) = 2m+ 1}

be the Weyl group of O(2m) and consider the subgroup

WDm = {σ ∈WCm : #{i ≤ m : σ(i) > m+ 1}even}

This is an index 2 subgroup of W ′
Dm

. Let disc : WCm → {±} be the homo-
morphism with kernel WDm . Also here we have 2m final elements

wa = [2m+ 1− a, 1, 2, . . . , 2m+ 1, a]

and we also have 2m twisted final elements w′a = wa · s
′
m with s′a the trans-

position (mm+ 1).
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We now look at flags (0) = V0 ⊂ V1 ⊂ · · · ⊂ Vr on V which are isotropic,
i.e., the quadratic form vanishes on Vr. We can complete such a flag by
putting Vn−j := V ⊥j and we require that all dimensions s with 0 ≤ s ≤ n

occur except possibly n/2. This hints at some subtleties for the even case.
If n = 2m then two flags are in the same or opposite family if

dim(V (1)
m ∩ V (2)

m ) ≡

{

m (mod2)

m− 1 (mod2)

For K3 surfaces in positive characteristic the choice of a complete isotropic
flag on the cohomology will automatically gives us a second flag. The relative
position of these two flags corresponds to an element in a Weyl group as the
following proposition shows. The case n even displays some subtleties.

Proposition 2.1. i) Let n = 2m+ 1. Then the SO(2m+ 1)-orbits of pairs
of totally isotropic complete flags are in 1− 1 correspondence with elements
of WBm. ii) n = 2m. Then the SO(2m)-orbits of pairs of totally isotropic
comple te flags are in 1−1 correspondence with elements of W ′

Dm
. If (E·, D·)

corresponds to w then disc(w) = (−1)d with d = dim(Em ∩Dm).

3. Filtrations on the cohomology of a K3 surface

Let X be a K3 surface and let N be a non-degenerate integral lattice.
Suppose that N → NS(X) is an isometric embedding. We say that this
gives an N -polarization if N contains an ample line bundle. Its degree is by
definition the absolute value of the discriminant of N .

We shall assume that this degree is prime to p.
By the primitive cohomology we mean the orthogonal complement of N

on the de Rham cohomology H = H2
dR(X). This has an extra structure,

namely a Hodge filtration

(0) = U−1 ⊂ U0 ⊂ U1 ⊂ U2 = H

with the property that it is self-dual: U⊥0 = U1. We then also have a
conjugate filtration

(0) = U c
−1 ⊂ U c

0 ⊂ U c
1 ⊂ U c

2 = H

again self-dual. The dimensions of these steps are 0, 1, n − 1 and n. The
inverse Cartier operator C−1 gives an isomorphism

C−1 : F ∗(Ui/Ui−1) ∼= U c
2−i/U

c
1−i.

with F : X → X(p) the relatice Frobenius. We now consider flags on the
de Rham cohomology refining the conjugate filtration and use the inverse
Cartier operator to transfer it to the Frobenius pull back of the Hodge
filtration. This gives us two filtrations E· and D·.

We call such a filtration stable if

Dj ∩ En−1 + E1



5

is an element of the E·-filtration. We call a filtration canonical if every stable
filtration is a refinement of it. We call it final if it is stable and complete.

Proposition 3.1. A filtration E· extending the Hodge filtration is final if
under the correspondence of Prop. 2.1 it belongs to a final element or a
twisted final element.

The basic result is now that we can find final filtrations and that their
type is related to the height and Artin invariant in the following way.

Theorem 3.2. Let X be a polarized K3 surface. Let H be its primitive de
Rham cohomology of dimension n and put m = bn/2c. Then we have

(1) H has a canonical filtration. If k is separably closed then it has a
final filtration. All final filtrations have the same type.

(2) If X has finite height h with 2h < n then H has final type wh or w′h.
(3) If X has finite height h with 2h = n then H has final type w′m.
(4) If X is supersingular with Artin invariant σ0 < n/2 then it has final

type wn−1−σ0
or w′n−1−σ0

.
(5) If X is supersingular with Artin invariant σ0 = n/2 then it has final

type wm−1.

4. Cycle Class Formulas in the Odd Orthogonal Case

We consider now the flag space F → MN over our moduli space of K3
surfaces. We restrict here to the odd orthogonal case referring for the other,
more subtle case to [4]. The fibre parametrizes complete isotropic flags on
the primitive de Rham cohomology of a K3 surface with polarization of type
N . Using the Cartier operator one complete isotropic flag E· on the primitive
cohomology yields a second flag D· and their relative position corresponds
to an element w in our Weyl group, cf. 2.1. In F we can define loci Uw where
the relative position of E· and D· corresponds to w

Uw = {(E·) ∈ F : dim(Ei ∩Dj) = #{1 ≤ α ≤ i : w(α) ≤ j}}.

These loci come with a scheme structure. We define the analogue of the
E-O stratification on ithe moduli space M itself by setting for final w

Vw = φ(Uw)

with its reduced structure.
Recall that an element w ∈WBm has a length `(w) given by

`(w) = #{i < j ≤ n : w(i) > w(j)}+#{i ≤ j : w(i) + w(j) > 2m+ 2}.

The strata on F are quite well-behave as the following proposition shows.

Proposition 4.1. (1) The open stratum Uw is smooth of dimension `(w).
(2) Uw is reduced, Cohen-McCaulay and normal of dimension `(w).
(3) The projection Uw → Vw is finite surjective and étale for final w.

The proof of the proposition is analogous to the proof in [3] which employs
the fact that our strata look up to order p neighborhoods as the Schubert
cycles in flag spaces. We let Y = π∗(Ω

2
X/M ) be the Hodge bundle and
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we let λ = c1(Y ) be its first Chern class (in the Chow group with rational
coefficients). In view of the formulas for the case of abelian varieties one may
expect that the cycle classes of these strata are polynomials in tautological
classes with integral coefficients. Since the tautological ring is generated by
λ we expect as cycle classes multiples of a power of λ. The problem is to
find the coefficient.

Theorem 4.2. Let Vwk
be the stratum on the moduli space M corresponding

to the final element wk for 1 ≤ k ≤ 2m. For k ≤ m we have the following
formulas for their cycle classes.

(1)

[Vwk
] = (p− 1)(p2 − 1) · · · (pk−1 − 1)λk−1

(2)

[Vwm+k
] =

1

2

(p2k − 1)(p2k+2 − 1) · · · (p2m − 1)

(p+ 1)(p2 + 1) · · · (pm−k+1 − 1)
λm+k−1.

Remark 4.3. (1) It is not clear from the formula in (2) that the expres-
sion has coefficients in (1/2)Z[p]. But the formula in case 2) can also
be written as

[V wm+k
] =

1

2

(

m+k−1
∏

j=1

(pj − 1)
)

[

m

m+ 1− k

]

p2
λm+k−1,

where [n, i]q is the usual q-binomial coefficient. This shows that the
expression is up to the factor 1/2 a polynomial in Z[p] times a power
of λ.

(2) The formula in 1) coincides with the formula given in the joint work
with Katsura, except for the factor 1/2 for the supersingular locus
corresponding to wm+1. As explained in [6] the supersingular locus
came there with a multiplicity 2, whereas it is reduced in the present
approach.
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