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The notion of j-multiplicity was introduced by Achilles and Manaresi in
[1] and the theory was developed in [4], [2] and [3]. The j-multiplicity j(I) is
an invariant of an ideal I in a Noetherian local ring (R, m). If I is m-primary,
then j(I) coincides with the usual multiplicity e(I). In this note we give a
length formula of j-multiplicity which enables us to compute j(I) of a given
ideal 1.

Let us begin with the definition of j-multiplicity. It can be defined for
a finitely generated module L over a positively graded Noetherian ring 7' =
®n>o T, such that (Tp, m) is local and T = Ty[T1]. We assume that Ty /n is
an infinite field. Let d be a positive integer with dimy L < d. We denote the
Krull dimension of L/nL as an T-module by ¢(7, L) and call it the analytic
spread of L. Let W = HY%.(L), which is the 0-th local cohomology module of
L with respect to nT. By the Artin-Rees lemma, we see that W Nn*L =0
for k> 0. Then W = @&, HY(L,,) can be embedded in L/n*L as a graded
T /nkT-module. Because T/n*T is a standard graded ring over an Artinian
local ring and dimy L/n*L = ((T, L) < d, there exists an integer o > 0 such
that

a

lengthy, Hp(L,) = @1 n?! 4 (terms of lower degree)

for n > 0. This number « is called the j-multiplicity of the T-module L and
is denoted by j4(7T, L).

Lemma 1 (cf. [4]) ju(T,L) #0 if and only if (T, L) = d.

Lemma 2 (cf. [4]) Letd > 2 and dimy, L, < dimy L for anyn > 0. We
choose f € 11 generally so that the following two conditions are satisfied;



(1) f is T -filter regular for L,
(2) (T, L/fL+W)<d-2.
Then we have dimp L/fL < d—1 and j4(T,L) = jq_1(T,L/fL).

Now we consider a Noetherian local ring (R, m) with |R/m| = oo and
a finitely generated R-module M. We take an ideal I of R and a positive
integer d with dimp M < d. We set jq({, M) = ja(gr; R,gr; M) and call it
the j-multiplicity of I with respect to M. Let us simply denote jgim r(I, R)
by j(I). By Lemma 1 and Lemma 2, we have the following assertion.

Lemma 3 j(I) # 0 if and only if £(I) = dim R > 0, where {(I) denotes
the usual analytic spread of 1.

Lemma 4 Let d > 2 and dimg M/IM < dimr M. Then, for a general
element a € I, we have dimp M/aM < d—1 and jo(I, M) = jo_1(I, M/aM).

In the case where dimg M/IM = dimgr M, we need the following result.

Lemma 5 Let M = M/HY(M). Then I"M/I""'M = ["M/I"*'M for
n > 0, and so jo(I, M) = jo(I,M). Furthermore, if M # 0, we have

By applying Lemma 4 and Lemma 5 successively, we get the next result.
Theorem 6 Let 1 < i < d. Then, choosing sufficiently generic elements

ai,...,a; of I, we have

dimgp M/((a1,...,a;)M 3y I*®) < d—1i and
jd(Iv M) :jd*i(lvM/«ala"'aai)M ‘M [OO))a

where (a1, ...,a;)M pp I = Upso((ar, ... a;) M oy I™).



Corollary 7  Choosing sufficiently generic elements aq,...,aqs—1 and ag of
1, we have

ja(I, M) =lengthy, M/((a1,...,aq-1)M :pp I%°) + agM .

Lemma 8 Suppose dimg M < 1. We put
P={peSpecR|dim R/p=1and I < p}.
Then we have

ji(I,M) = "lengthy M, -e;(R/p).
peP

Applying Lemma 4, Lemma 5 and Lemma 8, we can give another proof for
the additivity of j-multiplicity, which was first proved in [4].

Theorem 9 Let0 — L — M — N — 0 be an exact sequence of R-
modules. Then we have

jall, M) =ja(I, L) +ja(I, N) .

Then we get the additive formula of j-multiplicity similarly as the usual
multiplicity.

Theorem 10 j,(I, M) = Z lengthp M, - ja(I, R/p).
peAsshp M

Moreover we get the following.

Theorem 11 Let 1 <1i<d and ay,...,a; be sufficiently generic elements
of I. We set

P;={p €SpecR | (ar,...,a;) Cp, I Lp and dim R/p =d —i}.
Then P; N Suppg M is finite and

ja(I,M) = lengthy M,/(ay, ..., a;)My-jai(I, R/p).
peP;



As an application of the theory stated above, we get the following assertion.

Example 12 Let R = K|[[X,Y, Z]] be the formal power series ring over
an infinite field K. Let p be the defining ideal of a space monomial curve:
X =thY =t Z =t™, where k,{ and m are positive integers with

GCD{k,t{,m} =1.
Then p is generated by the maximal minors of the matrix
X yo zv
ye zv X )
where «, 3, v, ', ' and v are positive integers. Replacing the variables
X, Y and Z, we may assume

ka = min{ka, (3", m~', 6, mv, ka'} .
Then we have j(p) = afB(y + 7).

We give a sketch of proof for this example. We put f = 27+ — X¥Y# g =
Xt _yBzY and h = YO — X°Z7. Then p = (f,g,h) and the ideal
generated by general two elements in p can be written in the form (af —
g,bf —h) with 0 #a,b € K. Weput £ =af —gand n=>bf — h. It is easy
to see that

&v)rp™ = (En)irf
= (X +aY? +027 VP +aZ7 +bXY).

Therefore, by Theorem 6, we get
i(p) = lengthy, R/p + (X* +aY? +b27 VP +aZ" + bX*).

Let A = K[[t*,¢',t™]]. Then ¢ induces an isomorphism R/p — A, which
implies

j(p) = length, A/(t"u, *u)A,



where u = 1+ at®®' —ke 4 ppmy' ke = 1 4 qpm1=08 4 pthe’ =45 ¢ K[[t]]. Therefore
we get j(p) = af(y + ') since

length , A/(t*u, t"Pu)A
= length, A/(t* ')A
= lengthp R/(X*Y?)R +p
= length, R/(X%Y? Z27")R.
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