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1 Introduction

Grassmannians and their Schubert subvarieties are fascinating objects of al-
gebraic geometry and attracted many mathematicians. Their homogeneous
coordinate rings are also attracting objects. They are commutative rings
with combinatorial flavor. In fact, conbinatorial analysis of these rings is the
germ of the theory of algebras with straightening law and Hodge algebras.
They are generated by the maximal minors of certain matrices with univer-
sity property and these matrices are also studied by many mathematicians.

In this article, we consider the group action on the rings generated by
these matrices. And study the rings of (absolute) invariants, sagbi bases of
these rings and properties of these rings together with the initial algebras of
them. In the way, we define a new concept which we call “doset Hibi rings,”
which are subrings of a Hibi ring of Veronese type, to analyze the initial
algebra of the certain rings of invariants.

2 Preliminaries

In this article, all rings and algebras are assumed to be commutative with
identity element. Let [, m, n be integers with 0 <[ < m < n and k a field.
For an m x n matrix M with entries in a k algebra S, we denote by I;(M) the
ideal generated by the t-minors of M, by M() the i x n matrix consisting
of first i-rows of M, by M<; the m X j matrix consisting of first j-columns
of M, by I'(M) the set of maximal minors of M and by k[M] the k-algebra
of S generated by the entries of M.

We define posets I'(m x n) and I(m x n) by I'(m x n) := {[e1,...,¢n] |
1< <--<cp<nland T'(m xn) :={lcr,...,c;] | r <m,1 < ¢ <



- < ¢, < n}. The order of I''(m x n) is defined by

[Cl,.. ]_[dl,,d]
<d:6f>7">s g <djfori=12,...,s,

and the order of I'(m x n) is defined by that of I'(m x n). Note that
['(m x n) is a distributive lattice and I'(m x n) is a sublattice of I'(m x n).
For [c1,...,¢.] € T'(m x n), we define its size to be r and denote it by
size[cy, ..., ¢

We also define the poset A(m x n) by A(m x n) = {[«|f] | o, 8 €
I"(m x n),sizea = sizeB} and define the order of A(m x n) by

e8] < [/]8]
&L <o in ["(m x m) and f < " in I"(m x n).

Note also that A(m x n) is a distributive lattice.
For v € I'(m x n), we set I'(m x n;y) := {6 € I'(m xn) | § > ~}.
[(m x n;v) and A(m X n;0) are defined similarly.

For an m x n matrix M = (m;;) and 6 = [a|f] = [c1,...,¢|dy, ..., d.] €
A(m x n), we denote the minor det(mcq;) by o or [a|B]n. We also
denote the maximal minor det(ms,) of M by 0y or [ci1,...,cm|n, Where
d=[c1y...,cm] € T(m xn).

Now let V' be an n-dimensional k-vector space. Then the set of m-
dimensional subspaces of V' has a structure of an algebraic variety, called
the Grassmann variety. We denote this variety by G,,(V). It is known that
if X = (Xj;) is the m x n matrix of indeterminates, i.e., entries X;; are in-
dependent indeterminates, then k[I'(X)] is the homogeneous coordinate ring
of G (V).

Now fix a complete flag 0 =V, C Vi C --- C V,, =V of subspaces of V.

Definition 2.1 For [ay,...,a,] € I'(m x n), we define Q(ay,...,a,) =
{WeGn(V)|dm(WnV,,)>ifori=1,2,..., m}.

It is known that Q(ay, . .., a,,) is subvariety of G,, (V') and called the Schubert
subvariety of G, (V).
Set by :==n —apm_j1+1fori=1,..., mand vy := [by,by,...,by] €
I'(m x n). It is known that there is the universal m x n matrix Z, with
i((Zy)<p;—1) = (0) for ¢ =1, ..., m. That is,

Ii(
(1) L((Z,)<p;—1) = (0) for i =1, ..., m and
(2) if ;(M<p,—1) = (0) fori = 1, ..., m for a matrix with entries in some k-

algebra S, then there is a unique k-algebra homomorphism k[Z,] — S
which maps Z, to M.



And it is also known that k[Z,] is the homogeneous coordinate ring of

Qay, ..., ay).
Set
Wi Wi o Wiy
Wor Way - Wy,
W .= . . .
Wml Wm2 Wmm
and
0 -+ 0 Uy, - Uwpy Uy -+ -+ Uy, - U
0 --- 0 0 ... 0 Usyy -+ -+ Uy, - Usp
0 --- 0 0 ... 0 0 0 Uy - Unn

where W;; and U;; are independent indeterminates. Then
Theorem 2.2 ([Miy]) WU, has the universal property above.
So we set Z, := WU, in the following.

3 Sagbi bases of the rings of invariants

For any g € GL(m, k), 1;((9Zy)<p;—1) = (0) for i =1, ..., m. So there is a
k-automorphism of k[Z,] sending Z, to ¢gZ.,, i.e., any subgroup of GL(m, k)
acts on k[Z,].

Definition 3.1 f € k[Z,] is called an absolute SL(m)-invariant if f is an
SL(m, B)-invariant in B[Z,] for any k-algebra B. The set of absolute SL(m)
invariants is denoted by k[Z,]3L0™~). Absolute O(m) and SO(m) invariants
are difined similarly.

In this section, we study the rings of invariants or absolute invariants of
several subgroups of SL(m).

Set
o E, O
Gy = {( . P ) \PESL(m—l,k),} and
Gy = {( © 0 ) 1Q e SL(LK), P e SL(m—l,k),}.
First we recall the following results.

Theorem 3.2 Let m’ be an integer with m’ > m and X an m x m' matirx
of indeterminates. Then



(1) (DeConcini-Procesi [DP]) k[X]3*™=) = E[T(X)].

(2) (Goto-Hayasaka-Kurano-Nakamura [GHKN]) If k is an infinite field,
then k[X]% = k[XED T(X)).

(8) (DeConcini-Procesi [DP]) k[X]°(™ ™) = k' X X].

(4) (DeConcini-Procesi [DP]) k[X]3°m~) = k[ X X, T\(X)].
Corollary 3.3 (1) k[W]SL0m=) = E[det W].

(2) If k is an infinite field, then k[W]%1 = k[W (D det W),

(8) k[W]Om=) = kW V).

(4) k[W]3Om=) = E['WW, det W].
Lemma 3.4 If k is an infinite field, then k[W]%? = k[[ (W<=!), det W].

proof Since G| C Gy, we see that k[IW]%2 C k[W]% = k[W(ED det W]. So
if f € k[W]%, we can write

f=fo+ fuldet W) + - + f,(det W)*,

where f; € k[W(=D]. Since det W is transcendental over k[IW (V] and since
f € k[W]%, we see that fi € k[W]SLR. for i = 0, ..., u. Therefore
f € k[L(WED)) for i = 0, ..., u (see e.g. [BV]) and we see that f €
KL (WD), det W]. The opposite inclusion relation is clear. i

Now we introduce degree lexicographic order on the polynomial ring
k[W,Uﬁ/] by Wi > Wy >0 > Wt > Wia > o0 > Whm > U1b1 >
U1b1+1 > > U, > U2b2 > ... > U,,. Then

Theorem 3.5 (1) {dz, |d ¢ F(m ><n v)} is a sagbi basis of k[det W, U,|N
k[Z,). In particular, k[Z,]54™7) = k[det W, U,] N k[Z,] = k[[(Z,)].

(2) {0z, | 0 € T(m x niy)}p UAlelfle | [olfl € Al x
n; [, by, .. b))} is a sagbi basis of k[W S det W, U,] N k[Z,].
In particular, k[Z,)% = kWD, det W, U, N k[Z,] = k[Z0,T(Z,)].

(8) {6z, | 0 € I'(m x n;y)} U {(5' < | o € T'(Il x n;[by,...,0))} is a

sagbi basis of k[[(WED) det W, U L NEk[Z,). In particular, k[Z,]9? =
E[L(W(SD), det W, U, Nk[Z,] = k[r(zgﬁ“), r(Z,)].



(4) {[a|Bliz,z, | a,B € T'(m x n;v), a < B, sizea = sizef} is a sagbi
basis of kK['WW,U,|Nk[Z,]. In particular, k[Z,]°0) = k['WW,U,]N
k[Zv] = k[tZWZW]'

(5) {[olBlezz, | 0,5 € T'(m x ni), o < B, sizea = sizef} U {65, | 6 €
I'(mxn;v)} is a sagbi basis of K['WW,det W, U,|Nk[Z,]. In particular,
k[ Z,]50007) = K['WW, det W, U, N k[Z,] = k['Z, Z,,T(Z,)).

4 Doset Hibi rings and their generalizations

In this section, we introduce a new concept “doset Hibi ring” and its gener-
alization, which are certain subrings of a Hibi ring.

First we recall the concept of Hibi ring. Let H be a finite distributive
lattice, P the set of join-irreducible elements of H (i.e., elements of H such
that z = aV = o = aor v = (), {Xa}acr a family of indeterminates
indexed by H and {7, }.cp a family of indeterminates indexed by P.

Definition 4.1 (Hibi [Hib]) Ry(H) := k[[],.. T. | a € H].

r<a

Nowadays, Ry(H) is called the Hibi ring.

Theorem 4.2 (Hibi [Hib]) Ry(H) is a homogeneous ASL (algebra with
straightening law, ordinal Hodge algebra in the terminology of [DEP]) over k
generated by H with straightening relation aff = (a A B)(a V B) for any «,
B € H with a o¢ 5. That is Ri(H) ~ k[X, | a € H]/(XoXs — XangXavs |
a,B€H) by Xo— [l,e, Tn

Set 7(P):={v: P— N |a<b= v(a) >v(b)}. Then

Theorem 4.3 (Hibi) Ry (H) is a free k-module with basis {T" | v € T(P)},
where TV == [],cp T,

Let us recall the definition of dosets ([DEP]). Set Diagy := {(a, @) | o €
H} and Op :={(o,B) |, 0 € H, a < (}.

Definition 4.4 (DeConcini-Eisenbud-Procesi [DEP]) A set D C H X
H is called a doset if

(1) Diagy € D C Oy and
(2) if a1 < ay < ag, then

(aq,0a3) € D < (a1, a9) € D and (az, a3) € D.



Now let L be a distributive lattice, ¢: H — L a surjective lattice homo-
morphism. We define D := {(a, 8) | @ < 3, p(a) = ¢(F)}. Then it is easily
verified that D is a doset.

Definition 4.5 Doset Hibi ring over k defined by H, ¢ is the subalgebra of
Ri(H) generated by {af | (a, 8) € D}.

Note that if («, 3), (o/, ') € D, then afd/f = (a Ad')(aV ) (BAF) (B
B) =(and)((aVa)An(BAG)((aVva)V(BAF))EVE) and o((a
o)A (BAB)) = (pl) V() A(p(B) Ap(B) = (pla) Ve(a')) A(p(a)
P(0)) = pl(a) A pla’) = pla A ') since p(a) = p(8) and p(a’) = (8
So (¢ Ny (aVva)N(BAP)) € D. And we see that ((a VvV /) V (f
3,8V (') € D by the same way. Therefore by repeated application of this
“straightening relation”, we see that the doset Hibi ring is a free k-module
with basis {oqag - a9 | a1 < ay < -+ < ag,, (agi_1,a9) € D for i =1,

, T}

Now let @) be the set of join-irreducible elements of L. For x € (), we set
a; =N\ Bep—1(x) (. It is directly verified that «, is a join-irreducible element
of H, ie., a, € Pfor any z € Q. So if we set T := {v € T(P) | v(ay) =0
(mod 2) for Vz € @}, then

Theorem 4.6 Doset Hibi ring is a free k-module with basis {T" | v € T }.

The key point of the proof is the fact that o, < < = < o(f) for g € H
and x € Q.

Next we generalize the concept of doset Hibi rings. Suppose that L is
decomposed into two sublattices as L = Ly @ Lo, i.e., L = L1 U Ly (disjoint
union) with L; is join and meet closed for i = 1,2 and £ € Ly, n € Ly = £ <

n.

Definition 4.7 The generalized doset Hibi ring over k defined by H, Ly, Lo
is the subalgebra of Ry (H) generated by {af | (o, 3) € D}U{a | ¢(a) € Ly }.

It is easily verified that the generalized doset Hibi ring defined by H, Ly, Lo,
is a free k-module with basis {ajag -+ . 0102 fos | 1 < -+ <, < B <
- < Bas, i € Ly, B € Lo and o(Baj—1) = ©0(B25) }-
Since L; is a distributive lattice for ¢ = 1, 2, we denote the set of join-
irreducible elements of L; by @);. Then if we put T = {veT(P)]|v(ag) =0
(mod 2) for Yz € 2}, we see the following

Theorem 4.8 Generalized doset Hibi ring is a free k-module with basis {T" |
veT '}



Hibi rings, doset Hibi rings and generalized doset Hibi rings are affine
semigroup rings of k[T, | a € P]. Let us recall the following results of affine
semigroup rings by Hochster.

Theorem 4.9 (Hochster [Hoc]) Let S be a finitely generated submonoid
of N". Then

(1) Ek[S] is normal if and only if S = R>0S N ZS.
(2) If k[S] is normal, the k[S] is Cohen-Macaulay.

Corollary 4.10 Hibi rings, doset Hibi rings and generalized doset Hibi rings
are normal Cohen-Macaulay.

Now we apply these results to the initial algebras of the rings of (absolute)
invariants.

Set L :={1,2, ..., m} with reverse order. Then ¢ := size is a surjective
lattice homomorphism from I'V(m x n) to L. Set L1 = {m} and Ly = {1, ...,
m — 1}. Then

Theorem 4.11 (1) ink[I'(Z,)] is the Hibi ring on I'(m x n;~).

(2) ink[Zﬂ(YSZ),F(Zv)] is the Hibi ring on T(m x n;y) U A(l x
ny (1, by, b))

(3) in k[L(Z), I'(Z,)] is the Hibi ring on I'(mxmn;y)UL'(Ixn; by, ..., b]).
(4) nk['Z,Z,] is the doset Hibi ring on I'(m x n;~y) and L.

(5) mk['Z,Z,,T'(Z,)] is the generalized doset Hibi ring on I"(m xn;~y) and
Ly, Lo,

Corollary 4.12 All the rings above and their original rings are normal and
Cohen-Macaulay.

5 Gorenstein property

In this section, we state criteria of Gorenstein property of the rings of (ab-
solute) invariants.
First we recall the following result of Stanley.

Theorem 5.1 (Stanley [Sta]) Let A be a graded Cohen-Macaulay domain
over k. Then A is Gorenstein if and only if H(A,A\7') = (=1)4NVH(A,))
for some p € Z, where H(A, —) is the Hilbert series of A.



Note that if A is a graded subring of a polynomial ring with monomial or-
der, then A and in A have the same Hilbert function. So if in A is Cohen-
Macaulay, then A is Gorenstein if and only if in A is Gorenstein.

Next we recall the Stanley’s description of the canonical module of a
normal affine semigroup ring.

Theorem 5.2 (Stanley [Sta]) IfS is a finitely generated submonoid of N™
such that A = k[S] is normal, then K4 = @ ETV, where K 4 is

the canonical module of A.

verelint R>0SNS

Let H be a finite distributive lattice, P the set of join-irreducible elements
of H. Set

T(P):={veT(P)|a<b= v(a)>v(b) and v(a) > 0 for Ya € P},

T =T NT(P)and T" := T NT(P). Then with the notation defined
in the previous section, the canonical module of the Hibi ring, the doset
Hibi ring and the generalized doset Hibi ring are the free k-modules with
basis {T" | v € T(P)}, {T" | v € T'} and {T" | v € T"} respectively. In
particular,

Corollary 5.3 (Hibi [Hib]) Ry(H) is Gorenstein if and only if P is pure.

Now let P; be the set of join-irreducible elements of I'(m x n;~), P, the
set of join-irreducible elements of I'(m x n;v) UA(l x n;[1,...,1|b1,..., b)),
P the set of join-irreducible elements of I'(m x n;~y) UT'(l X n; [by, ..., b)),
Py the set of join-irreducible elements of I''(m x n; 7).

An element [c1,...,¢,] € T(m X n;7v) is a non-minimal join-irreducible
element of I'(m x n;-) if and only if there is unique 7 such that ¢; > b; and
¢; > ¢;i—1+ 1, where ¢y := 0. For such [cy,...,¢p], set p:=n—c¢; —(m—1i) =
{jlj>ci,jé&{c,...,em}}andq:=i—1={j|j<c,je€{c1,...,cm}}
This makes an order reversing map form P; \ {unique minimal element} to
N x N.

Example 5.4 Let m = 7, n = 15 and v = [1,5,6,7,9,12,13]. Then the
Hasse diagram of P; \ {7} is the following.



[1,5,6,11,12,13,14] is a join-irreducible element with i =4, p =1, ¢ = 3.
Minimal elements of P, \ {v} are [1,5,6,7,9,12,14], [1,5,6,7,10,12,13],
[1,5,6,8,9,12,13] and [2,5,6,7,9,12, 13)].

Set {u | by +1 < by} = {wr,...,u} with vy < --- < u;, where
bm+1 = n + 1 and Xo ‘= {1,2,...,61 — 1}, Bl —- {bl,bg,...,bul},
X1 = {bul + 17bu1 + 27"'7bu1+1 - 1}7 BQ = {bul+17bU1+27--'7bu2}7

X2 = {bu2 + 1,bu2 + 2, e ,bu2+1 — 1}, B3 = {bu2+1,bu2+2, .. .,bu3}, ey
By = {bu,_111,buy_142, -0}y x¢ = {by, + 1,by, +2,...,by,41 — 1} and
Bii1 = {bu,+1, bugr2s - - - bin }-

Example 5.5 For the above example t =4, u1 =1, us =4, u3 =5, ug =7
and xo = 0, By = {1}, x1 = {2,3,4}, By = {5,6,7}, xo = {8}, B3 = {9},
x3 = {10,11}, B, = {12,13}, x4 = {14, 15} and Bs = ().

So

Theorem 5.6 (Svanes [Sva]) k[['(Z,)] is Gorenstein if and only if |B;| =
IXiz1| fori=2,3,...,t, ie, n—b, —m-+2u; —2 is constant.

Consider P; and P, next. Non-minimal elements of P are
(1) non-minimal join-irreducible element of Py,

(2) join-irreducible element [cy, ..., ¢] of T'(I x n;[by, ..., b)) with ¢ > n —
m + [ or

(3) [b1,...,b].
These are also elements of P,. And P has elements of fourth type.
(4) Join-irreducible element of A(Ixn;[1,... by, ..., b]) with size < [—1.
So by considering the purity of P, and P, we see the following

Theorem 5.7 (1) If uy > I, then k[ZSSl), I'(Z,)] is Gorenstein if and only
Zf|Bl| = ‘Xi71| fO'I"’i = 27 37 crey t.

(2) If uy < I, then k:[Zg”,F(Zﬁ] is Gorenstein if and only if m — 1 =
n—>by,, —m+2u—1foranyi=1,2, ..., ¢

Theorem 5.8 k[F(Z§§l)), I'(Z,)] is Gorenstein if and only if k[ZSSl), I'(Z,)]
is Gorenstein.



Now consider the Gorenstein property of the rings of absolute O(m) and
SO(m)-invariants. The Hasse diagram of P, is the one adding some planer
lattice upper left side of the Hasse diagram of P;.

Example 5.9 Let m = 7, n = 15 and v = [1,5,6,7,9,12,13]. Then the
Hasse diagram of P, \ {7} is the following.

g

(&%)

a3

Oy

a5

(675}

Example 5.10 Change n to 13 and keep m and v to be the same. That
is, m="7,n=13 and v = [1,5,6,7,9,12,13]. Then the Hasse diagram of
Py \ {7} is the following.

631

Qg

ag

Oy

Q5

Qg

By examining the positions of o; (i = 1, ..., m — 1) and ~, we see the
following results.

Theorem 5.11 (Conca [Con]) (1) If b, < n, then k['Z,Z,] is Goren-
stein if and only if |B;| = |xi—1| fori =2, 3, ..., t and |x¢| = 1
(mod 2).



(2) If by, = n, then k['Z,Z,] is Gorenstein if and only if |B;| = |xi-1| for
i=2,3,...,t and |Bip1| = |xe| — 1.

Theorem 5.12 (1) If b,, < n, then k['Z,Z,,T'(Z,)] is Gorenstein if and
only if | Bi| = |xi-1| fori=2,3, ..., t.

(2) Ifb,, =n, then k['Z,Z,,T'(Z,)] is Gorenstein if and only if | B;| = |xi-1|
fori=2,3, ..., t+1.
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