Derived equivalences and Gorenstein algebras

Hiroki Abe and Mitsuo Hoshino

In this note, we introduce the notion of Gorenstein algebras. Let R be a com-
mutative Gorenstein ring and A a noetherian R-algebra. We call A a Goren-
stein R-algebra if A has Gorenstein dimension zero as an R-module (see [2]),
add(D(4A)) = Pa, where D = Hompg(—, R), and A, is projective as an Ry-
module for all p € Spec R with dim R, < dim R. Note that if dim R = oo
then a Gorenstein R-algebra A is projective as an R-module and that A is a
Gorenstein R-algebra if A is projective as an R-module and add(D(44)) = Pa.
Also, in case R is equidimensional and A, # 0 for all p € Spec R, a Gorenstein
R-algebra A with A ~ DA in Mod-A® is a Gorenstein R-order in the sense of
[1]. In Section 3, we see that a Gorenstein R-algebra A enjoys properties similar
to those of R. Especially, A satisfies the Auslander condition (see [5]) and for
any nonzero P* € K=(P4) we have Homyniod-4)(P*®, Ali]) # 0 for some i € Z.

Unfortunately, the class of Gorenstein R-algebras is not closed under de-
rived equivalence in general (see Example 4.9). In Section 4, for a tilting com-
plex P*® over a Gorenstein R-algebra A we show that B = EndK(Mod_A)(P')
is also a Gorenstein R-algebra if and only if add(P®) = add(vP*®), where
v = D oHomg(—,A). In particular, the class of Gorenstein R-algebras A
with A ~ DA in Mod-A° is closed under derived equivalence. More pre-
cisely, for any partial tilting complex P® over a Gorenstein R-algebra A with
A~ DA in Mod-A°, B = Endg(mod-4)(P*) is also a Gorenstein R-algebra with
B ~ DB in Mod-B®°. Then, in Section 5, we provide a construction of such
tilting complexes. Namely, we show that tilting complexes P*® associated with
a certain sequence of idempotents in a Gorenstein R-algebra A satisfy the con-
dition add(P*) = add(vP*).

In Sections 6 and 7, we deal with the case where R is a complete local ring
and A is free as an R-module. For a tilting complex P*® constructed in Section
5, we show that B = Endgod-4)(P*®) is also free as an R-module and then
provide a way to construct a two-sided tilting complex corresponding to P°.
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Simultaneously, we provide a sufficient condition for a free R-algebra B con-
taining A as a subalgebra to be derived equivalent to A.

Finally, in Section 8, we ask when a partial tilting complex P® appears as a
direct summand of a tilting complex. This is not the case in general (see [15,
Section 8]). We show that the question is affirmative if P* has length 1 and
P € add(vP*).

Let A be a ring. We denote by Mod-A the category of right A-modules and
mod-A the full subcategory of Mod-A consisting of finitely presented modules.
We denote by Proj-A (resp., Inj-A) the full subcategory of Mod-A counsisting of
projective (resp., injective) modules and by P4 the full subcategory of Proj-A
consisting of finitely generated projective modules. We denote by A°P the op-
posite ring of A and consider left A-modules as right A°?-modules. Sometimes,
we use the notation X4 (resp., 4X) to stress that the module X considered is
a right (resp., left) A-module. For an object X in an additive category B, we
denote by add(X) the full subcategory of B whose objects are direct summands
of finite direct sums of copies of X and by X (™ the direct sum of n copies of
X. In case B has arbitrary direct sums, we denote by Add(X) the full subcat-
egory of B whose objects are direct summands of direct sums of copies of X.
For a cochain complex X*® over an abelian category A, we denote by B™(X?*),
ZM(X*), B (X*®), Z™(X*) and H*(X*) the n-th boundary, the n-th cycle, the
n-th coboundary, the n-th cocycle and the n-th cohomology of X°, respectively.
For an additive category B, we denote by K(B) (resp., K*(B), K~ (B), K’(B))
the homotopy category of complexes (resp., bounded below complexes, bounded
above complexes, bounded complexes) over B. As usual, we consider objects of
B as complexes over B concentrated in degree zero. For an abelian category A,
we denote by D(A) (resp., D*(A), D~ (A), D"(A)) the derived category of com-
plexes (resp., bounded below complexes, bounded above complexes, bounded
complexes) over A. We always consider K*(B) (resp., D*(A)) as a full triangu-
lated subcategory of K(B) (resp., D(A)), where * = +, — or b. Finally, we use
the notation Hom®(—, —) (resp., — ®* —) to denote the single complex associ-
ated with the double hom (resp., tensor) complex (cf. Remark 1.11).

We refer to [6], [9], [17] for basic results in the theory of derived categories,
to [15], [16] for definitions and basic properties of derived equivalences, tilting
complexes and two-sided tilting complexes and to [12] for standard commutative
ring theory.

1 Preliminaries

Throughout this note, R is a commutative ring and A is an R-algebra, i.e., A
is a ring endowed with a ring homomorphism R — A whose image is contained
in the center of A. We set D = Homp(—, R). Note that for any X € Mod-A we
have a functorial isomorphism in Mod-A°P

DX = Homu (X, DA),h +— (x — (a — h(za))).



For R-algebras A, B we identify an (A°°® B)-module X with an A-B-bimodule
X such that ro = zr for all r € R and « € X. Also, for an R-algebra A we set
A® = A°P ®R A.

In this section, we recall several definitions and basic facts which we need in
later sections.

Definition 1.1. A module X € Mod-R is said to be reflexive if the canonical
homomorphism
ex: X = D*X,z — (h— h(x))

is an isomorphism, where D?X = D(DX).

Definition 1.2 (cf. [2]). A module X € Mod-R is said to have Gorenstein
dimension zero if X is reflexive, Exts (X, R) = 0 for ¢ > 0 and ExtR (DX, R) =0
for i > 0.

Lemma 1.3 ([2, Lemma 3.10]). Let 0 - X — Y — Z — 0 be an ezact
sequence in Mod-R. Then the following hold.

(1) If Y, Z have Gorenstein dimension zero, so does X .

(2) Assume Exth(Z,R) = 0. If X, Y have Gorenstein dimension zero, so
does Z.

Lemma 1.4. For any X* € K(Mod-R) we have a functorial homomorphism
Exe : HY(DX*®) — DH(X*®)
and the following hold.
(1) If B9 (DX*®) = DB°(X*) canonically, then {xe is monic.
(2) If BY(DX*) = DB°(X*) canonically and Exty(B°(X*®),R) = 0, then

Exe is an isomorphism.

Lemma 1.5. Let A, B be derived equivalent R-algebras. Let F : KP(Pg) =
KP(P4) be an equivalence of triangulated categories and F* : KP(P4) = KP(Pp)
a quasi-inverse of F. Set P* = F(B) € K*(P4) and Q* = Hom%(F*(A),B) €
KP(Pgov). Then for any i € Z we have an isomorphism in Mod-(B°° @ A)

Homg Mod-) (4, P°[i]) ~ Hom mod-por) (B, Q°[4])
and an isomorphism in Mod-(A°? ® g B)
Homk nod-a) (P*, Ali]) ~ Homg mod-per) (Q°, Blil).
Definition 1.6. For any nonzero P* € K~ (Proj-A) we set
a(P*) = max{i € Z | H'(P*) # 0}
and for any nonzero P* € KT (Proj-A) we set

b(P*) = min{i € Z | Homg oa-4) (P*[i], Proj-A) # 0}.



Then for any nonzero P* € KP(Proj-A) we set
I(P*) =a(P*®) — b(P*)
which we call the length of P°.
Remark 1.7. For any complex X*® and n € Z we define truncations
Ten(X®) e — X2 X L (X)) 0
U’Zn(X°) i = 072X — Xt xnt2

Then P® ~ o<, (P*®) for any nonzero P* € K~ (Proj-A), where a = a(P*), and
P* =~ o, (P*) for any nonzero P* € K*(Proj-A), where b = b(P*).

Lemma 1.8. Assume A is finitely generated projective as an R-module. Then
for any P* € KT(Pa) and Q* € K~ (Pa) with Homgioa-a)(P*, Q%[i]) = 0 for
i > 0, Homg(noa-4) (P, Q%) is finitely generated as an R-module.

Definition 1.9 (cf. [3]). An idempotent e € A is said to be local if eAe is a
local ring. A ring A is said to be semiperfect if 1 =e; +---+ e, in A with the
e; orthogonal local idempotents.

Lemma 1.10. Assume R is a complete noetherian local ring and A is finitely
generated as an R-module. Then A is semiperfect and the Krull-Schmidt theo-
rem holds in mod-A, i.e., for any nonzero X € mod-A the following hold.

(1) X decomposes into a direct sum of indecomposable submodules.
(2) X is indecomposable if and only if End A (X) is local.

Remark 1.11 ([16, Section 4]). Let A, B and C be projective R-algebras. Then
the following hold.

(1) Let X* € K~ (Mod-(B°?* @ A)) and Y* € KT (Mod-(C°? @ A)). If either
each term of X* is projective as an A-module or each term of Y® is injective
as an A-module, then the canonical homomorphism in D(Mod-(C°°?®g B))

Hom$% (X*,Y*) — RHom%(X*,Y*)
is an isomorphism.

(2) Let X* € K- (Mod-(B°*®r A)) and Y* € K~ (Mod-(A4°°? @ C)). If either
each term of X* is flat as an A-module or each term of Y is flat as an
A°P-module, then the canonical homomorphism in D(Mod-(B° ®@g C))

X* ®£ Y® - X°* ®:4 Yye

is an isomorphism.



2 Nakayama functor

In the following, we set v = D o Hom4(—, A). Note that for any P € P4 we
have a functorial isomorphism in Mod-A

P®s DA S vPx®h— (g h(g(x))).

Lemma 2.1. For any P* € KP(P4) and Q* € K(Mod-A) we have a bifunctorial
isomorphism of complexes

DHom®, (P*,Q°®) ~ Hom%(Q®,vP*).

Lemma 2.2. For any P* € KP(P4) and Q® € K(Mod-A) we have a bifunctorial
homomorphism

€pe,q+ - Homgwod-)(Q%, vP*) — DHomgod-a) (P*, Q°).

Furthermore, in case Q* € K™ (Proj-A) and Homgwioa-a)(P*, Q%[i]) = 0 for
i > 0, the following hold.

(1) Epe.ge is monic if Exth(A,R) =0 for 1 <i < a(Q*) — b(P*).
(2) Epe.ge is an isomorphism if Exth(A, R) =0 for 1 <i < a(Q*) — b(P*).

Corollary 2.3. Assume Ext'(A, R) = 0 fori > 0. Then for any P* € KP(P,)
with Homg(vod-a) (P®, P*[i]) = 0 for i > 0 we have Homg(nioa-a) (P*, vP*[i]) =
0 fori < Q0.

Definition 2.4. For any P* € KP(P4), we denote by C(P*) the full subcategory
of D™ (Mod-A) consisting of X* with Homp(niod-4)(P*®, X *[i]) = 0 for i # 0.

Lemma 2.5. Assume A is reflexive as an R-module and add(D(4A)) = Pa.
Then we have an equivalence v : P4 — Pa. In particular, for any tilting complex
P* € KP(Pa), vP® is also a tilting complex and the following are equivalent.

(1) vP* € C(P*) and P* € C(vP"*).
(2) add(P*) = add(vP*).
Lemma 2.6. Assume A~ DA in Mod-A®. Then the following hold.

(1) For any P* € K(Pa) we have a functorial isomorphism of complezes
vP® ~ P°.

(2) A has Gorenstein dimension zero as an R-module if and only if Ext's (A, R)
=0 fori>D0.

Proposition 2.7. Assume A ~ DA in Mod-A® and A has Gorenstein dimen-
sion zero as an R-module. Let P* € KP(Pa) with Homg voq-a) (P, P*li]) = 0
for i #0 and B = Endgiod-4)(P*). Then B ~ DB in Mod-B°.



3 Gorenstein algebras

In this section, we introduce the notion of Gorenstein R-algebras over a Goren-
stein ring R. We refer to [4] for the definition and basic properties of Gorenstein
rings.

Lemma 3.1. For any X € Mod-R the following hold.
(1) If X is injective, so is Hompg(4A, X).

(2) Assume A is finitely generated projective as an R-module and D(4A) €
Pa. If X is flat, so is Hompg(4A, X).

Definition 3.2. A module 7' € Mod-A is called a tilting module if there exists
a tilting complex P* € KP(P4) such that H (P®*) = 0 for i # 0 and HO(P®) ~ T
in Mod-A4, ie., P* ~ T in D(Mod-A).

Remark 3.3 (cf. [14]). A module T € Mod-A is a tilting module if and only if
the following conditions are satisfied:

(1) Exty(T,T) =0 for i > 0;

(2) there exists an exact sequence 0 — P~ — ... — P® - T — 0 in Mod-A
with P~% € P4 for all 0 < i < I; and

(3) there exists an exact sequence 0 — A4 — T° — --- — T™ — ( in Mod-A
with 7% € add(T) for all 0 < i < m.

Definition 3.4 (cf. [9] and [13]). Assume A is a left and right noetherian
ring. Then a complex V* € D?(Mod-A°) is called a dualizing complex for A if
the following conditions are satisfied:

(1) H (V%) € mod-A and H'(4V'*) € mod-A°P for all i € Z;
(2) V3 € KP(Inj-A) and 4V* € KP(Inj-A°P);

(3) HomD(Mod—A) (VA., VA. [Z]) =0for 7& 0 and HomD(Mod_Aop)(AV', AV.[Z]) =
0 for ¢ # 0; and

(4) the left multiplication of A on each homogeneous component of V'* gives
rise to an R-algebra isomorhism A = Endpvod- A)(Vg) and the right
multiplication of A on each homogeneous component of V'*® gives rise to
an R-algebra isomorhism A = Endp(vod-aor)(aV*)P.

Definition 3.5 (cf. [5]). A left and right noetherian ring A is said to satisfy
the Auslander condition if it admits an injective resolution A4 — E*® in Mod-A
such that flat dim E™ < n for all n > 0.

Throughout the rest of this section, we assume R is noetherian and A is a
noetherian R-algebra, i.e., A is finitely generated as an R-module. We denote
by dim R the Krull dimension of R, by Spec R the set of prime ideals in R



and by (—), the localization at p € Spec R. Note that we do not exclude the
case where A, = 0 for some p € Spec R, i.e., the kernel of the structure ring
homomorphism R — A may not be nilpotent. Also, if R is a Gorenstein ring
and Ext%(A,R) = 0 for i > 0, then A has Gorenstein dimension zero as an
R-module.

Lemma 3.6. Assume Exth(A, R) =0 fori > 0. Then the following hold.

(1) For an injective resolution R — I® in Mod-R, we have an injective reso-
lution D(4A) — Hom¥% (4 A, I*) in Mod-A.

(2) For any X € Mod-A, we have Ext’y (X, DA) ~ Ext'(X, R) for all i > 0.
(3) If R is an equidimensional Gorenstein ring, then inj dim D(4A) = dim R.

Proposition 3.7. Assume R is a Gorenstein ring with dim R < oo and A has
Gorenstein dimension zero as an R-module. Then the following hold.

(1) proj dim D(4A) < oo if and only if inj dim 4 A < oo.

(2) D(4A) is a tilting module if and only if inj dim 4 A = inj dim A4 < oo.

(3) If add(D(4A)) = P4, then inj dim 4 A =inj dim A4 < dim R.

(4) For a minimal injective resolution R — I*® in Mod-R, Hom¥%(A,I*) €
DP(Mod-A°®) is a dualizing complex for A.

Proposition 3.8. Assume R is a Gorenstein ring, A has Gorenstein dimension
zero as an R-module and 4 A € add(D(Aa)). Then for any nonzero P* €
K™ (Pa) we have Homgioa-a)(P*, Ali]) # 0 for some i € Z.

Proposition 3.9. Assume R is a Gorenstein ring, A has Gorenstein dimension
zero as an R-module, add(D(4A)) = Pa and A, is projective as an R,-module
for all p € Spec R with dim R, < dim R. Then A satisfies the Auslander

condition.
Now, we propose to define the notion of Gorenstein algebras as follows.

Definition 3.10. Assume R is a Gorenstein ring. A noetherian R-algebra
A is called a Gorenstein R-algebra if A has Gorenstein dimension zero as an
R-module, add(D(4A)) = Pa and A, is projective as an R,-module for all
p € Spec R with dim R, < dim R. In particular, if A is projective as an
R-module and add(D(4A)) = Pa, then A is a Gorenstein R-algebra.

Remark 3.11. Assume R is a Gorenstein ring and A is a Gorenstein R-algebra.
Then the following hold.

(1) If dim R = oo, then A is projective as an R-module.
(2) For any p € Spec R with A, # 0, A, is a Gorenstein Ry-algebra.

Consider the case where R is an equidimensional Gorenstein ring and A, # 0
for all p € Spec R. Then a Gorenstein R-algebra A with A ~ DA in Mod-A°® is
a Gorenstein R-order in the sense of [1, Chapter III, Section 1].



4 Derived equivalences in Gorenstein algebras

In this section, for a tilting complex P*® over a Gorenstein R-algebra A we
ask when B = Endg(nod-4)(P*®) is also a Gorenstein R-algebra. This question
does not seem to depend on the base ring R. So we assume R is an arbitrary
commutative ring unless otherwise stated.

We fix a nonzero P* € KP(P,4) with Homgoa.4)(P®, P*[i]) = 0 for i # 0.
Set B = Endgkmod-4)(P*) and X* = Hom%(P*, P*) € K"(add(Ag)). Since
H"(X*) =0 for ¢ # 0, we have exact sequences of the form

(%) 0—7Z9%X*) - X0 — ... 5 Xt >0,
()¢) 0= Xt —. ... 5 X1 5 70(X*) - B—0.

Lemma 4.1. Assume Exti(A, R) =0 for i > 0. Then the following are equiv-
alent.

(1) Exts(B,R) =0 fori> 0.
(2) vP* € C(P*).

Lemma 4.2. Assume A has Gorenstein dimension zero as an R-module. Then
the following are equivalent.

(1) B has Gorenstein dimension zero as an R-module.
(2) vP* € C(P*).

Lemma 4.3. Assume A is finitely generated projective as an R-module. Then
the following are equivalent.

(1) B is finitely generated projective as an R-module.
(2) vP® € C(P*).

Lemma 4.4. Assume R is noetherian and A is finitely generated as an R-
module. Then for any p € Spec R with A, projective as an Ry-module the
following are equivalent.

(1) B, is projective as an Ry-module.
(2) Homgiod-a)(P*,vP*[i])y, = 0 fori # 0, this is the case if vP* € C(P*).

Theorem 4.5. Assume A ~ DA in Mod-A® and A has Gorenstein dimension
zero as an R-module. Then the following hold.

(1) B ~ DB in Mod-B® and B has Gorenstein dimension zero as an R-
module.

(2) If A is finitely generated projective as an R-module, so is B.



(3) Assume R is noetherian and A is finitely generated as an R-module. Then
for any p € Spec R, if A, is projective as an Ry-module, so is By.

Throughout the rest of this section, we assume P*® is a tilting complex.

Proposition 4.6. Assume A has Gorenstein dimension zero as an R-module
and add(D(4A)) = Pa. Then the following are equivalent.

(1) B has Gorenstein dimension zero as an R-module and add(D(pB)) = Pp.
(2) vP* € C(P*) and P* € C(vP"*).
(3) add(P*®) = add(vP*).

Proposition 4.7. Assume A is finitely generated projective as an R-module
and add(D(4A)) = Pa. Then the following are equivalent.

(1) B is finitely generated projective as an R-module and add(D(pB)) = Pp.
(2) vP* € C(P*) and P* € C(vP*).
(3) add(P*®) = add(vP*).

Theorem 4.8. Assume R is a Gorenstein ring and A is a Gorenstein R-algebra.
Then the following are equivalent.

(1) B is a Gorenstein R-algebra.
(2) vP® € C(P®) and P* € C(vP*).
(8) add(P*) = add(vP*).

Example 4.9. Assume R contains a regular element ¢ which is not a unit. Let
R R
A= (cR R)

be a free R-algebra of rank 4 and set

/(10 /(00 /(00 (O
“e=%0 o) 27 o 1)0 “T\¢c o) ™ "7 \o o)

It is easy to see that v(e;A) ~ es A and v(egA) ~ e1 A. In particular, D(4A) ~
Ay. Set PP = e1A[l] and let Py be the mapping cone of h: e A — e A,z —
ax. Then Cok h ~ R/cR in Mod-R and Hompg(Cok h,e;A) = 0. Thus
Hom 4 (Cok h,e;A) = 0 and by [10, Proposition 1.2] P* = PP @ Py € KP(P4) is
a tilting complex. On the other hand, v Py is isomorphic to the mapping cone of
the homomorphism ez A — ey A, x +— bz, and hence Homg \ioa-a) (Pr, v Py [1]) #
0. Thus vP* ¢ C(P*) and by Lemma 4.1 Ext}%(B7 R) # 0, where B =
Endk(nod-4)(P*). More precisely, we have an R-algebra isomorphism

o (5 1)

Note that if R is a Gorenstein ring then A is a Gorenstein R-algebra.



At present, we do not have any example of tilting complexes P® over a
Gorenstein R-algebra A such that vP® € C(P*) and add(P*) # add(vP*).

Proposition 4.10. Assume A, B have Gorenstein dimension zero as R-modules.
Then the following hold.

(1) A is finitely generated projective if and only if so is B.

(2) Assume R is noetherian and A, B are finitely generated as R-modules.
Then for any p € Spec R, A, is projective if and only if so is By.

(8) If add(D(aA)) = Pa, then D(gB) is a tilting module.

5 Suitable tilting complexes

Throughout this section, R is noetherian and A is finitely generated as an R-
module. Following [11], we provide a way to construct tilting complexes T® €
KP(P4) such that add(T*) = add(vT"*).

Lemma 5.1. Let T* € KP(P4) be a tilting complex. Let P* € KP(Py4) be
a nonzero complex with Homywioa-a)(P*, P*[i]) = 0 for i # 0 and form a
distinguished triangle in KP(Pa)

Q* - p*™ e,

such that Homgniod-a)(P®, f) is epic. Then Q® @ P* is a tilting complex if the
following conditions are satisfied:

(1) HOH]K(MOd_A)(P.,T.[i]) =0 fO’I‘i >0 andi < *1,’
(2) HomK(Mod-A)(T.yp.[i]) =0 fO’I‘i > 1;
(8) P* € add(vP*); and
(4) BExta(A,R) =0 for 1 <i< a(Q®) —b(P*) — 1.
Throughout the rest of this section, we fix a sequence of idempotents eg, e1,
- in A such that add(egAda) = Pa and e;y1 € e;Ae; for all i > 0. We will
construct inductively a sequence of complexes T3, Tr, - -+ in KP(P4) as follows.
Set Ty = epA. Let kK > 1 and assume 1, 17, ---, T;_, have been constructed.
Then we form a distinguished triangle in KP(P4)
Qf — exd Ly, —
such that Homy iod-4)(exA, fi) is epic and set T = Q} @ exA.
Lemma 5.2. For anyl > 0 the following hold.

(1) T} =0 fori>1 and i < 0.
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(2) T} € add(e;—iAa) for 0 <i<I.

(3) Homgioa-a)(erA, T°[i]) = 0 for i > 0.

(4) add(T}?) generates KP(P4) as a triangulated category.
Lemma 5.3. For any l > 1 the following hold.

(1) H/(T?) € Mod-(A/Ae;_;A) for 0 <i<j<lI.

(2) If D(e;An) € add(aAe;) for 1 <i <1, then HI (VT}?) € Mod-(A/Ae;_; A)
for0<i<j<lI.

Lemma 5.4 ([11, Lemma 1.11(1)]). Letl > 1. Let T* € K*(P4) with T* = 0
fori>1landi <0 and with T* € add(e;_;A4) for 0 <i < 1. Then for any S*® €
KP(P4) with S* =0 fori > 1 and i < 0 and with H(S*) € Mod-(A/Ae;_;A)
Jor 0 <i < j <1, we have Homg(niod-4) (T, S®[i]) = 0 for i > 0.

Lemma 5.5 ([11, Remark 2.3]). Let [ > 0. For any T* € KP(P4), add(T*)
1s uniquely determined if the following conditions are satisfied:

(1) T* =0 fori>1 and i <0;

(2) T € add(e;—;Aa) for 0<i<lI;

(3) H/(T*) € Mod-(A/Ae;_;A) for 0 <i < j<I; and

(4) add(T*®) generates KP(P4) as a triangulated category.

Theorem 5.6. Let | > 1 and assume Exth(A,R) =0 for 1 <i<1—1. Then
the following hold.

(1) If e;As € add(D(aAe;)) for 1 <i <lI, then T is a tilting comple.

(2) If add(e;As) = add(D(aAe;)) for 1 < i <1 and D(e;Ax) € add(Ae;)
for 1 <i<lI, then vT? € C(T}).

(3) If add(e;Aa) = add(D(aAe;)) for 0 < i <1 and D(e;Aa) € add(Ae;)
for 1 <i<lI, then vT? € add(T}).

(4) If A is reflexive as an R-module and add(e;A4) = add(D(aAe;)) for
0 <i<lI, then add(T}?*) = add(vT}).

The next lemma enables us to make use of induction in calculating the
endomorphism algebra of T}°.

Lemma 5.7. Let T® € KP(P4) be a tilting complex and B = Endgioq-a)(T*).
Let P* € KP(Py4) be a direct summand of T* and e € B an idempotent corre-
sponding to P®. Form a distinguished triangle in KP(P4)

Q. _)P.(n) i)T. N

11



such that Homg(vioa-a) (P, f) is epic and a distinguished triangle in KP(Pg)
S* »eB™ L B
such that Hompg(eB, g) is epic. Then the following hold.
(1) Endkmod-4)(Q° @ P*) is Morita equivalent to Endkmod-p)(S® @ eB).

(2) Assume Exth(A,R) =0 for 1 <i <I(T*). If add(P*) = add(vP*), then
add(eBp) = add(D(pBe)).

Remark 5.8. In case A is finitely generated projective as an R-module, according
to Lemma 1.8, we do not need to assume R is noetherian.

6 Two-sided tilting complexes

Throughout this and the next sections, R is a complete noetherian local ring
with the maximal ideal m and A is finitely generated free as an R-module.
For a tilting complex P* € KP(P4) as in Theorem 5.6(4), we show that B =
Endkod-4)(P*) is free as an R-module and then construct a two-sided tilting
complex corresponding to P°®. To do so, according to Lemma 5.7, we have
only to deal with tilting complexes of length 1. Namely, we will show that the
construction of two-sided tilting complexes in [11, Sections 4 and 5] remains
valid; but, of course, we have to modify the argument in several places. Note
that all the R-algebras to be considered are semiperfect (see Lemma 1.10).

Let {e1, - ,en} be a basic set of orthogonal local idempotents in A. We
fix a nonempty subset Iy of I = {1,--- ,n} and define S* € K’(Mod-A°®) as the
mapping cone of the multiplication map

p:@Aei@)ReiA—»A.

i€l

Set e = Zielo ei, B = Endkod-4)(S®) and d;; = rankg e;Aej, the rank of
e;Ae; as a free R-module, for 7, j € Iy. We assume the following conditions are
satisfied:

(a1) there exists a permutation o of Iy such that e;As ~ D(4Aeq ;) for all
i € Ip;

(a2) e;Ae; # e;R for any i € Iy with i = o(i); and
(ag) e;Ae;/e;Je; ~ R/m for all i € Iy, where J is the Jacobson radical of A.
Remark 6.1. For any i,j € Iy the following hold.
(1) eiAe; ~ D(ejAeqiy) ~ ex(iyAeo(j)-
(2) AiOI?A(Aea(j) R €o(i)An, Aa)a ~ ales) OrejAs ~ D(aAe,(j) Qg
eiAa).
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(3) e; ®e; € A° is a local idempotent.
Remark 6.2. For any i,j € Iy the following hold.

(1) dij = djo(i) = do(i),0(5)-

(2) dij > 1if either j =i or j = o(1).

(3) dij >2if j=i=0(3).
Remark 6.3. For any ¢ € Iy we have Zjelo di; = Zjelo dj; > 2.
Proposition 6.4. The following hold.

(1) S* € KP(P4) is a tilting complex.

(2) The left multiplication of A on each homogeneous component of S® gives
rise to an injective R-algebra homomorphism ¢ : A — B.

(3) A(B/A)A ~ @iijIO(AAei XRnr ejAA)(Olij)’ where

Qi = dﬂ—l ij 750'(]) and i € {j,U(])}7
dj; otherwise.

(4) For anyi € lo, e;Bp ~ @ ey, HomK(Mod_A)(S’,eg(j)A[l])(#ij)’ where

o di =1 ifi=o()),
Hij = dji otherwise.

Proposition 6.5. For any i € Iy there exists a local idempotent f; € e;Be;
such that f;Bp ~ Homgod-4)(S®; €xi)A[l]). Furthermore, the following hold.

(1) fiBg # fjBp unless i = j.
(2) fiBp ~ D(pBfs()) for alli € Iy.
(3) fiBf; ~ e;Ae; for alli,j € Io.
(4) eiBp ~ @,cp, fiBs") for alli € Iy.
(5) fiBa ~ 69]—610 ejAA(””) for all i € Iy.
Theorem 6.6. The mapping cone T® of the multiplication map

@ pBfi®reiAs — Ba

i€l
is a two-sided tilting complex with T® ~ S* in K(Mod-A).
We will prove this in the next section (see Theorem 7.3).
Corollary 6.7. The following are equivalent.
(1) add(D(44)) = Pa.
(2) add(D(5B)) = Ps.

13



7 Derived equivalent extension algebras

Let R and A be the same as in the preceding section. We will show that an
R-algebra B containing A as a subalgebra satisfying (3) of Proposition 6.4 and
(1)—(5) of Proposition 6.5 is derived equivalent to A.

More precisely, let B be an R-algebra which is finitely generated free as an
R-module and contains A as a subalgebra. We fix a local idempotent f; € e;Be;
for each ¢ € Iy and assume the following conditions are satisfied:

(bl) A(B/A)A = GBLJ'GIO (AAei QR ejAA)(aij)§
(b2) fiBp % fjBp unless i = j and f;Bp ~ D(pBf, ;) for all i € Iy;
(bs) fiBf; ~e;Ae; for all 4, j € Ip;
(b1) eiBp =~ D¢, ij]g“”) for all 7 € Ip; and
(bs) fiBa~@;c;, e; ALY for all i € Iy,
Remark 7.1. The following hold.
(1) pBe: = @y, B for all i € Iy,

[
(2) ABfi = @je[a AAej

Remark 7.2. For any i,j € Iy, fi®e; € B’ g Aand e; ® f; € A°® ®r B are
local idempotents.

ot 1) for all i € Ij.

Theorem 7.3. Denote by T® the mapping cone of the multiplication map

d: @BBfi ®@reiAa — pBa.
i€l

Then T*® is a two-sided tilting complex with T*® ~ S*® in K(Mod-A) if

dji =2 ifi=j=o(j),

Qjj = dji -1 Zf] 7é 0(]) and i € {]70(])}7
dj; otherwise,
L di =1 afi=0()),
P = Aji = { dji otherwise.

8 Partial tilting complexes

Throughout this section, R is noetherian and A is finitely generated as an R-
module. We fix a nonzero P* € KP(P,4) with Homgwoa-a)(P®, P*[i]) = 0 for
i # 0 and ask when P*® appears as a direct summand of a tilting complex. Set
I =1(P*). We may assume a(P*®) =1 and b(P*®) = 0. In case I = 0, by Remark
1.7 P* ~ H°(P*) in KP(P4) and the question is trivial. So we assume [ > 1.
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Following [15, Section 4], we will construct inductively a sequence of com-
plexes Q8, Q%, --- in KP(P4) as follows. Set Q) = A. Let k > 0 and assume
Q5, -+, Qf have been constructed. Then we form a distinguished triangle in
KP(Pa)

Qtyy — P 2 Q1 —

such that Homy od-4)(P®, fx) is epic.
Lemma 8.1. For any k > 1 the following hold.
(1) a(@) < k41— 1 and b(Q2) > 0.
(2) Homk(nmoa-a)(P*, Qp[i]) =0 fori > 0.
(3) Homg iod-a)(Q%, Qi) = 0 fori > 1.

(4) IfExtiy (A, R) =0 for 1 < i < k+1—2, then Homkoa-a)(Qf, vP*[i]) = 0
fori<O.

Lemma 8.2. For any k > the following hold.
(1) Homy(moa-4)(P*, Q%[i]) = 0 fori <0.
(2) Homy(mod-4)(Q%, P*[i]) =0 fori > 0.
Lemma 8.3. Assume | > 2. Then for any k > 1 the following are equivalent.
(1) Homgoa-4) (@, Qr[i]) = 0 for 1 <i < 1.
(2) H'(f;) is epic for 1 <i <.
(3) a(QF) < 1.
(4) a(Q}) < k.

Theorem 8.4. Let k > 1 and assume BExty(A,R) =0 for 1 <i<k+1—2. If
P* € add(vP*), then the following are equivalent.

(1) Q3 & P* is a tilting complex.
(2) a(Qy) <1, this is the case if | = 1.

Proposition 8.5 (cf. [7, Lemma of 1.2]). Assume H'(P*) = 0 for i # I.
Then the following are equivalent.

(1) QF & P* is a tilting complex with H(QP & P*) =0 for i # I.
(2) a(Q) <, this is the case if | = 1.

Remark 8.6. In case A is finitely generated projective as an R-module, according
to Lemma 1.8, we do not need to assume R is noetherian.
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