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Fact. Modular form coefficients are important.

They are a source of interesting problems:

e Ramanujan-Petersson Conjecture
(a.k.a Deligne's Theorem).

e Taniyvama-Shimura Conjecture.

e Lehmer’s Conjecture.

e Serre’'s Conjectures.

e ctc.



These coefficients also play central roles in
many applications such as:

e Ramanujan’s work on partitions.

e Quadratic forms and sphere packing.

e Artin’s L-function Conjecture.

e Proof of Fermat’'s Last Theorem.

e Birch and Swinnerton-Dyer Conjecture.

e Monstrous Moonshine.

e Class field theory of CM fields.

e Elliptic curves in so many many ways....etc.
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Goal. We recall some classical congruences
for modular form coefficients, and give one
modern application to elliptic curves.

oooooooooooooooooo

underbarRamanujan’s works.

We begin with Ramanujan’s work on p(n) and
7(n), examples which “inspired” much of the
early history of work on modular forms.



I. Partitions.

Definition. A partition of an integer N is
a sequence of non-increasing positive integers
with sum V.

p(IN) := #{partitions of N}

N Partitions of N p(N)

1 1 p(1) =1
> > p(2) =2
11
3 3 p(3) =3
21
111
4 4 p(4) =5
31
22
211

1111



Question. What is the size of p(IN)?

N p(INV)
10 42
100 190569292

1000 24061467864032622473692149727991

The Hardy-Ramanujan Asymptotic Formula.

Inventing the ‘“circle method”, they proved:
v/ 2N/3

4N3

p(N) ~ &




Theorem (Ramanujan).

If n > 0, then
p(bn+4)=0 (mod 5),
p(Tn+5)=0 (mod7),
p(lln+6)=0 (mod 11).

oooooooooooooooooo

Remark. These results require “modularity’ .

Theorem (Euler).

> 1

> p(n)d" = ]]
n=0

n=1

1—q”.

As a weight —% modular form, we have

1
n(24z)

— Z p(n)q24n—1.

n=0



II. The tau-function.

Following Ramanujan, define integers 7(n) by:

o0

A(z) = > 7(n)d"=q [[ 1 -q)**
n=1

n=1

= q — 24q¢° + 252¢> — 1472¢* 4+ 4830¢° — - - - .
Remarks.
1. Throughout, we let ¢ = 272,
2. This function is a weight 12 modular form.
3. This function drove much of the early

history in the study of modular forms.
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Some examples of important results for 7(n):

1. (Ramanujan) For every n > 1, we have

r(n) =Y d'' (mod 691).
d|n

2. (Mordell) If n and m are coprime positive
integers, then

T(n)T(m) = 7(nm).

This marked the birth of Hecke operators.

3. (Deligne) If p is prime, then
7(p)| < 2p*1/2.

T his follows from the Weil Conjectures.



Remark. Although Ramanujan proved the “691
congruence” using a simple g-series identity, it
IS a special case of a very deep theory.

Galois representations.

By work of Deligne (and others), we have:

Theorem. If f(z) = Y52 a(n)q™ N Z[[q]] is
an integer weight Hecke eigenform, then for
each prime ¢ there is an ¢-adic representation

pre: Gal(Q/Q) — GLo(Zy)

such that for every prime pt£N we have

Tr(pse(Frob(p)) = a(p).

10



Remarks.

1. Proving congruences are reduced to the
computation of Galois representations.

2. “Nice” representations give congruences.

In particular, for primes p #= 691 we have

1

*
0 p]'l) (mOd 691)

pn 691 (Frob(p)) = (

3. These representations play a central role in
Wiles’ proof of Fermat’s Last T heorem.
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Basics about modular forms.

SL~(Z)-action on H.

If A= (CCL Z) € SLy(Z) and z € H, then we let

az + b

Az = .
cz + d

ooooooooooooooooooooooooooooooooooooooooooooo

Congruence Subgroups.

The level N congruence subgroups are

x X

[o(N) = {A €Slo(Z) : A= (O *> (mod N)}

r(N) = {A cSLx(Z) : A= (1 i) (mod N)}.
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Integer weight modular forms.

Definition. A holomorphic function f(z) on
‘H is a modular form of integer weight £ on a
congruence subgroup I if

1. We have

az + b
f(cz—l—d

) = (2 +DFF()

for all z € H and all (“ b) cr.
c d

2. If f(z) is holomorphic at each cusp.
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Half-integral weight modular forms

Notation. If d is odd and c € Z, then let

if d<0 and ¢ > 0,
if d<0 and c<0,
if d >0 and c # 0,

A~
| O
N
I
7 Y
| =
o —&o
\/Eh ~—
~

|1 if c=0 and d = *1,
_ 1 ifd=1 mod4
€EJ .—
)i ifd=3 mod 4.

ooooooooooooooooooooooooooooooooooooooooooooo

vz = branch of /z with argument in (—x/2,7/2].
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Definition. Suppose that A > 0 and that I is
a congruence subgroup of level 4N.

A holomorphic function f(z) on H is a half-
integral weight modular form of weight A+3
on [ if

1) If <‘CL Z) c T, then

P = )7 P e+ M)

2) If f(z) is holomorphic at each cusp.
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Terminology. Suppose that
f(z) is a modular form.

1) If k =0, then f(z) is a modular function.

2) If f(z) is a holomorphic modular form which
vanishes at the cusps, then it is a cusp form.
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Notation.

M (") : = {holomorphic modular forms of
weight k£ on T},

Si(IM) : = {cusp forms of weight k£ on I}.

Fourier expansion at infinity. Modular forms
have a Fourier expansion at infinity

oo

f(z)= ) aln)d",

n>ng

where q ;= 2™,

17



Nonvanishing of L-functions

Notation for the main objects

e An even weight newform:

O

f(z) = ) a(n)q" € S5 (IMo(M))

n=1

e Its L-function
o

L(f,s) = )

n=1

a(n
nS

e If D is a fundamental discriminant and
Xp = (Q), then the quadratic twists are:

fp(z) = Y xp(n)aln)q”,
n=1

oo

(s = S Xp(Wam)

nS

n=1
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Remark. These values are related to the Birch
and Swinnerton-Dyer Conjecutre.

Elliptic curves. If K/Q is a field, then we shall
consider elliptic curves

E : y2+a1xy+a3y — x3—|—a2:132—|—a4w—|—a6 a; € K

Theorem (Poincare)
The set of points E(K) togther with the the
point at infinity forms an abelian group.
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Group Law on E':

y? =23 417
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Theorem (Mordell-Weil)
Every elliptic curve E(K) over a number field
K is a finitely generated abelian group.

E(K)ZEo(K) @ Z™EEK),

Example. If E is the elliptic curve
E y2 = 23+ 17,
then we have
E(Q)=Z°.
(i.,e. rk(E,Q) = 2)
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T he Birch and Swinnerton-Dyer Conjecture.

Notation.
E/Q an elliptic curve
oo
L(E,s)= >_ aE(Sn) its Hasse-Weil L-function.
n=1 "

Remark. For primes p of good reduction

Ng(p) =p+1—-ag(p),

where Ng(p) is # points on E modulo p.
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Birch and Swinnerton-Dyer Conjecture.
If rk(FE) is the rank of E(Q), then

ord,—1(L(E,s)) = rk(E).

Remarks.

1) For E with CM, Coates and Wiles proved
(1977) L(E,1)#2#0 =—— rk(F) =0.

2) Kolyvagin’'s breakthrough in the 1980s.

Subject to hypotheses on the nonvanishing of

central L-values and derivatives of quadratic
twists, for modular E he proved

ords—=1(L(E,s)) <1

— ord,—1(L(E,s)) = rk(E).
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Happily we have:

Theorem.
If £/Q has conductor N(F), then there is a

newform fp(z) € SSW(Io(N(E)) for which

L(E,s) = L(fg,s).

Hence, we have:

Theorem (Kolyvagin)
If £/Q is an elliptic curve, then

ords—1(L(E,s)) <1
— ord,—1(L(E,s)) = rk(E)

and |[II(E)| < +oc.
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Quadratic twists of elliptic curves.

If £/Q is an elliptic curve given
E : y2=:1:3—|—a:132—|—b:1:—|—c,
then its D—quadratic twist of E is given by

E(D): Dy’ =234 az®>+ bz +c

Lemma. Suppose that E/Q is an elliptic curve
and that f = fg(z) has the property that

L(E,s) = L(f,s).

If D is coprime to the conductor of E, then

L(E(D),s) = L(fp,s).
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Main Problem. Given E, we wish to estimate

#{|D| < X : rk(E(D)) = 0}.

oooooooooooooooooo

Congruent Numbers. A positive integer D is
a ‘“‘congruent number” if it is the area of a
right triangle with rational sidelengths.

Remark. This problem remains open, and is a
special case of the Main Problem above since

D is congruent <— rk(E(D)) > 0,

where E : y2 =23 —z.
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“Conjecture” (Goldfeld).

If £/Q is an elliptic curve, then

> rk(E(D)) ~ %#{D . |D| < X}.

[D|<X
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Theorem 1 (98 Invent. Math., O-Skinner).
If f(z) € S5V (Io(M)) is a newform, then

: X
#{|D| <X : L(fp,k) 70} > og X

Corollary. If E/Q is an elliptic curve, then

#{|D| < X : rk(E(D)) =0} > &
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For most newforms, more is true:

“Theorem 2.” ['01 Crelle, O]
If there is a prime p12M with

a(p) =1 (mod 2),

then Df and a set of primes Sf, with positive
density, such that for every j

L(fppo---ijDf7 k) 7 0,

whenever pi,po,...,pp; €Sy are distinct.
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Corollary. If 2 1 #Fior, then 3 D and a set
of primes Sg, with positive density, such that

for every 3 > 1 we have

rK(E(Dgpip2---p2j)) =0,
whenever p1,po,...p2; € Sg are distinct.

Remark. In Thm 2 and the corollary above,
40 < a<1 for which

#{DI <X L(fp, k) # 0} > (o i

#{-X <D <X 2 rk(B(D) =0} > ima
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Example. Let E/Q be the elliptic curve
E: y?>=23—432.
Then Dg:=1 and

Sg:={p>3 : 2is not a cubic residue in Fy}.
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Sketch of the proof of Theorem 2

Kohnen and Zagier, and Waldspurger proved
“arithmetic formulas” for L(fp, k).

Notation. For every fundamental discriminant
D let

1D if D is odd,
|1D|/4 if D if even.
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Theorem (Waldspurger).
If f(z) € S5PV(IMo(M)) is a newform, then there
isade{x} and a

g(z) = ) b(n)q" € Sk+%(ro(4N),X)

n=1

with the property that if 4D > 0O, then

b(Do)2 — €ED Qf if ng(Do,4N) = 1,
0 otherwise.

Remark. By Kolyvagin, we need to show that

b(Dg) # 0
for the D we have identified.
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Using Galois representations, one can show:

“Theorem”. Let f1(z), fo(2),..., fy(z) be
integer weight cusp forms

0@

fi(z) = > ai(n)q" € Sy (Mo(M;)).

n=1

If po { eM1Ms5--- My is prime and j > 1, then
there is a set of primes p with positive density
such that for every 1 <1 <y we have

fz(z) | Tpo,ki = fZ(Z) | Tp,k,i (mOd €]+1)

Here TpJ{ is the weight £ Hecke operator for p.
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1) Let g(z) =202 1 b(n)q"™ satisfy

b(Dg)? = stuff x L(fp, k).

2) If pt4N is a prime, then IA(p) with

b(np?) = (/\<p> - x*(p)p’\_l(%)> b(n)

—x*(?)p* N Lo(n/p?).

3) Define the integer weight form G(z) by

G(z) = i bg(n)q" = g(z) - (1 +2 i qnz)
n=1

n=1

=g(z) (mod 2).
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4) By hypothesis, 3 pg 14N for which

AMpg) =1 (mod 2).

ooooooooooooooooooooooooooooooooooooooooooooo

5) By “Theorem” for G(z) and f(z), we have:

For 7 > 1, there is a set of odd primes Sp
with positive density satisfying:

0,J

OJ,then

AMp) =Xpg) =1 (mod 2).

e If pe S5,

e If p€ 5, then

G(2) | Tyat1 = G(2) | Tygrt1 (mod 2711,
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6) If orda(b(m)) = sg, and q1 € Spg,sg IS CO-
prime to m, then Hecke operators give

(Coeff. of ¢ in G(z) | Ty)
= by(mq?) £ x(q1)d5bg(m).

7) Replacing by(mg?), using 2), this is

= A(q1)bg(m)
+ bg(m)x*(q1)gi 1 (£q1 £1) (mod 2%07F1)

8) Since g1 =1 =0 (mod 2), we get

ordo(Coeff. of ¢ in G(z) | Ty;) = so-
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9) Now 5) implies that if go € Spy,sq, then

G| Ty =G| Ty, (mod 2%t

—= ordy(Coeff. of ¢" in G(z) | Ty,) = so

——

k —
hecke ords (bg(mChCIQ) + X(QQ)Qng(mql/q2)> = s

— orda(bg(mg192)) = sg

ord- (b =
def. O >(b(mq192)) = sg

p—

Wald L(f(qu]_qQ?k) # O

12) Iterate 6)-9) with pairs ¢3,qa, €tc...
[]
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Summary

Works of Kolyvagin, Shimura, and Waldspurger,

and ‘“congruence properties’ of modular form
coefficients imply:

1) For generic f and E/Q, we have

_ X
#{|D| <X : L(fp,k) # 0} >>m

#{|D| <X : rk(E(D)) =0} > 09 X

2) For E with 21 #FE;or, we have

rkK(E(Dgp1p2---p2;)) =0

whenever pq,...,p2; € Sg.
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