Congruences for modular form coefficients

Ken Ono

(University of Wisconsin at Madison).

Fact. Modular form coefficients are important.

They are a source of interesting problems:

- Ramanujan-Petersson Conjecture (a.k.a Deligne's Theorem).
- Taniyama-Shimura Conjecture.
- Lehmer's Conjecture.
- Serre's Conjectures.
- etc.

These coefficients **also** play central roles in many applications such as:

- Ramanujan's work on partitions.
- Quadratic forms and sphere packing.
- Artin's *L*-function Conjecture.
- Proof of Fermat's Last Theorem.
- Birch and Swinnerton-Dyer Conjecture.
- Monstrous Moonshine.
- Class field theory of CM fields.
- Elliptic curves in so **many many** ways....etc.

Goal. We recall some classical **congruences** for modular form coefficients, and give one modern application to elliptic curves.

underbarRamanujan's works.

We begin with Ramanujan's work on p(n) and $\tau(n)$, examples which "inspired" much of the early history of work on modular forms.

I. Partitions.

Definition. A **partition** of an integer N is a sequence of non-increasing positive integers with sum N.

$$p(N) := \#\{\text{partitions of } N\}$$
 $N = \text{partitions of } N = p(N)$
 $p(1) = 1$
 $p(1) = 1$
 $p(2) = 2$
 $p(3) = 3$
 $p(3) = 3$
 $p(4) = 5$
 $p(4) = 5$
 $p(4) = 5$
 $p(4) = 5$

Question. What is the size of p(N)?

$$\underline{N}$$
 $\underline{p(N)}$

1000 24061467864032622473692149727991

The Hardy-Ramanujan Asymptotic Formula.

Inventing the "circle method", they proved:

$$p(N) \sim \frac{e^{\pi\sqrt{2N/3}}}{4N\sqrt{3}}.$$

Theorem (Ramanujan).

If $n \geq 0$, then

$$p(5n + 4) \equiv 0 \pmod{5},$$

 $p(7n + 5) \equiv 0 \pmod{7},$
 $p(11n + 6) \equiv 0 \pmod{11}.$

Remark. These results require "modularity".

Theorem (Euler).

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} \frac{1}{1 - q^n}.$$

As a weight $-\frac{1}{2}$ modular form, we have

$$\frac{1}{\eta(24z)} = \sum_{n=0}^{\infty} p(n)q^{24n-1}.$$

II. The tau-function.

Following Ramanujan, define integers $\tau(n)$ by:

$$\Delta(z) = \sum_{n=1}^{\infty} \tau(n)q^n = q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$
$$= q - 24q^2 + 252q^3 - 1472q^4 + 4830q^5 - \cdots$$

Remarks.

- 1. Throughout, we let $q = e^{2\pi iz}$.
- 2. This function is a weight 12 modular form.
- 3. This function drove much of the early history in the study of modular forms.

Some examples of important results for $\tau(n)$:

1. (Ramanujan) For every $n \geq 1$, we have

$$\tau(n) \equiv \sum_{d|n} d^{11} \pmod{691}.$$

2. (Mordell) If n and m are coprime positive integers, then

$$\tau(n)\tau(m) = \tau(nm).$$

This marked the birth of Hecke operators.

3. (Deligne) If p is prime, then

$$|\tau(p)| \le 2p^{11/2}.$$

This follows from the Weil Conjectures.

Remark. Although Ramanujan proved the "691 congruence" using a simple q-series identity, it is a special case of a very deep theory.

Galois representations.

By work of Deligne (and others), we have:

Theorem. If $f(z) = \sum_{n=1}^{\infty} a(n)q^n \cap \mathbb{Z}[[q]]$ is an **integer weight** Hecke eigenform, then for each prime ℓ there is an ℓ -adic representation

$$ho_{f,\ell}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) o \mathsf{GL}_2(\mathbb{Z}_\ell)$$

such that for every prime $p \nmid \ell N$ we have

$$\operatorname{Tr}(\rho_{f,\ell}(\operatorname{Frob}(p)) = a(p).$$

Remarks.

- 1. Proving congruences are reduced to the computation of Galois representations.
- 2. "Nice" representations give congruences.

In particular, for primes $p \neq 691$ we have

$$\rho_{\Delta,691}(\operatorname{Frob}(p)) \equiv \begin{pmatrix} 1 & * \\ 0 & p^{11} \end{pmatrix} \pmod{691}.$$

3. These representations play a central role in Wiles' proof of Fermat's Last Theorem.

Basics about modular forms.

 $SL_2(\mathbb{Z})$ -action on \mathcal{H} .

If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$
 and $z \in \mathcal{H}$, then we let

$$Az = \frac{az+b}{cz+d}.$$

Congruence Subgroups.

The level N congruence subgroups are

$$\Gamma_0(N) := \left\{ A \in \mathsf{SL}_2(\mathbb{Z}) : A \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{N} \right\}$$

$$\Gamma_1(N) := \left\{ A \in \mathsf{SL}_2(\mathbb{Z}) : A \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}.$$

Integer weight modular forms.

Definition. A holomorphic function f(z) on \mathcal{H} is a **modular form** of integer weight k on a congruence subgroup Γ if

1. We have

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$

for all
$$z \in \mathcal{H}$$
 and all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$.

2. If f(z) is holomorphic at each cusp.

Half-integral weight modular forms

Notation. If d is odd and $c \in \mathbb{Z}$, then let

$$\epsilon_d := egin{cases} 1 & \text{if } d \equiv 1 \mod 4 \\ i & \text{if } d \equiv 3 \mod 4. \end{cases}$$

 $\sqrt{z}=$ branch of \sqrt{z} with argument in $(-\pi/2,\pi/2]$.

Definition. Suppose that $\lambda \geq 0$ and that Γ is a congruence subgroup of level 4N.

A holomorphic function f(z) on $\mathcal H$ is a **half-integral weight modular form** of weight $\lambda+\frac{1}{2}$ on Γ if

1) If
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$
, then
$$f\left(\frac{az+b}{cz+d}\right) = \left(\frac{c}{d}\right)^{2\lambda+1} \epsilon_d^{-1-2\lambda} (cz+d)^{\lambda+\frac{1}{2}} f(z).$$

2) If f(z) is holomorphic at each cusp.

Terminology. Suppose that

f(z) is a modular form.

- 1) If k = 0, then f(z) is a **modular function**.
- 2) If f(z) is a holomorphic modular form which vanishes at the cusps, then it is a **cusp form**.

Notation.

 $M_k(\Gamma) := \{ \text{holomorphic modular forms of weight } k \text{ on } \Gamma \},$

 $S_k(\Gamma) := \{ \text{cusp forms of weight } k \text{ on } \Gamma \}.$

Fourier expansion at infinity. Modular forms have a Fourier expansion at infinity

$$f(z) = \sum_{n \ge n_0}^{\infty} a(n)q^n,$$

where $q := e^{2\pi i z}$.

Nonvanishing of *L*-functions

Notation for the main objects

An <u>even weight</u> newform:

$$f(z) = \sum_{n=1}^{\infty} a(n)q^n \in S_{2k}^{\text{new}}(\Gamma_0(M))$$

• Its *L*-function

$$L(f,s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$$

• If D is a fundamental discriminant and $\chi_D = \left(\frac{D}{\bullet}\right)$, then the **quadratic twists** are:

$$f_D(z) = \sum_{n=1}^{\infty} \chi_D(n) a(n) q^n,$$

$$L(f_D, s) = \sum_{n=1}^{\infty} \frac{\chi_D(n)a(n)}{n^s}.$$

Remark. These values are related to the Birch and Swinnerton-Dyer Conjecutre.

Elliptic curves. If K/\mathbb{Q} is a field, then we shall consider elliptic curves

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6 \quad a_i \in K$$

Theorem (Poincare)

The set of points E(K) together with the the point at infinity forms an abelian group.

Group Law on $E: y^2 = x^3 + 17$

Theorem (Mordell-Weil)

Every elliptic curve E(K) over a number field K is a finitely generated abelian group.

$$E(K) = E_{tor}(K) \oplus \mathbb{Z}^{\mathsf{rk}(E,K)}$$
.

Example. If E is the elliptic curve

$$E: y^2 = x^3 + 17,$$

then we have

$$E(\mathbb{Q})\tilde{=}\mathbb{Z}^2.$$

(i.e. $\operatorname{rk}(E,\mathbb{Q}) = 2$)

The Birch and Swinnerton-Dyer Conjecture.

Notation.

$$E/\mathbb{Q}$$
 an elliptic curve

$$L(E,s) = \sum_{n=1}^{\infty} \frac{a_E(n)}{n^s}$$
 its Hasse-Weil *L*-function.

Remark. For primes p of good reduction

$$N_E(p) = p + 1 - a_E(p),$$

where $N_E(p)$ is # points on E modulo p.

Birch and Swinnerton-Dyer Conjecture.

If rk(E) is the rank of $E(\mathbb{Q})$, then

$$\operatorname{ord}_{s=1}(L(E,s)) = \operatorname{rk}(E).$$

Remarks.

- 1) For E with CM, Coates and Wiles proved $(1977) L(E,1) \neq 0 \implies \text{rk}(E) = 0.$
- 2) Kolyvagin's breakthrough in the 1980s.

Subject to hypotheses on the nonvanishing of central L-values and derivatives of **quadratic twists**, for **modular** E he proved

$$\operatorname{ord}_{s=1}(L(E,s)) \leq 1$$

$$\Longrightarrow$$
 ord_{s=1} $(L(E,s)) = \operatorname{rk}(E)$.

Happily we have:

Theorem.

If E/\mathbb{Q} has conductor N(E), then there is a newform $f_E(z) \in S_2^{\mathrm{new}}(\Gamma_0(N(E)))$ for which

$$L(E,s) = L(f_E,s).$$

Hence, we have:

Theorem (Kolyvagin)

If E/\mathbb{Q} is an elliptic curve, then

$$\operatorname{ord}_{s=1}(L(E,s)) \leq 1$$

$$\implies$$
 ord_{s=1} $(L(E,s)) = \operatorname{rk}(E)$

and
$$|\mathrm{III}(E)| < +\infty$$
.

Quadratic twists of elliptic curves.

If E/\mathbb{Q} is an elliptic curve given

$$E: \quad y^2 = x^3 + ax^2 + bx + c,$$

then its D-quadratic twist of E is given by

$$E(D): Dy^2 = x^3 + ax^2 + bx + c.$$

Lemma. Suppose that E/\mathbb{Q} is an elliptic curve and that $f=f_E(z)$ has the property that

$$L(E,s) = L(f,s).$$

If D is coprime to the conductor of E, then

$$L(E(D),s) = L(f_D,s).$$

Main Problem. Given E, we wish to estimate

$$\#\{|D| \le X : \mathsf{rk}(E(D)) = 0\}.$$

.

Congruent Numbers. A positive integer D is a "congruent number" if it is the area of a right triangle with rational sidelengths.

Remark. This problem remains open, and is a special case of the Main Problem above since

$$D$$
 is congruent \iff rk $(E(D)) > 0$,

where
$$E: y^2 = x^3 - x$$
.

"Conjecture" (Goldfeld).

If E/\mathbb{Q} is an elliptic curve, then

$$\sum_{|D| \le X} \operatorname{rk}(E(D)) \sim \frac{1}{2} \# \{D : |D| < X\}.$$

Theorem 1 ('98 Invent. Math., O-Skinner).

If
$$f(z) \in S^{\text{new}}_{2k}(\Gamma_0(M))$$
 is a newform, then $\#\{|D| \le X : L(f_D, k) \ne 0\} \gg \frac{X}{\log X}$.

Corollary. If E/\mathbb{Q} is an elliptic curve, then

$$\#\{|D| \le X : \text{rk}(E(D)) = 0\} \gg \frac{X}{\log X}.$$

For most newforms, more is true:

"Theorem 2." ['01 Crelle, O] If there is a prime $p \nmid 2M$ with

$$a(p) \equiv 1 \pmod{2}$$
,

then $\exists \ D_f$ and a set of primes S_f , with positive density, such that for every j

$$L(f_{p_1p_2\cdots p_{2j}D_f}, k) \neq 0,$$

whenever $p_1, p_2, \ldots, p_{2j} \in S_f$ are distinct.

Corollary. If $2 \nmid \#E_{tor}$, then $\exists D_E$ and a set of primes S_E , with positive density, such that for every $j \geq 1$ we have

$$\mathsf{rk}(E(D_E p_1 p_2 \cdots p_{2j})) = 0,$$

whenever $p_1, p_2, \dots p_{2j} \in S_E$ are distinct.

Remark. In Thm 2 and the corollary above, $\exists \ 0 < \alpha < 1$ for which

$$\#\{|D| \le X : L(f_D, k) \ne 0\} \gg \frac{X}{(\log X)^{1-\alpha}},$$

$$\#\{-X < D < X : rk(E(D)) = 0\} \gg \frac{X}{\log^{1-\alpha} X}.$$

Example. Let E/\mathbb{Q} be the elliptic curve

$$E: y^2 = x^3 - 432.$$

Then $D_E := 1$ and

 $S_E := \{p > 3 : 2 \text{ is not a cubic residue in } \mathbb{F}_p\}.$

Sketch of the proof of Theorem 2

Kohnen and Zagier, and Waldspurger proved

"arithmetic formulas" for $L(f_D, k)$.

Notation. For every fundamental discriminant D let

$$D_0 := \begin{cases} |D| & \text{if } D \text{ is odd,} \\ |D|/4 & \text{if } D \text{ if even.} \end{cases}$$

Theorem (Waldspurger).

If $f(z) \in S^{\text{new}}_{2k}(\Gamma_0(M))$ is a newform, then there is a $\delta \in \{\pm\}$ and a

$$g(z) = \sum_{n=1}^{\infty} b(n)q^n \in S_{k+\frac{1}{2}}(\Gamma_0(4N), \chi)$$

with the property that if $\delta D > 0$, then

$$b(D_0)^2 = \begin{cases} \epsilon_D \cdot \frac{L(f_D, k)D_0^{k - \frac{1}{2}}}{\Omega_f} & \text{if } \gcd(D_0, 4N) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Remark. By Kolyvagin, we need to show that

$$b(D_0) \neq 0$$

for the D we have identified.

Using Galois representations, one can show:

"Theorem". Let $f_1(z), f_2(z), \ldots, f_y(z)$ be integer weight cusp forms

$$f_i(z) = \sum_{n=1}^{\infty} a_i(n)q^n \in S_{k_i}(\Gamma_0(M_i)).$$

If $p_0 \nmid \ell M_1 M_2 \cdots M_y$ is prime and $j \geq 1$, then there is a set of primes p with positive density such that for every $1 \leq i \leq y$ we have

$$f_i(z) \mid T_{p_0,k_i} \equiv f_i(z) \mid T_{p,k_i} \pmod{\ell^{j+1}}.$$

Here $T_{p,k}$ is the weight k Hecke operator for p.

1) Let
$$g(z) = \sum_{n=1}^{\infty} b(n)q^n$$
 satisfy
$$b(D_0)^2 = \operatorname{stuff} \times L(f_D, k).$$

2) If $p \nmid 4N$ is a prime, then $\exists \lambda(p)$ with

$$b(np^2) = \left(\lambda(p) - \chi^*(p)p^{\lambda - 1}\left(\frac{n}{p}\right)\right)b(n)$$
$$-\chi^*(p^2)p^{2\lambda - 1}b(n/p^2).$$

3) Define the **integer weight** form G(z) by

$$G(z) = \sum_{n=1}^{\infty} b_g(n)q^n = g(z) \cdot \left(1 + 2\sum_{n=1}^{\infty} q^{n^2}\right)$$

$$\equiv g(z) \pmod{2}.$$

4) By hypothesis, $\exists p_0 \nmid 4N$ for which

$$\lambda(p_0) \equiv 1 \pmod{2}$$
.

5) By "Theorem" for G(z) and f(z), we have:

For $j \geq 1$, there is a set of odd primes $S_{p_0,j}$ with positive density satisfying:

- ullet If $p\in S_{p_0,j}$, then $\lambda(p)\equiv \lambda(p_0)\equiv 1\pmod 2.$
- If $p \in S_{p_0,j}$ then $G(z) \mid T_{p,\lambda+1} \equiv G(z) \mid T_{p_0,\lambda+1} \pmod{2^{j+1}}.$

6) If $\operatorname{ord}_2(b(m)) = s_0$, and $q_1 \in S_{p_0,s_0}$ is coprime to m, then Hecke operators give

(Coeff. of
$$q^{mq_1}$$
 in $G(z) \mid T_{q_1}$)
= $b_g(mq_1^2) \pm \chi(q_1)q_1^k b_g(m)$.

7) Replacing $b_g(mq_1^2)$, using 2), this is

$$\equiv \lambda(q_1)b_g(m) + b_g(m)\chi^*(q_1)q_1^{k-1}(\pm q_1 \pm 1) \pmod{2^{s_0+1}}$$

8) Since $\pm q_1 \pm 1 \equiv 0 \pmod{2}$, we get $\operatorname{ord}_2(\operatorname{Coeff.} \ \text{of} \ q^{mq_1} \ \text{in} \ G(z) \mid T_{q_1}) = s_0.$

9) Now 5) implies that if
$$q_2 \in S_{p_0,s_0}$$
, then $G \mid T_{q_1} \equiv G \mid T_{q_2} \pmod{2^{s_0+1}}$

$$\implies$$
 ord₂(Coeff. of q^{mq_1} in $G(z) \mid T_{q_2}$) = s_0

$$\Longrightarrow \operatorname{hecke} \operatorname{ord}_2\left(b_g(mq_1q_2) \pm \chi(q_2)q_2^kb_g(mq_1/q_2)\right) = s_0$$

$$\implies$$
 ord₂ $(b_g(mq_1q_2)) = s_0$

$$\Longrightarrow_{\text{def. }G} \operatorname{ord}_2(b(mq_1q_2)) = s_0$$

$$\Longrightarrow$$
 $L(f_{\delta mq_1q_2},k)\neq 0.$

12) Iterate 6)-9) with pairs q_3, q_4 , etc...

Summary

Works of Kolyvagin, Shimura, and Waldspurger, and "congruence properties" of modular form coefficients imply:

1) For generic f and E/\mathbb{Q} , we have

$$\#\{|D| \le X : L(f_D, k) \ne 0\} \gg \frac{X}{\log X}$$

$$\#\{|D| \le X : rk(E(D)) = 0\} \gg \frac{X}{\log X}.$$

2) For E with $2 \nmid \#E_{tor}$, we have

$$rk(E(D_E p_1 p_2 \cdots p_{2j})) = 0$$

whenever $p_1, \ldots, p_{2j} \in S_E$.