Properties of singular moduli

Ken Ono

(University of Wisconsin at Madison).

The *j*-function.

Throughout let $q := e^{2\pi i z}$, and as usual let $j(z) = q^{-1} + 744 + 196884q + 21493760q^2 + \cdots$.

Definition. Values of j(z) at imaginary quadratic arguments in \mathfrak{H} are known as **singular moduli**.

Classical Examples.

$$j(i) = 1728,$$
 $j\left(\frac{1+\sqrt{-3}}{2}\right) = 0,$

$$j\left(\frac{1+\sqrt{-15}}{2}\right) = \frac{-191025 - 85995\sqrt{5}}{2}.$$

Theorem.

Singular moduli are algebraic integers.

.

Remark. Singular moduli have many roles.

- Generate class fields of imaginary quadratic fields.
- Explain the interplay between elliptic curves over finite fields and elliptic curves with CM.
- Provide structure for Borcherds' work on infinite product expansions of modular forms.

Here we recall two explicit 'roles'.

I. Explicit Class Field Theory.

Theorem. If τ is a CM point of discriminant -d, where -d is the fundamental discriminant of the quadratic field $K_d := \mathbb{Q}(\sqrt{-d})$, then $K_d(j(\tau))$ is the Hilbert class field of K_d .

II. Elliptic Curves.

Definition. An elliptic curve E over $\overline{\mathbb{F}}_p$ is supersingular of $E(\overline{\mathbb{F}}_p)$ has no p-torsion.

Theorem. (Deuring).

If E is an elliptic curve whose j-invariant is a singular modulus with discriminant -d and p is a prime which is inert or ramified in $\mathbb{Q}(\sqrt{-d})$, then E 'mod p' is supersingular.

Goal. Here we investigate

• Congruence properties.

• Asymptotic behavior.

Zagier's "Traces" of Singular Moduli.

Notation.

1) Let \mathcal{Q}_d be the set of discriminant -d positive definite integral quadratic forms

$$Q(x,y) = ax^2 + bxy + cy^2.$$

- 2) Let $\alpha_Q \in \mathfrak{H}$ be a root of Q(x,1) = 0.
- 3) The group $\Gamma := PSL_2(\mathbb{Z})$ acts on \mathcal{Q}_d .
- 4) Define ω_Q by

$$\omega_Q := \begin{cases} 2 & \text{if } Q \sim_{\Gamma} [a, 0, a], \\ 3 & \text{if } Q \sim_{\Gamma} [a, a, a], \\ 1 & \text{otherwise.} \end{cases}$$

5) Let J(z) be the Hauptmodule

$$J(z) := j(z) - 744$$

= $q^{-1} + 196884q + 21493760q^2 + \cdots$

6) If $m \geq 1$, then define $J_m(z) \in \mathbb{Z}[x]$ by

$$J_m(z) := m(J(z) \mid T(m)) = q^{-m} + \sum_{n=1}^{\infty} a_m(n)q^n.$$

Definition. Define the mth trace of singular moduli of discriminant -d by

$$\operatorname{Tr}_m(d) := \sum_{Q \in \mathcal{Q}_d/\Gamma} \frac{J_m(\alpha_Q)}{\omega_Q}.$$

Remarks.

1) If m=1, then ${\rm Tr}_1(d)\in \mathbb{Z}$ is the trace of algebraic conjugates

$$\operatorname{Tr}_1(d) = \sum_{Q \in \mathcal{Q}_d/\Gamma} \frac{j(\alpha_Q) - 744}{\omega_Q}.$$

2) Newton's formulas for symmetric functions implies that ${\rm Tr}_1(d),\ldots,{\rm Tr}_{h(-d)}(d)$ determine the Hilbert Class Polynomial

$$H_d(x) = \prod_{Q \in \mathcal{Q}_d/\Gamma} (x - j(\alpha_Q)).$$

Congruence Properties.

Numerical Data I.

$$\begin{split} & \text{Tr}_1(3^2 \cdot 3) = 12288992 \equiv 239 \pmod{3^6}, \\ & \text{Tr}_1(3^2 \cdot 4) = -153541020 \equiv 231 \pmod{3^6}, \\ & \text{Tr}_1(3^2 \cdot 7) \equiv 462 \pmod{3^6}, \\ & \text{Tr}_1(3^2 \cdot 8) \equiv 0 \pmod{3^6}, \\ & \text{Tr}_1(3^2 \cdot 8) \equiv 0 \pmod{3^6}, \\ & \text{Tr}_1(3^2 \cdot 11) \equiv 0 \pmod{3^6}, \\ & \text{Tr}_1(3^2 \cdot 12) \equiv 227 \pmod{3^6}, \\ & \text{Tr}_1(3^2 \cdot 15) \equiv 705 \pmod{3^6}, \\ & \text{Tr}_1(3^2 \cdot 16) \equiv 693 \pmod{3^6}, \\ & \text{Tr}_1(3^2 \cdot 19) \equiv 462 \pmod{3^6}, \\ & \text{Tr}_1(3^2 \cdot 20) \equiv 0 \pmod{3^6}. \end{split}$$

Observe. For
$$n \equiv 2 \pmod{3}$$
, it seems that $\text{Tr}_1(9n) \equiv 0 \pmod{3^6}$.

Some more data...

$$\begin{split} & \text{Tr}_1(5^2 \cdot 3) \equiv 121 \pmod{5^3}, \\ & \text{Tr}_1(5^2 \cdot 4) \equiv 0 \pmod{5^3}, \\ & \text{Tr}_1(5^2 \cdot 7) \equiv 113 \pmod{5^3}, \\ & \text{Tr}_1(5^2 \cdot 8) \equiv 113 \pmod{5^3}, \\ & \text{Tr}_1(5^2 \cdot 11) \equiv 0 \pmod{5^3}, \\ & \text{Tr}_1(5^2 \cdot 12) \equiv 109 \pmod{5^3}. \end{split}$$

Observe. It seems that if $\left(\frac{n}{5}\right) = 1$, then ${\rm Tr}_1(5^2n) \equiv 0 \pmod{5^3}$.

Theorem 1. (Ahlgren-O, Compositio Math. 04?). If $p \nmid m$ is an odd prime and n is **any** positive integer for which p splits in $\mathbb{Q}(\sqrt{-n})$, then

$$\operatorname{Tr}_m(p^2n) \equiv 0 \pmod{p}.$$

Question. What if p is inert or ramified?

Theorem 2. (Ahlgren-O, Compositio Math. 04?). If p is an odd prime and $s \ge 1$, then a positive proportion of the primes ℓ satisfy

$$\operatorname{Tr}_m(\ell^3 n) \equiv 0 \pmod{p^s}$$

for every positive integer n for which p is inert or ramified in $\mathbb{Q}(\sqrt{-n\ell})$.

Example. If $n \equiv 2, 3, 4, 6, 8, 9, 11, 12, 14 \pmod{15}$ is positive, then

$$\operatorname{Tr}_1(125n) \equiv 0 \pmod{9}$$
.

Asymptotics for $Tr_m(d)$.

Definition. A primitive positive definite binary quadratic form Q is *reduced* if $|B| \le A \le C$, and $B \ge 0$ if either |B| = A or A = C.

Notation.

$$H(d) = \begin{cases} Hurwitz-Kronecker class number \\ for discriminant $-d$.$$

Remarks.

- 1. If -d < -4 is fundamental, then there are H(d) reduced forms with discriminant -d.
- 2. If -d is fundamental, then the set of such reduced forms, say $\mathcal{Q}_d^{\text{red}}$, is a complete set of representatives for \mathcal{Q}_d/Γ .
- 3. Every reduced form has $1 \le A \le \sqrt{d/3}$, and has α_Q in the usual fundamental domain for $\mathrm{SL}_2(\mathbb{Z})$

$$\mathcal{F} = \left\{ -\frac{1}{2} \le \Re(z) < \frac{1}{2} \text{ and } |z| > 1 \right\}$$

$$\cup \left\{ -\frac{1}{2} \le \Re(z) \le 0 \text{ and } |z| = 1 \right\}.$$

Since

$$J_1(z) = q^{-1} + 196884q + \cdots,$$

it follows that if $G^{\text{red}}(d)$ is

$$G^{\text{red}}(d) = \sum_{Q = (A,B,C) \in \mathcal{Q}_d^{\text{red}}} e^{\pi Bi/A} \cdot e^{\pi \sqrt{d}/A},$$

then

$$\operatorname{Tr}_1(d) - G^{\operatorname{red}}(d)$$
 is "small."

Remark. This is the $e^{\pi\sqrt{163}}$ example.

Average Values.

It is natural to study the average value

$$\frac{\operatorname{Tr}_1(d) - G^{\operatorname{red}}(d)}{H(d)}.$$

Examples. If d = 1931, 2028 and 2111, then

$$\frac{\mathrm{Tr}_1(d) - G^{\mathsf{red}}(d)}{H(d)} = \begin{cases} 11.981\dots & \text{if } d = 1931, \\ -24.483\dots & \text{if } d = 2028, \\ -13.935\dots & \text{if } d = 2111. \end{cases}$$

Remarks.

- 1. These averages are indeed small.
- 2. These averages are not uniform.

A more uniform picture exists.

Notation.

- 1. Let \mathfrak{F}' the semi-circular region obtained by connecting the lower endpoints of \mathfrak{F} by a horizontal line.
- 2. Let $\mathcal{Q}_d^{\text{old}}$ denote the set of discriminant -d positive definite quadratic forms Q with $\alpha_Q \in \mathfrak{F}'$.
- 3. Define $G^{\text{old}}(d)$ by

$$G^{\mathsf{old}}(d) = \sum_{Q = (A,B,C) \in \mathcal{Q}_d^{\mathsf{old}}} e^{\pi Bi/A} \cdot e^{\pi \sqrt{d}/A}.$$

Examples. We have the following data:

$$\frac{\operatorname{Tr}_{1}(d) - G^{\operatorname{red}}(d) - G^{\operatorname{old}}(d)}{H(d)} = \begin{cases} -24.67.. & d = 1931, \\ -24.48.. & d = 2028, \\ -23.45.. & d = 2111. \end{cases}$$

Theorem 3. (Bruinier-Jenkins-Ono, and Duke) For fundamental discriminants -d < 0, we have

$$\lim_{-d \to -\infty} \frac{\operatorname{Tr}_1(d) - G^{\operatorname{red}}(d) - G^{\operatorname{old}}(d)}{H(d)} = -24.$$

Proofs of Theorems 1, 2 and 3.

Zagier's generating functions

Notation.

For non-negative integers λ , let

$$M_{\lambda+\frac{1}{2}}^! = \left\{ \begin{array}{l} \text{weight } \lambda + \frac{1}{2} \text{ weakly holomorphic} \\ \text{modular forms on } \Gamma_0(4) \text{ satisfying} \\ \text{the "Kohnen plus-space" condition.} \end{array} \right\}$$

Zagier's Generating Functions.

1. For $1 \le D \equiv 0, 1 \pmod{4}$, let $g_D(z) \in M_{3/2}^!$ be the unique form with

$$g_D = q^{-D} + B(D, 0) + \sum_{0 < d \equiv 0, 3 \pmod{4}} B(D, d) q^d.$$

2. For $m \geq 1$, define integers $B_m(D,d)$ by

$$B_m(D,d) = \text{coefficient of } q^d \text{ in } g_D(z) \mid T_{\frac{3}{2}}(m^2).$$

Theorem. (Zagier)

If $m \ge 1$ and -d < 0 is a discriminant, then

$$\mathsf{Tr}_m(d) = -B_m(1,d).$$

Remarks.

- 1. Theorems 1 and 2 concern the congruence properties of $Tr_m(d)$.
- 2. Theorem 1 follows from Zagier's Theorem combined with a simple analysis of Hecke operators.
- 3. Theorem 2 is more involved.

Theorem 2. If p is an odd prime and $s \ge 1$, a proportion of the primes ℓ satisfy

$$\operatorname{Tr}_m(\ell^3 n) \equiv 0 \pmod{p^s}$$

for every positive integer n for which p is inert or ramified in $\mathbb{Q}(\sqrt{-n\ell})$.

Sketch of the Proof of Thm 2 when m = 1

Step 1. The generating function is

$$-g_1(z) = -\frac{\eta(z)^2}{\eta(2z)} \cdot \frac{E_4(4z)}{\eta(4z)^6}$$
$$= -q^{-1} + 2 + \sum_{d \equiv 0, 3 \pmod{4}} \operatorname{Tr}_1(d) q^d$$

Step 2. $g_1(z)$ is a weight $\frac{3}{2}$ modular form which is holomorphic on \mathfrak{H} , but has poles **at infinity and some cusps**.

Remark. Poles "present" problems.

Proving congruences typically requires:

- *q*-series identities.
- Hecke eigenforms.
- Finite dimensionality of spaces of holomorphic modular forms.

 $\implies g_1(z)$ is unhappy.

Step 3. If $s \ge 1$, we investigate

$$g_1(p,z) := 2 + \sum_{\substack{0 < d \equiv 0,3 \pmod{4} \\ p \mid d}} \operatorname{Tr}_1(d)q^d + 2 \sum_{\substack{0 < d \equiv 0,3 \pmod{4} \\ (\frac{-d}{p}) = -1}} \operatorname{Tr}_1(d)q^d.$$

This is obtained by

$$g_1(p,z) := g_1 \pm \left(g_1 \otimes \left(\frac{\bullet}{p}\right)\right).$$

Step 4. The form $g_1(p,z)$ is holomorphic at infinity and on \mathfrak{H} , but is now on $\Gamma_0(Np^2)$.

It still has poles at "other cusps".

Step 5. Happily, we can construct integer weight modular forms $\mathcal{E}_p(z)$ on $\Gamma_0(p^2)$ with

•
$$\mathcal{E}_p(z) \equiv 1 \pmod{p}$$
,

•
$$\operatorname{ord}_{\tau}(g_1(p,z)) < 0 \implies \mathcal{E}_p(\tau) = 0.$$

Step 6. Therefore, for every $s \gg 1$ we have:

$$\mathcal{G}_1(p^s, z) := g_1(p, z) \cdot \mathcal{E}_p(z)^{p^{s-1}}$$

is a holomorphic modular form.

Moreover, we have

$$\mathcal{G}_1(p^s,z) \equiv g_1(p,z) \pmod{p^s}.$$

Step 7. Write $\mathcal{G}_1(p^s,z)$ as

$$\mathcal{G}_1(p^s,z) := \mathcal{G}^{eis}(p^s,z) + \mathcal{G}^{cusp}(p^s,z).$$

Step 8. Using

- Galois representations.
- Shimura's correspondence.
- Hecke operators,

 \exists primes $\ell \equiv -1 \pmod{p^s}$ with

$$\mathcal{G}^{cusp}(p^s, z) \mid T(\ell^2) \equiv 0 \pmod{p^s}$$
.

For these same ℓ , one can show that

$$\mathcal{G}^{eis}(p^s, z) \mid T(\ell^2) \equiv 0 \pmod{p^s}.$$

Step 9. Recall the action of $T(\ell^2)$:

$$\left(\sum_{n=0}^{\infty} a(n)q^n\right) \mid T(\ell^2)$$

$$= \sum_{n=0}^{\infty} a(\ell^2 n) q^n + \chi^*(\ell) \left(\frac{n}{\ell}\right) \ell^{\lambda - 1} a(n) q^n$$

$$+ \chi^*(\ell^2)\ell^{2\lambda - 1}a(n/\ell^2)q^n.$$

Step 10. If $T(\ell^2)$ is an annihilator $\pmod{p^s}$, then for all n

$$a(\ell^2 n) + \chi^*(\ell) \left(\frac{n}{\ell}\right) \ell^{\lambda - 1} a(n)$$

$$+ \chi^*(\ell^2)\ell^{2\lambda - 1}a(n/\ell^2) \equiv 0 \pmod{p^s}.$$

Note. $\left(\frac{n\ell}{\ell}\right) = 0$, and $a(n\ell/\ell^2) = 0$ if $\ell \nmid n$.

Step 11. By replacing $n = n\ell$, we get

$$a(\ell^3 n) \equiv 0 \pmod{p^s}$$

for every n coprime to ℓ .

Apply this to $g_1(p, z)$.

Sketch of the Proof of Theorem 3.

Theorem 3.

For fundamental discriminants -d < 0, we have

$$\lim_{-d \to -\infty} \frac{\operatorname{Tr}(d) - G^{\operatorname{red}}(d) - G^{\operatorname{old}}(d)}{H(d)} = -24.$$

Remark. To prove Theorem 3, we first obtain an "exact formula for" all the $Tr_m(d)$.

Notation.

ullet If v is odd, then let

$$\epsilon_v = \begin{cases} 1 & \text{if } v \equiv 1 \pmod{4}, \\ i & \text{if } v \equiv 3 \pmod{4}. \end{cases}$$

- Let $e(w) = e^{2\pi i w}$.
- Define the Kloosterman sum

$$K(m, n, c) = \sum_{v (c)^*} {c \choose v} \epsilon_v^{-1} e \left(\frac{m\overline{v} + nv}{c} \right).$$

Here v runs through the primitive residues classes modulo c, and \bar{v} is the multiplicative inverse of v modulo c.

Theorem 4. (Bruinier-Jenkins-Ono)

If $m \geq 1$ and -d < 0 is a discriminant, then

$$Tr_m(d) = -\sum_{n|m} nB(n^2, d),$$

where $B(n^2,d)$ is the integer given by

$$B(n^2, d) = 24H(d)$$

$$-\left(1+i\right)\sum_{\substack{c>0\\c\equiv 0\;(4)}}(1+\delta(\frac{c}{4}))\frac{K(-n^2,d,c)}{n\sqrt{c}}\sinh\!\left(\frac{4\pi n\sqrt{d}}{c}\right).$$

Here the function δ is defined by

$$\delta(v) = \begin{cases} 1 & \text{if } v \text{ is odd,} \\ 0 & \text{otherwise.} \end{cases}$$

Remark. Theorem 4 is analogous to the exact formula for the partition function p(n) obtained by Rademacher using the "circle method".

Proof of Theorem 3.

1) By Thm 4, Theorem 3 is equivalent to

$$\sum_{\substack{c>\sqrt{d/3}\\c\equiv 0\;(4)}}(1+\delta(\frac{c}{4}))\frac{K(-1,d,c)}{\sqrt{c}}\sinh\left(\frac{4\pi}{c}\sqrt{d}\right)=o\left(H(d)\right).$$

2) By Siegel's theorem that

$$H(d) \gg_{\epsilon} d^{\frac{1}{2}-\epsilon},$$

it suffices to show that such sums are $\ll d^{\frac{1}{2}-\gamma}$, for some $\gamma > 0$.

3) Estimates of this type are basically known, and are intimately connected to the problem of bounding coefficients of half-integral weight cusp forms (for example, see works by Duke and Iwaniec).

Sketch of the Proof of Theorem 4.

Remark. It suffices to find an exact expression for Zagier's generating functions

$$g_D(z) = q^{-D} + B(D, 0) + \sum B(D, d)q^d$$
.

By the "method of Poincaré series," we have:

Theorem 5. (Bruinier-Jenkins-Ono)

There is a Poincaré series $F_m(z,3/2)$ which is a weak Maass form of weight 3/2 for the group $\Gamma_0(4)$. Its Fourier coefficients of positive index n are

$$c(n, y, 3/2) = 2\pi i^{-3/2} \left| \frac{n}{m} \right|^{\frac{1}{4}}$$

$$\times \sum_{\substack{c > 0 \\ c \equiv 0 \ (4)}} \frac{K(m, n, c)}{c} I_{1/2} \left(\frac{4\pi}{c} \sqrt{|mn|} \right) e^{-2\pi n y}.$$

Near ∞ the function $F_m(z,3/2)-e(mz)$ is bounded. Near the other cusps the function $F_m(z,3/2)$ is bounded. Remark. We must relate these to Zagier's

$$g_D(z) \in M_{3/2}^!$$
.

Recall another function of Zagier, G(z),

$$G(z) = \sum_{n=0}^{\infty} H(n)q^n + \frac{1}{16\pi\sqrt{y}} \sum_{n=-\infty}^{\infty} \beta(4\pi n^2 y)q^{-n^2},$$

where
$$H(0) = \zeta(-1) = -\frac{1}{12}$$
, and

$$\beta(s) = \int_1^\infty t^{-3/2} e^{-st} dt.$$

Proposition. Let $F_m^+(z)$ be the "projection" of $F_m(z,3/2)$ to Kohnen's plus space.

1. If -m is a non-zero square, then

$$F_m^+(z) + 24G(z) \in M_{3/2}^!$$

2. If -m is not a square, then $F_m^+(z) \in M_{3/2}^!$.

Remark. Theorem 4 now follows easily.

Summary

Theorem 1. (Ahlgren-O).

If $p \nmid m$ is an odd prime and n is **any** positive integer for which p splits in $\mathbb{Q}(\sqrt{-n})$, then

$$\operatorname{Tr}_m(p^2n) \equiv 0 \pmod{p}.$$

......

Theorem 2. (Ahlgren-O).

If p is an odd prime and $s \ge 1$, then a positive proportion of the primes ℓ satisfy

$$\operatorname{Tr}_m(\ell^3 n) \equiv 0 \pmod{p^s}$$

for every positive integer n for which p is inert or ramified in $\mathbb{Q}(\sqrt{-n\ell})$.

Theorem 3. (Bruinier-Jenkins-Ono, and Duke) For fundamental discriminants -d < 0, we have

$$\lim_{-d \to -\infty} \frac{\operatorname{Tr}_1(d) - G^{\operatorname{red}}(d) - G^{\operatorname{old}}(d)}{H(d)} = -24.$$

Theorem 3 follows from Theorem 4.

Theorem 4. (Bruinier-Jenkins-Ono) If $m \ge 1$ and -d < 0 is a discriminant, then

$$Tr_m(d) = -\sum_{n|m} nB(n^2, d),$$

where $B(n^2, d)$ is the integer given by

$$B(n^2, d) = 24H(d)$$

$$-\left(1+i\right)\sum_{\substack{c>0\\c\equiv0\;(4)}}(1+\delta(\frac{c}{4}))\frac{K(-n^2,d,c)}{n\sqrt{c}}\sinh\!\left(\frac{4\pi n\sqrt{d}}{c}\right).$$