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The j7-function.
Throughout let g := e2™%, and as usual let

§(2) = ¢ 1 4+744+4196884¢+21493760¢%+ - - .

Definition. Values of j(z) at imaginary quadratic
arguments in H are known as singular moduli.

Classical Examples.

.<1+\/——3>
J =0,

(i) = 1728,
7(2) 5

, (1 + \/—15> —191025 — 859955
J = .
2 2



T heorem.
Singular moduli are algebraic integers.

Remark. Singular moduli have many roles.

e Generate class fields of imaginary quadratic
fields.

e EXxplain the interplay between elliptic curves
over finite fields and elliptic curves with
CM.

e Provide structure for Borcherds' work on
infinite product expansions of modular forms.



Here we recall two explicit ‘roles’.

I. Explicit Class Field Theory.

Theorem. If 7 is a CM point of discriminant
—d, where —d is the fundamental discriminant
of the quadratic field K; := Q(+v/—d), then
K, (j(7)) is the Hilbert class field of K.

oooooooooooooooooo

II. Elliptic Curves.

Definition. An elliptic curve E over [y, is
supersingular of E(F,) has no p-torsion.

Theorem. (Deuring).

If E is an elliptic curve whose j-invariant is a
singular modulus with discriminant —d and p is
a prime which is inert or ramified in Q(v/—d),
then E ‘mod p' is supersingular.



Goal. Here we investigate

e Congruence properties.

e Asymptotic behavior.



Zagier’'s ‘“Traces” of Singular Moduli.

Notation.

1) Let Q4 be the set of discriminant —d positive
definite integral quadratic forms

Q(z,y) = az® + bay + cy.
2) Let ag € § be a root of Q(z,1) = 0.
3) The group I := PSL»(Z) acts on Q.

4) Define wg by

2 it Q ~r [a,0,a],
wg =13 if Q ~r [a,a,aq],
1 otherwise.




5) Let J(z) be the Hauptmodule

J(z) ;== j5(2) — 744
— ¢ 1 4+ 196884q + 21493760q¢% + - - - .

6) If m > 1, then define Jn(z2) € Z[x] by

In(2) = m(J(2) | T(m)) = ¢+ Y am(n)q™.
n=1

ooooooooooooooooooooooooooooooooooooooo

Definition. Define the mth trace of singular
moduli of discriminant —d by

Trm(d) := Z Jm(aQ).
Qegy/r @



Remarks.

1) If m = 1, then Try(d) € Z is the trace of
algebraic conjugates

' — 744
Tl’l(d) = Z ](QQ) ! .
QREQy/T “Q

2) Newton’'s formulas for symmetric functions
implies that Tr1(d), ..., Trh(_d)(d) determine the
Hilbert Class Polynomial

Hy(x) = ][] (&—j(ag)).
QEeQy/T



Congruence Properties.

Numerical Data 1.

Tr1(32-3) = 12288992 = 239 (mod 3°),
Tr1(3%2-4) = —153541020 = 231 (mod 3°),
Tr1(32-7) =462 (mod 3%),

Tr1(32-8)=0 (mod 3%),

Tr1(32-11) =0 (mod 39),

Tr1(32.12) =227 (mod 3°),

Tr1(32-15) =705 (mod 3°),

Tr1(3%-16) =693 (mod 3°),

Tr1(32.19) =462 (mod 3°),

Tr1(32.-20) =0 (mod 3%).

Observe. For n =2 (mod 3), it seems that

Tr1(9n) =0 (mod 3°).



Some more data...

Tr(52 -

Tr1(52

3) =121 (mod 53),

-4)=0 (mod 53),
Tri1(52-
Tr(52 -
Tr1(52 :
Tr1(52 -

7) =113 (mod 53),
8) =113 (mod 53),
11)=0 (mod 53),
12) =109 (mod 53).

Observe. It seems that if (%) — 1, then

Tr1(5%n) =0 (mod 53).

10



Theorem 1. (Ahlgren-O, Compositio Math. 047).
If pfm is an odd prime and n is any positive
integer for which p splits in Q(\/—n), then

Trm(p?n) =0 (mod p).

Question. What if p is inert or ramified?

11



Theorem 2. (Ahlgren-O, Compositio Math. 047).
If p is an odd prime and s > 1, then a positive
proportion of the primes ¢ satisfy

Trm(3n) =0 (mod p®)

for every positive integer n for which p is inert

or ramified in Q(v/—nkt).

Example. Ifn=2,3,4,6,8,9,11,12,14 (mod 15)
IS positive, then

Tr1(125n) =0 (mod 9).

12



Asvmptotics for Tr,,(d).

Recall the classical observation that

e™V163 — 562537412640768743.99999909999902 . ..

iIs “nearly’” an integer.

Definition. A primitive positive definite binary
quadratic form Q is reduced if |B| < A < C, and
B >0 if either [Bj=A or A=C.

13



Notation.

Hurwitz-Kronecker class number

H(d) = for discriminant —d.

Remarks.

1. If —d < —4 is fundamental, then there are
H(d) reduced forms with discriminant —d.

2. If —d is fundamental, then the set of such
reduced forms, say Q&ed, iSs a complete set
of representatives for Q,/I".

3. Every reduced form has 1 < A <,/d/3, and
has aQ in the usual fundamental domain
for SLQ(Z)

1 1
F = {__ <R(z) < = and |z| > 1}
2 2

U{—%S%(z) <0 and |z| = 1}.

14



Since

Ji1(z) = ¢ 1 4+196884¢+ - - -,

it follows that if G'd(d) is

Gred (d) = Z 67TB7§/A . eﬁ\/E/A
Q=(A,B,C)eQr

Y

then

Tr1(d) — G™9(d) is “small.”
Remark. This is the e™V163 example.

15



Average Values.

It is natural to study the average value

Tr1(d) — G'¢4(d)
H(d) |

Examples. If d =1931,2028 and 2111, then

(11.981... if d = 1931,
Tr1(d) — G™9(d) |
={-24.483... if d=2028,
H(d) .
| —-13.935... if d=2111.
Remarks.

1. These averages are indeed small.

2. These averages are not uniform.

16



A more uniform picture exists.

Notation.

1. Let § the semi-circular region obtained by
connecting the lower endpoints of § by a
horizontal line.

2. Let Q99 denote the set of discriminant
—d positive definite quadratic forms @@ with

e7,) c Sl.
3. Define G°'9(d) by

GOld(d> — Z ewBi/A ) eﬂ\/E/A.
Q=(4,B,C)€Qg"

17



Examples. We have the following data:

(_24.67.. d= 1931,
{ —24.48.. d = 2028,
| —23.45.. d=12111.

Tri(d) — G™9(d) — GOl9(a)
H(d) o

Theorem 3. (Bruinier-Jenkins-Ono, and Duke)
For fundamental discriminants —d < O, we have

i Tr(d) - Grd(d) - G°'Y(d) _

—24.,
—d——00 H(d)

18



Proofs of Theorems 1, 2 and 3.

Zagier’'s generating functions

Notation.

For non-negative integers X\, let

| weight A + 3 weakly holomorphic
MX—I—l = ¢ modular forms on [g(4) satisfying
2 the “Kohnen plus-space” condition.

19



Zagier’'s Generating Functions.

1. For1 < D=0,1 (mod 4), let gp(z) € Mé/Q
be the unique form with

gp = q P+B(D,0)+ Y B(D, d)q“.
0<d=0,3 (mod 4)

2. For m > 1, define integers B, (D, d) by

Bm(D,d)

coefficient of ¢% in gp(2) ( Ts(m?).
2

Theorem. (Zagier)
If m>1and —d < 0 is a discriminant, then

Trm(d) = —Bm(1,d).

20



Remarks.

1. Theorems 1 and 2 concern the congruence
properties of Tr,(d).

2. Theorem 1 follows from Zagier's Theorem
combined with a simple analysis of Hecke
operators.

3. Theorem 2 is more involved.

Theorem 2. If p is an odd prime and s > 1, a
proportion of the primes ¢ satisfy

Trm(f3n) =0 (mod p®)

for every positive integer n for which p is inert
or ramified in Q(v/—n¥).

21



Sketch of the Proof of Thm 2 when m =1

Step 1. The generating function is

()2 Ea(42)
n(2z) n(4z)°

—g1(2) =

= —q¢l+2+ > Try(d)q*
d=0,3 (mod 4)

22



Step 2. gi(z) is a weight 3 modular form

which is holomorphic on %, but has poles at
infinity and some cusps.

Remark. Poles ‘“present” problems.

Proving congruences typically requires:

e g-series identities.

e Hecke eigenforms.

e Finite dimensionality of spaces of
holomorphic modular forms.

— g¢g1(2z) is unhappy.

23



Step 3. If s > 1, we investigate

g1(p,z) 1 =2+ > Tr1(d)q?
0<d=0,3 (mod 4)
pld

+2 > Tri(d)q.
0<d=0,3 (mod 4)

(5H=-1
T his is obtained by

g1(p,2) ==g1 % (gl R (:)> .

P

Step 4. The form g1(p,z) is holomorphic at
infinity and on $, but is now on Mo(Np2).

It still has poles at “other cusps'’.

24



Step 5. Happily, we can construct integer
weight modular forms £,(z) on Mo(p?) with

° Sp(z) =1 (mod p),

e ord;(g1(p,2)) <0 = &y(r)=0.

Step 6. Therefore, for every s > 1 we have:

G1(p*,2) = g1(p, 2) - Ep(2)P"

iIs a holomorphic modular form.

Moreover, we have

G1(p®,z) = g1(p,z) (mod p*).

25



Step 7. Write G1(p%,2) as

G1(p®, 2) := G (p®, 2) + GUSP(p*, 2).

Step 8. Using
e (Galois representations.
e Shimura’'s correspondence.
e Hecke operators,

3 primes £ = —1 (mod p®) with

GUP(p®,2) | T(4?) =0 (mod p*).

26



For these same ¢, one can show that

G*(p%,2) | TU?) =0 (mod p®).

Step 9. Recall the action of T'(¢2):

(f: a(n)q"> | T(2)

n=0
00

= 3 al®n)a" +x°() ()0 ra(n)g

_I_ X*(KQ)EQ)\_]'CL(TL/EQ)Q”.

27



Step 10. If T(¢2) is an annihilator (mod p%),
then for all n

a(n) +x*(0) () a(n)

+ *(2) P a(n/f?) =0 (mod p®).

Note. (“T?) = 0, and a(nf/€2) =0 if £t n.

Step 11. By replacing n = nf, we get
a(3n) =0 (mod p*)

for every n coprime to /.

Apply this to g1(p, 2).

28



Sketch of the Proof of Theorem 3.

Theorem 3.
For fundamental discriminants —d < O, we have

i Tr(d) — G™9(d) — G°l(4) _

—24.
—d——00 H(d)

Remark. To prove Theorem 3, we first obtain
an “exact formula for” all the Tr,,(d).

29



Notation.

e If v is odd, then let

1 ifo=1 (mod4),
€y — .
i ifv=3 (mod 4).

o Let e(w) = e2™W,

e Define the Kloosterman sum
K(m,n,c)= Y (2)6516 (mv + nv) |
U C
v (c)*
Here v runs through the primitive residues

classes modulo ¢, and v is the multiplicative
inverse of v modulo c.

30



Theorem 4. (Bruinier-Jenkins-Ono)
IfFm>1 and —d < 0 is a discriminant, then

Trm(d) = - > nB(n?,d),

n|m
where B(n?,d) is the integer given by
B(n?,d) = 24H(d)

-1+ ) (1+0( )

c>0 \/E
c=0 (4)
Here the function ¢ is defined by
1 if v is odd
5(v) = if vi dd,
0] otherwise.

Remark. Theorem 4 is analogous to the exact
formula for the partition function p(n) obtained
by Rademacher using the “circle method".

31
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Proof of Theorem 3.

1) By Thm 4, Theorem 3 is equivalent to

c. . K(-1,d,¢c) . 47 .
C>%/3(1+5(Z)) e sinn (7¢E> — o (H(d)).

c=0(4)

2) By Siegel’s theorem that
1
H(d) > d2"",

1
it suffices to show that such sums are < d2~ 7,
for some v > 0.

3) Estimates of this type are basically known,
and are intimately connected to the problem
of bounding coefficients of half-integral weight
cusp forms (for example, see works by Duke
and Iwaniec).

32



Sketch of the Proof of Theorem 4.

Remark. It suffices to find an exact expression
for Zagier's generating functions

gp(z) = ¢ P + B(D,0) + Y B(D,d)q"

33



By the “method of Poincaré series,” we have:

Theorem 5. (Bruinier-Jenkins-Ono)

There is a Poincaré series Fy,(z,3/2) which is
a weak Maass form of weight 3/2 for the group
[o0(4). Its Fourier coefficients of positive index

n are

1
4

c(n,y,3/2) = 27i—3/2 'ﬁ
m

K 4
v Z (m,n, C) 11/2(777 |mn|) 6—27Tny.

c>0 ¢
c=0 (4)

Near co the function Fp,(z,3/2)—e(mz) is bounded.
Near the other cusps the function Fy,(z,3/2)
is bounded.

34



Remark. We must relate these to Zagier’s

gp(z) € Mé/z.

Recall another function of Zagier, G(z),

s 1 s 2
G(z) = H(n)q"+ B(4rn?y)g ™,
) nzzjo e 167T\/§ nzz—:oo et

where H(0) = ¢(-1) = —45, and

B(s) = /loo t=3/2¢=stqy.

35



Proposition. Let Fn"l,,'(z) be the “projection”
of Fi(z,3/2) to Kohnen's plus space.

1. If —m is a non-zero square, then

Fit(2) +24G(2) € My /2

2. If —m is not a square, then FﬁL’(z) c Mé/z-

Remark. Theorem 4 now follows easily.

]
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Summary

Theorem 1. (Ahlgren-O).
If p{m is an odd prime and n is any positive
integer for which p splits in Q(+/—n), then

Trm(p?n) =0 (mod p).

ooooooooooooooooooooooooooooooooooooooooooooooooooo

Theorem 2. (Ahlgren-O).
If p is an odd prime and s > 1, then a positive
proportion of the primes ¢ satisfy

Trm(f3n) =0 (mod p®)

for every positive integer n for which p is inert

or ramified in Q(v/—n¥).

37



Theorem 3. (Bruinier-Jenkins-Ono, and Duke)
For fundamental discriminants —d < O, we have

i Tr1(d) — G™®4(d) — G°'9(a)

= —24.
—d——00 H(d)

Theorem 3 follows from Theorem 4.

Theorem 4. (Bruinier-Jenkins-Ono)
If m>1and —d < 0 is a discriminant, then

Trm(d) = — ) nB(n?,d),
n|m

where B(n2,d) is the integer given by
B(n?,d) = 24H(d)

CRDND R (¢ K= n?,d,c) S|nh<47m\/a>.
c>0 \/E

c=0 (4)

C
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